
ContentsContents

 Azure Architecture Center
 Cloud fundamentals

 Application architecture guide
 Introduction
 Architecture styles

 Overview
 N-tier application
 Web-queue-worker
 Microservices
 CQRS
 Event-driven architecture
 Big data
 Big compute

 Choosing a compute service
 Overview
 Decision tree
 Compute comparison

 Choosing a data store
 Overview
 Data store comparison

 Design principles
 Overview
 Design for self-healing
 Make all things redundant
 Minimize coordination
 Design to scale out
 Partition around limits
 Design for operations
 Use managed services

 Use the best data store for the job
 Design for evolution
 Build for the needs of business

 Pillars of software quality
 Cloud design patterns

 Overview
 Categories

 Availability
 Data management
 Design and implementation
 Messaging
 Management and monitoring
 Performance and scalability
 Resiliency
 Security

 Ambassador
 Anti-corruption Layer
 Backends for Frontends
 Bulkhead
 Cache-Aside
 Circuit Breaker
 Claim Check
 Command and Query Responsibility Segregation (CQRS)
 Compensating Transaction
 Competing Consumers
 Compute Resource Consolidation
 Event Sourcing
 External Configuration Store
 Federated Identity
 Gatekeeper
 Gateway Aggregation
 Gateway Offloading

 Gateway Routing
 Health Endpoint Monitoring
 Index Table
 Leader Election
 Materialized View
 Pipes and Filters
 Priority Queue
 Publisher/Subscriber
 Queue-Based Load Leveling
 Retry
 Scheduler Agent Supervisor
 Sharding
 Sidecar
 Static Content Hosting
 Strangler
 Throttling
 Valet Key

 Best practices for cloud applications
 API design
 API implementation
 Autoscaling
 Background jobs
 Caching
 Content Delivery Network
 Data partitioning
 Data partitioning strategies (by service)
 Monitoring and diagnostics
 Naming conventions
 Transient fault handling
 Retry guidance for specific services

 Performance antipatterns
 Overview

 Busy Database
 Busy Front End
 Chatty I/O
 Extraneous Fetching
 Improper Instantiation
 Monolithic Persistence
 No Caching
 Synchronous I/O

 Azure for AWS Professionals
 Overview
 Services comparison

 Example scenarios
 Overview
 AI

 Hotel reservation chatbot
 Image classification
 Movie recommendation

 Apps
 Computer-aided engineering
 Decentralized trust between banks
 DevOps with containers
 DevOps with Azure DevOps
 SAP for dev/test
 SAP for production
 E-commerce front-end
 E-commerce API management
 E-commerce product search

 Data and analytics
 Hybrid ETL with Data Factory
 IoT for construction
 Data warehousing and analytics
 Automotive IoT data

 Real-time fraud detection
 Scalable order processing

 Infrastructure
 Computational fluid dynamics (CFD)
 Linux virtual desktops
 Decomposing monolithic applications
 Highly scalable WordPress
 Highly Available Web Application
 Multi-tier Windows
 HPC video rendering
 Image Modeling

 Reference architectures
 Overview
 AI

 Distributed training of deep learning models
 Training of Python scikit-learn models
 Batch scoring of deep learning models
 Batch scoring of Python models
 Batch scoring of Spark models on Azure Databricks
 Real-time scoring of Python and deep learning models
 Real-time scoring of R machine learning models
 Conversational bot
 Real-time Recommendation API

 Big data
 Enterprise BI with SQL Data Warehouse
 Automated enterprise BI with Azure Data Factory
 Stream processing with Azure Databricks
 Stream processing with Azure Stream Analytics

 Enterprise integration
 Basic enterprise integration
 Enterprise integration with queues and events

 Hybrid networks

 Choose a hybrid network architecture
 VPN
 ExpressRoute
 ExpressRoute with VPN failover
 Hub-spoke topology
 Hub-spoke topology with shared services
 Troubleshoot a hybrid VPN connection

 Identity management
 Choose an Active Directory integration architecture
 Integrate on-premises AD with Azure AD
 Extend AD DS to Azure
 Create an AD DS forest in Azure
 Extend AD FS to Azure

 Internet of Things (IoT)
 Microservices

 Azure Kubernetes Service (AKS)
 Azure Service Fabric

 Network DMZ
 DMZ between Azure and on-premises
 DMZ between Azure and the Internet
 Highly available network virtual appliances

 SAP
 SAP NetWeaver for AnyDB
 SAP S/4HANA
 SAP HANA on Azure Large Instances

 Serverless
 Serverless web application
 Serverless event processing

 VM workloads
 Single Linux VM
 Single Windows VM
 Jenkins server

 N-tier application with SQL Server
 Multi-region N-tier application
 N-tier application with Cassandra
 SharePoint Server 2016

 Web applications
 Basic web application
 Improved scalability
 Multi-region deployment
 Web application monitoring

 Build microservices on Azure
 Overview
 Introduction to microservices
 Model microservices

 Domain analysis
 Tactical DDD
 Identify microservice boundaries

 Design a microservices architecture
 Introduction
 Choose a compute option
 Interservice communication
 API design
 API gateways
 Data considerations
 Design patterns for microservices

 Operate microservices in production
 Logging and monitoring
 CI/CD

 Design guides
 Data architecture guide

 Introduction
 Traditional RDBMS workloads

 Overview

 Online transaction processing (OLTP)
 Data warehousing
 Online analytical processing (OLAP)
 Extract, transform, and load (ETL)

 Big data architectures
 Overview
 Batch processing
 Real time processing
 Machine learning at scale
 Non-relational data stores
 Scenarios

 Advanced analytics
 Data lakes
 Free-form text search
 Interactive data exploration
 Natural language processing
 Time series solutions
 Working with CSV and JSON files

 Technology choices
 Analytical data stores
 Analytics and reporting
 Batch processing
 Cognitive services
 Data storage
 Machine learning
 Natural language processing
 Pipeline orchestration
 Real-time message ingestion
 Search data stores
 Stream processing

 Cross-cutting concerns
 Data transfer

 Extending on-premises data solutions to the cloud
 Securing data solutions

 Extend Azure Resource Manager templates
 Introduction
 Update a resource
 Conditionally deploy a resource
 Use an object as a parameter
 Property transformer and collector

 Manage multitenant identity
 Introduction
 The Tailspin scenario
 Authentication
 Claims-based identity
 Tenant sign-up
 Application roles
 Authorization
 Secure a web API
 Cache access tokens
 Client assertion
 Protect application secrets
 Federate with a customer's AD FS
 Run the Surveys application

 Migrate from Cloud Services to Service Fabric
 Migrate a Cloud Services application to Service Fabric
 Refactor a Service Fabric application

 Design Review Framework
 Design for resiliency
 Failure mode analysis
 Availability checklist
 DevOps checklist
 Resiliency checklist (general)
 Resiliency checklist (Azure services)

 Scalability checklist
 Cloud Adoption Framework

 Introduction
 Getting started

 Overview
 How does Azure work?
 What is cloud resource governance?
 Resource access management in Azure

 Business justification
 Build a cloud migration business case
 Create a financial model for cloud transformation
 Examples of fiscal outcomes

 Digital estate
 The 5 Rs of Rationalization
 What is a digital estate?
 Approaches to digital estate planning
 Gather inventory data
 Rationalize the digital estate
 Align cost models to forecast cost

 Governance
 Overview
 Actionable governance journeys

 Overview of the journeys
 Small-to-medium enterprise journey

 Best practice
 Narrative
 Initial corporate policy
 Best practice explained
 Security Baseline evolution
 Resource Consistency evolution
 Cost Management evolution
 Multi-cloud evolution

 Large enterprise journey
 Best practice
 Narrative
 Initial corporate policy
 Best practice explained
 Identity Baseline evolution
 Security Baseline evolution
 Resource Consistency evolution
 Cost Management evolution
 Multi-cloud evolution
 Multiple layers of governance

 Governance theory
 Implement a cloud governance strategy
 The Five Disciplines of Cloud Governance
 Evolving corporate policy and compliance

 How can corporate IT policy become cloud-ready?
 Understand business risks
 Evaluate risk tolerance
 Define corporate policy statements
 Align architecture design guides
 Develop policy adherence processes
 What is regulatory compliance?
 What is a cloud policy review?
 How can a CISO prepare for the cloud?
 What is data classification?

 Implementing the Five Disciplines of Cloud Governance
 Cost Management

 Overview of the Cost Management discipline
 Download the template
 Understand business risks
 Risk tolerance metrics and indicators
 Sample policy statements

 Policy compliance processes
 Discipline improvement
 Azure-specific toolchain

 Security Baseline
 Overview of the Security Baseline discipline
 Download the template
 Understand business risks
 Risk tolerance metrics and indicators
 Sample policy statements
 Policy compliance processes
 Discipline improvement
 Cloud-Native Security Baseline
 Additional Azure security guidance
 Azure-specific toolchain

 Identity Baseline
 Overview of the Identity Baseline discipline
 Download the template
 Understand business risks
 Risk tolerance metrics and indicators
 Sample policy statements
 Policy compliance processes
 Discipline improvement
 Azure-specific toolchain

 Resource Consistency
 Overview of the Resource Consistency discipline
 Download the template
 Understand business risks
 Risk tolerance metrics and indicators
 Sample policy statements
 Policy compliance processes
 Discipline improvement
 Resource access management

 Governance design for a simple workload
 Governance design for multiple teams
 Azure-specific toolchain

 Deployment Acceleration
 Overview of the Deployment Acceleration discipline
 Download the template
 Understand business risks
 Risk tolerance metrics and indicators
 Sample policy statements
 Policy compliance processes
 Discipline improvement
 Azure-specific toolchain

 Infrastructure
 Virtual Machines

 Deploy a basic workload
 Mainframe migration

 Overview
 Myths and facts
 Migration strategies
 Application strategies

 Create hybrid cloud consistency
 Operations

 Overview
 Establish an operational fitness review

 References
 Virtual Data Center (VDC)
 Azure enterprise scaffold
 Implementing Azure enterprise scaffold
 Decision Guides

 Overview
 Subscriptions
 Identity

 Policy enforcement
 Resource consistency
 Resource tagging
 Encryption
 Software defined networks

 Overview
 PaaS Only
 Cloud Native
 Cloud DMZ
 Hybrid
 Hub and spoke model

 Logs and reporting

Azure Application Architecture GuideAzure Application Architecture Guide

Reference ArchitecturesReference Architectures

Microsoft Cloud Adoption Framework for AzureMicrosoft Cloud Adoption Framework for Azure

A guide to designing scalable, resilient, and highly available applications, based on proven practices that we have learned
from customer engagements.

A set of recommended architectures for Azure. Each architecture includes best practices, prescriptive steps, and a
deployable solution.

A process for creating an organization-wide cloud adoption strategy, focusing on policies, governance, and infrastructure.

Build Microservices on AzureBuild Microservices on Azure

Azure Data Architecture GuideAzure Data Architecture Guide

Cloud Best PracticesCloud Best Practices

Design for ResiliencyDesign for Resiliency

Azure Building BlocksAzure Building Blocks

Cloud Design PatternsCloud Design Patterns

Design Review ChecklistsDesign Review Checklists

This design guide takes you through the process of designing and building a microservices architecture on Azure. A
reference implementation is included.

A structured approach to designing data-centric solutions on Microsoft Azure.

Best practices for cloud applications, covering aspects such as auto-scaling, caching, data partitioning, API design, and
others.

Learn how to design resilient applications for Azure.

Simplify deployment of Azure resources. With a single settings file, deploy complex architectures in Azure.

Design patterns for developers and solution architects. Each pattern describes a problem, a pattern that addresses the
problem, and an example based on Azure.

https://docs.microsoft.com/azure/architecture/guide
https://docs.microsoft.com/azure/architecture/reference-architectures
https://docs.microsoft.com/azure/architecture/cloud-adoption/
https://docs.microsoft.com/azure/architecture/microservices
https://docs.microsoft.com/azure/architecture/data-guide/
https://docs.microsoft.com/azure/architecture/best-practices/
https://docs.microsoft.com/azure/architecture/resiliency
https://github.com/mspnp/template-building-blocks/wiki
https://docs.microsoft.com/azure/architecture/patterns

Build your skills with Microsoft Learn

Azure Virtual DatacenterAzure Virtual Datacenter

Azure for AWS ProfessionalsAzure for AWS Professionals

Performance AntipatternsPerformance Antipatterns

Checklists to assist developers and solution architects during the design process.

When deploying enterprise workloads to the cloud, organizations must balance governance with developer agility. Azure
Virtual Datacenter provides models to achieve this balance with an emphasis on governance.

Leverage your AWS experiences in Microsoft Azure.

How to detect and fix some common causes of performance and scalability problems in cloud applications.

Submit your ideas for the Architecture CenterSubmit your ideas for the Architecture Center
Do you have ideas for new architecture or design documentation?

What kinds of articles would you like to see in the Azure Architecture Center?

Pillars of a great Azure architecturePillars of a great Azure architecture

 Design for security in Azure Design for security in Azure

Design for performance and scalability in AzureDesign for performance and scalability in Azure

Design for efficiency and operations in AzureDesign for efficiency and operations in Azure

Design for availability and recoverability in AzureDesign for availability and recoverability in Azure

Tour the N-tier architecture styleTour the N-tier architecture style

https://docs.microsoft.com/azure/architecture/checklist/
https://docs.microsoft.com/azure/architecture/aws-professional
https://docs.microsoft.com/azure/architecture/antipatterns
https://azure-architecture.uservoice.com/forums/918127-general
https://docs.microsoft.com/learn/modules/pillars-of-a-great-azure-architecture/
https://docs.microsoft.com/learn/modules/design-for-security-in-azure/
https://docs.microsoft.com/learn/modules/design-for-performance-and-scalability-in-azure/
https://docs.microsoft.com/learn/modules/design-for-efficiency-and-operations-in-azure/
https://docs.microsoft.com/learn/modules/design-for-availability-and-recoverability-in-azure/
https://docs.microsoft.com/learn/modules/n-tier-architecture/

Introduction

TR AD ITIONAL ON- PR EMIS ES MOD ER N CLOU D

Monolithic, centralized
Design for predictable scalability
Relational database
Strong consistency
Serial and synchronized processing
Design to avoid failures (MTBF)
Occasional big updates
Manual management
Snowflake servers

Decomposed, de-centralized
Design for elastic scale
Polyglot persistence (mix of storage technologies)
Eventual consistency
Parallel and asynchronous processing
Design for failure (MTTR)
Frequent small updates
Automated self-management
Immutable infrastructure

How this guide is structured

Architecture stylesArchitecture styles

Technology choicesTechnology choices

Design principlesDesign principles

This guide presents a structured approach for designing applications on Azure that are scalable, resilient, and highly available. It is
based on proven practices that we have learned from customer engagements.

The cloud is changing the way applications are designed. Instead of monoliths, applications are decomposed into smaller,
decentralized services. These services communicate through APIs or by using asynchronous messaging or eventing. Applications
scale horizontally, adding new instances as demand requires.

These trends bring new challenges. Application state is distributed. Operations are done in parallel and asynchronously. The
system as a whole must be resilient when failures occur. Deployments must be automated and predictable. Monitoring and
telemetry are critical for gaining insight into the system. The Azure Application Architecture Guide is designed to help you
navigate these changes.

This guide is intended for application architects, developers, and operations teams. It's not a how-to guide for using individual
Azure services. After reading this guide, you will understand the architectural patterns and best practices to apply when building
on the Azure cloud platform. You can also download an e-book version of the guide.

The Azure Application Architecture Guide is organized as a series of steps, from the architecture and design to implementation.
For each step, there is supporting guidance that will help you with the design of your application architecture.

The first decision point is the most fundamental. What kind of architecture are you building? It might be a microservices
architecture, a more traditional N-tier application, or a big data solution. We have identified several distinct architecture styles.
There are benefits and challenges to each.

Learn more:

Architecture styles

Two technology choices should be decided early on, because they affect the entire architecture. These are the choice of compute
service and data stores. Compute refers to the hosting model for the computing resources that your applications runs on. Data
stores includes databases but also storage for message queues, caches, logs, and anything else that an application might persist to
storage.

Learn more:

Choosing a compute service
Choosing a data store

https://azure.microsoft.com/campaigns/cloud-application-architecture-guide/

Quality pillarsQuality pillars

We have identified ten high-level design principles that will make your application more scalable, resilient, and manageable. These
design principles apply to any architecture styles. Throughout the design process, keep these ten high-level design principles in
mind. Then consider the set of best practices for specific aspects of the architecture, such as auto-scaling, caching, data
partitioning, API design, and others.

Learn more:

Design principles

A successful cloud application will focus on five pillars of software quality: Scalability, availability, resiliency, management, and
security. Use our design review checklists to review your architecture according to these quality pillars.

Quality pillars

N-tier

Layers

Front
end

Back
endQueue

Web-queue-worker

Microservices

A quick tour of the styles

N-tierN-tier

Web-Queue-WorkerWeb-Queue-Worker

MicroservicesMicroservices

CQRSCQRS

An architecture style is a family of architectures that share certain characteristics. For example, N-tier is a common architecture
style. More recently, microservice architectures have started to gain favor. Architecture styles don't require the use of particular
technologies, but some technologies are well-suited for certain architectures. For example, containers are a natural fit for
microservices.

We have identified a set of architecture styles that are commonly found in cloud applications. The article for each style includes:

A description and logical diagram of the style.
Recommendations for when to choose this style.
Benefits, challenges, and best practices.
A recommended deployment using relevant Azure services.

This section gives a quick tour of the architecture styles that we've identified, along with some high-level considerations for their
use. Read more details in the linked topics.

N-tier is a traditional architecture for enterprise applications. Dependencies are managed by dividing
the application into layers that perform logical functions, such as presentation, business logic, and
data access. A layer can only call into layers that sit below it. However, this horizontal layering can be
a liability. It can be hard to introduce changes in one part of the application without touching the rest
of the application. That makes frequent updates a challenge, limiting how quickly new features can be
added.

N-tier is a natural fit for migrating existing applications that already use a layered architecture. For that reason, N-tier is most
often seen in infrastructure as a service (IaaS) solutions, or application that use a mix of IaaS and managed services.

For a purely PaaS solution, consider a Web-Queue-Worker architecture. In this style, the application
has a web front end that handles HTTP requests and a back-end worker that performs CPU-intensive
tasks or long-running operations. The front end communicates to the worker through an
asynchronous message queue.

Web-queue-worker is suitable for relatively simple domains with some resource-intensive tasks. Like
N-tier, the architecture is easy to understand. The use of managed services simplifies deployment and operations. But with a
complex domains, it can be hard to manage dependencies. The front end and the worker can easily become large, monolithic
components that are hard to maintain and update. As with N-tier, this can reduce the frequency of updates and limit innovation.

If your application has a more complex domain, consider moving to a Microservices architecture. A
microservices application is composed of many small, independent services. Each service implements
a single business capability. Services are loosely coupled, communicating through API contracts.

Each service can be built by a small, focused development team. Individual services can be deployed
without a lot of coordination between teams, which encourages frequent updates. A microservice

architecture is more complex to build and manage than either N-tier or web-queue-worker. It requires a mature development and
DevOps culture. But done right, this style can lead to higher release velocity, faster innovation, and a more resilient architecture.

The CQRS (Command and Query Responsibility Segregation) style separates read and write operations into separate models.
This isolates the parts of the system that update data from the parts that read the data. Moreover, reads can be executed against a
materialized view that is physically separate from the write database. That lets you scale the read and write workloads
independently, and optimize the materialized view for queries.

Write

Read

CQRS

Event driven
Consumers

Producers

Event-driven architectureEvent-driven architecture

Big Data, Big ComputeBig Data, Big Compute

Architecture styles as constraints

AR CHITECTU R E S T YLE D EPEND ENCY MANAG EMENT D OMAIN T YPE

N-tier Horizontal tiers divided by subnet Traditional business domain. Frequency of
updates is low.

Web-Queue-Worker Front and backend jobs, decoupled by async
messaging.

Relatively simple domain with some resource
intensive tasks.

Microservices Vertically (functionally) decomposed services
that call each other through APIs.

Complicated domain. Frequent updates.

CQRS Read/write segregation. Schema and scale are
optimized separately.

Collaborative domain where lots of users
access the same data.

CQRS makes the most sense when it's applied to a subsystem of a larger architecture. Generally, you
shouldn't impose it across the entire application, as that will just create unneeded complexity.
Consider it for collaborative domains where many users access the same data.

Event-Driven Architectures use a publish-subscribe (pub-sub) model,
where producers publish events, and consumers subscribe to them. The
producers are independent from the consumers, and consumers are
independent from each other.

Consider an event-driven architecture for applications that ingest and
process a large volume of data with very low latency, such as IoT

solutions. The style is also useful when different subsystems must perform different types of processing on the same event data.

Big Data and Big Compute are specialized architecture styles for workloads that fit certain specific profiles. Big data divides a
very large dataset into chunks, performing paralleling processing across the entire set, for analysis and reporting. Big compute,
also called high-performance computing (HPC), makes parallel computations across a large number (thousands) of cores.
Domains include simulations, modeling, and 3-D rendering.

An architecture style places constraints on the design, including the set of elements that can appear and the allowed relationships
between those elements. Constraints guide the "shape" of an architecture by restricting the universe of choices. When an
architecture conforms to the constraints of a particular style, certain desirable properties emerge.

For example, the constraints in microservices include:

A service represents a single responsibility.
Every service is independent of the others.
Data is private to the service that owns it. Services do not share data.

By adhering to these constraints, what emerges is a system where services can be deployed independently, faults are isolated,
frequent updates are possible, and it's easy to introduce new technologies into the application.

Before choosing an architecture style, make sure that you understand the underlying principles and constraints of that style.
Otherwise, you can end up with a design that conforms to the style at a superficial level, but does not achieve the full potential of
that style. It's also important to be pragmatic. Sometimes it's better to relax a constraint, rather than insist on architectural purity.

The following table summarizes how each style manages dependencies, and the types of domain that are best suited for each.

Event-driven architecture. Producer/consumer. Independent view per
sub-system.

IoT and real-time systems

Big data Divide a huge dataset into small chunks.
Parallel processing on local datasets.

Batch and real-time data analysis. Predictive
analysis using ML.

Big compute Data allocation to thousands of cores. Compute intensive domains such as
simulation.

AR CHITECTU R E S T YLE D EPEND ENCY MANAG EMENT D OMAIN T YPE

Consider challenges and benefits
Constraints also create challenges, so it's important to understand the trade-offs when adopting any of these styles. Do the
benefits of the architecture style outweigh the challenges, for this subdomain and bounded context.

Here are some of the types of challenges to consider when selecting an architecture style:

Complexity. Is the complexity of the architecture justified for your domain? Conversely, is the style too simplistic for your
domain? In that case, you risk ending up with a "big ball of mud", because the architecture does not help you to manage
dependencies cleanly.

Asynchronous messaging and eventual consistency. Asynchronous messaging can be used to decouple services, and
increase reliability (because messages can be retried) and scalability. However, this also creates challenges such as always-
once semantics and eventual consistency.

Inter-service communication. As you decompose an application into separate services, there is a risk that
communication between services will cause unacceptable latency or create network congestion (for example, in a
microservices architecture).

Manageability. How hard is it to manage the application, monitor, deploy updates, and so on?

https://en.wikipedia.org/wiki/Big_ball_of_mud

N-tier architecture style
3/13/2019 • 5 minutes to read • Edit Online

When to use this architecture

An N-tier architecture divides an application into logical layers and physical tiers.

Web
Tier

Middle
Tier 1

Middle
Tier 2Messaging

Cache

Remote
Service

Data
Tier

WAFClient

Layers are a way to separate responsibilities and manage dependencies. Each layer has a specific responsibility. A
higher layer can use services in a lower layer, but not the other way around.

Tiers are physically separated, running on separate machines. A tier can call to another tier directly, or use
asynchronous messaging (message queue). Although each layer might be hosted in its own tier, that's not
required. Several layers might be hosted on the same tier. Physically separating the tiers improves scalability and
resiliency, but also adds latency from the additional network communication.

A traditional three-tier application has a presentation tier, a middle tier, and a database tier. The middle tier is
optional. More complex applications can have more than three tiers. The diagram above shows an application with
two middle tiers, encapsulating different areas of functionality.

An N-tier application can have a closed layer architecture or an open layer architecture:

In a closed layer architecture, a layer can only call the next layer immediately down.
In an open layer architecture, a layer can call any of the layers below it.

A closed layer architecture limits the dependencies between layers. However, it might create unnecessary network
traffic, if one layer simply passes requests along to the next layer.

N-tier architectures are typically implemented as infrastructure-as-service (IaaS) applications, with each tier
running on a separate set of VMs. However, an N-tier application doesn't need to be pure IaaS. Often, it's
advantageous to use managed services for some parts of the architecture, particularly caching, messaging, and
data storage.

Consider an N-tier architecture for:

Simple web applications.
Migrating an on-premises application to Azure with minimal refactoring.
Unified development of on-premises and cloud applications.

https://github.com/mspnp/architecture-center/blob/master/docs/guide/architecture-styles/n-tier.md

Benefits

Challenges

Best practices

N-tier architecture on virtual machines

N-tier architectures are very common in traditional on-premises applications, so it's a natural fit for migrating
existing workloads to Azure.

Portability between cloud and on-premises, and between cloud platforms.
Less learning curve for most developers.
Natural evolution from the traditional application model.
Open to heterogeneous environment (Windows/Linux)

It's easy to end up with a middle tier that just does CRUD operations on the database, adding extra latency
without doing any useful work.
Monolithic design prevents independent deployment of features.
Managing an IaaS application is more work than an application that uses only managed services.
It can be difficult to manage network security in a large system.

Use autoscaling to handle changes in load. See Autoscaling best practices.
Use asynchronous messaging to decouple tiers.
Cache semi-static data. See Caching best practices.
Configure database tier for high availability, using a solution such as SQL Server Always On Availability
Groups.
Place a web application firewall (WAF) between the front end and the Internet.
Place each tier in its own subnet, and use subnets as a security boundary.
Restrict access to the data tier, by allowing requests only from the middle tier(s).

This section describes a recommended N-tier architecture running on VMs.

Each tier consists of two or more VMs, placed in an availability set or VM scale set. Multiple VMs provide
resiliency in case one VM fails. Load balancers are used to distribute requests across the VMs in a tier. A tier can
be scaled horizontally by adding more VMs to the pool.

Each tier is also placed inside its own subnet, meaning their internal IP addresses fall within the same address
range. That makes it easy to apply network security group (NSG) rules and route tables to individual tiers.

https://docs.microsoft.com/sql/database-engine/availability-groups/windows/always-on-availability-groups-sql-server

Additional considerationsAdditional considerations

The web and business tiers are stateless. Any VM can handle any request for that tier. The data tier should consist
of a replicated database. For Windows, we recommend SQL Server, using Always On Availability Groups for high
availability. For Linux, choose a database that supports replication, such as Apache Cassandra.

Network Security Groups (NSGs) restrict access to each tier. For example, the database tier only allows access
from the business tier.

For more information about running N-tier applications on Azure:

Run Windows VMs for an N-tier application
Windows N-tier application on Azure with SQL Server
Microsoft Learn module: Tour the N-tier architecture style

N-tier architectures are not restricted to three tiers. For more complex applications, it is common to have
more tiers. In that case, consider using layer-7 routing to route requests to a particular tier.

Tiers are the boundary of scalability, reliability, and security. Consider having separate tiers for services with
different requirements in those areas.

Use VM Scale Sets for autoscaling.

Look for places in the architecture where you can use a managed service without significant refactoring. In
particular, look at caching, messaging, storage, and databases.

For higher security, place a network DMZ in front of the application. The DMZ includes network virtual
appliances (NVAs) that implement security functionality such as firewalls and packet inspection. For more
information, see Network DMZ reference architecture.

For high availability, place two or more NVAs in an availability set, with an external load balancer to
distribute Internet requests across the instances. For more information, see Deploy highly available
network virtual appliances.

Do not allow direct RDP or SSH access to VMs that are running application code. Instead, operators should
log into a jumpbox, also called a bastion host. This is a VM on the network that administrators use to
connect to the other VMs. The jumpbox has an NSG that allows RDP or SSH only from approved public IP
addresses.

You can extend the Azure virtual network to your on-premises network using a site-to-site virtual private
network (VPN) or Azure ExpressRoute. For more information, see Hybrid network reference architecture.

If your organization uses Active Directory to manage identity, you may want to extend your Active
Directory environment to the Azure VNet. For more information, see Identity management reference
architecture.

If you need higher availability than the Azure SLA for VMs provides, replicate the application across two
regions and use Azure Traffic Manager for failover. For more information, see Run Windows VMs in
multiple regions or Run Linux VMs in multiple regions.

https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/virtual-machines-windows/n-tier
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/virtual-machines-linux/n-tier
https://docs.microsoft.com/learn/modules/n-tier-architecture/
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/dmz/index
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/virtual-machines-windows/multi-region-application
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/virtual-machines-linux/multi-region-application

Web-Queue-Worker architecture style
3/13/2019 • 3 minutes to read • Edit Online

When to use this architecture

Benefits

The core components of this architecture are a web front end that serves client requests, and a worker that
performs resource-intensive tasks, long-running workflows, or batch jobs. The web front end communicates with
the worker through a message queue.

WorkerClient

Remote
Service

Static
Content

Database

Queue

Web Front
End

CDN

Identity
Provider

Cache

Other components that are commonly incorporated into this architecture include:

One or more databases.
A cache to store values from the database for quick reads.
CDN to serve static content
Remote services, such as email or SMS service. Often these are provided by third parties.
Identity provider for authentication.

The web and worker are both stateless. Session state can be stored in a distributed cache. Any long-running work
is done asynchronously by the worker. The worker can be triggered by messages on the queue, or run on a
schedule for batch processing. The worker is an optional component. If there are no long-running operations, the
worker can be omitted.

The front end might consist of a web API. On the client side, the web API can be consumed by a single-page
application that makes AJAX calls, or by a native client application.

The Web-Queue-Worker architecture is typically implemented using managed compute services, either Azure App
Service or Azure Cloud Services.

Consider this architecture style for:

Applications with a relatively simple domain.
Applications with some long-running workflows or batch operations.
When you want to use managed services, rather than infrastructure as a service (IaaS).

Relatively simple architecture that is easy to understand.

https://github.com/mspnp/architecture-center/blob/master/docs/guide/architecture-styles/web-queue-worker.md

Challenges

Best practices

Web-Queue-Worker on Azure App Service

Easy to deploy and manage.
Clear separation of concerns.
The front end is decoupled from the worker using asynchronous messaging.
The front end and the worker can be scaled independently.

Without careful design, the front end and the worker can become large, monolithic components that are
difficult to maintain and update.
There may be hidden dependencies, if the front end and worker share data schemas or code modules.

Expose a well-designed API to the client. See API design best practices.
Autoscale to handle changes in load. See Autoscaling best practices.
Cache semi-static data. See Caching best practices.
Use a CDN to host static content. See CDN best practices.
Use polyglot persistence when appropriate. See Use the best data store for the job.
Partition data to improve scalability, reduce contention, and optimize performance. See Data partitioning best
practices.

This section describes a recommended Web-Queue-Worker architecture that uses Azure App Service.

The front end is implemented as an Azure App Service web app, and the worker is implemented as a WebJob. The
web app and the WebJob are both associated with an App Service plan that provides the VM instances.

You can use either Azure Service Bus or Azure Storage queues for the message queue. (The diagram shows an
Azure Storage queue.)

Azure Redis Cache stores session state and other data that needs low latency access.

Azure CDN is used to cache static content such as images, CSS, or HTML.

For storage, choose the storage technologies that best fit the needs of the application. You might use multiple
storage technologies (polyglot persistence). To illustrate this idea, the diagram shows Azure SQL Database and
Azure Cosmos DB.

Additional considerationsAdditional considerations

For more details, see App Service web application reference architecture.

Not every transaction has to go through the queue and worker to storage. The web front end can perform
simple read/write operations directly. Workers are designed for resource-intensive tasks or long-running
workflows. In some cases, you might not need a worker at all.

Use the built-in autoscale feature of App Service to scale out the number of VM instances. If the load on the
application follows predictable patterns, use schedule-based autoscale. If the load is unpredictable, use
metrics-based autoscaling rules.

Consider putting the web app and the WebJob into separate App Service plans. That way, they are hosted
on separate VM instances and can be scaled independently.

Use separate App Service plans for production and testing. Otherwise, if you use the same plan for
production and testing, it means your tests are running on your production VMs.

Use deployment slots to manage deployments. This lets you to deploy an updated version to a staging slot,
then swap over to the new version. It also lets you swap back to the previous version, if there was a problem
with the update.

Microservices architecture style
3/13/2019 • 5 minutes to read • Edit Online

A microservices architecture consists of a collection of small, autonomous services. Each service is self-contained
and should implement a single business capability.

Remote
Service

Client

CDN

Service

Service

Service

Service

Microservices

Management Service
Discovery

API
Gateway

Static
Content

Identity
Provider

In some ways, microservices are the natural evolution of service oriented architectures (SOA), but there are
differences between microservices and SOA. Here are some defining characteristics of a microservice:

In a microservices architecture, services are small, independent, and loosely coupled.

Each service is a separate codebase, which can be managed by a small development team.

Services can be deployed independently. A team can update an existing service without rebuilding and
redeploying the entire application.

Services are responsible for persisting their own data or external state. This differs from the traditional
model, where a separate data layer handles data persistence.

Services communicate with each other by using well-defined APIs. Internal implementation details of each
service are hidden from other services.

Services don't need to share the same technology stack, libraries, or frameworks.

Besides for the services themselves, some other components appear in a typical microservices architecture:

Management. The management component is responsible for placing services on nodes, identifying failures,
rebalancing services across nodes, and so forth.

Service Discovery. Maintains a list of services and which nodes they are located on. Enables service lookup to
find the endpoint for a service.

API Gateway. The API gateway is the entry point for clients. Clients don't call services directly. Instead, they call
the API gateway, which forwards the call to the appropriate services on the back end. The API gateway might
aggregate the responses from several services and return the aggregated response.

The advantages of using an API gateway include:

https://github.com/mspnp/architecture-center/blob/master/docs/guide/architecture-styles/microservices.md

When to use this architecture

Benefits

Challenges

It decouples clients from services. Services can be versioned or refactored without needing to update all of
the clients.

Services can use messaging protocols that are not web friendly, such as AMQP.

The API Gateway can perform other cross-cutting functions such as authentication, logging, SSL
termination, and load balancing.

Consider this architecture style for:

Large applications that require a high release velocity.

Complex applications that need to be highly scalable.

Applications with rich domains or many subdomains.

An organization that consists of small development teams.

Independent deployments. You can update a service without redeploying the entire application, and roll
back or roll forward an update if something goes wrong. Bug fixes and feature releases are more
manageable and less risky.

Independent development. A single development team can build, test, and deploy a service. The result
is continuous innovation and a faster release cadence.

Small, focused teams. Teams can focus on one service. The smaller scope of each service makes the code
base easier to understand, and it's easier for new team members to ramp up.

Fault isolation. If a service goes down, it won't take out the entire application. However, that doesn't
mean you get resiliency for free. You still need to follow resiliency best practices and design patterns. See
Designing resilient applications for Azure.

Mixed technology stacks. Teams can pick the technology that best fits their service.

Granular scaling. Services can be scaled independently. At the same time, the higher density of services
per VM means that VM resources are fully utilized. Using placement constraints, a services can be
matched to a VM profile (high CPU, high memory, and so on).

Complexity. A microservices application has more moving parts than the equivalent monolithic
application. Each service is simpler, but the entire system as a whole is more complex.

Development and test. Developing against service dependencies requires a different approach. Existing
tools are not necessarily designed to work with service dependencies. Refactoring across service
boundaries can be difficult. It is also challenging to test service dependencies, especially when the
application is evolving quickly.

Lack of governance. The decentralized approach to building microservices has advantages, but it can
also lead to problems. You may end up with so many different languages and frameworks that the
application becomes hard to maintain. It may be useful to put some project-wide standards in place,
without overly restricting teams' flexibility. This especially applies to cross-cutting functionality such as
logging.

Network congestion and latency. The use of many small, granular services can result in more

Best practices

Next steps

interservice communication. Also, if the chain of service dependencies gets too long (service A calls B,
which calls C...), the additional latency can become a problem. You will need to design APIs carefully. Avoid
overly chatty APIs, think about serialization formats, and look for places to use asynchronous
communication patterns.

Data integrity. With each microservice responsible for its own data persistence. As a result, data
consistency can be a challenge. Embrace eventual consistency where possible.

Management. To be successful with microservices requires a mature DevOps culture. Correlated logging
across services can be challenging. Typically, logging must correlate multiple service calls for a single user
operation.

Versioning. Updates to a service must not break services that depend on it. Multiple services could be
updated at any given time, so without careful design, you might have problems with backward or forward
compatibility.

Skillset. Microservices are highly distributed systems. Carefully evaluate whether the team has the skills
and experience to be successful.

Model services around the business domain.

Decentralize everything. Individual teams are responsible for designing and building services. Avoid
sharing code or data schemas.

Data storage should be private to the service that owns the data. Use the best storage for each service and
data type.

Services communicate through well-designed APIs. Avoid leaking implementation details. APIs should
model the domain, not the internal implementation of the service.

Avoid coupling between services. Causes of coupling include shared database schemas and rigid
communication protocols.

Offload cross-cutting concerns, such as authentication and SSL termination, to the gateway.

Keep domain knowledge out of the gateway. The gateway should handle and route client requests without
any knowledge of the business rules or domain logic. Otherwise, the gateway becomes a dependency and
can cause coupling between services.

Services should have loose coupling and high functional cohesion. Functions that are likely to change
together should be packaged and deployed together. If they reside in separate services, those services end
up being tightly coupled, because a change in one service will require updating the other service. Overly
chatty communication between two services may be a symptom of tight coupling and low cohesion.

Isolate failures. Use resiliency strategies to prevent failures within a service from cascading. See Resiliency
patterns and Designing resilient applications.

For detailed guidance about building a microservices architecture on Azure, see Designing, building, and
operating microservices on Azure.

CQRS architecture style
3/13/2019 • 3 minutes to read • Edit Online

Command and Query Responsibility Segregation (CQRS) is an architecture style that separates read operations
from write operations.

Query
Model

Client

Command
Model

Event

Write

Read

Materialized
View

Update

In traditional architectures, the same data model is used to query and update a database. That's simple and works
well for basic CRUD operations. In more complex applications, however, this approach can become unwieldy. For
example, on the read side, the application may perform many different queries, returning data transfer objects
(DTOs) with different shapes. Object mapping can become complicated. On the write side, the model may
implement complex validation and business logic. As a result, you can end up with an overly complex model that
does too much.

Another potential problem is that read and write workloads are often asymmetrical, with very different
performance and scale requirements.

CQRS addresses these problems by separating reads and writes into separate models, using commands to
update data, and queries to read data.

Commands should be task based, rather than data centric. ("Book hotel room," not "set ReservationStatus to
Reserved.") Commands may be placed on a queue for asynchronous processing, rather than being
processed synchronously.

Queries never modify the database. A query returns a DTO that does not encapsulate any domain
knowledge.

For greater isolation, you can physically separate the read data from the write data. In that case, the read database
can use its own data schema that is optimized for queries. For example, it can store a materialized view of the data,
in order to avoid complex joins or complex O/RM mappings. It might even use a different type of data store. For
example, the write database might be relational, while the read database is a document database.

If separate read and write databases are used, they must be kept in sync. Typically this is accomplished by having
the write model publish an event whenever it updates the database. Updating the database and publishing the
event must occur in a single transaction.

Some implementations of CQRS use the Event Sourcing pattern. With this pattern, application state is stored as a
sequence of events. Each event represents a set of changes to the data. The current state is constructed by
replaying the events. In a CQRS context, one benefit of Event Sourcing is that the same events can be used to

https://github.com/mspnp/architecture-center/blob/master/docs/guide/architecture-styles/cqrs.md

When to use this architecture

Benefits

Challenges

Best practices

notify other components — in particular, to notify the read model. The read model uses the events to create a
snapshot of the current state, which is more efficient for queries. However, Event Sourcing adds complexity to the
design.

Query
Model

Command
Model

Events

Read

Materialized
View

Publish

Event
Store

Consider CQRS for collaborative domains where many users access the same data, especially when the read and
write workloads are asymmetrical.

CQRS is not a top-level architecture that applies to an entire system. Apply CQRS only to those subsystems where
there is clear value in separating reads and writes. Otherwise, you are creating additional complexity for no benefit.

Independently scaling. CQRS allows the read and write workloads to scale independently, and may result in
fewer lock contentions.
Optimized data schemas. The read side can use a schema that is optimized for queries, while the write side
uses a schema that is optimized for updates.
Security. It's easier to ensure that only the right domain entities are performing writes on the data.
Separation of concerns. Segregating the read and write sides can result in models that are more maintainable
and flexible. Most of the complex business logic goes into the write model. The read model can be relatively
simple.
Simpler queries. By storing a materialized view in the read database, the application can avoid complex joins
when querying.

Complexity. The basic idea of CQRS is simple. But it can lead to a more complex application design,
especially if they include the Event Sourcing pattern.

Messaging. Although CQRS does not require messaging, it's common to use messaging to process
commands and publish update events. In that case, the application must handle message failures or
duplicate messages.

Eventual consistency. If you separate the read and write databases, the read data may be stale.

For more information about implementing CQRS, see the CQRS pattern.

CQRS in microservices

Consider using the Event Sourcing pattern to avoid update conflicts.

Consider using the Materialized View pattern for the read model, to optimize the schema for queries.

CQRS can be especially useful in a microservices architecture. One of the principles of microservices is that a
service cannot directly access another service's data store.

In the following diagram, Service A writes to a data store, and Service B keeps a materialized view of the data.
Service A publishes an event whenever it writes to the data store. Service B subscribes to the event.

Event-driven architecture style
3/13/2019 • 3 minutes to read • Edit Online

An event-driven architecture consists of event producers that generate a stream of events, and event
consumers that listen for the events.

Event Consumers

Event Consumers

Event Consumers

Event Producers Event Ingestion

Events are delivered in near real time, so consumers can respond immediately to events as they occur. Producers
are decoupled from consumers — a producer doesn't know which consumers are listening. Consumers are also
decoupled from each other, and every consumer sees all of the events. This differs from a Competing Consumers
pattern, where consumers pull messages from a queue and a message is processed just once (assuming no
errors). In some systems, such as IoT, events must be ingested at very high volumes.

An event driven architecture can use a pub/sub model or an event stream model.

Pub/sub: The messaging infrastructure keeps track of subscriptions. When an event is published, it sends
the event to each subscriber. After an event is received, it cannot be replayed, and new subscribers do not
see the event.

Event streaming: Events are written to a log. Events are strictly ordered (within a partition) and durable.
Clients don't subscribe to the stream, instead a client can read from any part of the stream. The client is
responsible for advancing its position in the stream. That means a client can join at any time, and can
replay events.

On the consumer side, there are some common variations:

Simple event processing. An event immediately triggers an action in the consumer. For example, you
could use Azure Functions with a Service Bus trigger, so that a function executes whenever a message is
published to a Service Bus topic.

Complex event processing. A consumer processes a series of events, looking for patterns in the event
data, using a technology such as Azure Stream Analytics or Apache Storm. For example, you could
aggregate readings from an embedded device over a time window, and generate a notification if the
moving average crosses a certain threshold.

Event stream processing. Use a data streaming platform, such as Azure IoT Hub or Apache Kafka, as a
pipeline to ingest events and feed them to stream processors. The stream processors act to process or
transform the stream. There may be multiple stream processors for different subsystems of the application.
This approach is a good fit for IoT workloads.

The source of the events may be external to the system, such as physical devices in an IoT solution. In that case,
the system must be able to ingest the data at the volume and throughput that is required by the data source.

In the logical diagram above, each type of consumer is shown as a single box. In practice, it's common to have

https://github.com/mspnp/architecture-center/blob/master/docs/guide/architecture-styles/event-driven.md

When to use this architecture

Benefits

Challenges

multiple instances of a consumer, to avoid having the consumer become a single point of failure in system.
Multiple instances might also be necessary to handle the volume and frequency of events. Also, a single
consumer might process events on multiple threads. This can create challenges if events must be processed in
order, or require exactly-once semantics. See Minimize Coordination.

Multiple subsystems must process the same events.
Real-time processing with minimum time lag.
Complex event processing, such as pattern matching or aggregation over time windows.
High volume and high velocity of data, such as IoT.

Producers and consumers are decoupled.
No point-to point-integrations. It's easy to add new consumers to the system.
Consumers can respond to events immediately as they arrive.
Highly scalable and distributed.
Subsystems have independent views of the event stream.

Guaranteed delivery. In some systems, especially in IoT scenarios, it's crucial to guarantee that events are
delivered.
Processing events in order or exactly once. Each consumer type typically runs in multiple instances, for
resiliency and scalability. This can create a challenge if the events must be processed in order (within a
consumer type), or if the processing logic is not idempotent.

Big data architecture style
3/13/2019 • 10 minutes to read • Edit Online

A big data architecture is designed to handle the ingestion, processing, and analysis of data that is too large or
complex for traditional database systems.

Real-Time Message
Ingestion

Stream
Processing

Batch
ProcessingData Storage

Analytics
and

Reporting
Data

Sources

Orchestration

Analytical
Data Store

Big data solutions typically involve one or more of the following types of workload:

Batch processing of big data sources at rest.
Real-time processing of big data in motion.
Interactive exploration of big data.
Predictive analytics and machine learning.

Most big data architectures include some or all of the following components:

Data sources: All big data solutions start with one or more data sources. Examples include:

Application data stores, such as relational databases.
Static files produced by applications, such as web server log files.
Real-time data sources, such as IoT devices.

Data storage: Data for batch processing operations is typically stored in a distributed file store that can
hold high volumes of large files in various formats. This kind of store is often called a data lake. Options for
implementing this storage include Azure Data Lake Store or blob containers in Azure Storage.

Batch processing: Because the data sets are so large, often a big data solution must process data files
using long-running batch jobs to filter, aggregate, and otherwise prepare the data for analysis. Usually these
jobs involve reading source files, processing them, and writing the output to new files. Options include
running U-SQL jobs in Azure Data Lake Analytics, using Hive, Pig, or custom Map/Reduce jobs in an
HDInsight Hadoop cluster, or using Java, Scala, or Python programs in an HDInsight Spark cluster.

Real-time message ingestion: If the solution includes real-time sources, the architecture must include a
way to capture and store real-time messages for stream processing. This might be a simple data store,
where incoming messages are dropped into a folder for processing. However, many solutions need a
message ingestion store to act as a buffer for messages, and to support scale-out processing, reliable
delivery, and other message queuing semantics. Options include Azure Event Hubs, Azure IoT Hubs, and
Kafka.

Stream processing: After capturing real-time messages, the solution must process them by filtering,
aggregating, and otherwise preparing the data for analysis. The processed stream data is then written to an
output sink. Azure Stream Analytics provides a managed stream processing service based on perpetually

https://github.com/mspnp/architecture-center/blob/master/docs/guide/architecture-styles/big-data.md

When to use this architecture

Benefits

running SQL queries that operate on unbounded streams. You can also use open source Apache streaming
technologies like Storm and Spark Streaming in an HDInsight cluster.

Analytical data store: Many big data solutions prepare data for analysis and then serve the processed data
in a structured format that can be queried using analytical tools. The analytical data store used to serve
these queries can be a Kimball-style relational data warehouse, as seen in most traditional business
intelligence (BI) solutions. Alternatively, the data could be presented through a low-latency NoSQL
technology such as HBase, or an interactive Hive database that provides a metadata abstraction over data
files in the distributed data store. Azure SQL Data Warehouse provides a managed service for large-scale,
cloud-based data warehousing. HDInsight supports Interactive Hive, HBase, and Spark SQL, which can also
be used to serve data for analysis.

Analysis and reporting: The goal of most big data solutions is to provide insights into the data through
analysis and reporting. To empower users to analyze the data, the architecture may include a data modeling
layer, such as a multidimensional OLAP cube or tabular data model in Azure Analysis Services. It might also
support self-service BI, using the modeling and visualization technologies in Microsoft Power BI or
Microsoft Excel. Analysis and reporting can also take the form of interactive data exploration by data
scientists or data analysts. For these scenarios, many Azure services support analytical notebooks, such as
Jupyter, enabling these users to leverage their existing skills with Python or R. For large-scale data
exploration, you can use Microsoft R Server, either standalone or with Spark.

Orchestration: Most big data solutions consist of repeated data processing operations, encapsulated in
workflows, that transform source data, move data between multiple sources and sinks, load the processed
data into an analytical data store, or push the results straight to a report or dashboard. To automate these
workflows, you can use an orchestration technology such Azure Data Factory or Apache Oozie and Sqoop.

Azure includes many services that can be used in a big data architecture. They fall roughly into two categories:

Managed services, including Azure Data Lake Store, Azure Data Lake Analytics, Azure Data Warehouse, Azure
Stream Analytics, Azure Event Hub, Azure IoT Hub, and Azure Data Factory.
Open source technologies based on the Apache Hadoop platform, including HDFS, HBase, Hive, Pig, Spark,
Storm, Oozie, Sqoop, and Kafka. These technologies are available on Azure in the Azure HDInsight service.

These options are not mutually exclusive, and many solutions combine open source technologies with Azure
services.

Consider this architecture style when you need to:

Store and process data in volumes too large for a traditional database.
Transform unstructured data for analysis and reporting.
Capture, process, and analyze unbounded streams of data in real time, or with low latency.
Use Azure Machine Learning or Microsoft Cognitive Services.

Technology choices. You can mix and match Azure managed services and Apache technologies in HDInsight
clusters, to capitalize on existing skills or technology investments.
Performance through parallelism. Big data solutions take advantage of parallelism, enabling high-
performance solutions that scale to large volumes of data.
Elastic scale. All of the components in the big data architecture support scale-out provisioning, so that you can
adjust your solution to small or large workloads, and pay only for the resources that you use.
Interoperability with existing solutions. The components of the big data architecture are also used for IoT

Challenges

Best practices

processing and enterprise BI solutions, enabling you to create an integrated solution across data workloads.

Complexity. Big data solutions can be extremely complex, with numerous components to handle data
ingestion from multiple data sources. It can be challenging to build, test, and troubleshoot big data processes.
Moreover, there may be a large number of configuration settings across multiple systems that must be used in
order to optimize performance.
Skillset. Many big data technologies are highly specialized, and use frameworks and languages that are not
typical of more general application architectures. On the other hand, big data technologies are evolving new
APIs that build on more established languages. For example, the U-SQL language in Azure Data Lake Analytics
is based on a combination of Transact-SQL and C#. Similarly, SQL-based APIs are available for Hive, HBase,
and Spark.
Technology maturity. Many of the technologies used in big data are evolving. While core Hadoop
technologies such as Hive and Pig have stabilized, emerging technologies such as Spark introduce extensive
changes and enhancements with each new release. Managed services such as Azure Data Lake Analytics and
Azure Data Factory are relatively young, compared with other Azure services, and will likely evolve over time.
Security. Big data solutions usually rely on storing all static data in a centralized data lake. Securing access to
this data can be challenging, especially when the data must be ingested and consumed by multiple applications
and platforms.

Leverage parallelism. Most big data processing technologies distribute the workload across multiple
processing units. This requires that static data files are created and stored in a splittable format. Distributed
file systems such as HDFS can optimize read and write performance, and the actual processing is performed
by multiple cluster nodes in parallel, which reduces overall job times.

Partition data. Batch processing usually happens on a recurring schedule — for example, weekly or
monthly. Partition data files, and data structures such as tables, based on temporal periods that match the
processing schedule. That simplifies data ingestion and job scheduling, and makes it easier to troubleshoot
failures. Also, partitioning tables that are used in Hive, U-SQL, or SQL queries can significantly improve
query performance.

Apply schema-on-read semantics. Using a data lake lets you to combine storage for files in multiple
formats, whether structured, semi-structured, or unstructured. Use schema-on-read semantics, which
project a schema onto the data when the data is processing, not when the data is stored. This builds
flexibility into the solution, and prevents bottlenecks during data ingestion caused by data validation and
type checking.

Process data in-place. Traditional BI solutions often use an extract, transform, and load (ETL) process to
move data into a data warehouse. With larger volumes data, and a greater variety of formats, big data
solutions generally use variations of ETL, such as transform, extract, and load (TEL). With this approach, the
data is processed within the distributed data store, transforming it to the required structure, before moving
the transformed data into an analytical data store.

Balance utilization and time costs. For batch processing jobs, it's important to consider two factors: The
per-unit cost of the compute nodes, and the per-minute cost of using those nodes to complete the job. For
example, a batch job may take eight hours with four cluster nodes. However, it might turn out that the job
uses all four nodes only during the first two hours, and after that, only two nodes are required. In that case,
running the entire job on two nodes would increase the total job time, but would not double it, so the total
cost would be less. In some business scenarios, a longer processing time may be preferable to the higher
cost of using under-utilized cluster resources.

IoT architecture

Separate cluster resources. When deploying HDInsight clusters, you will normally achieve better
performance by provisioning separate cluster resources for each type of workload. For example, although
Spark clusters include Hive, if you need to perform extensive processing with both Hive and Spark, you
should consider deploying separate dedicated Spark and Hadoop clusters. Similarly, if you are using HBase
and Storm for low latency stream processing and Hive for batch processing, consider separate clusters for
Storm, HBase, and Hadoop.

Orchestrate data ingestion. In some cases, existing business applications may write data files for batch
processing directly into Azure storage blob containers, where they can be consumed by HDInsight or Azure
Data Lake Analytics. However, you will often need to orchestrate the ingestion of data from on-premises or
external data sources into the data lake. Use an orchestration workflow or pipeline, such as those supported
by Azure Data Factory or Oozie, to achieve this in a predictable and centrally manageable fashion.

Scrub sensitive data early. The data ingestion workflow should scrub sensitive data early in the process,
to avoid storing it in the data lake.

Internet of Things (IoT) is a specialized subset of big data solutions. The following diagram shows a possible logical
architecture for IoT. The diagram emphasizes the event-streaming components of the architecture.

The cloud gateway ingests device events at the cloud boundary, using a reliable, low latency messaging system.

Devices might send events directly to the cloud gateway, or through a field gateway. A field gateway is a
specialized device or software, usually colocated with the devices, that receives events and forwards them to the
cloud gateway. The field gateway might also preprocess the raw device events, performing functions such as
filtering, aggregation, or protocol transformation.

After ingestion, events go through one or more stream processors that can route the data (for example, to
storage) or perform analytics and other processing.

The following are some common types of processing. (This list is certainly not exhaustive.)

Writing event data to cold storage, for archiving or batch analytics.

Hot path analytics, analyzing the event stream in (near) real time, to detect anomalies, recognize patterns
over rolling time windows, or trigger alerts when a specific condition occurs in the stream.

Handling special types of non-telemetry messages from devices, such as notifications and alarms.

Machine learning.

The boxes that are shaded gray show components of an IoT system that are not directly related to event streaming,

Next steps

but are included here for completeness.

The device registry is a database of the provisioned devices, including the device IDs and usually device
metadata, such as location.

The provisioning API is a common external interface for provisioning and registering new devices.

Some IoT solutions allow command and control messages to be sent to devices.

This section has presented a very high-level view of IoT, and there are many subtleties and challenges to
consider. For a more detailed reference architecture and discussion, see the Microsoft Azure IoT Reference
Architecture (PDF download).

Learn more about big data architectures.

https://azure.microsoft.com/updates/microsoft-azure-iot-reference-architecture-available/

Big compute architecture style
3/13/2019 • 3 minutes to read • Edit Online

When to use this architecture

Benefits

The term big compute describes large-scale workloads that require a large number of cores, often numbering in
the hundreds or thousands. Scenarios include image rendering, fluid dynamics, financial risk modeling, oil
exploration, drug design, and engineering stress analysis, among others.

Here are some typical characteristics of big compute applications:

The work can be split into discrete tasks, which can be run across many cores simultaneously.
Each task is finite. It takes some input, does some processing, and produces output. The entire application runs
for a finite amount of time (minutes to days). A common pattern is to provision a large number of cores in a
burst, and then spin down to zero once the application completes.
The application does not need to stay up 24/7. However, the system must handle node failures or application
crashes.
For some applications, tasks are independent and can run in parallel. In other cases, tasks are tightly coupled,
meaning they must interact or exchange intermediate results. In that case, consider using high-speed
networking technologies such as InfiniBand and remote direct memory access (RDMA).
Depending on your workload, you might use compute-intensive VM sizes (H16r, H16mr, and A9).

Computationally intensive operations such as simulation and number crunching.
Simulations that are computationally intensive and must be split across CPUs in multiple computers (10-
1000s).
Simulations that require too much memory for one computer, and must be split across multiple computers.
Long-running computations that would take too long to complete on a single computer.
Smaller computations that must be run 100s or 1000s of times, such as Monte Carlo simulations.

High performance with "embarrassingly parallel" processing.
Can harness hundreds or thousands of computer cores to solve large problems faster.

https://github.com/mspnp/architecture-center/blob/master/docs/guide/architecture-styles/big-compute.md
https://en.wikipedia.org/wiki/Embarrassingly_parallel

Challenges

Big compute using Azure Batch

Big compute running on Virtual Machines

HPC Pack deployed to AzureHPC Pack deployed to Azure

Access to specialized high-performance hardware, with dedicated high-speed InfiniBand networks.
You can provision VMs as needed to do work, and then tear them down.

Managing the VM infrastructure.
Managing the volume of number crunching
Provisioning thousands of cores in a timely manner.
For tightly coupled tasks, adding more cores can have diminishing returns. You may need to experiment to find
the optimum number of cores.

Azure Batch is a managed service for running large-scale high-performance computing (HPC) applications.

Using Azure Batch, you configure a VM pool, and upload the applications and data files. Then the Batch service
provisions the VMs, assign tasks to the VMs, runs the tasks, and monitors the progress. Batch can automatically
scale out the VMs in response to the workload. Batch also provides job scheduling.

You can use Microsoft HPC Pack to administer a cluster of VMs, and schedule and monitor HPC jobs. With this
approach, you must provision and manage the VMs and network infrastructure. Consider this approach if you
have existing HPC workloads and want to move some or all it to Azure. You can move the entire HPC cluster to
Azure, or keep your HPC cluster on-premises but use Azure for burst capacity. For more information, see Batch
and HPC solutions for large-scale computing workloads.

In this scenario, the HPC cluster is created entirely within Azure.

https://docs.microsoft.com/azure/batch/
https://technet.microsoft.com/library/cc514029
https://docs.microsoft.com/azure/batch/batch-hpc-solutions

Burst an HPC cluster to AzureBurst an HPC cluster to Azure

The head node provides management and job scheduling services to the cluster. For tightly coupled tasks, use an
RDMA network that provides very high bandwidth, low latency communication between VMs. For more
information see Deploy an HPC Pack 2016 cluster in Azure.

In this scenario, an organization is running HPC Pack on-premises, and uses Azure VMs for burst capacity. The
cluster head node is on-premises. ExpressRoute or VPN Gateway connects the on-premises network to the Azure
VNet.

https://docs.microsoft.com/azure/virtual-machines/windows/hpcpack-2016-cluster

Overview of Azure compute options
3/13/2019 • 3 minutes to read • Edit Online

Overview

Azure compute options

The term compute refers to the hosting model for the computing resources that your application runs on.

At one end of the spectrum is Infrastructure-as-a-Service (IaaS). With IaaS, you provision the VMs that you
need, along with associated network and storage components. Then you deploy whatever software and
applications you want onto those VMs. This model is the closest to a traditional on-premises environment, except
that Microsoft manages the infrastructure. You still manage the individual VMs.

Platform as a service (PaaS) provides a managed hosting environment, where you can deploy your application
without needing to manage VMs or networking resources. For example, instead of creating individual VMs, you
specify an instance count, and the service will provision, configure, and manage the necessary resources. Azure
App Service is an example of a PaaS service.

There is a spectrum from IaaS to pure PaaS. For example, Azure VMs can auto-scale by using VM Scale Sets. This
automatic scaling capability isn't strictly PaaS, but it's the type of management feature that might be found in a
PaaS service.

Functions-as-a-Service (FaaS) goes even further in removing the need to worry about the hosting environment.
Instead of creating compute instances and deploying code to those instances, you simply deploy your code, and
the service automatically runs it. You don’t need to administer the compute resources. These services use a
serverless architecture, and seamlessly scale up or down to whatever level necessary to handle the traffic. Azure
Functions are a FaaS service.

IaaS gives the most control, flexibility, and portability. FaaS provides simplicity, elastic scale, and potential cost
savings, because you pay only for the time your code is running. PaaS falls somewhere between the two. In
general, the more flexibility a service provides, the more you are responsible for configuring and managing the
resources. FaaS services automatically manage nearly all aspects of running an application, while IaaS solutions
require you to provision, configure and manage the VMs and network components you create.

Here are the main compute options currently available in Azure:

Virtual Machines are an IaaS service, allowing you to deploy and manage VMs inside a virtual network (VNet).
App Service is a managed PaaS offering for hosting web apps, mobile app back ends, RESTful APIs, or
automated business processes.
Service Fabric is a distributed systems platform that can run in many environments, including Azure or on
premises. Service Fabric is an orchestrator of microservices across a cluster of machines.
Azure Kubernetes Service manages a hosted Kubernetes service for running containerized applications.
Azure Container Instances offer the fastest and simplest way to run a container in Azure, without having to
provision any virtual machines and without having to adopt a higher-level service.
Azure Functions is a managed FaaS service.
Azure Batch is a managed service for running large-scale parallel and high-performance computing (HPC)
applications.
Cloud Services is a managed service for running cloud applications. It uses a PaaS hosting model.

When selecting a compute option, here are some factors to consider:

https://github.com/mspnp/architecture-center/blob/master/docs/guide/technology-choices/compute-overview.md
https://docs.microsoft.com/azure/virtual-machines/
https://docs.microsoft.com/azure/app-service/app-service-value-prop-what-is
https://docs.microsoft.com/azure/service-fabric/service-fabric-overview
https://docs.microsoft.com/azure/aks/
https://docs.microsoft.com/azure/container-instances/container-instances-overview
https://docs.microsoft.com/azure/azure-functions/functions-overview
https://docs.microsoft.com/azure/batch/batch-technical-overview
https://docs.microsoft.com/azure/cloud-services/cloud-services-choose-me

Next steps

Hosting model. How is the service hosted? What requirements and limitations are imposed by this hosting
environment?
DevOps. Is there built-in support for application upgrades? What is the deployment model?
Scalability. How does the service handle adding or removing instances? Can it auto-scale based on load and
other metrics?
Availability. What is the service SLA?
Cost. In addition to the cost of the service itself, consider the operations cost for managing a solution built on
that service. For example, IaaS solutions might have a higher operations cost.
What are the overall limitations of each service?
What kind of application architectures are appropriate for this service?

To help select a compute service for your application, use the Decision tree for Azure compute services

For a more detailed comparison of compute options in Azure, see Criteria for choosing an Azure compute service.

Decision tree for Azure compute services
3/13/2019 • 2 minutes to read • Edit Online

Flowchart

Definitions

Next steps

Azure offers a number of ways to host your application code. The term compute refers to the hosting model for the
computing resources that your application runs on. The following flowchart will help you to choose a compute
service for your application. The flowchart guides you through a set of key decision criteria to reach a
recommendation.

Treat this flowchart as a starting point. Every application has unique requirements, so use the recommendation
as a starting point. Then perform a more detailed evaluation, looking at aspects such as:

Feature set
Service limits
Cost
SLA
Regional availability
Developer ecosystem and team skills
Compute comparison tables

If your application consists of multiple workloads, evaluate each workload separately. A complete solution may
incorporate two or more compute services.

For more information about your options for hosting containers in Azure, see Azure Containers.

Lift and shift is a strategy for migrating a workload to the cloud without redesigning the application or
making code changes. Also called rehosting. For more information, see Azure migration center.

Cloud optimized is a strategy for migrating to the cloud by refactoring an application to take advantage of
cloud-native features and capabilities.

For additional criteria to consider, see Criteria for choosing an Azure compute service.

https://github.com/mspnp/architecture-center/blob/master/docs/guide/technology-choices/compute-decision-tree.md
https://docs.microsoft.com/azure/azure-subscription-service-limits
https://azure.microsoft.com/pricing/
https://azure.microsoft.com/support/legal/sla/
https://azure.microsoft.com/global-infrastructure/services/
https://azure.microsoft.com/overview/containers/
https://azure.microsoft.com/migration/

Criteria for choosing an Azure compute service
3/13/2019 • 3 minutes to read • Edit Online

Hosting model

CRITERIA
VIRTUAL
MACHINES APP SERVICE

SERVICE
FABRIC

AZURE
FUNCTIONS

AZURE
KUBERNETES
SERVICE

CONTAINER
INSTANCES

AZURE
BATCH

Application
compositio
n

Agnostic Applications
, containers

Services,
guest
executables,
containers

Functions Containers Containers Scheduled
jobs

Density Agnostic Multiple
apps per
instance via
app service
plans

Multiple
services per
VM

Serverless Multiple
containers
per node

No
dedicated
instances

Multiple
apps per
VM

Minimum
number of
nodes

1 1 5 Serverless 3 No
dedicated
nodes

1

State
manageme
nt

Stateless or
Stateful

Stateless Stateless or
stateful

Stateless Stateless or
Stateful

Stateless Stateless

Web
hosting

Agnostic Built in Agnostic Not
applicable

Agnostic Agnostic No

Can be
deployed to
dedicated
VNet?

Supported Supported Supported Supported Supported Not
supported

Supported

Hybrid
connectivity

Supported Supported Supported Supported Supported Not
supported

Supported

The term compute refers to the hosting model for the computing resources that your applications runs on. The
following tables compare Azure compute services across several axes. Refer to these tables when selecting a
compute option for your application.

1

2 3 1 3 4

5 5

6 7

Notes

1. If using Consumption plan. If using App Service plan, functions run on the VMs allocated for your App Service
plan. See Choose the correct service plan for Azure Functions.

2. Higher SLA with two or more instances.
3. Recommended for production environments.
4. Can scale down to zero after job completes.
5. Requires App Service Environment (ASE).
6. Use Azure App Service Hybrid Connections.

https://github.com/mspnp/architecture-center/blob/master/docs/guide/technology-choices/compute-comparison.md
https://docs.microsoft.com/azure/aks/networking-overview
https://docs.microsoft.com/azure/azure-functions/functions-scale
https://docs.microsoft.com/azure/app-service/app-service-hybrid-connections

DevOps

CRITERIA
VIRTUAL
MACHINES APP SERVICE

SERVICE
FABRIC

AZURE
FUNCTIONS

AZURE
KUBERNETES
SERVICE

CONTAINER
INSTANCES

AZURE
BATCH

Local
debugging

Agnostic IIS Express,
others

Local node
cluster

Visual
Studio or
Azure
Functions
CLI

Minikube,
others

Local
container
runtime

Not
supported

Programmi
ng model

Agnostic Web and
API
applications
, WebJobs
for
background
tasks

Guest
executable,
Service
model,
Actor
model,
Containers

Functions
with
triggers

Agnostic Agnostic Command
line
application

Application
update

No built-in
support

Deploymen
t slots

Rolling
upgrade
(per service)

Deploymen
t slots

Rolling
update

Not
applicable

Scalability

CRITERIA
VIRTUAL
MACHINES APP SERVICE

SERVICE
FABRIC

AZURE
FUNCTIONS

AZURE
KUBERNETES
SERVICE

CONTAINER
INSTANCES

AZURE
BATCH

Auto-
scaling

VM scale
sets

Built-in
service

VM Scale
Sets

Built-in
service

Not
supported

Not
supported

N/A

Load
balancer

Azure Load
Balancer

Integrated Azure Load
Balancer

Integrated Integrated No built-in
support

Azure Load
Balancer

Scale limit Platform
image:
1000 nodes
per VMSS,
Custom
image: 100
nodes per
VMSS

20
instances,
100 with
App Service
Environmen
t

100 nodes
per VMSS

200
instances
per
Function
app

100 nodes
per cluster
(default
limit)

20
container
groups per
subscription
(default
limit).

20 core
limit
(default
limit).

Availability

7. Requires App Service plan.

1

Notes

 1. Options include IIS Express for ASP.NET or node.js (iisnode); PHP web server; Azure Toolkit for IntelliJ, Azure
Toolkit for Eclipse. App Service also supports remote debugging of deployed web app.

2. See Resource Manager providers, regions, API versions and schemas.

1

Notes

 1. See Azure subscription and service limits, quotas, and constraints.

https://docs.microsoft.com/azure/azure-resource-manager/resource-manager-supported-services
https://docs.microsoft.com/azure/azure-subscription-service-limits

CRITERIA
VIRTUAL
MACHINES APP SERVICE

SERVICE
FABRIC

AZURE
FUNCTIONS

AZURE
KUBERNETES
SERVICE

CONTAINER
INSTANCES

AZURE
BATCH

SLA SLA for
Virtual
Machines

SLA for App
Service

SLA for
Service
Fabric

SLA for
Functions

SLA for AKS SLA for
Container
Instances

SLA for
Azure Batch

Multi
region
failover

Traffic
manager

Traffic
manager

Traffic
manager,
Multi-
Region
Cluster

Not
supported

Traffic
manager

Not
supported

Not
Supported

Other

CRITERIA
VIRTUAL
MACHINES APP SERVICE

SERVICE
FABRIC

AZURE
FUNCTIONS

AZURE
KUBERNETES
SERVICE

CONTAINER
INSTANCES

AZURE
BATCH

SSL Configured
in VM

Supported Supported Supported Ingress
controller

Use sidecar
container

Supported

Cost Windows,
Linux

App Service
pricing

Service
Fabric
pricing

Azure
Functions
pricing

AKS pricing Container
Instances
pricing

Azure Batch
pricing

Suitable
architecture
styles

N-Tier, Big
compute
(HPC)

Web-
Queue-
Worker, N-
Tier

Microservic
es, Event-
driven
architecture

Microservic
es, Event-
driven
architecture

Microservic
es, Event-
driven
architecture

Microservic
es, task
automation,
batch jobs

Big
compute
(HPC)

https://azure.microsoft.com/support/legal/sla/virtual-machines/
https://azure.microsoft.com/support/legal/sla/app-service/
https://azure.microsoft.com/support/legal/sla/service-fabric/
https://azure.microsoft.com/support/legal/sla/functions/
https://azure.microsoft.com/support/legal/sla/kubernetes-service
https://azure.microsoft.com/support/legal/sla/container-instances/
https://azure.microsoft.com/support/legal/sla/batch/
https://docs.microsoft.com/azure/aks/ingress
https://azure.microsoft.com/pricing/details/virtual-machines/windows/
https://azure.microsoft.com/pricing/details/virtual-machines/linux/
https://azure.microsoft.com/pricing/details/app-service/
https://azure.microsoft.com/pricing/details/service-fabric/
https://azure.microsoft.com/pricing/details/functions/
https://azure.microsoft.com/pricing/details/kubernetes-service/
https://azure.microsoft.com/pricing/details/container-instances/
https://azure.microsoft.com/pricing/details/batch/

Choose the right data store
3/13/2019 • 10 minutes to read • Edit Online

Relational database management systems

Modern business systems manage increasingly large volumes of data. Data may be ingested from external
services, generated by the system itself, or created by users. These data sets may have extremely varied
characteristics and processing requirements. Businesses use data to assess trends, trigger business processes,
audit their operations, analyze customer behavior, and many other things.

This heterogeneity means that a single data store is usually not the best approach. Instead, it's often better to store
different types of data in different data stores, each focused towards a specific workload or usage pattern. The
term polyglot persistence is used to describe solutions that use a mix of data store technologies.

Selecting the right data store for your requirements is a key design decision. There are literally hundreds of
implementations to choose from among SQL and NoSQL databases. Data stores are often categorized by how
they structure data and the types of operations they support. This article describes several of the most common
storage models. Note that a particular data store technology may support multiple storage models. For example, a
relational database management systems (RDBMS) may also support key/value or graph storage. In fact, there is
a general trend for so-called multimodel support, where a single database system supports several models. But
it's still useful to understand the different models at a high level.

Not all data stores in a given category provide the same feature-set. Most data stores provide server-side
functionality to query and process data. Sometimes this functionality is built into the data storage engine. In other
cases, the data storage and processing capabilities are separated, and there may be several options for processing
and analysis. Data stores also support different programmatic and management interfaces.

Generally, you should start by considering which storage model is best suited for your requirements. Then
consider a particular data store within that category, based on factors such as feature set, cost, and ease of
management.

Relational databases organize data as a series of two-dimensional tables with rows and columns. Each table has its
own columns, and every row in a table has the same set of columns. This model is mathematically based, and
most vendors provide a dialect of the Structured Query Language (SQL) for retrieving and managing data. An
RDBMS typically implements a transactionally consistent mechanism that conforms to the ACID (Atomic,
Consistent, Isolated, Durable) model for updating information.

An RDBMS typically supports a schema-on-write model, where the data structure is defined ahead of time, and all
read or write operations must use the schema. This is in contrast to most NoSQL data stores, particularly
key/value types, where the schema-on-read model assumes that the client will be imposing its own interpretive
schema on data coming out of the database, and is agnostic to the data format being written.

An RDBMS is very useful when strong consistency guarantees are important — where all changes are atomic,
and transactions always leave the data in a consistent state. However, the underlying structures do not lend
themselves to scaling out by distributing storage and processing across machines. Also, information stored in an
RDBMS, must be put into a relational structure by following the normalization process. While this process is well
understood, it can lead to inefficiencies, because of the need to disassemble logical entities into rows in separate
tables, and then reassemble the data when running queries.

Relevant Azure service:

Azure SQL Database

https://github.com/mspnp/architecture-center/blob/master/docs/guide/technology-choices/data-store-overview.md
https://azure.microsoft.com/services/sql-database

Key/value stores

Document databases

Azure Database for MySQL
Azure Database for PostgreSQL

A key/value store is essentially a large hash table. You associate each data value with a unique key, and the
key/value store uses this key to store the data by using an appropriate hashing function. The hashing function is
selected to provide an even distribution of hashed keys across the data storage.

Most key/value stores only support simple query, insert, and delete operations. To modify a value (either partially
or completely), an application must overwrite the existing data for the entire value. In most implementations,
reading or writing a single value is an atomic operation. If the value is large, writing may take some time.

An application can store arbitrary data as a set of values, although some key/value stores impose limits on the
maximum size of values. The stored values are opaque to the storage system software. Any schema information
must be provided and interpreted by the application. Essentially, values are blobs and the key/value store simply
retrieves or stores the value by key.

Key/value stores are highly optimized for applications performing simple lookups, but are less suitable for systems
that need to query data across different key/value stores. Key/value stores are also not optimized for scenarios
where querying by value is important, rather than performing lookups based only on keys. For example, with a
relational database, you can find a record by using a WHERE clause, but key/values stores usually do not have this
type of lookup capability for values.

A single key/value store can be extremely scalable, as the data store can easily distribute data across multiple
nodes on separate machines.

Relevant Azure services:

Cosmos DB
Azure Redis Cache

A document database is conceptually similar to a key/value store, except that it stores a collection of named fields
and data (known as documents), each of which could be simple scalar items or compound elements such as lists
and child collections. The data in the fields of a document can be encoded in a variety of ways, including XML,
YAML, JSON, BSON,or even stored as plain text. Unlike key/value stores, the fields in documents are exposed to
the storage management system, enabling an application to query and filter data by using the values in these
fields.

Typically, a document contains the entire data for an entity. What items constitute an entity are application specific.
For example, an entity could contain the details of a customer, an order, or a combination of both. A single
document may contain information that would be spread across several relational tables in an RDBMS.

A document store does not require that all documents have the same structure. This free-form approach provides
a great deal of flexibility. Applications can store different data in documents as business requirements change.

https://azure.microsoft.com/services/mysql/
https://azure.microsoft.com/services/postgresql/
https://azure.microsoft.com/services/cosmos-db/
https://azure.microsoft.com/services/cache/

Graph databases

The application can retrieve documents by using the document key. This is a unique identifier for the document,
which is often hashed, to help distribute data evenly. Some document databases create the document key
automatically. Others enable you to specify an attribute of the document to use as the key. The application can also
query documents based on the value of one or more fields. Some document databases support indexing to
facilitate fast lookup of documents based on one or more indexed fields.

Many document databases support in-place updates, enabling an application to modify the values of specific fields
in a document without rewriting the entire document. Read and write operations over multiple fields in a single
document are usually atomic.

Relevant Azure service: Cosmos DB

A graph database stores two types of information, nodes and edges. You can think of nodes as entities. Edges
which specify the relationships between nodes. Both nodes and edges can have properties that provide
information about that node or edge, similar to columns in a table. Edges can also have a direction indicating the
nature of the relationship.

The purpose of a graph database is to allow an application to efficiently perform queries that traverse the network
of nodes and edges, and to analyze the relationships between entities. The following diagram shows an
organization's personnel database structured as a graph. The entities are employees and departments, and the
edges indicate reporting relationships and the department in which employees work. In this graph, the arrows on
the edges show the direction of the relationships.

https://azure.microsoft.com/services/cosmos-db/

Column-family databases

This structure makes it straightforward to perform queries such as "Find all employees who report directly or
indirectly to Sarah" or "Who works in the same department as John?" For large graphs with lots of entities and
relationships, you can perform very complex analyses very quickly. Many graph databases provide a query
language that you can use to traverse a network of relationships efficiently.

Relevant Azure service: Cosmos DB

A column-family database organizes data into rows and columns. In its simplest form, a column-family database
can appear very similar to a relational database, at least conceptually. The real power of a column-family database
lies in its denormalized approach to structuring sparse data.

You can think of a column-family database as holding tabular data with rows and columns, but the columns are
divided into groups known as column families. Each column family holds a set of columns that are logically related
together and are typically retrieved or manipulated as a unit. Other data that is accessed separately can be stored
in separate column families. Within a column family, new columns can be added dynamically, and rows can be
sparse (that is, a row doesn't need to have a value for every column).

The following diagram shows an example with two column families, Identity and Contact Info . The data for a
single entity has the same row key in each column-family. This structure, where the rows for any given object in a
column family can vary dynamically, is an important benefit of the column-family approach, making this form of
data store highly suited for storing structured, volatile data.

Unlike a key/value store or a document database, most column-family databases store data in key order, rather
than by computing a hash. Many implementations allow you to create indexes over specific columns in a column-

https://azure.microsoft.com/services/cosmos-db/

Data analytics

Search Engine Databases

Time Series Databases

Object storage

family. Indexes let you retrieve data by columns value, rather than row key.

Read and write operations for a row are usually atomic with a single column-family, although some
implementations provide atomicity across the entire row, spanning multiple column-families.

Relevant Azure service: HBase in HDInsight

Data analytics stores provide massively parallel solutions for ingesting, storing, and analyzing data. This data is
distributed across multiple servers using a share-nothing architecture to maximize scalability and minimize
dependencies. The data is unlikely to be static, so these stores must be able to handle large quantities of
information, arriving in a variety of formats from multiple streams, while continuing to process new queries.

Relevant Azure services:

SQL Data Warehouse
Azure Data Lake

A search engine database supports the ability to search for information held in external data stores and services. A
search engine database can be used to index massive volumes of data and provide near real-time access to these
indexes. Although search engine databases are commonly thought of as being synonymous with the web, many
large-scale systems use them to provide structured and ad-hoc search capabilities on top of their own databases.

The key characteristics of a search engine database are the ability to store and index information very quickly, and
provide fast response times for search requests. Indexes can be multi-dimensional and may support free-text
searches across large volumes of text data. Indexing can be performed using a pull model, triggered by the search
engine database, or using a push model, initiated by external application code.

Searching can be exact or fuzzy. A fuzzy search finds documents that match a set of terms and calculates how
closely they match. Some search engines also support linguistic analysis that can return matches based on
synonyms, genre expansions (for example, matching dogs to pets), and stemming (matching words with the
same root).

Relevant Azure service: Azure Search

Time series data is a set of values organized by time, and a time series database is a database that is optimized for
this type of data. Time series databases must support a very high number of writes, as they typically collect large
amounts of data in real time from a large number of sources. Updates are rare, and deletes are often done as bulk
operations. Although the records written to a time-series database are generally small, there are often a large
number of records, and total data size can grow rapidly.

Time series databases are good for storing telemetry data. Scenarios include IoT sensors or application/system
counters.

Relevant Azure service: Time Series Insights

Object storage is optimized for storing and retrieving large binary objects (images, files, video and audio streams,
large application data objects and documents, virtual machine disk images). Objects in these store types are
composed of the stored data, some metadata, and a unique ID for accessing the object. Object stores enables the
management of extremely large amounts of unstructured data.

https://docs.microsoft.com/azure/hdinsight/hdinsight-hbase-overview
https://azure.microsoft.com/services/sql-data-warehouse/
https://azure.microsoft.com/solutions/data-lake/
https://azure.microsoft.com/services/search/
https://azure.microsoft.com/services/time-series-insights/

Shared files

Relevant Azure service: Blob Storage

Sometimes, using simple flat files can be the most effective means of storing and retrieving information. Using file
shares enables files to be accessed across a network. Given appropriate security and concurrent access control
mechanisms, sharing data in this way can enable distributed services to provide highly scalable data access for
performing basic, low-level operations such as simple read and write requests.

Relevant Azure service: File Storage

https://azure.microsoft.com/services/storage/blobs/
https://azure.microsoft.com/services/storage/files/

Criteria for choosing a data store
3/13/2019 • 9 minutes to read • Edit Online

General Considerations

Functional requirementsFunctional requirements

Non-functional requirementsNon-functional requirements

Azure supports many types of data storage solutions, each providing different features and capabilities. This article
describes the comparison criteria you should use when evaluating a data store. The goal is to help you determine
which data storage types can meet your solution's requirements.

To start your comparison, gather as much of the following information as you can about your data needs. This
information will help you to determine which data storage types will meet your needs.

Data format. What type of data are you intending to store? Common types include transactional data,
JSON objects, telemetry, search indexes, or flat files.

Data size. How large are the entities you need to store? Will these entities need to be maintained as a single
document, or can they be split across multiple documents, tables, collections, and so forth?

Scale and structure. What is the overall amount of storage capacity you need? Do you anticipate
partitioning your data?

Data relationships. Will your data need to support one-to-many or many-to-many relationships? Are
relationships themselves an important part of the data? Will you need to join or otherwise combine data
from within the same dataset, or from external datasets?

Consistency model. How important is it for updates made in one node to appear in other nodes, before
further changes can be made? Can you accept eventual consistency? Do you need ACID guarantees for
transactions?

Schema flexibility. What kind of schemas will you apply to your data? Will you use a fixed schema, a
schema-on-write approach, or a schema-on-read approach?

Concurrency. What kind of concurrency mechanism do you want to use when updating and synchronizing
data? Will the application perform many updates that could potentially conflict. If so, you may require record
locking and pessimistic concurrency control. Alternatively, can you support optimistic concurrency controls?
If so, is simple timestamp-based concurrency control enough, or do you need the added functionality of
multi-version concurrency control?

Data movement. Will your solution need to perform ETL tasks to move data to other stores or data
warehouses?

Data lifecycle. Is the data write-once, read-many? Can it be moved into cool or cold storage?

Other supported features. Do you need any other specific features, such as schema validation,
aggregation, indexing, full-text search, MapReduce, or other query capabilities?

Performance and scalability. What are your data performance requirements? Do you have specific
requirements for data ingestion rates and data processing rates? What are the acceptable response times for
querying and aggregation of data once ingested? How large will you need the data store to scale up? Is your
workload more read-heavy or write-heavy?

https://github.com/mspnp/architecture-center/blob/master/docs/guide/technology-choices/data-store-comparison.md

Management and costManagement and cost

SecuritySecurity

DevOpsDevOps

Relational database management systems (RDBMS)

Reliability. What overall SLA do you need to support? What level of fault-tolerance do you need to provide
for data consumers? What kind of backup and restore capabilities do you need?

Replication. Will your data need to be distributed among multiple replicas or regions? What kind of data
replication capabilities do you require?

Limits. Will the limits of a particular data store support your requirements for scale, number of connections,
and throughput?

Managed service. When possible, use a managed data service, unless you require specific capabilities that
can only be found in an IaaS-hosted data store.

Region availability. For managed services, is the service available in all Azure regions? Does your solution
need to be hosted in certain Azure regions?

Portability. Will your data need to migrated to on-premises, external datacenters, or other cloud hosting
environments?

Licensing. Do you have a preference of a proprietary versus OSS license type? Are there any other external
restrictions on what type of license you can use?

Overall cost. What is the overall cost of using the service within your solution? How many instances will
need to run, to support your uptime and throughput requirements? Consider operations costs in this
calculation. One reason to prefer managed services is the reduced operational cost.

Cost effectiveness. Can you partition your data, to store it more cost effectively? For example, can you
move large objects out of an expensive relational database into an object store?

Security. What type of encryption do you require? Do you need encryption at rest? What authentication
mechanism do you want to use to connect to your data?

Auditing. What kind of audit log do you need to generate?

Networking requirements. Do you need to restrict or otherwise manage access to your data from other
network resources? Does data need to be accessible only from inside the Azure environment? Does the data
need to be accessible from specific IP addresses or subnets? Does it need to be accessible from applications
or services hosted on-premises or in other external datacenters?

Skill set. Are there particular programming languages, operating systems, or other technology that your
team is particularly adept at using? Are there others that would be difficult for your team to work with?

Clients Is there good client support for your development languages?

The following sections compare various data store models in terms of workload profile, data types, and example
use cases.

Workload

Data type

Examples

Document databases
Workload

Both the creation of new records and updates to
existing data happen regularly.
Multiple operations have to be completed in a single
transaction.
Requires aggregation functions to perform cross-
tabulation.
Strong integration with reporting tools is required.
Relationships are enforced using database constraints.
Indexes are used to optimize query performance.
Allows access to specific subsets of data.

Data is highly normalized.
Database schemas are required and enforced.
Many-to-many relationships between data entities in
the database.
Constraints are defined in the schema and imposed on
any data in the database.
Data requires high integrity. Indexes and relationships
need to be maintained accurately.
Data requires strong consistency. Transactions operate
in a way that ensures all data are 100% consistent for
all users and processes.
Size of individual data entries is intended to be small to
medium-sized.

Line of business (human capital management,
customer relationship management, enterprise
resource planning)
Inventory management
Reporting database
Accounting
Asset management
Fund management
Order management

General purpose.
Insert and update operations are common. Both the
creation of new records and updates to existing data
happen regularly.
No object-relational impedance mismatch. Documents
can better match the object structures used in
application code.
Optimistic concurrency is more commonly used.
Data must be modified and processed by consuming
application.
Data requires index on multiple fields.
Individual documents are retrieved and written as a
single block.

Data type

Examples

Key/value stores
Workload

Data type

Examples

Graph databases
Workload

Data can be managed in de-normalized way.
Size of individual document data is relatively small.
Each document type can use its own schema.
Documents can include optional fields.
Document data is semi-structured, meaning that data
types of each field are not strictly defined.
Data aggregation is supported.

Product catalog
User accounts
Bill of materials
Personalization
Content management
Operations data
Inventory management
Transaction history data
Materialized view of other NoSQL stores. Replaces
file/BLOB indexing.

Data is identified and accessed using a single ID key,
like a dictionary.
Massively scalable.
No joins, lock, or unions are required.
No aggregation mechanisms are used.
Secondary indexes are generally not used.

Data size tends to be large.
Each key is associated with a single value, which is an
unmanaged data BLOB.
There is no schema enforcement.
No relationships between entities.

Data caching
Session management
User preference and profile management
Product recommendation and ad serving
Dictionaries

The relationships between data items are very complex,
involving many hops between related data items.
The relationship between data items are dynamic and
change over time.
Relationships between objects are first-class citizens,
without requiring foreign-keys and joins to traverse.

Data type

Examples

Column-family databases
Workload

Data type

Examples

Search engine databases
Workload

Data is comprised of nodes and relationships.
Nodes are similar to table rows or JSON documents.
Relationships are just as important as nodes, and are
exposed directly in the query language.
Composite objects, such as a person with multiple
phone numbers, tend to be broken into separate,
smaller nodes, combined with traversable relationships

Organization charts
Social graphs
Fraud detection
Analytics
Recommendation engines

Most column-family databases perform write
operations extremely quickly.
Update and delete operations are rare.
Designed to provide high throughput and low-latency
access.
Supports easy query access to a particular set of fields
within a much larger record.
Massively scalable.

Data is stored in tables consisting of a key column and
one or more column families.
Specific columns can vary by individual rows.
Individual cells are accessed via get and put commands
Multiple rows are returned using a scan command.

Recommendations
Personalization
Sensor data
Telemetry
Messaging
Social media analytics
Web analytics
Activity monitoring
Weather and other time-series data

Indexing data from multiple sources and services.
Queries are ad-hoc and can be complex.
Requires aggregation.
Full text search is required.
Ad hoc self-service query is required.
Data analysis with index on all fields is required.

Data type

Examples

Data warehouse
Workload

Data type

Examples An enterprise data warehouse that provides data for analytical
models, reports, and dashboards.

Time series databases
Workload

Data type

Examples

Semi-structured or unstructured
Text
Text with reference to structured data

Product catalogs
Site search
Logging
Analytics
Shopping sites

Data analytics
Enterprise BI

Historical data from multiple sources.
Usually denormalized in a "star" or "snowflake" schema,
consisting of fact and dimension tables.
Usually loaded with new data on a scheduled basis.
Dimension tables often include multiple historic
versions of an entity, referred to as a slowly changing
dimension.

An overwhelming proportion of operations (95-99%)
are writes.
Records are generally appended sequentially in time
order.
Updates are rare.
Deletes occur in bulk, and are made to contiguous
blocks or records.
Read requests can be larger than available memory.
It's common for multiple reads to occur simultaneously.
Data is read sequentially in either ascending or
descending time order.

A time stamp that is used as the primary key and
sorting mechanism.
Measurements from the entry or descriptions of what
the entry represents.
Tags that define additional information about the type,
origin, and other information about the entry.

Monitoring and event telemetry.
Sensor or other IoT data.

Object storage
Workload

Data type

Examples

Shared files
Workload

Data type

Examples

Identified by key.
Objects may be publicly or privately accessible.
Content is typically an asset such as a spreadsheet,
image, or video file.
Content must be durable (persistent), and external to
any application tier or virtual machine.

Data size is large.
Blob data.
Value is opaque.

Images, videos, office documents, PDFs
CSS, Scripts, CSV
Static HTML, JSON
Log and audit files
Database backups

Migration from existing apps that interact with the file
system.
Requires SMB interface.

Files in a hierarchical set of folders.
Accessible with standard I/O libraries.

Legacy files
Shared content accessible among a number of VMs or
app instances

Ten design principles for Azure applications
3/13/2019 • 2 minutes to read • Edit Online

Follow these design principles to make your application more scalable, resilient, and manageable.

Design for self healing. In a distributed system, failures happen. Design your application to be self healing when
failures occur.

Make all things redundant. Build redundancy into your application, to avoid having single points of failure.

Minimize coordination. Minimize coordination between application services to achieve scalability.

Design to scale out. Design your application so that it can scale horizontally, adding or removing new instances
as demand requires.

Partition around limits. Use partitioning to work around database, network, and compute limits.

Design for operations. Design your application so that the operations team has the tools they need.

Use managed services. When possible, use platform as a service (PaaS) rather than infrastructure as a service
(IaaS).

Use the best data store for the job. Pick the storage technology that is the best fit for your data and how it will
be used.

Design for evolution. All successful applications change over time. An evolutionary design is key for continuous
innovation.

Build for the needs of business. Every design decision must be justified by a business requirement.

https://github.com/mspnp/architecture-center/blob/master/docs/guide/design-principles/index.md

Design for self healing
3/13/2019 • 4 minutes to read • Edit Online

Design your application to be self healing when failures occur

Recommendations

In a distributed system, failures happen. Hardware can fail. The network can have transient failures. Rarely, an
entire service or region may experience a disruption, but even those must be planned for.

Therefore, design an application to be self healing when failures occur. This requires a three-pronged approach:

Detect failures.
Respond to failures gracefully.
Log and monitor failures, to give operational insight.

How you respond to a particular type of failure may depend on your application's availability requirements. For
example, if you require very high availability, you might automatically fail over to a secondary region during a
regional outage. However, that will incur a higher cost than a single-region deployment.

Also, don't just consider big events like regional outages, which are generally rare. You should focus as much, if not
more, on handling local, short-lived failures, such as network connectivity failures or failed database connections.

Retry failed operations. Transient failures may occur due to momentary loss of network connectivity, a dropped
database connection, or a timeout when a service is busy. Build retry logic into your application to handle transient
failures. For many Azure services, the client SDK implements automatic retries. For more information, see
Transient fault handling and the Retry pattern.

Protect failing remote services (Circuit Breaker). It's good to retry after a transient failure, but if the failure
persists, you can end up with too many callers hammering a failing service. This can lead to cascading failures, as
requests back up. Use the Circuit Breaker pattern to fail fast (without making the remote call) when an operation is
likely to fail.

Isolate critical resources (Bulkhead). Failures in one subsystem can sometimes cascade. This can happen if a
failure causes some resources, such as threads or sockets, not to get freed in a timely manner, leading to resource
exhaustion. To avoid this, partition a system into isolated groups, so that a failure in one partition does not bring
down the entire system.

Perform load leveling. Applications may experience sudden spikes in traffic that can overwhelm services on the
backend. To avoid this, use the Queue-Based Load Leveling pattern to queue work items to run asynchronously.
The queue acts as a buffer that smooths out peaks in the load.

Fail over. If an instance can't be reached, fail over to another instance. For things that are stateless, like a web
server, put several instances behind a load balancer or traffic manager. For things that store state, like a database,
use replicas and fail over. Depending on the data store and how it replicates, this may require the application to
deal with eventual consistency.

Compensate failed transactions. In general, avoid distributed transactions, as they require coordination across
services and resources. Instead, compose an operation from smaller individual transactions. If the operation fails
midway through, use Compensating Transactions to undo any step that already completed.

Checkpoint long-running transactions. Checkpoints can provide resiliency if a long-running operation fails.
When the operation restarts (for example, it is picked up by another VM), it can be resumed from the last

https://github.com/mspnp/architecture-center/blob/master/docs/guide/design-principles/self-healing.md

checkpoint.

Degrade gracefully. Sometimes you can't work around a problem, but you can provide reduced functionality that
is still useful. Consider an application that shows a catalog of books. If the application can't retrieve the thumbnail
image for the cover, it might show a placeholder image. Entire subsystems might be noncritical for the application.
For example, in an e-commerce site, showing product recommendations is probably less critical than processing
orders.

Throttle clients. Sometimes a small number of users create excessive load, which can reduce your application's
availability for other users. In this situation, throttle the client for a certain period of time. See the Throttling
pattern.

Block bad actors. Just because you throttle a client, it doesn't mean client was acting maliciously. It just means the
client exceeded their service quota. But if a client consistently exceeds their quota or otherwise behaves badly, you
might block them. Define an out-of-band process for user to request getting unblocked.

Use leader election. When you need to coordinate a task, use Leader Election to select a coordinator. That way,
the coordinator is not a single point of failure. If the coordinator fails, a new one is selected. Rather than implement
a leader election algorithm from scratch, consider an off-the-shelf solution such as Zookeeper.

Test with fault injection. All too often, the success path is well tested but not the failure path. A system could run
in production for a long time before a failure path is exercised. Use fault injection to test the resiliency of the
system to failures, either by triggering actual failures or by simulating them.

Embrace chaos engineering. Chaos engineering extends the notion of fault injection, by randomly injecting
failures or abnormal conditions into production instances.

For a structured approach to making your applications self healing, see Design resilient applications for Azure.

Make all things redundant
3/13/2019 • 2 minutes to read • Edit Online

Build redundancy into your application, to avoid having single points of
failure

Recommendations

A resilient application routes around failure. Identify the critical paths in your application. Is there redundancy at
each point in the path? If a subsystem fails, will the application fail over to something else?

Consider business requirements. The amount of redundancy built into a system can affect both cost and
complexity. Your architecture should be informed by your business requirements, such as recovery time objective
(RTO). For example, a multi-region deployment is more expensive than a single-region deployment, and is more
complicated to manage. You will need operational procedures to handle failover and failback. The additional cost
and complexity might be justified for some business scenarios and not others.

Place VMs behind a load balancer. Don't use a single VM for mission-critical workloads. Instead, place multiple
VMs behind a load balancer. If any VM becomes unavailable, the load balancer distributes traffic to the remaining
healthy VMs. To learn how to deploy this configuration, see Multiple VMs for scalability and availability.

Load
Balancer

Replicate databases. Azure SQL Database and Cosmos DB automatically replicate the data within a region, and
you can enable geo-replication across regions. If you are using an IaaS database solution, choose one that
supports replication and failover, such as SQL Server Always On Availability Groups.

Enable geo-replication. Geo-replication for Azure SQL Database and Cosmos DB creates secondary readable
replicas of your data in one or more secondary regions. In the event of an outage, the database can fail over to the
secondary region for writes.

Partition for availability. Database partitioning is often used to improve scalability, but it can also improve
availability. If one shard goes down, the other shards can still be reached. A failure in one shard will only disrupt a
subset of the total transactions.

Deploy to more than one region. For the highest availability, deploy the application to more than one region.
That way, in the rare case when a problem affects an entire region, the application can fail over to another region.
The following diagram shows a multi-region application that uses Azure Traffic Manager to handle failover.

https://github.com/mspnp/architecture-center/blob/master/docs/guide/design-principles/redundancy.md
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/virtual-machines-windows/multi-vm
https://msdn.microsoft.com/library/hh510230.aspx
https://docs.microsoft.com/azure/sql-database/sql-database-geo-replication-overview
https://docs.microsoft.com/azure/cosmos-db/distribute-data-globally

Region 1

Region 2
Azure Traffic

Manager

Synchronize front and backend failover. Use Azure Traffic Manager to fail over the front end. If the front end
becomes unreachable in one region, Traffic Manager will route new requests to the secondary region. Depending
on your database solution, you may need to coordinate failing over the database.

Use automatic failover but manual failback. Use Traffic Manager for automatic failover, but not for automatic
failback. Automatic failback carries a risk that you might switch to the primary region before the region is
completely healthy. Instead, verify that all application subsystems are healthy before manually failing back. Also,
depending on the database, you might need to check data consistency before failing back.

Include redundancy for Traffic Manager. Traffic Manager is a possible failure point. Review the Traffic Manager
SLA, and determine whether using Traffic Manager alone meets your business requirements for high availability. If
not, consider adding another traffic management solution as a failback. If the Azure Traffic Manager service fails,
change your CNAME records in DNS to point to the other traffic management service.

Minimize coordination
3/13/2019 • 4 minutes to read • Edit Online

Minimize coordination between application services to achieve
scalability

Recommendations

Most cloud applications consist of multiple application services — web front ends, databases, business processes,
reporting and analysis, and so on. To achieve scalability and reliability, each of those services should run on
multiple instances.

What happens when two instances try to perform concurrent operations that affect some shared state? In some
cases, there must be coordination across nodes, for example to preserve ACID guarantees. In this diagram, Node2

is waiting for Node1 to release a database lock:

Update
Orders

OrderItemsUpdate

(blocked)

Node 1

Node 2

Coordination limits the benefits of horizontal scale and creates bottlenecks. In this example, as you scale out the
application and add more instances, you'll see increased lock contention. In the worst case, the front-end instances
will spend most of their time waiting on locks.

"Exactly once" semantics are another frequent source of coordination. For example, an order must be processed
exactly once. Two workers are listening for new orders. Worker1 picks up an order for processing. The application
must ensure that Worker2 doesn't duplicate the work, but also if Worker1 crashes, the order isn't dropped.

Worker 1

Worker 2

Orders

order #123
Create order

Process orders?

You can use a pattern such as Scheduler Agent Supervisor to coordinate between the workers, but in this case a
better approach might be to partition the work. Each worker is assigned a certain range of orders (say, by billing
region). If a worker crashes, a new instance picks up where the previous instance left off, but multiple instances
aren't contending.

Embrace eventual consistency. When data is distributed, it takes coordination to enforce strong consistency
guarantees. For example, suppose an operation updates two databases. Instead of putting it into a single
transaction scope, it's better if the system can accommodate eventual consistency, perhaps by using the
Compensating Transaction pattern to logically roll back after a failure.

https://github.com/mspnp/architecture-center/blob/master/docs/guide/design-principles/minimize-coordination.md

Use domain events to synchronize state. A domain event is an event that records when something happens
that has significance within the domain. Interested services can listen for the event, rather than using a global
transaction to coordinate across multiple services. If this approach is used, the system must tolerate eventual
consistency (see previous item).

Consider patterns such as CQRS and event sourcing. These two patterns can help to reduce contention
between read workloads and write workloads.

The CQRS pattern separates read operations from write operations. In some implementations, the read
data is physically separated from the write data.

In the Event Sourcing pattern, state changes are recorded as a series of events to an append-only data store.
Appending an event to the stream is an atomic operation, requiring minimal locking.

These two patterns complement each other. If the write-only store in CQRS uses event sourcing, the read-only
store can listen for the same events to create a readable snapshot of the current state, optimized for queries.
Before adopting CQRS or event sourcing, however, be aware of the challenges of this approach. For more
information, see CQRS architecture style.

Partition data. Avoid putting all of your data into one data schema that is shared across many application
services. A microservices architecture enforces this principle by making each service responsible for its own data
store. Within a single database, partitioning the data into shards can improve concurrency, because a service
writing to one shard does not affect a service writing to a different shard.

Design idempotent operations. When possible, design operations to be idempotent. That way, they can be
handled using at-least-once semantics. For example, you can put work items on a queue. If a worker crashes in the
middle of an operation, another worker simply picks up the work item.

Use asynchronous parallel processing. If an operation requires multiple steps that are performed
asynchronously (such as remote service calls), you might be able to call them in parallel, and then aggregate the
results. This approach assumes that each step does not depend on the results of the previous step.

Use optimistic concurrency when possible. Pessimistic concurrency control uses database locks to prevent
conflicts. This can cause poor performance and reduce availability. With optimistic concurrency control, each
transaction modifies a copy or snapshot of the data. When the transaction is committed, the database engine
validates the transaction and rejects any transactions that would affect database consistency.

Azure SQL Database and SQL Server support optimistic concurrency through snapshot isolation. Some Azure
storage services support optimistic concurrency through the use of Etags, including Azure Cosmos DB and Azure
Storage.

Consider MapReduce or other parallel, distributed algorithms. Depending on the data and type of work to
be performed, you may be able to split the work into independent tasks that can be performed by multiple nodes
working in parallel. See Big compute architecture style.

Use leader election for coordination. In cases where you need to coordinate operations, make sure the
coordinator does not become a single point of failure in the application. Using the Leader Election pattern, one
instance is the leader at any time, and acts as the coordinator. If the leader fails, a new instance is elected to be the
leader.

https://martinfowler.com/eaaDev/DomainEvent.html
https://docs.microsoft.com/sql/t-sql/statements/set-transaction-isolation-level-transact-sql
https://docs.microsoft.com/azure/cosmos-db/faq
https://azure.microsoft.com/blog/managing-concurrency-in-microsoft-azure-storage-2/

Design to scale out
3/13/2019 • 2 minutes to read • Edit Online

Design your application so that it can scale horizontally

Recommendations

A primary advantage of the cloud is elastic scaling — the ability to use as much capacity as you need, scaling out
as load increases, and scaling in when the extra capacity is not needed. Design your application so that it can scale
horizontally, adding or removing new instances as demand requires.

Avoid instance stickiness. Stickiness, or session affinity, is when requests from the same client are always routed
to the same server. Stickiness limits the application's ability to scale out. For example, traffic from a high-volume
user will not be distributed across instances. Causes of stickiness include storing session state in memory, and
using machine-specific keys for encryption. Make sure that any instance can handle any request.

Identify bottlenecks. Scaling out isn't a magic fix for every performance issue. For example, if your backend
database is the bottleneck, it won't help to add more web servers. Identify and resolve the bottlenecks in the
system first, before throwing more instances at the problem. Stateful parts of the system are the most likely cause
of bottlenecks.

Decompose workloads by scalability requirements. Applications often consist of multiple workloads, with
different requirements for scaling. For example, an application might have a public-facing site and a separate
administration site. The public site may experience sudden surges in traffic, while the administration site has a
smaller, more predictable load.

Offload resource-intensive tasks. Tasks that require a lot of CPU or I/O resources should be moved to
background jobs when possible, to minimize the load on the front end that is handling user requests.

Use built-in autoscaling features. Many Azure compute services have built-in support for autoscaling. If the
application has a predictable, regular workload, scale out on a schedule. For example, scale out during business
hours. Otherwise, if the workload is not predictable, use performance metrics such as CPU or request queue length
to trigger autoscaling. For autoscaling best practices, see Autoscaling.

Consider aggressive autoscaling for critical workloads. For critical workloads, you want to keep ahead of
demand. It's better to add new instances quickly under heavy load to handle the additional traffic, and then
gradually scale back.

Design for scale in. Remember that with elastic scale, the application will have periods of scale in, when instances
get removed. The application must gracefully handle instances being removed. Here are some ways to handle
scalein:

Listen for shutdown events (when available) and shut down cleanly.
Clients/consumers of a service should support transient fault handling and retry.
For long-running tasks, consider breaking up the work, using checkpoints or the Pipes and Filters pattern.
Put work items on a queue so that another instance can pick up the work, if an instance is removed in the
middle of processing.

https://github.com/mspnp/architecture-center/blob/master/docs/guide/design-principles/scale-out.md

Partition around limits
3/13/2019 • 2 minutes to read • Edit Online

Use partitioning to work around database, network, and compute limits

Recommendations

In the cloud, all services have limits in their ability to scale up. Azure service limits are documented in Azure
subscription and service limits, quotas, and constraints. Limits include number of cores, database size, query
throughput, and network throughput. If your system grows sufficiently large, you may hit one or more of these
limits. Use partitioning to work around these limits.

There are many ways to partition a system, such as:

Partition a database to avoid limits on database size, data I/O, or number of concurrent sessions.

Partition a queue or message bus to avoid limits on the number of requests or the number of concurrent
connections.

Partition an App Service web app to avoid limits on the number of instances per App Service plan.

A database can be partitioned horizontally, vertically, or functionally.

In horizontal partitioning, also called sharding, each partition holds data for a subset of the total data set.
The partitions share the same data schema. For example, customers whose names start with A–M go into
one partition, N–Z into another partition.

In vertical partitioning, each partition holds a subset of the fields for the items in the data store. For
example, put frequently accessed fields in one partition, and less frequently accessed fields in another.

In functional partitioning, data is partitioned according to how it is used by each bounded context in the
system. For example, store invoice data in one partition and product inventory data in another. The schemas
are independent.

For more detailed guidance, see Data partitioning.

Partition different parts of the application. Databases are one obvious candidate for partitioning, but also
consider storage, cache, queues, and compute instances.

Design the partition key to avoid hot spots. If you partition a database, but one shard still gets the majority of
the requests, then you haven't solved your problem. Ideally, load gets distributed evenly across all the partitions.
For example, hash by customer ID and not the first letter of the customer name, because some letters are more
frequent. The same principle applies when partitioning a message queue. Pick a partition key that leads to an even
distribution of messages across the set of queues. For more information, see Sharding.

Partition around Azure subscription and service limits. Individual components and services have limits, but
there are also limits for subscriptions and resource groups. For very large applications, you might need to partition
around those limits.

Partition at different levels. Consider a database server deployed on a VM. The VM has a VHD that is backed
by Azure Storage. The storage account belongs to an Azure subscription. Notice that each step in the hierarchy has
limits. The database server may have a connection pool limit. VMs have CPU and network limits. Storage has
IOPS limits. The subscription has limits on the number of VM cores. Generally, it's easier to partition lower in the
hierarchy. Only large applications should need to partition at the subscription level.

https://github.com/mspnp/architecture-center/blob/master/docs/guide/design-principles/partition.md
https://docs.microsoft.com/azure/azure-subscription-service-limits

Design for operations
3/13/2019 • 2 minutes to read • Edit Online

Design an application so that the operations team has the tools they
need

Recommendations

The cloud has dramatically changed the role of the operations team. They are no longer responsible for managing
the hardware and infrastructure that hosts the application. That said, operations is still a critical part of running a
successful cloud application. Some of the important functions of the operations team include:

Deployment
Monitoring
Escalation
Incident response
Security auditing

Robust logging and tracing are particularly important in cloud applications. Involve the operations team in design
and planning, to ensure the application gives them the data and insight thay need to be successful.

Make all things observable. Once a solution is deployed and running, logs and traces are your primary insight
into the system. Tracing records a path through the system, and is useful to pinpoint bottlenecks, performance
issues, and failure points. Logging captures individual events such as application state changes, errors, and
exceptions. Log in production, or else you lose insight at the very times when you need it the most.

Instrument for monitoring. Monitoring gives insight into how well (or poorly) an application is performing, in
terms of availability, performance, and system health. For example, monitoring tells you whether you are meeting
your SLA. Monitoring happens during the normal operation of the system. It should be as close to real-time as
possible, so that the operations staff can react to issues quickly. Ideally, monitoring can help avert problems before
they lead to a critical failure. For more information, see Monitoring and diagnostics.

Instrument for root cause analysis. Root cause analysis is the process of finding the underlying cause of failures.
It occurs after a failure has already happened.

Use distributed tracing. Use a distributed tracing system that is designed for concurrency, asynchrony, and cloud
scale. Traces should include a correlation ID that flows across service boundaries. A single operation may involve
calls to multiple application services. If an operation fails, the correlation ID helps to pinpoint the cause of the
failure.

Standardize logs and metrics. The operations team will need to aggregate logs from across the various services
in your solution. If every service uses its own logging format, it becomes difficult or impossible to get useful
information from them. Define a common schema that includes fields such as correlation ID, event name, IP
address of the sender, and so forth. Individual services can derive custom schemas that inherit the base schema,
and contain additional fields.

Automate management tasks, including provisioning, deployment, and monitoring. Automating a task makes it
repeatable and less prone to human errors.

Treat configuration as code. Check configuration files into a version control system, so that you can track and
version your changes, and roll back if needed.

https://github.com/mspnp/architecture-center/blob/master/docs/guide/design-principles/design-for-operations.md

Use managed services
3/13/2019 • 2 minutes to read • Edit Online

When possible, use platform as a service (PaaS) rather than
infrastructure as a service (IaaS)

INSTEAD OF RUNNING... CONSIDER USING...

Active Directory Azure Active Directory Domain Services

Elasticsearch Azure Search

Hadoop HDInsight

IIS App Service

MongoDB Cosmos DB

Redis Azure Redis Cache

SQL Server Azure SQL Database

IaaS is like having a box of parts. You can build anything, but you have to assemble it yourself. Managed services
are easier to configure and administer. You don't need to provision VMs, set up VNets, manage patches and
updates, and all of the other overhead associated with running software on a VM.

For example, suppose your application needs a message queue. You could set up your own messaging service on a
VM, using something like RabbitMQ. But Azure Service Bus already provides reliable messaging as service, and
it's simpler to set up. Just create a Service Bus namespace (which can be done as part of a deployment script) and
then call Service Bus using the client SDK.

Of course, your application may have specific requirements that make an IaaS approach more suitable. However,
even if your application is based on IaaS, look for places where it may be natural to incorporate managed services.
These include cache, queues, and data storage.

https://github.com/mspnp/architecture-center/blob/master/docs/guide/design-principles/managed-services.md

Use the best data store for the job
3/13/2019 • 2 minutes to read • Edit Online

Pick the storage technology that is the best fit for your data and how it
will be used

Recommendations

Gone are the days when you would just stick all of your data into a big relational SQL database. Relational
databases are very good at what they do — providing ACID guarantees for transactions over relational data. But
they come with some costs:

Queries may require expensive joins.
Data must be normalized and conform to a predefined schema (schema on write).
Lock contention may impact performance.

In any large solution, it's likely that a single data store technology won't fill all your needs. Alternatives to relational
databases include key/value stores, document databases, search engine databases, time series databases, column
family databases, and graph databases. Each has pros and cons, and different types of data fit more naturally into
one or another.

For example, you might store a product catalog in a document database, such as Cosmos DB, which allows for a
flexible schema. In that case, each product description is a self-contained document. For queries over the entire
catalog, you might index the catalog and store the index in Azure Search. Product inventory might go into a SQL
database, because that data requires ACID guarantees.

Remember that data includes more than just the persisted application data. It also includes application logs,
events, messages, and caches.

Don't use a relational database for everything. Consider other data stores when appropriate. See Choose the
right data store.

Embrace polyglot persistence. In any large solution, it's likely that a single data store technology won't fill all
your needs.

Consider the type of data. For example, put transactional data into SQL, put JSON documents into a document
database, put telemetry data into a time series data base, put application logs in Elasticsearch, and put blobs in
Azure Blob Storage.

Prefer availability over (strong) consistency. The CAP theorem implies that a distributed system must make
trade-offs between availability and consistency. (Network partitions, the other leg of the CAP theorem, can never
be completely avoided.) Often, you can achieve higher availability by adopting an eventual consistency model.

Consider the skill set of the development team. There are advantages to using polyglot persistence, but it's
possible to go overboard. Adopting a new data storage technology requires a new set of skills. The development
team must understand how to get the most out of the technology. They must understand appropriate usage
patterns, how to optimize queries, tune for performance, and so on. Factor this in when considering storage
technologies.

Use compensating transactions. A side effect of polyglot persistence is that single transaction might write data
to multiple stores. If something fails, use compensating transactions to undo any steps that already completed.

Look at bounded contexts. Bounded context is a term from domain driven design. A bounded context is an

https://github.com/mspnp/architecture-center/blob/master/docs/guide/design-principles/use-the-best-data-store.md

explicit boundary around a domain model, and defines which parts of the domain the model applies to. Ideally, a
bounded context maps to a subdomain of the business domain. The bounded contexts in your system are a natural
place to consider polyglot persistence. For example, "products" may appear in both the Product Catalog
subdomain and the Product Inventory subdomain, but it's very likely that these two subdomains have different
requirements for storing, updating, and querying products.

Design for evolution
3/13/2019 • 3 minutes to read • Edit Online

An evolutionary design is key for continuous innovation

Recommendations

All successful applications change over time, whether to fix bugs, add new features, bring in new technologies, or
make existing systems more scalable and resilient. If all the parts of an application are tightly coupled, it becomes
very hard to introduce changes into the system. A change in one part of the application may break another part, or
cause changes to ripple through the entire codebase.

This problem is not limited to monolithic applications. An application can be decomposed into services, but still
exhibit the sort of tight coupling that leaves the system rigid and brittle. But when services are designed to evolve,
teams can innovate and continuously deliver new features.

Microservices are becoming a popular way to achieve an evolutionary design, because they address many of the
considerations listed here.

Enforce high cohesion and loose coupling. A service is cohesive if it provides functionality that logically
belongs together. Services are loosely coupled if you can change one service without changing the other. High
cohesion generally means that changes in one function will require changes in other related functions. If you find
that updating a service requires coordinated updates to other services, it may be a sign that your services are not
cohesive. One of the goals of domain-driven design (DDD) is to identify those boundaries.

Encapsulate domain knowledge. When a client consumes a service, the responsibility for enforcing the
business rules of the domain should not fall on the client. Instead, the service should encapsulate all of the domain
knowledge that falls under its responsibility. Otherwise, every client has to enforce the business rules, and you end
up with domain knowledge spread across different parts of the application.

Use asynchronous messaging. Asynchronous messaging is a way to decouple the message producer from the
consumer. The producer does not depend on the consumer responding to the message or taking any particular
action. With a pub/sub architecture, the producer may not even know who is consuming the message. New
services can easily consume the messages without any modifications to the producer.

Don't build domain knowledge into a gateway. Gateways can be useful in a microservices architecture, for
things like request routing, protocol translation, load balancing, or authentication. However, the gateway should be
restricted to this sort of infrastructure functionality. It should not implement any domain knowledge, to avoid
becoming a heavy dependency.

Expose open interfaces. Avoid creating custom translation layers that sit between services. Instead, a service
should expose an API with a well-defined API contract. The API should be versioned, so that you can evolve the
API while maintaining backward compatibility. That way, you can update a service without coordinating updates to
all of the upstream services that depend on it. Public facing services should expose a RESTful API over HTTP.
Backend services might use an RPC-style messaging protocol for performance reasons.

Design and test against service contracts. When services expose well-defined APIs, you can develop and test
against those APIs. That way, you can develop and test an individual service without spinning up all of its
dependent services. (Of course, you would still perform integration and load testing against the real services.)

Abstract infrastructure away from domain logic. Don't let domain logic get mixed up with infrastructure-
related functionality, such as messaging or persistence. Otherwise, changes in the domain logic will require

https://github.com/mspnp/architecture-center/blob/master/docs/guide/design-principles/design-for-evolution.md

updates to the infrastructure layers and vice versa.

Offload cross-cutting concerns to a separate service. For example, if several services need to authenticate
requests, you could move this functionality into its own service. Then you could evolve the authentication service
— for example, by adding a new authentication flow — without touching any of the services that use it.

Deploy services independently. When the DevOps team can deploy a single service independently of other
services in the application, updates can happen more quickly and safely. Bug fixes and new features can be rolled
out at a more regular cadence. Design both the application and the release process to support independent
updates.

Build for the needs of the business
3/13/2019 • 2 minutes to read • Edit Online

Every design decision must be justified by a business requirement

Recommendations

This design principle may seem obvious, but it's crucial to keep in mind when designing a solution. Do you
anticipate millions of users, or a few thousand? Is a one hour application outage acceptable? Do you expect large
bursts in traffic, or a very predictable workload? Ultimately, every design decision must be justified by a business
requirement.

Define business objectives, including the recovery time objective (RTO), recovery point objective (RPO), and
maximum tolerable outage (MTO). These numbers should inform decisions about the architecture. For example, to
achieve a low RTO, you might implement automated failover to a secondary region. But if your solution can
tolerate a higher RTO, that degree of redundancy might be unnecessary.

Document service level agreements (SLA) and service level objectives (SLO), including availability and
performance metrics. You might build a solution that delivers 99.95% availability. Is that enough? The answer is a
business decision.

Model the application around the business domain. Start by analyzing the business requirements. Use these
requirements to model the application. Consider using a domain-driven design (DDD) approach to create domain
models that reflect the business processes and use cases.

Capture both functional and nonfunctional requirements. Functional requirements let you judge whether the
application does the right thing. Nonfunctional requirements let you judge whether the application does those
things well. In particular, make sure that you understand your requirements for scalability, availability, and latency.
These requirements will influence design decisions and choice of technology.

Decompose by workload. The term "workload" in this context means a discrete capability or computing task,
which can be logically separated from other tasks. Different workloads may have different requirements for
availability, scalability, data consistency, and disaster recovery.

Plan for growth. A solution might meet your current needs, in terms of number of users, volume of transactions,
data storage, and so forth. However, a robust application can handle growth without major architectural changes.
See Design to scale out and Partition around limits. Also consider that your business model and business
requirements will likely change over time. If an application's service model and data models are too rigid, it
becomes hard to evolve the application for new use cases and scenarios. See Design for evolution.

Manage costs. In a traditional on-premises application, you pay upfront for hardware (CAPEX). In a cloud
application, you pay for the resources that you consume. Make sure that you understand the pricing model for the
services that you consume. The total cost will include network bandwidth usage, storage, IP addresses, service
consumption, and other factors. See Azure pricing for more information. Also consider your operations costs. In
the cloud, you don't have to manage the hardware or other infrastructure, but you still need to manage your
applications, including DevOps, incident response, disaster recovery, and so forth.

https://github.com/mspnp/architecture-center/blob/master/docs/guide/design-principles/build-for-business.md
https://martinfowler.com/eaaCatalog/domainModel.html
https://azure.microsoft.com/pricing/

Pillars of software quality
3/13/2019 • 10 minutes to read • Edit Online

PILLAR DESCRIPTION

Scalability The ability of a system to handle increased load.

Availability The proportion of time that a system is functional and
working.

Resiliency The ability of a system to recover from failures and continue
to function.

Management Operations processes that keep a system running in
production.

Security Protecting applications and data from threats.

Scalability

A successful cloud application will focus on these five pillars of software quality: Scalability, availability, resiliency,
management, and security.

Scalability is the ability of a system to handle increased load. There are two main ways that an application can
scale. Vertical scaling (scaling up) means increasing the capacity of a resource, for example by using a larger VM
size. Horizontal scaling (scaling out) is adding new instances of a resource, such as VMs or database replicas.

Horizontal scaling has significant advantages over vertical scaling:

True cloud scale. Applications can be designed to run on hundreds or even thousands of nodes, reaching scales
that are not possible on a single node.
Horizontal scale is elastic. You can add more instances if load increases, or remove them during quieter
periods.
Scaling out can be triggered automatically, either on a schedule or in response to changes in load.
Scaling out may be cheaper than scaling up. Running several small VMs can cost less than a single large VM.
Horizontal scaling can also improve resiliency, by adding redundancy. If an instance goes down, the application
keeps running.

An advantage of vertical scaling is that you can do it without making any changes to the application. But at some
point you'll hit a limit, where you can't scale any up any more. At that point, any further scaling must be horizontal.

Horizontal scale must be designed into the system. For example, you can scale out VMs by placing them behind a
load balancer. But each VM in the pool must be able to handle any client request, so the application must be
stateless or store state externally (say, in a distributed cache). Managed PaaS services often have horizontal
scaling and auto-scaling built in. The ease of scaling these services is a major advantage of using PaaS services.

Just adding more instances doesn't mean an application will scale, however. It might simply push the bottleneck
somewhere else. For example, if you scale a web front-end to handle more client requests, that might trigger lock
contentions in the database. You would then need to consider additional measures, such as optimistic concurrency
or data partitioning, to enable more throughput to the database.

https://github.com/mspnp/architecture-center/blob/master/docs/guide/pillars.md

Scalability guidanceScalability guidance

Availability

% UPTIME DOWNTIME PER WEEK DOWNTIME PER MONTH DOWNTIME PER YEAR

99% 1.68 hours 7.2 hours 3.65 days

99.9% 10 minutes 43.2 minutes 8.76 hours

99.95% 5 minutes 21.6 minutes 4.38 hours

99.99% 1 minute 4.32 minutes 52.56 minutes

99.999% 6 seconds 26 seconds 5.26 minutes

Availability guidanceAvailability guidance

Always conduct performance and load testing to find these potential bottlenecks. The stateful parts of a system,
such as databases, are the most common cause of bottlenecks, and require careful design to scale horizontally.
Resolving one bottleneck may reveal other bottlenecks elsewhere.

Use the Scalability checklist to review your design from a scalability standpoint.

Design patterns for scalability and performance
Best practices: Autoscaling, Background jobs, Caching, CDN, Data partitioning

Availability is the proportion of time that the system is functional and working. It is usually measured as a
percentage of uptime. Application errors, infrastructure problems, and system load can all reduce availability.

A cloud application should have a service level objective (SLO) that clearly defines the expected availability, and
how the availability is measured. When defining availability, look at the critical path. The web front-end might be
able to service client requests, but if every transaction fails because it can't connect to the database, the application
is not available to users.

Availability is often described in terms of "9s" — for example, "four 9s" means 99.99% uptime. The following table
shows the potential cumulative downtime at different availability levels.

Notice that 99% uptime could translate to an almost 2-hour service outage per week. For many applications,
especially consumer-facing applications, that is not an acceptable SLO. On the other hand, five 9s (99.999%)
means no more than 5 minutes of downtime in a year. It's challenging enough just detecting an outage that
quickly, let alone resolving the issue. To get very high availability (99.99% or higher), you can't rely on manual
intervention to recover from failures. The application must be self-diagnosing and self-healing, which is where
resiliency becomes crucial.

In Azure, the Service Level Agreement (SLA) describes Microsoft's commitments for uptime and connectivity. If
the SLA for a particular service is 99.95%, it means you should expect the service to be available 99.95% of the
time.

Applications often depend on multiple services. In general, the probability of either service having downtime is
independent. For example, suppose your application depends on two services, each with a 99.9% SLA. The
composite SLA for both services is 99.9% × 99.9% ≈ 99.8%, or slightly less than each service by itself.

Use the Availability checklist to review your design from an availability standpoint.

Design patterns for availability
Best practices: Autoscaling, Background jobs

Resiliency

Resiliency guidanceResiliency guidance

Management and DevOps

Resiliency is the ability of the system to recover from failures and continue to function. The goal of resiliency is to
return the application to a fully functioning state after a failure occurs. Resiliency is closely related to availability.

In traditional application development, there has been a focus on reducing mean time between failures (MTBF).
Effort was spent trying to prevent the system from failing. In cloud computing, a different mindset is required, due
to several factors:

Distributed systems are complex, and a failure at one point can potentially cascade throughout the system.
Costs for cloud environments are kept low through the use of commodity hardware, so occasional hardware
failures must be expected.
Applications often depend on external services, which may become temporarily unavailable or throttle high-
volume users.
Today's users expect an application to be available 24/7 without ever going offline.

All of these factors mean that cloud applications must be designed to expect occasional failures and recover from
them. Azure has many resiliency features already built into the platform. For example:

Azure Storage, SQL Database, and Cosmos DB all provide built-in data replication, both within a region and
across regions.
Azure Managed Disks are automatically placed in different storage scale units, to limit the effects of hardware
failures.
VMs in an availability set are spread across several fault domains. A fault domain is a group of VMs that share
a common power source and network switch. Spreading VMs across fault domains limits the impact of
physical hardware failures, network outages, or power interruptions.

That said, you still need to build resiliency into your application. Resiliency strategies can be applied at all levels of
the architecture. Some mitigations are more tactical in nature — for example, retrying a remote call after a
transient network failure. Other mitigations are more strategic, such as failing over the entire application to a
secondary region. Tactical mitigations can make a big difference. While it's rare for an entire region to experience a
disruption, transient problems such as network congestion are more common — so target these first. Having the
right monitoring and diagnostics is also important, both to detect failures when they happen, and to find the root
causes.

When designing an application to be resilient, you must understand your availability requirements. How much
downtime is acceptable? This is partly a function of cost. How much will potential downtime cost your business?
How much should you invest in making the application highly available?

Use the Resiliency checklist to review your design from a resiliency standpoint.

Designing resilient applications for Azure
Design patterns for resiliency
Best practices: Transient fault handling, Retry guidance for specific services

This pillar covers the operations processes that keep an application running in production.

Deployments must be reliable and predictable. They should be automated to reduce the chance of human error.
They should be a fast and routine process, so they don't slow down the release of new features or bug fixes.
Equally important, you must be able to quickly roll back or roll forward if an update has problems.

Monitoring and diagnostics are crucial. Cloud applications run in a remote datacenter where you do not have full

Management and DevOps guidanceManagement and DevOps guidance

Security

Identity managementIdentity management

Protecting your infrastructureProtecting your infrastructure

Application securityApplication security

Data sovereignty and encryptionData sovereignty and encryption

control of the infrastructure or, in some cases, the operating system. In a large application, it's not practical to log
into VMs to troubleshoot an issue or sift through log files. With PaaS services, there may not even be a dedicated
VM to log into. Monitoring and diagnostics give insight into the system, so that you know when and where
failures occur. All systems must be observable. Use a common and consistent logging schema that lets you
correlate events across systems.

The monitoring and diagnostics process has several distinct phases:

Instrumentation. Generating the raw data, from application logs, web server logs, diagnostics built into the
Azure platform, and other sources.
Collection and storage. Consolidating the data into one place.
Analysis and diagnosis. To troubleshoot issues and see the overall health.
Visualization and alerts. Using telemetry data to spot trends or alert the operations team.

Use the DevOps checklist to review your design from a management and DevOps standpoint.

Design patterns for management and monitoring
Best practices: Monitoring and diagnostics

You must think about security throughout the entire lifecycle of an application, from design and implementation to
deployment and operations. The Azure platform provides protections against a variety of threats, such as network
intrusion and DDoS attacks. But you still need to build security into your application and into your DevOps
processes.

Here are some broad security areas to consider.

Consider using Azure Active Directory (Azure AD) to authenticate and authorize users. Azure AD is a fully
managed identity and access management service. You can use it to create domains that exist purely on Azure, or
integrate with your on-premises Active Directory identities. Azure AD also integrates with Office365, Dynamics
CRM Online, and many third-party SaaS applications. For consumer-facing applications, Azure Active Directory
B2C lets users authenticate with their existing social accounts (such as Facebook, Google, or LinkedIn), or create a
new user account that is managed by Azure AD.

If you want to integrate an on-premises Active Directory environment with an Azure network, several approaches
are possible, depending on your requirements. For more information, see our Identity Management reference
architectures.

Control access to the Azure resources that you deploy. Every Azure subscription has a trust relationship with an
Azure AD tenant. Use Role-Based Access Control (RBAC) to grant users within your organization the correct
permissions to Azure resources. Grant access by assigning RBAC role to users or groups at a certain scope. The
scope can be a subscription, a resource group, or a single resource. Audit all changes to infrastructure.

In general, the security best practices for application development still apply in the cloud. These include things like
using SSL everywhere, protecting against CSRF and XSS attacks, preventing SQL injection attacks, and so on.

Cloud applications often use managed services that have access keys. Never check these into source control.
Consider storing application secrets in Azure Key Vault.

https://docs.microsoft.com/azure/active-directory/active-directory-how-subscriptions-associated-directory
https://docs.microsoft.com/azure/active-directory/role-based-access-control-what-is
https://docs.microsoft.com/azure/azure-resource-manager/resource-group-audit

Security resourcesSecurity resources

Make sure that your data remains in the correct geopolitical zone when using Azure's highly available. Azure's
geo-replicated storage uses the concept of a paired region in the same geopolitical region.

Use Key Vault to safeguard cryptographic keys and secrets. By using Key Vault, you can encrypt keys and secrets
by using keys that are protected by hardware security modules (HSMs). Many Azure storage and DB services
support data encryption at rest, including Azure Storage, Azure SQL Database, Azure SQL Data Warehouse, and
Cosmos DB.

Azure Security Center provides integrated security monitoring and policy management across your Azure
subscriptions.
Azure Security Documentation
Microsoft Trust Center

https://docs.microsoft.com/azure/best-practices-availability-paired-regions
https://docs.microsoft.com/azure/storage/storage-service-encryption
https://docs.microsoft.com/azure/sql-database/sql-database-always-encrypted-azure-key-vault
https://docs.microsoft.com/azure/data-lake-store/data-lake-store-security-overview#data-protection
https://docs.microsoft.com/azure/cosmos-db/database-security
https://azure.microsoft.com/services/security-center/
https://docs.microsoft.com/azure/security/
https://azure.microsoft.com/support/trust-center/

Cloud Design Patterns
3/13/2019 • 6 minutes to read • Edit Online

Challenges in cloud development

AvailabilityAvailability

Data ManagementData Management

Design and ImplementationDesign and Implementation

MessagingMessaging

Management and MonitoringManagement and Monitoring

These design patterns are useful for building reliable, scalable, secure applications in the cloud.

Each pattern describes the problem that the pattern addresses, considerations for applying the pattern, and an
example based on Microsoft Azure. Most of the patterns include code samples or snippets that show how to
implement the pattern on Azure. However, most of the patterns are relevant to any distributed system, whether
hosted on Azure or on other cloud platforms.

Availability is the proportion of time that the system is functional and working, usually measured as a percentage
of uptime. It can be affected by system errors, infrastructure problems, malicious attacks, and system load. Cloud
applications typically provide users with a service level agreement (SLA), so applications must be designed to
maximize availability.

Data management is the key element of cloud applications, and influences most of the quality attributes. Data is
typically hosted in different locations and across multiple servers for reasons such as performance, scalability or
availability, and this can present a range of challenges. For example, data consistency must be maintained, and data
will typically need to be synchronized across different locations.

Good design encompasses factors such as consistency and coherence in component design and deployment,
maintainability to simplify administration and development, and reusability to allow components and subsystems
to be used in other applications and in other scenarios. Decisions made during the design and implementation
phase have a huge impact on the quality and the total cost of ownership of cloud hosted applications and services.

The distributed nature of cloud applications requires a messaging infrastructure that connects the components and
services, ideally in a loosely coupled manner in order to maximize scalability. Asynchronous messaging is widely
used, and provides many benefits, but also brings challenges such as the ordering of messages, poison message
management, idempotency, and more

Cloud applications run in in a remote datacenter where you do not have full control of the infrastructure or, in
some cases, the operating system. This can make management and monitoring more difficult than an on-premises
deployment. Applications must expose runtime information that administrators and operators can use to manage
and monitor the system, as well as supporting changing business requirements and customization without
requiring the application to be stopped or redeployed.

https://github.com/mspnp/architecture-center/blob/master/docs/patterns/index.md

Performance and ScalabilityPerformance and Scalability

ResiliencyResiliency

SecuritySecurity

Catalog of patterns
PATTERN SUMMARY

Ambassador Create helper services that send network requests on behalf
of a consumer service or application.

Anti-Corruption Layer Implement a façade or adapter layer between a modern
application and a legacy system.

Backends for Frontends Create separate backend services to be consumed by specific
frontend applications or interfaces.

Bulkhead Isolate elements of an application into pools so that if one
fails, the others will continue to function.

Cache-Aside Load data on demand into a cache from a data store

Circuit Breaker Handle faults that might take a variable amount of time to fix
when connecting to a remote service or resource.

Claim Check Split a large message into a claim check and a payload to
avoid overwhelming a message bus.

Compensating Transaction Undo the work performed by a series of steps, which together
define an eventually consistent operation.

Competing Consumers Enable multiple concurrent consumers to process messages
received on the same messaging channel.

Performance is an indication of the responsiveness of a system to execute any action within a given time interval,
while scalability is ability of a system either to handle increases in load without impact on performance or for the
available resources to be readily increased. Cloud applications typically encounter variable workloads and peaks in
activity. Predicting these, especially in a multi-tenant scenario, is almost impossible. Instead, applications should be
able to scale out within limits to meet peaks in demand, and scale in when demand decreases. Scalability concerns
not just compute instances, but other elements such as data storage, messaging infrastructure, and more.

Resiliency is the ability of a system to gracefully handle and recover from failures. The nature of cloud hosting,
where applications are often multi-tenant, use shared platform services, compete for resources and bandwidth,
communicate over the Internet, and run on commodity hardware means there is an increased likelihood that both
transient and more permanent faults will arise. Detecting failures, and recovering quickly and efficiently, is
necessary to maintain resiliency.

Security is the capability of a system to prevent malicious or accidental actions outside of the designed usage, and
to prevent disclosure or loss of information. Cloud applications are exposed on the Internet outside trusted on-
premises boundaries, are often open to the public, and may serve untrusted users. Applications must be designed
and deployed in a way that protects them from malicious attacks, restricts access to only approved users, and
protects sensitive data.

Compute Resource Consolidation Consolidate multiple tasks or operations into a single
computational unit

CQRS Segregate operations that read data from operations that
update data by using separate interfaces.

Event Sourcing Use an append-only store to record the full series of events
that describe actions taken on data in a domain.

External Configuration Store Move configuration information out of the application
deployment package to a centralized location.

Federated Identity Delegate authentication to an external identity provider.

Gatekeeper Protect applications and services by using a dedicated host
instance that acts as a broker between clients and the
application or service, validates and sanitizes requests, and
passes requests and data between them.

Gateway Aggregation Use a gateway to aggregate multiple individual requests into a
single request.

Gateway Offloading Offload shared or specialized service functionality to a
gateway proxy.

Gateway Routing Route requests to multiple services using a single endpoint.

Health Endpoint Monitoring Implement functional checks in an application that external
tools can access through exposed endpoints at regular
intervals.

Index Table Create indexes over the fields in data stores that are
frequently referenced by queries.

Leader Election Coordinate the actions performed by a collection of
collaborating task instances in a distributed application by
electing one instance as the leader that assumes responsibility
for managing the other instances.

Materialized View Generate prepopulated views over the data in one or more
data stores when the data isn't ideally formatted for required
query operations.

Pipes and Filters Break down a task that performs complex processing into a
series of separate elements that can be reused.

Priority Queue Prioritize requests sent to services so that requests with a
higher priority are received and processed more quickly than
those with a lower priority.

Publisher/Subscriber Enable an application to announce events to multiple
interested consumers aynchronously, without coupling the
senders to the receivers.

PATTERN SUMMARY

Queue-Based Load Leveling Use a queue that acts as a buffer between a task and a service
that it invokes in order to smooth intermittent heavy loads.

Retry Enable an application to handle anticipated, temporary failures
when it tries to connect to a service or network resource by
transparently retrying an operation that's previously failed.

Scheduler Agent Supervisor Coordinate a set of actions across a distributed set of services
and other remote resources.

Sharding Divide a data store into a set of horizontal partitions or
shards.

Sidecar Deploy components of an application into a separate process
or container to provide isolation and encapsulation.

Static Content Hosting Deploy static content to a cloud-based storage service that
can deliver them directly to the client.

Strangler Incrementally migrate a legacy system by gradually replacing
specific pieces of functionality with new applications and
services.

Throttling Control the consumption of resources used by an instance of
an application, an individual tenant, or an entire service.

Valet Key Use a token or key that provides clients with restricted direct
access to a specific resource or service.

PATTERN SUMMARY

Availability patterns
3/13/2019 • 2 minutes to read • Edit Online

PATTERN SUMMARY

Health Endpoint Monitoring Implement functional checks in an application that external
tools can access through exposed endpoints at regular
intervals.

Queue-Based Load Leveling Use a queue that acts as a buffer between a task and a
service that it invokes in order to smooth intermittent heavy
loads.

Throttling Control the consumption of resources used by an instance of
an application, an individual tenant, or an entire service.

Availability defines the proportion of time that the system is functional and working. It will be affected by system
errors, infrastructure problems, malicious attacks, and system load. It is usually measured as a percentage of
uptime. Cloud applications typically provide users with a service level agreement (SLA), which means that
applications must be designed and implemented in a way that maximizes availability.

https://github.com/mspnp/architecture-center/blob/master/docs/patterns/category/availability.md

Data Management patterns
3/13/2019 • 2 minutes to read • Edit Online

PATTERN SUMMARY

Cache-Aside Load data on demand into a cache from a data store

CQRS Segregate operations that read data from operations that
update data by using separate interfaces.

Event Sourcing Use an append-only store to record the full series of events
that describe actions taken on data in a domain.

Index Table Create indexes over the fields in data stores that are
frequently referenced by queries.

Materialized View Generate prepopulated views over the data in one or more
data stores when the data isn't ideally formatted for required
query operations.

Sharding Divide a data store into a set of horizontal partitions or
shards.

Static Content Hosting Deploy static content to a cloud-based storage service that
can deliver them directly to the client.

Valet Key Use a token or key that provides clients with restricted direct
access to a specific resource or service.

Data management is the key element of cloud applications, and influences most of the quality attributes. Data is
typically hosted in different locations and across multiple servers for reasons such as performance, scalability or
availability, and this can present a range of challenges. For example, data consistency must be maintained, and data
will typically need to be synchronized across different locations.

https://github.com/mspnp/architecture-center/blob/master/docs/patterns/category/data-management.md

Design and Implementation patterns
3/13/2019 • 2 minutes to read • Edit Online

PATTERN SUMMARY

Ambassador Create helper services that send network requests on behalf
of a consumer service or application.

Anti-Corruption Layer Implement a façade or adapter layer between a modern
application and a legacy system.

Backends for Frontends Create separate backend services to be consumed by specific
frontend applications or interfaces.

CQRS Segregate operations that read data from operations that
update data by using separate interfaces.

Compute Resource Consolidation Consolidate multiple tasks or operations into a single
computational unit

External Configuration Store Move configuration information out of the application
deployment package to a centralized location.

Gateway Aggregation Use a gateway to aggregate multiple individual requests into
a single request.

Gateway Offloading Offload shared or specialized service functionality to a
gateway proxy.

Gateway Routing Route requests to multiple services using a single endpoint.

Leader Election Coordinate the actions performed by a collection of
collaborating task instances in a distributed application by
electing one instance as the leader that assumes responsibility
for managing the other instances.

Pipes and Filters Break down a task that performs complex processing into a
series of separate elements that can be reused.

Sidecar Deploy components of an application into a separate process
or container to provide isolation and encapsulation.

Static Content Hosting Deploy static content to a cloud-based storage service that
can deliver them directly to the client.

Good design encompasses factors such as consistency and coherence in component design and deployment,
maintainability to simplify administration and development, and reusability to allow components and subsystems
to be used in other applications and in other scenarios. Decisions made during the design and implementation
phase have a huge impact on the quality and the total cost of ownership of cloud hosted applications and services.

https://github.com/mspnp/architecture-center/blob/master/docs/patterns/category/design-implementation.md

Strangler Incrementally migrate a legacy system by gradually replacing
specific pieces of functionality with new applications and
services.

PATTERN SUMMARY

Messaging patterns
3/13/2019 • 2 minutes to read • Edit Online

PATTERN SUMMARY

Claim Check Split a large message into a claim check and a payload to
avoid overwhelming a message bus.

Competing Consumers Enable multiple concurrent consumers to process messages
received on the same messaging channel.

Pipes and Filters Break down a task that performs complex processing into a
series of separate elements that can be reused.

Priority Queue Prioritize requests sent to services so that requests with a
higher priority are received and processed more quickly than
those with a lower priority.

Publisher-Subscriber Enable an application to announce events to multiple
interested consumers aynchronously, without coupling the
senders to the receivers.

Queue-Based Load Leveling Use a queue that acts as a buffer between a task and a service
that it invokes in order to smooth intermittent heavy loads.

Scheduler Agent Supervisor Coordinate a set of actions across a distributed set of services
and other remote resources.

The distributed nature of cloud applications requires a messaging infrastructure that connects the components and
services, ideally in a loosely coupled manner in order to maximize scalability. Asynchronous messaging is widely
used, and provides many benefits, but also brings challenges such as the ordering of messages, poison message
management, idempotency, and more.

https://github.com/mspnp/architecture-center/blob/master/docs/patterns/category/messaging.md

Management and Monitoring patterns
3/13/2019 • 2 minutes to read • Edit Online

PATTERN SUMMARY

Ambassador Create helper services that send network requests on behalf
of a consumer service or application.

Anti-Corruption Layer Implement a façade or adapter layer between a modern
application and a legacy system.

External Configuration Store Move configuration information out of the application
deployment package to a centralized location.

Gateway Aggregation Use a gateway to aggregate multiple individual requests into
a single request.

Gateway Offloading Offload shared or specialized service functionality to a
gateway proxy.

Gateway Routing Route requests to multiple services using a single endpoint.

Health Endpoint Monitoring Implement functional checks in an application that external
tools can access through exposed endpoints at regular
intervals.

Sidecar Deploy components of an application into a separate process
or container to provide isolation and encapsulation.

Strangler Incrementally migrate a legacy system by gradually replacing
specific pieces of functionality with new applications and
services.

Cloud applications run in in a remote datacenter where you do not have full control of the infrastructure or, in
some cases, the operating system. This can make management and monitoring more difficult than an on-premises
deployment. Applications must expose runtime information that administrators and operators can use to manage
and monitor the system, as well as supporting changing business requirements and customization without
requiring the application to be stopped or redeployed.

https://github.com/mspnp/architecture-center/blob/master/docs/patterns/category/management-monitoring.md

Performance and Scalability patterns
3/13/2019 • 2 minutes to read • Edit Online

PATTERN SUMMARY

Cache-Aside Load data on demand into a cache from a data store

CQRS Segregate operations that read data from operations that
update data by using separate interfaces.

Event Sourcing Use an append-only store to record the full series of events
that describe actions taken on data in a domain.

Index Table Create indexes over the fields in data stores that are
frequently referenced by queries.

Materialized View Generate prepopulated views over the data in one or more
data stores when the data isn't ideally formatted for required
query operations.

Priority Queue Prioritize requests sent to services so that requests with a
higher priority are received and processed more quickly than
those with a lower priority.

Queue-Based Load Leveling Use a queue that acts as a buffer between a task and a
service that it invokes in order to smooth intermittent heavy
loads.

Sharding Divide a data store into a set of horizontal partitions or
shards.

Static Content Hosting Deploy static content to a cloud-based storage service that
can deliver them directly to the client.

Throttling Control the consumption of resources used by an instance of
an application, an individual tenant, or an entire service.

Performance is an indication of the responsiveness of a system to execute any action within a given time interval,
while scalability is ability of a system either to handle increases in load without impact on performance or for the
available resources to be readily increased. Cloud applications typically encounter variable workloads and peaks in
activity. Predicting these, especially in a multi-tenant scenario, is almost impossible. Instead, applications should be
able to scale out within limits to meet peaks in demand, and scale in when demand decreases. Scalability concerns
not just compute instances, but other elements such as data storage, messaging infrastructure, and more.

https://github.com/mspnp/architecture-center/blob/master/docs/patterns/category/performance-scalability.md

Resiliency patterns
3/13/2019 • 2 minutes to read • Edit Online

PATTERN SUMMARY

Bulkhead Isolate elements of an application into pools so that if one
fails, the others will continue to function.

Circuit Breaker Handle faults that might take a variable amount of time to fix
when connecting to a remote service or resource.

Compensating Transaction Undo the work performed by a series of steps, which together
define an eventually consistent operation.

Health Endpoint Monitoring Implement functional checks in an application that external
tools can access through exposed endpoints at regular
intervals.

Leader Election Coordinate the actions performed by a collection of
collaborating task instances in a distributed application by
electing one instance as the leader that assumes responsibility
for managing the other instances.

Queue-Based Load Leveling Use a queue that acts as a buffer between a task and a
service that it invokes in order to smooth intermittent heavy
loads.

Retry Enable an application to handle anticipated, temporary
failures when it tries to connect to a service or network
resource by transparently retrying an operation that's
previously failed.

Scheduler Agent Supervisor Coordinate a set of actions across a distributed set of services
and other remote resources.

Resiliency is the ability of a system to gracefully handle and recover from failures. The nature of cloud hosting,
where applications are often multi-tenant, use shared platform services, compete for resources and bandwidth,
communicate over the Internet, and run on commodity hardware means there is an increased likelihood that both
transient and more permanent faults will arise. Detecting failures, and recovering quickly and efficiently, is
necessary to maintain resiliency.

https://github.com/mspnp/architecture-center/blob/master/docs/patterns/category/resiliency.md

Security patterns
3/13/2019 • 2 minutes to read • Edit Online

PATTERN SUMMARY

Federated Identity Delegate authentication to an external identity provider.

Gatekeeper Protect applications and services by using a dedicated host
instance that acts as a broker between clients and the
application or service, validates and sanitizes requests, and
passes requests and data between them.

Valet Key Use a token or key that provides clients with restricted direct
access to a specific resource or service.

Security is the capability of a system to prevent malicious or accidental actions outside of the designed usage, and
to prevent disclosure or loss of information. Cloud applications are exposed on the Internet outside trusted on-
premises boundaries, are often open to the public, and may serve untrusted users. Applications must be designed
and deployed in a way that protects them from malicious attacks, restricts access to only approved users, and
protects sensitive data.

https://github.com/mspnp/architecture-center/blob/master/docs/patterns/category/security.md

Ambassador pattern
3/13/2019 • 3 minutes to read • Edit Online

Context and problem

Solution

Create helper services that send network requests on behalf of a consumer service or application. An ambassador
service can be thought of as an out-of-process proxy that is co-located with the client.

This pattern can be useful for offloading common client connectivity tasks such as monitoring, logging, routing,
security (such as TLS), and resiliency patterns in a language agnostic way. It is often used with legacy applications,
or other applications that are difficult to modify, in order to extend their networking capabilities. It can also enable
a specialized team to implement those features.

Resilient cloud-based applications require features such as circuit breaking, routing, metering and monitoring, and
the ability to make network-related configuration updates. It may be difficult or impossible to update legacy
applications or existing code libraries to add these features, because the code is no longer maintained or can't be
easily modified by the development team.

Network calls may also require substantial configuration for connection, authentication, and authorization. If these
calls are used across multiple applications, built using multiple languages and frameworks, the calls must be
configured for each of these instances. In addition, network and security functionality may need to be managed by
a central team within your organization. With a large code base, it can be risky for that team to update application
code they aren't familiar with.

Put client frameworks and libraries into an external process that acts as a proxy between your application and
external services. Deploy the proxy on the same host environment as your application to allow control over
routing, resiliency, security features, and to avoid any host-related access restrictions. You can also use the
ambassador pattern to standardize and extend instrumentation. The proxy can monitor performance metrics such
as latency or resource usage, and this monitoring happens in the same host environment as the application.

Features that are offloaded to the ambassador can be managed independently of the application. You can update
and modify the ambassador without disturbing the application's legacy functionality. It also allows for separate,
specialized teams to implement and maintain security, networking, or authentication features that have been
moved to the ambassador.

Ambassador services can be deployed as a sidecar to accompany the lifecycle of a consuming application or
service. Alternatively, if an ambassador is shared by multiple separate processes on a common host, it can be
deployed as a daemon or Windows service. If the consuming service is containerized, the ambassador should be
created as a separate container on the same host, with the appropriate links configured for communication.

https://github.com/mspnp/architecture-center/blob/master/docs/patterns/ambassador.md

Issues and considerations

When to use this pattern

Example

Related guidance

The proxy adds some latency overhead. Consider whether a client library, invoked directly by the application, is
a better approach.
Consider the possible impact of including generalized features in the proxy. For example, the ambassador
could handle retries, but that might not be safe unless all operations are idempotent.
Consider a mechanism to allow the client to pass some context to the proxy, as well as back to the client. For
example, include HTTP request headers to opt out of retry or specify the maximum number of times to retry.
Consider how you will package and deploy the proxy.
Consider whether to use a single shared instance for all clients or an instance for each client.

Use this pattern when you:

Need to build a common set of client connectivity features for multiple languages or frameworks.
Need to offload cross-cutting client connectivity concerns to infrastructure developers or other more
specialized teams.
Need to support cloud or cluster connectivity requirements in a legacy application or an application that is
difficult to modify.

This pattern may not be suitable:

When network request latency is critical. A proxy will introduce some overhead, although minimal, and in
some cases this may affect the application.
When client connectivity features are consumed by a single language. In that case, a better option might be a
client library that is distributed to the development teams as a package.
When connectivity features cannot be generalized and require deeper integration with the client application.

The following diagram shows an application making a request to a remote service via an ambassador proxy. The
ambassador provides routing, circuit breaking, and logging. It calls the remote service and then returns the
response to the client application:

Sidecar pattern

Anti-Corruption Layer pattern
3/13/2019 • 2 minutes to read • Edit Online

Context and problem

Solution

Implement a façade or adapter layer between different subsystems that don't share the same semantics. This layer
translates requests that one subsystem makes to the other subsystem. Use this pattern to ensure that an
application's design is not limited by dependencies on outside subsystems. This pattern was first described by Eric
Evans in Domain-Driven Design.

Most applications rely on other systems for some data or functionality. For example, when a legacy application is
migrated to a modern system, it may still need existing legacy resources. New features must be able to call the
legacy system. This is especially true of gradual migrations, where different features of a larger application are
moved to a modern system over time.

Often these legacy systems suffer from quality issues such as convoluted data schemas or obsolete APIs. The
features and technologies used in legacy systems can vary widely from more modern systems. To interoperate
with the legacy system, the new application may need to support outdated infrastructure, protocols, data models,
APIs, or other features that you wouldn't otherwise put into a modern application.

Maintaining access between new and legacy systems can force the new system to adhere to at least some of the
legacy system's APIs or other semantics. When these legacy features have quality issues, supporting them
"corrupts" what might otherwise be a cleanly designed modern application.

Similar issues can arise with any external system that your development team doesn't control, not just legacy
systems.

Isolate the different subsystems by placing an anti-corruption layer between them. This layer translates
communications between the two systems, allowing one system to remain unchanged while the other can avoid
compromising its design and technological approach.

The diagram above shows an application with two subsystems. Subsystem A calls to subsystem B through an
anti-corruption layer. Communication between subsystem A and the anti-corruption layer always uses the data

https://github.com/mspnp/architecture-center/blob/master/docs/patterns/anti-corruption-layer.md

Issues and considerations

When to use this pattern

Related guidance

model and architecture of subsystem A. Calls from the anti-corruption layer to subsystem B conform to that
subsystem's data model or methods. The anti-corruption layer contains all of the logic necessary to translate
between the two systems. The layer can be implemented as a component within the application or as an
independent service.

The anti-corruption layer may add latency to calls made between the two systems.
The anti-corruption layer adds an additional service that must be managed and maintained.
Consider how your anti-corruption layer will scale.
Consider whether you need more than one anti-corruption layer. You may want to decompose functionality
into multiple services using different technologies or languages, or there may be other reasons to partition the
anti-corruption layer.
Consider how the anti-corruption layer will be managed in relation with your other applications or services.
How will it be integrated into your monitoring, release, and configuration processes?
Make sure transaction and data consistency are maintained and can be monitored.
Consider whether the anti-corruption layer needs to handle all communication between different subsystems,
or just a subset of features.
If the anti-corruption layer is part of an application migration strategy, consider whether it will be permanent,
or will be retired after all legacy functionality has been migrated.

Use this pattern when:

A migration is planned to happen over multiple stages, but integration between new and legacy systems needs
to be maintained.
Two or more subsystems have different semantics, but still need to communicate.

This pattern may not be suitable if there are no significant semantic differences between new and legacy systems.

Strangler pattern

Backends for Frontends pattern
3/13/2019 • 3 minutes to read • Edit Online

Context and problem

Solution

Create separate backend services to be consumed by specific frontend applications or interfaces. This pattern is
useful when you want to avoid customizing a single backend for multiple interfaces. This pattern was first
described by Sam Newman.

An application may initially be targeted at a desktop web UI. Typically, a backend service is developed in parallel
that provides the features needed for that UI. As the application's user base grows, a mobile application is
developed that must interact with the same backend. The backend service becomes a general-purpose backend,
serving the requirements of both the desktop and mobile interfaces.

But the capabilities of a mobile device differ significantly from a desktop browser, in terms of screen size,
performance, and display limitations. As a result, the requirements for a mobile application backend differ from
the desktop web UI.

These differences result in competing requirements for the backend. The backend requires regular and significant
changes to serve both the desktop web UI and the mobile application. Often, separate interface teams work on
each frontend, causing the backend to become a bottleneck in the development process. Conflicting update
requirements, and the need to keep the service working for both frontends, can result in spending a lot of effort
on a single deployable resource.

As the development activity focuses on the backend service, a separate team may be created to manage and
maintain the backend. Ultimately, this results in a disconnect between the interface and backend development
teams, placing a burden on the backend team to balance the competing requirements of the different UI teams.
When one interface team requires changes to the backend, those changes must be validated with other interface
teams before they can be integrated into the backend.

https://github.com/mspnp/architecture-center/blob/master/docs/patterns/backends-for-frontends.md

Issues and considerations

When to use this pattern

Create one backend per user interface. Fine tune the behavior and performance of each backend to best match the
needs of the frontend environment, without worrying about affecting other frontend experiences.

Because each backend is specific to one interface, it can be optimized for that interface. As a result, it will be
smaller, less complex, and likely faster than a generic backend that tries to satisfy the requirements for all
interfaces. Each interface team has autonomy to control their own backend and doesn't rely on a centralized
backend development team. This gives the interface team flexibility in language selection, release cadence,
prioritization of workload, and feature integration in their backend.

For more information, see Pattern: Backends For Frontends.

Consider how many backends to deploy.
If different interfaces (such as mobile clients) will make the same requests, consider whether it is necessary to
implement a backend for each interface, or if a single backend will suffice.
Code duplication across services is highly likely when implementing this pattern.
Frontend-focused backend services should only contain client-specific logic and behavior. General business
logic and other global features should be managed elsewhere in your application.
Think about how this pattern might be reflected in the responsibilities of a development team.
Consider how long it will take to implement this pattern. Will the effort of building the new backends incur
technical debt, while you continue to support the existing generic backend?

Use this pattern when:

A shared or general purpose backend service must be maintained with significant development overhead.
You want to optimize the backend for the requirements of specific client interfaces.
Customizations are made to a general-purpose backend to accommodate multiple interfaces.
An alternative language is better suited for the backend of a different user interface.

This pattern may not be suitable:

https://samnewman.io/patterns/architectural/bff/

Related guidance

When interfaces make the same or similar requests to the backend.
When only one interface is used to interact with the backend.

Gateway Aggregation pattern
Gateway Offloading pattern
Gateway Routing pattern

Bulkhead pattern
3/13/2019 • 4 minutes to read • Edit Online

Context and problem

Solution

Isolate elements of an application into pools so that if one fails, the others will continue to function.

This pattern is named Bulkhead because it resembles the sectioned partitions of a ship's hull. If the hull of a ship is
compromised, only the damaged section fills with water, which prevents the ship from sinking.

A cloud-based application may include multiple services, with each service having one or more consumers.
Excessive load or failure in a service will impact all consumers of the service.

Moreover, a consumer may send requests to multiple services simultaneously, using resources for each request.
When the consumer sends a request to a service that is misconfigured or not responding, the resources used by
the client's request may not be freed in a timely manner. As requests to the service continue, those resources may
be exhausted. For example, the client's connection pool may be exhausted. At that point, requests by the consumer
to other services are affected. Eventually the consumer can no longer send requests to other services, not just the
original unresponsive service.

The same issue of resource exhaustion affects services with multiple consumers. A large number of requests
originating from one client may exhaust available resources in the service. Other consumers are no longer able to
consume the service, causing a cascading failure effect.

Partition service instances into different groups, based on consumer load and availability requirements. This
design helps to isolate failures, and allows you to sustain service functionality for some consumers, even during a
failure.

A consumer can also partition resources, to ensure that resources used to call one service don't affect the
resources used to call another service. For example, a consumer that calls multiple services may be assigned a
connection pool for each service. If a service begins to fail, it only affects the connection pool assigned for that
service, allowing the consumer to continue using the other services.

The benefits of this pattern include:

Isolates consumers and services from cascading failures. An issue affecting a consumer or service can be
isolated within its own bulkhead, preventing the entire solution from failing.
Allows you to preserve some functionality in the event of a service failure. Other services and features of the
application will continue to work.
Allows you to deploy services that offer a different quality of service for consuming applications. A high-
priority consumer pool can be configured to use high-priority services.

The following diagram shows bulkheads structured around connection pools that call individual services. If
Service A fails or causes some other issue, the connection pool is isolated, so only workloads using the thread
pool assigned to Service A are affected. Workloads that use Service B and C are not affected and can continue
working without interruption.

https://github.com/mspnp/architecture-center/blob/master/docs/patterns/bulkhead.md

Issues and considerations

The next diagram shows multiple clients calling a single service. Each client is assigned a separate service
instance. Client 1 has made too many requests and overwhelmed its instance. Because each service instance is
isolated from the others, the other clients can continue making calls.

Define partitions around the business and technical requirements of the application.
When partitioning services or consumers into bulkheads, consider the level of isolation offered by the
technology as well as the overhead in terms of cost, performance and manageability.
Consider combining bulkheads with retry, circuit breaker, and throttling patterns to provide more sophisticated
fault handling.
When partitioning consumers into bulkheads, consider using processes, thread pools, and semaphores.
Projects like Netflix Hystrix and Polly offer a framework for creating consumer bulkheads.
When partitioning services into bulkheads, consider deploying them into separate virtual machines,
containers, or processes. Containers offer a good balance of resource isolation with fairly low overhead.
Services that communicate using asynchronous messages can be isolated through different sets of queues.
Each queue can have a dedicated set of instances processing messages on the queue, or a single group of
instances using an algorithm to dequeue and dispatch processing.
Determine the level of granularity for the bulkheads. For example, if you want to distribute tenants across
partitions, you could place each tenant into a separate partition, or put several tenants into one partition.
Monitor each partition’s performance and SLA.

https://github.com/Netflix/Hystrix
https://github.com/App-vNext/Polly

When to use this pattern

Example

apiVersion: v1
kind: Pod
metadata:
 name: drone-management
spec:
 containers:
 - name: drone-management-container
 image: drone-service
 resources:
 requests:
 memory: "64Mi"
 cpu: "250m"
 limits:
 memory: "128Mi"
 cpu: "1"

Related guidance

Use this pattern to:

Isolate resources used to consume a set of backend services, especially if the application can provide some
level of functionality even when one of the services is not responding.
Isolate critical consumers from standard consumers.
Protect the application from cascading failures.

This pattern may not be suitable when:

Less efficient use of resources may not be acceptable in the project.
The added complexity is not necessary

The following Kubernetes configuration file creates an isolated container to run a single service, with its own CPU
and memory resources and limits.

Designing resilient applications for Azure
Circuit Breaker pattern
Retry pattern
Throttling pattern

Cache-Aside pattern
3/13/2019 • 7 minutes to read • Edit Online

Context and problem

Solution

Load data on demand into a cache from a data store. This can improve performance and also helps to maintain
consistency between data held in the cache and data in the underlying data store.

Applications use a cache to improve repeated access to information held in a data store. However, it's impractical
to expect that cached data will always be completely consistent with the data in the data store. Applications should
implement a strategy that helps to ensure that the data in the cache is as up-to-date as possible, but can also
detect and handle situations that arise when the data in the cache has become stale.

Many commercial caching systems provide read-through and write-through/write-behind operations. In these
systems, an application retrieves data by referencing the cache. If the data isn't in the cache, it's retrieved from the
data store and added to the cache. Any modifications to data held in the cache are automatically written back to
the data store as well.

For caches that don't provide this functionality, it's the responsibility of the applications that use the cache to
maintain the data.

An application can emulate the functionality of read-through caching by implementing the cache-aside strategy.
This strategy loads data into the cache on demand. The figure illustrates using the Cache-Aside pattern to store
data in the cache.

If an application updates information, it can follow the write-through strategy by making the modification to the
data store, and by invalidating the corresponding item in the cache.

When the item is next required, using the cache-aside strategy will cause the updated data to be retrieved from
the data store and added back into the cache.

https://github.com/mspnp/architecture-center/blob/master/docs/patterns/cache-aside.md

Issues and considerations

When to use this pattern

Example

Consider the following points when deciding how to implement this pattern:

Lifetime of cached data. Many caches implement an expiration policy that invalidates data and removes it from
the cache if it's not accessed for a specified period. For cache-aside to be effective, ensure that the expiration
policy matches the pattern of access for applications that use the data. Don't make the expiration period too short
because this can cause applications to continually retrieve data from the data store and add it to the cache.
Similarly, don't make the expiration period so long that the cached data is likely to become stale. Remember that
caching is most effective for relatively static data, or data that is read frequently.

Evicting data. Most caches have a limited size compared to the data store where the data originates, and they'll
evict data if necessary. Most caches adopt a least-recently-used policy for selecting items to evict, but this might
be customizable. Configure the global expiration property and other properties of the cache, and the expiration
property of each cached item, to ensure that the cache is cost effective. It isn't always appropriate to apply a global
eviction policy to every item in the cache. For example, if a cached item is very expensive to retrieve from the data
store, it can be beneficial to keep this item in the cache at the expense of more frequently accessed but less costly
items.

Priming the cache. Many solutions prepopulate the cache with the data that an application is likely to need as
part of the startup processing. The Cache-Aside pattern can still be useful if some of this data expires or is evicted.

Consistency. Implementing the Cache-Aside pattern doesn't guarantee consistency between the data store and
the cache. An item in the data store can be changed at any time by an external process, and this change might not
be reflected in the cache until the next time the item is loaded. In a system that replicates data across data stores,
this problem can become serious if synchronization occurs frequently.

Local (in-memory) caching. A cache could be local to an application instance and stored in-memory. Cache-
aside can be useful in this environment if an application repeatedly accesses the same data. However, a local
cache is private and so different application instances could each have a copy of the same cached data. This data
could quickly become inconsistent between caches, so it might be necessary to expire data held in a private cache
and refresh it more frequently. In these scenarios, consider investigating the use of a shared or a distributed
caching mechanism.

Use this pattern when:

A cache doesn't provide native read-through and write-through operations.
Resource demand is unpredictable. This pattern enables applications to load data on demand. It makes no
assumptions about which data an application will require in advance.

This pattern might not be suitable:

When the cached data set is static. If the data will fit into the available cache space, prime the cache with the
data on startup and apply a policy that prevents the data from expiring.
For caching session state information in a web application hosted in a web farm. In this environment, you
should avoid introducing dependencies based on client-server affinity.

In Microsoft Azure you can use Azure Redis Cache to create a distributed cache that can be shared by multiple
instances of an application.

This following code examples use the StackExchange.Redis client, which is a Redis client library written for .NET.
To connect to an Azure Redis Cache instance, call the static ConnectionMultiplexer.Connect method and pass in

https://github.com/StackExchange/StackExchange.Redis

private static ConnectionMultiplexer Connection;

// Redis Connection string info
private static Lazy<ConnectionMultiplexer> lazyConnection = new Lazy<ConnectionMultiplexer>(() =>
{
 string cacheConnection = ConfigurationManager.AppSettings["CacheConnection"].ToString();
 return ConnectionMultiplexer.Connect(cacheConnection);
});

public static ConnectionMultiplexer Connection => lazyConnection.Value;

// Set five minute expiration as a default
private const double DefaultExpirationTimeInMinutes = 5.0;

public async Task<MyEntity> GetMyEntityAsync(int id)
{
 // Define a unique key for this method and its parameters.
 var key = $"MyEntity:{id}";
 var cache = Connection.GetDatabase();

 // Try to get the entity from the cache.
 var json = await cache.StringGetAsync(key).ConfigureAwait(false);
 var value = string.IsNullOrWhiteSpace(json)
 ? default(MyEntity)
 : JsonConvert.DeserializeObject<MyEntity>(json);

 if (value == null) // Cache miss
 {
 // If there's a cache miss, get the entity from the original store and cache it.
 // Code has been omitted because it is data store dependent.
 value = ...;

 // Avoid caching a null value.
 if (value != null)
 {
 // Put the item in the cache with a custom expiration time that
 // depends on how critical it is to have stale data.
 await cache.StringSetAsync(key, JsonConvert.SerializeObject(value)).ConfigureAwait(false);
 await cache.KeyExpireAsync(key,
TimeSpan.FromMinutes(DefaultExpirationTimeInMinutes)).ConfigureAwait(false);
 }
 }

 return value;
}

the connection string. The method returns a ConnectionMultiplexer that represents the connection. One approach
to sharing a ConnectionMultiplexer instance in your application is to have a static property that returns a
connected instance, similar to the following example. This approach provides a thread-safe way to initialize only a
single connected instance.

The GetMyEntityAsync method in the following code example shows an implementation of the Cache-Aside
pattern. This method retrieves an object from the cache using the read-through approach.

An object is identified by using an integer ID as the key. The GetMyEntityAsync method tries to retrieve an item
with this key from the cache. If a matching item is found, it's returned. If there's no match in the cache, the
GetMyEntityAsync method retrieves the object from a data store, adds it to the cache, and then returns it. The code

that actually reads the data from the data store is not shown here, because it depends on the data store. Note that
the cached item is configured to expire to prevent it from becoming stale if it's updated elsewhere.

The examples use Redis Cache to access the store and retrieve information from the cache. For more

public async Task UpdateEntityAsync(MyEntity entity)
{
 // Update the object in the original data store.
 await this.store.UpdateEntityAsync(entity).ConfigureAwait(false);

 // Invalidate the current cache object.
 var cache = Connection.GetDatabase();
 var id = entity.Id;
 var key = $"MyEntity:{id}"; // The key for the cached object.
 await cache.KeyDeleteAsync(key).ConfigureAwait(false); // Delete this key from the cache.
}

NOTENOTE

Related guidance

information, see Using Microsoft Azure Redis Cache and How to create a Web App with Redis Cache

The UpdateEntityAsync method shown below demonstrates how to invalidate an object in the cache when the
value is changed by the application. The code updates the original data store and then removes the cached item
from the cache.

The order of the steps is important. Update the data store before removing the item from the cache. If you remove the
cached item first, there is a small window of time when a client might fetch the item before the data store is updated. That
will result in a cache miss (because the item was removed from the cache), causing the earlier version of the item to be
fetched from the data store and added back into the cache. The result will be stale cache data.

The following information may be relevant when implementing this pattern:

Caching Guidance. Provides additional information on how you can cache data in a cloud solution, and the
issues that you should consider when you implement a cache.

Data Consistency Primer. Cloud applications typically use data that's spread across data stores. Managing
and maintaining data consistency in this environment is a critical aspect of the system, particularly the
concurrency and availability issues that can arise. This primer describes issues about consistency across
distributed data, and summarizes how an application can implement eventual consistency to maintain the
availability of data.

https://docs.microsoft.com/azure/redis-cache/cache-dotnet-how-to-use-azure-redis-cache
https://docs.microsoft.com/azure/redis-cache/cache-web-app-howto
https://docs.microsoft.com/azure/architecture/best-practices/caching
https://msdn.microsoft.com/library/dn589800.aspx

Circuit Breaker pattern
3/13/2019 • 17 minutes to read • Edit Online

Context and problem

Solution

Handle faults that might take a variable amount of time to recover from, when connecting to a remote service
or resource. This can improve the stability and resiliency of an application.

In a distributed environment, calls to remote resources and services can fail due to transient faults, such as slow
network connections, timeouts, or the resources being overcommitted or temporarily unavailable. These faults
typically correct themselves after a short period of time, and a robust cloud application should be prepared to
handle them by using a strategy such as the Retry pattern.

However, there can also be situations where faults are due to unanticipated events, and that might take much
longer to fix. These faults can range in severity from a partial loss of connectivity to the complete failure of a
service. In these situations it might be pointless for an application to continually retry an operation that is
unlikely to succeed, and instead the application should quickly accept that the operation has failed and handle
this failure accordingly.

Additionally, if a service is very busy, failure in one part of the system might lead to cascading failures. For
example, an operation that invokes a service could be configured to implement a timeout, and reply with a
failure message if the service fails to respond within this period. However, this strategy could cause many
concurrent requests to the same operation to be blocked until the timeout period expires. These blocked
requests might hold critical system resources such as memory, threads, database connections, and so on.
Consequently, these resources could become exhausted, causing failure of other possibly unrelated parts of the
system that need to use the same resources. In these situations, it would be preferable for the operation to fail
immediately, and only attempt to invoke the service if it's likely to succeed. Note that setting a shorter timeout
might help to resolve this problem, but the timeout shouldn't be so short that the operation fails most of the
time, even if the request to the service would eventually succeed.

The Circuit Breaker pattern, popularized by Michael Nygard in his book, Release It!, can prevent an application
from repeatedly trying to execute an operation that's likely to fail. Allowing it to continue without waiting for the
fault to be fixed or wasting CPU cycles while it determines that the fault is long lasting. The Circuit Breaker
pattern also enables an application to detect whether the fault has been resolved. If the problem appears to
have been fixed, the application can try to invoke the operation.

The purpose of the Circuit Breaker pattern is different than the Retry pattern. The Retry pattern enables an
application to retry an operation in the expectation that it'll succeed. The Circuit Breaker pattern prevents an
application from performing an operation that is likely to fail. An application can combine these two
patterns by using the Retry pattern to invoke an operation through a circuit breaker. However, the retry
logic should be sensitive to any exceptions returned by the circuit breaker and abandon retry attempts if the
circuit breaker indicates that a fault is not transient.

A circuit breaker acts as a proxy for operations that might fail. The proxy should monitor the number of recent
failures that have occurred, and use this information to decide whether to allow the operation to proceed, or
simply return an exception immediately.

The proxy can be implemented as a state machine with the following states that mimic the functionality of an

https://github.com/mspnp/architecture-center/blob/master/docs/patterns/circuit-breaker.md
https://pragprog.com/book/mnee/release-it

electrical circuit breaker :

Closed: The request from the application is routed to the operation. The proxy maintains a count of the
number of recent failures, and if the call to the operation is unsuccessful the proxy increments this count.
If the number of recent failures exceeds a specified threshold within a given time period, the proxy is
placed into the Open state. At this point the proxy starts a timeout timer, and when this timer expires the
proxy is placed into the Half-Open state.

The purpose of the timeout timer is to give the system time to fix the problem that caused the failure
before allowing the application to try to perform the operation again.

Open: The request from the application fails immediately and an exception is returned to the application.

Half-Open: A limited number of requests from the application are allowed to pass through and invoke
the operation. If these requests are successful, it's assumed that the fault that was previously causing the
failure has been fixed and the circuit breaker switches to the Closed state (the failure counter is reset). If
any request fails, the circuit breaker assumes that the fault is still present so it reverts back to the Open
state and restarts the timeout timer to give the system a further period of time to recover from the
failure.

The Half-Open state is useful to prevent a recovering service from suddenly being flooded with
requests. As a service recovers, it might be able to support a limited volume of requests until the
recovery is complete, but while recovery is in progress a flood of work can cause the service to time
out or fail again.

In the figure, the failure counter used by the Closed state is time based. It's automatically reset at periodic
intervals. This helps to prevent the circuit breaker from entering the Open state if it experiences occasional
failures. The failure threshold that trips the circuit breaker into the Open state is only reached when a specified
number of failures have occurred during a specified interval. The counter used by the Half-Open state records
the number of successful attempts to invoke the operation. The circuit breaker reverts to the Closed state after

Issues and considerations

a specified number of consecutive operation invocations have been successful. If any invocation fails, the circuit
breaker enters the Open state immediately and the success counter will be reset the next time it enters the
Half-Open state.

How the system recovers is handled externally, possibly by restoring or restarting a failed component or
repairing a network connection.

The Circuit Breaker pattern provides stability while the system recovers from a failure and minimizes the impact
on performance. It can help to maintain the response time of the system by quickly rejecting a request for an
operation that's likely to fail, rather than waiting for the operation to time out, or never return. If the circuit
breaker raises an event each time it changes state, this information can be used to monitor the health of the
part of the system protected by the circuit breaker, or to alert an administrator when a circuit breaker trips to
the Open state.

The pattern is customizable and can be adapted according to the type of the possible failure. For example, you
can apply an increasing timeout timer to a circuit breaker. You could place the circuit breaker in the Open state
for a few seconds initially, and then if the failure hasn't been resolved increase the timeout to a few minutes, and
so on. In some cases, rather than the Open state returning failure and raising an exception, it could be useful to
return a default value that is meaningful to the application.

You should consider the following points when deciding how to implement this pattern:

Exception Handling. An application invoking an operation through a circuit breaker must be prepared to
handle the exceptions raised if the operation is unavailable. The way exceptions are handled will be application
specific. For example, an application could temporarily degrade its functionality, invoke an alternative operation
to try to perform the same task or obtain the same data, or report the exception to the user and ask them to try
again later.

Types of Exceptions. A request might fail for many reasons, some of which might indicate a more severe type
of failure than others. For example, a request might fail because a remote service has crashed and will take
several minutes to recover, or because of a timeout due to the service being temporarily overloaded. A circuit
breaker might be able to examine the types of exceptions that occur and adjust its strategy depending on the
nature of these exceptions. For example, it might require a larger number of timeout exceptions to trip the
circuit breaker to the Open state compared to the number of failures due to the service being completely
unavailable.

Logging. A circuit breaker should log all failed requests (and possibly successful requests) to enable an
administrator to monitor the health of the operation.

Recoverability. You should configure the circuit breaker to match the likely recovery pattern of the operation
it's protecting. For example, if the circuit breaker remains in the Open state for a long period, it could raise
exceptions even if the reason for the failure has been resolved. Similarly, a circuit breaker could fluctuate and
reduce the response times of applications if it switches from the Open state to the Half-Open state too quickly.

Testing Failed Operations. In the Open state, rather than using a timer to determine when to switch to the
Half-Open state, a circuit breaker can instead periodically ping the remote service or resource to determine
whether it's become available again. This ping could take the form of an attempt to invoke an operation that
had previously failed, or it could use a special operation provided by the remote service specifically for testing
the health of the service, as described by the Health Endpoint Monitoring pattern.

Manual Override. In a system where the recovery time for a failing operation is extremely variable, it's
beneficial to provide a manual reset option that enables an administrator to close a circuit breaker (and reset
the failure counter). Similarly, an administrator could force a circuit breaker into the Open state (and restart the

NOTENOTE

When to use this pattern

Example

timeout timer) if the operation protected by the circuit breaker is temporarily unavailable.

Concurrency. The same circuit breaker could be accessed by a large number of concurrent instances of an
application. The implementation shouldn't block concurrent requests or add excessive overhead to each call to
an operation.

Resource Differentiation. Be careful when using a single circuit breaker for one type of resource if there
might be multiple underlying independent providers. For example, in a data store that contains multiple shards,
one shard might be fully accessible while another is experiencing a temporary issue. If the error responses in
these scenarios are merged, an application might try to access some shards even when failure is highly likely,
while access to other shards might be blocked even though it's likely to succeed.

Accelerated Circuit Breaking. Sometimes a failure response can contain enough information for the circuit
breaker to trip immediately and stay tripped for a minimum amount of time. For example, the error response
from a shared resource that's overloaded could indicate that an immediate retry isn't recommended and that
the application should instead try again in a few minutes.

A service can return HTTP 429 (Too Many Requests) if it is throttling the client, or HTTP 503 (Service Unavailable) if the
service is not currently available. The response can include additional information, such as the anticipated duration of the
delay.

Replaying Failed Requests. In the Open state, rather than simply failing quickly, a circuit breaker could also
record the details of each request to a journal and arrange for these requests to be replayed when the remote
resource or service becomes available.

Inappropriate Timeouts on External Services. A circuit breaker might not be able to fully protect
applications from operations that fail in external services that are configured with a lengthy timeout period. If
the timeout is too long, a thread running a circuit breaker might be blocked for an extended period before the
circuit breaker indicates that the operation has failed. In this time, many other application instances might also
try to invoke the service through the circuit breaker and tie up a significant number of threads before they all
fail.

Use this pattern:

To prevent an application from trying to invoke a remote service or access a shared resource if this
operation is highly likely to fail.

This pattern isn't recommended:

For handling access to local private resources in an application, such as in-memory data structure. In this
environment, using a circuit breaker would add overhead to your system.
As a substitute for handling exceptions in the business logic of your applications.

In a web application, several of the pages are populated with data retrieved from an external service. If the
system implements minimal caching, most hits to these pages will cause a round trip to the service.
Connections from the web application to the service could be configured with a timeout period (typically 60
seconds), and if the service doesn't respond in this time the logic in each web page will assume that the service
is unavailable and throw an exception.

However, if the service fails and the system is very busy, users could be forced to wait for up to 60 seconds

interface ICircuitBreakerStateStore
{
 CircuitBreakerStateEnum State { get; }

 Exception LastException { get; }

 DateTime LastStateChangedDateUtc { get; }

 void Trip(Exception ex);

 void Reset();

 void HalfOpen();

 bool IsClosed { get; }
}

before an exception occurs. Eventually resources such as memory, connections, and threads could be exhausted,
preventing other users from connecting to the system, even if they aren't accessing pages that retrieve data
from the service.

Scaling the system by adding further web servers and implementing load balancing might delay when
resources become exhausted, but it won't resolve the issue because user requests will still be unresponsive and
all web servers could still eventually run out of resources.

Wrapping the logic that connects to the service and retrieves the data in a circuit breaker could help to solve
this problem and handle the service failure more elegantly. User requests will still fail, but they'll fail more
quickly and the resources won't be blocked.

The CircuitBreaker class maintains state information about a circuit breaker in an object that implements the
ICircuitBreakerStateStore interface shown in the following code.

The State property indicates the current state of the circuit breaker, and will be either Open, HalfOpen, or
Closed as defined by the CircuitBreakerStateEnum enumeration. The IsClosed property should be true if the
circuit breaker is closed, but false if it's open or half open. The Trip method switches the state of the circuit
breaker to the open state and records the exception that caused the change in state, together with the date and
time that the exception occurred. The LastException and the LastStateChangedDateUtc properties return this
information. The Reset method closes the circuit breaker, and the HalfOpen method sets the circuit breaker to
half open.

The InMemoryCircuitBreakerStateStore class in the example contains an implementation of the
ICircuitBreakerStateStore interface. The CircuitBreaker class creates an instance of this class to hold the state

of the circuit breaker.

The ExecuteAction method in the CircuitBreaker class wraps an operation, specified as an Action delegate. If
the circuit breaker is closed, ExecuteAction invokes the Action delegate. If the operation fails, an exception
handler calls TrackException , which sets the circuit breaker state to open. The following code example
highlights this flow.

public class CircuitBreaker
{
 private readonly ICircuitBreakerStateStore stateStore =
 CircuitBreakerStateStoreFactory.GetCircuitBreakerStateStore();

 private readonly object halfOpenSyncObject = new object ();
 ...
 public bool IsClosed { get { return stateStore.IsClosed; } }

 public bool IsOpen { get { return !IsClosed; } }

 public void ExecuteAction(Action action)
 {
 ...
 if (IsOpen)
 {
 // The circuit breaker is Open.
 ... (see code sample below for details)
 }

 // The circuit breaker is Closed, execute the action.
 try
 {
 action();
 }
 catch (Exception ex)
 {
 // If an exception still occurs here, simply
 // retrip the breaker immediately.
 this.TrackException(ex);

 // Throw the exception so that the caller can tell
 // the type of exception that was thrown.
 throw;
 }
 }

 private void TrackException(Exception ex)
 {
 // For simplicity in this example, open the circuit breaker on the first exception.
 // In reality this would be more complex. A certain type of exception, such as one
 // that indicates a service is offline, might trip the circuit breaker immediately.
 // Alternatively it might count exceptions locally or across multiple instances and
 // use this value over time, or the exception/success ratio based on the exception
 // types, to open the circuit breaker.
 this.stateStore.Trip(ex);
 }
}

The following example shows the code (omitted from the previous example) that is executed if the circuit
breaker isn't closed. It first checks if the circuit breaker has been open for a period longer than the time specified
by the local OpenToHalfOpenWaitTime field in the CircuitBreaker class. If this is the case, the ExecuteAction

method sets the circuit breaker to half open, then tries to perform the operation specified by the Action

delegate.

If the operation is successful, the circuit breaker is reset to the closed state. If the operation fails, it is tripped
back to the open state and the time the exception occurred is updated so that the circuit breaker will wait for a
further period before trying to perform the operation again.

If the circuit breaker has only been open for a short time, less than the OpenToHalfOpenWaitTime value, the
ExecuteAction method simply throws a CircuitBreakerOpenException exception and returns the error that

caused the circuit breaker to transition to the open state.

Additionally, it uses a lock to prevent the circuit breaker from trying to perform concurrent calls to the

 ...
 if (IsOpen)
 {
 // The circuit breaker is Open. Check if the Open timeout has expired.
 // If it has, set the state to HalfOpen. Another approach might be to
 // check for the HalfOpen state that had be set by some other operation.
 if (stateStore.LastStateChangedDateUtc + OpenToHalfOpenWaitTime < DateTime.UtcNow)
 {
 // The Open timeout has expired. Allow one operation to execute. Note that, in
 // this example, the circuit breaker is set to HalfOpen after being
 // in the Open state for some period of time. An alternative would be to set
 // this using some other approach such as a timer, test method, manually, and
 // so on, and check the state here to determine how to handle execution
 // of the action.
 // Limit the number of threads to be executed when the breaker is HalfOpen.
 // An alternative would be to use a more complex approach to determine which
 // threads or how many are allowed to execute, or to execute a simple test
 // method instead.
 bool lockTaken = false;
 try
 {
 Monitor.TryEnter(halfOpenSyncObject, ref lockTaken);
 if (lockTaken)
 {
 // Set the circuit breaker state to HalfOpen.
 stateStore.HalfOpen();

 // Attempt the operation.
 action();

 // If this action succeeds, reset the state and allow other operations.
 // In reality, instead of immediately returning to the Closed state, a counter
 // here would record the number of successful operations and return the
 // circuit breaker to the Closed state only after a specified number succeed.
 this.stateStore.Reset();
 return;
 }
 }
 catch (Exception ex)
 {
 // If there's still an exception, trip the breaker again immediately.
 this.stateStore.Trip(ex);

 // Throw the exception so that the caller knows which exception occurred.
 throw;
 }
 finally
 {
 if (lockTaken)
 {
 Monitor.Exit(halfOpenSyncObject);
 }
 }
 }
 // The Open timeout hasn't yet expired. Throw a CircuitBreakerOpen exception to
 // inform the caller that the call was not actually attempted,
 // and return the most recent exception received.
 throw new CircuitBreakerOpenException(stateStore.LastException);
 }
 ...

operation while it's half open. A concurrent attempt to invoke the operation will be handled as if the circuit
breaker was open, and it'll fail with an exception as described later.

To use a CircuitBreaker object to protect an operation, an application creates an instance of the

var breaker = new CircuitBreaker();

try
{
 breaker.ExecuteAction(() =>
 {
 // Operation protected by the circuit breaker.
 ...
 });
}
catch (CircuitBreakerOpenException ex)
{
 // Perform some different action when the breaker is open.
 // Last exception details are in the inner exception.
 ...
}
catch (Exception ex)
{
 ...
}

Related patterns and guidance

CircuitBreaker class and invokes the ExecuteAction method, specifying the operation to be performed as the
parameter. The application should be prepared to catch the CircuitBreakerOpenException exception if the
operation fails because the circuit breaker is open. The following code shows an example:

The following patterns might also be useful when implementing this pattern:

Retry pattern. Describes how an application can handle anticipated temporary failures when it tries to
connect to a service or network resource by transparently retrying an operation that has previously
failed.

Health Endpoint Monitoring pattern. A circuit breaker might be able to test the health of a service by
sending a request to an endpoint exposed by the service. The service should return information
indicating its status.

Claim-Check Pattern
3/13/2019 • 6 minutes to read • Edit Online

Context and problem

Solution

Issues and considerations

Split a large message into a claim check and a payload. Send the claim check to the messaging platform and store
the payload to an external service. This pattern allows large messages to be processed, while protecting the
message bus and the client from being overwhelmed or slowed down. This pattern also helps to reduce costs, as
storage is usually cheaper than resource units used by the messaging platform.

This pattern is also known as Reference-Based Messaging, and was originally described in the book Enterprise
Integration Patterns, by Gregor Hohpe and Bobby Woolf.

A messaging-based architecture at some point must be able to send, receive, and manipulate large messages.
Such messages may contain anything, including images (for example, MRI scans), sound files (for example, call-
center calls), text documents, or any kind of binary data of arbitrary size.

Sending such large messages to the message bus directly is not recommended, because they require more
resources and bandwidth to be consumed. Large messages can also slow down the entire solution, because
messaging platforms are usually fine-tuned to handle huge quantities of small messages. Also, most messaging
platforms have limits on message size, so you may need to work around these limits for large messages.

Store the entire message payload into an external service, such as a database. Get the reference to the stored
payload, and send just that reference to the message bus. The reference acts like a claim check used to retrieve a
piece of luggage, hence the name of the pattern. Clients interested in processing that specific message can use the
obtained reference to retrieve the payload, if needed.

Consider the following points when deciding how to implement this pattern:

Consider deleting the message data after consuming it, if you don't need to archive the messages. Although
blob storage is relatively cheap, it costs some money in the long run, especially if there is a lot of data.
Deleting the message can be done synchronously by the application that receives and processes the
message, or asynchronously by a separate dedicated process. The asynchronous approach removes old
data with no impact on the throughput and message processing performance of the receiving application.

https://github.com/mspnp/architecture-center/blob/master/docs/patterns/claim-check.md
https://www.enterpriseintegrationpatterns.com/patterns/messaging/StoreInLibrary.html

When to use this pattern

Examples

Automatic claim-check generation with Blob Storage and Event GridAutomatic claim-check generation with Blob Storage and Event Grid

Event Grid with Event HubsEvent Grid with Event Hubs

Claim check generation with Service BusClaim check generation with Service Bus

Storing and retrieving the message causes some additional overhead and latency. You may want to
implement logic in the sending application to use this pattern only when the message size exceeds the data
limit of the message bus. The pattern would be skipped for smaller messages. This approach would result in
a conditional claim-check pattern.

This pattern should be used whenever a message cannot fit the supported message limit of the chosen message
bus technology. For example, Event Hubs currently has a limit of 256 KB (Basic Tier), while Event Grid supports
only 64-KB messages.

The pattern can also be used if the payload should be accessed only by services that are authorized to see it. By
offloading the payload to an external resource, stricter authentication and authorization rules can be put in place,
to ensure that security is enforced when sensitive data is stored in the payload.

On Azure, this pattern can be implemented in several ways and with different technologies, but there are two main
categories. In both cases, the receiver has the responsibility to read the claim check and use it to retrieve the
payload.

Automatic claim-check generation. This approach uses Azure Event Grid to automatically generate the
claim check and push it into the message bus.

Manual claim-check generation. In this approach, the sender is responsible for managing the payload.
The sender stores the payload using the appropriate service, gets or generates the claim check, and sends
the claim check to the message bus.

Event Grid is an event routing service and tries to deliver events within a configurable amount of time up to 24
hours. After that, events are either discarded or dead lettered. If you need to archive the event payloads or replay
the event stream, you can add an Event Grid subscription to Event Hubs or Queue Storage, where messages can
be retained for longer periods and archiving messages is supported. For information about fine tuning Event Grid
message delivery and retry, and dead letter configuration, see Dead letter and retry policies.

In this approach, the sender drops the message payload into a designated Azure Blob Storage container. Event
Grid automatically generates a tag/reference and sends it to a supported message bus, such as Azure Storage
Queues. The receiver can poll the queue, get the message, and then use the stored reference data to download the
payload directly from Blob Storage.

The same Event Grid message can be directly consumed by Azure Functions, without needing to go through a
message bus. This approach takes full advantage of the serverless nature of both Event Grid and Functions.

You can find example code for this approach here.

Similar to the previous example, Event Grid automatically generates a message when a payload is written to an
Azure Blob container. But in this example, the message bus is implemented using Event Hubs. A client can register
itself to receive the stream of messages as they are written to the event hub. The event hub can also be configured
to archive messages, making them available as an Avro file that can be queried using tools like Apache Spark,
Apache Drill, or any of the available Avro libraries.

You can find example code for this approach here.

This solution takes advantage of a specific Service Bus plugin, ServiceBus.AttachmentPlugin, which makes the

https://docs.microsoft.com/azure/event-grid/
https://docs.microsoft.com/azure/event-grid/manage-event-delivery
https://docs.microsoft.com/azure/azure-functions/
https://github.com/mspnp/cloud-design-patterns/tree/master/claim-check/code-samples/sample-1
https://github.com/mspnp/cloud-design-patterns/tree/master/claim-check/code-samples/sample-2
https://www.nuget.org/packages/ServiceBus.AttachmentPlugin/

using ServiceBus.AttachmentPlugin;
...

// Getting connection information
var serviceBusConnectionString = Environment.GetEnvironmentVariable("SERVICE_BUS_CONNECTION_STRING");
var queueName = Environment.GetEnvironmentVariable("QUEUE_NAME");
var storageConnectionString = Environment.GetEnvironmentVariable("STORAGE_CONNECTION_STRING");

// Creating config for sending message
var config = new AzureStorageAttachmentConfiguration(storageConnectionString);

// Creating and registering the sender using Service Bus Connection String and Queue Name
var sender = new MessageSender(serviceBusConnectionString, queueName);
sender.RegisterAzureStorageAttachmentPlugin(config);

// Create payload
var payload = new { data = "random data string for testing" };
var serialized = JsonConvert.SerializeObject(payload);
var payloadAsBytes = Encoding.UTF8.GetBytes(serialized);
var message = new Message(payloadAsBytes);

// Send the message
await sender.SendAsync(message);

Manual claim-check generation with KafkaManual claim-check generation with Kafka

Related patterns and guidance

claim-check workflow easy to implement. The plugin converts any message body into an attachment that gets
stored in Azure Blob Storage when the message is sent.

The Service Bus message acts as a notification queue, which a client can subscribe to. When the consumer receives
the message, the plugin makes it possible to directly read the message data from Blob Storage. You can then
choose how to process the message further. An advantage of this approach is that it abstracts the claim-check
workflow from the sender and receiver.

You can find example code for this approach here.

In this example, a Kafka client writes the payload to Azure Blob Storage. Then it sends a notification message using
Kakfa-enabled Event Hubs. The consumer receives the message and can access the payload from Blob Storage.
This example shows how a different messaging protocol can be used to implement the claim-check pattern in
Azure. For example, you might need to support existing Kafka clients.

You can find example code for this approach here.

The examples described above are available on GitHub.
The Enterprise Integration Patterns site has a description of this pattern.
For another example, see Dealing with large Service Bus messages using claim check pattern (blog post).
An alternative pattern for handling large messages is Split and Aggregate.

https://github.com/mspnp/cloud-design-patterns/tree/master/claim-check/code-samples/sample-3
https://docs.microsoft.com/azure/event-hubs/event-hubs-quickstart-kafka-enabled-event-hubs
https://github.com/mspnp/cloud-design-patterns/tree/master/claim-check/code-samples/sample-4
https://github.com/mspnp/cloud-design-patterns/tree/master/claim-check
https://www.enterpriseintegrationpatterns.com/patterns/messaging/StoreInLibrary.html
https://www.serverless360.com/blog/deal-with-large-service-bus-messages-using-claim-check-pattern
https://www.enterpriseintegrationpatterns.com/patterns/messaging/Sequencer.html
https://www.enterpriseintegrationpatterns.com/patterns/messaging/Aggregator.html

Command and Query Responsibility Segregation
(CQRS) pattern
3/13/2019 • 11 minutes to read • Edit Online

Context and problem

Solution

Segregate operations that read data from operations that update data by using separate interfaces. This can
maximize performance, scalability, and security. Supports the evolution of the system over time through higher
flexibility, and prevents update commands from causing merge conflicts at the domain level.

In traditional data management systems, both commands (updates to the data) and queries (requests for data)
are executed against the same set of entities in a single data repository. These entities can be a subset of the rows
in one or more tables in a relational database such as SQL Server.

Typically in these systems, all create, read, update, and delete (CRUD) operations are applied to the same
representation of the entity. For example, a data transfer object (DTO) representing a customer is retrieved from
the data store by the data access layer (DAL) and displayed on the screen. A user updates some fields of the DTO
(perhaps through data binding) and the DTO is then saved back in the data store by the DAL. The same DTO is
used for both the read and write operations. The figure illustrates a traditional CRUD architecture.

Traditional CRUD designs work well when only limited business logic is applied to the data operations. Scaffold
mechanisms provided by development tools can create data access code very quickly, which can then be
customized as required.

However, the traditional CRUD approach has some disadvantages:

It often means that there's a mismatch between the read and write representations of the data, such as
additional columns or properties that must be updated correctly even though they aren't required as part
of an operation.

It risks data contention when records are locked in the data store in a collaborative domain, where multiple
actors operate in parallel on the same set of data. Or update conflicts caused by concurrent updates when
optimistic locking is used. These risks increase as the complexity and throughput of the system grows. In
addition, the traditional approach can have a negative effect on performance due to load on the data store
and data access layer, and the complexity of queries required to retrieve information.

It can make managing security and permissions more complex because each entity is subject to both read
and write operations, which might expose data in the wrong context.

Command and Query Responsibility Segregation (CQRS) is a pattern that segregates the operations that read

https://github.com/mspnp/architecture-center/blob/master/docs/patterns/cqrs.md

Issues and considerations

data (queries) from the operations that update data (commands) by using separate interfaces. This means that
the data models used for querying and updates are different. The models can then be isolated, as shown in the
following figure, although that's not an absolute requirement.

Compared to the single data model used in CRUD-based systems, the use of separate query and update models
for the data in CQRS-based systems simplifies design and implementation. However, one disadvantage is that
unlike CRUD designs, CQRS code can't automatically be generated using scaffold mechanisms.

The query model for reading data and the update model for writing data can access the same physical store,
perhaps by using SQL views or by generating projections on the fly. However, it's common to separate the data
into different physical stores to maximize performance, scalability, and security, as shown in the next figure.

The read store can be a read-only replica of the write store, or the read and write stores can have a different
structure altogether. Using multiple read-only replicas of the read store can greatly increase query performance
and application UI responsiveness, especially in distributed scenarios where read-only replicas are located close
to the application instances. Some database systems (SQL Server) provide additional features such as failover
replicas to maximize availability.

Separation of the read and write stores also allows each to be scaled appropriately to match the load. For
example, read stores typically encounter a much higher load than write stores.

When the query/read model contains denormalized data (see Materialized View pattern), performance is
maximized when reading data for each of the views in an application or when querying the data in the system.

Consider the following points when deciding how to implement this pattern:

Dividing the data store into separate physical stores for read and write operations can increase the
performance and security of a system, but it can add complexity in terms of resiliency and eventual
consistency. The read model store must be updated to reflect changes to the write model store, and it can
be difficult to detect when a user has issued a request based on stale read data, which means that the
operation can't be completed.

When to use this pattern

Event Sourcing and CQRS

For a description of eventual consistency see the Data Consistency Primer.

Consider applying CQRS to limited sections of your system where it will be most valuable.

A typical approach to deploying eventual consistency is to use event sourcing in conjunction with CQRS
so that the write model is an append-only stream of events driven by execution of commands. These
events are used to update materialized views that act as the read model. For more information see Event
Sourcing and CQRS.

Use this pattern in the following situations:

Collaborative domains where multiple operations are performed in parallel on the same data. CQRS
allows you to define commands with enough granularity to minimize merge conflicts at the domain level
(any conflicts that do arise can be merged by the command), even when updating what appears to be the
same type of data.

Task-based user interfaces where users are guided through a complex process as a series of steps or with
complex domain models. Also, useful for teams already familiar with domain-driven design (DDD)
techniques. The write model has a full command-processing stack with business logic, input validation,
and business validation to ensure that everything is always consistent for each of the aggregates (each
cluster of associated objects treated as a unit for data changes) in the write model. The read model has no
business logic or validation stack and just returns a DTO for use in a view model. The read model is
eventually consistent with the write model.

Scenarios where performance of data reads must be fine tuned separately from performance of data
writes, especially when the read/write ratio is very high, and when horizontal scaling is required. For
example, in many systems the number of read operations is many times greater than the number of write
operations. To accommodate this, consider scaling out the read model, but running the write model on
only one or a few instances. A small number of write model instances also helps to minimize the
occurrence of merge conflicts.

Scenarios where one team of developers can focus on the complex domain model that is part of the write
model, and another team can focus on the read model and the user interfaces.

Scenarios where the system is expected to evolve over time and might contain multiple versions of the
model, or where business rules change regularly.

Integration with other systems, especially in combination with event sourcing, where the temporal failure
of one subsystem shouldn't affect the availability of the others.

This pattern isn't recommended in the following situations:

Where the domain or the business rules are simple.

Where a simple CRUD-style user interface and the related data access operations are sufficient.

For implementation across the whole system. There are specific components of an overall data
management scenario where CQRS can be useful, but it can add considerable and unnecessary
complexity when it isn't required.

The CQRS pattern is often used along with the Event Sourcing pattern. CQRS-based systems use separate read
and write data models, each tailored to relevant tasks and often located in physically separate stores. When used
with the Event Sourcing pattern, the store of events is the write model, and is the official source of information.

https://msdn.microsoft.com/library/dn589800.aspx
https://docs.microsoft.com/azure/architecture/patterns/cqrs#event-sourcing-and-cqrs

Example

The read model of a CQRS-based system provides materialized views of the data, typically as highly
denormalized views. These views are tailored to the interfaces and display requirements of the application, which
helps to maximize both display and query performance.

Using the stream of events as the write store, rather than the actual data at a point in time, avoids update conflicts
on a single aggregate and maximizes performance and scalability. The events can be used to asynchronously
generate materialized views of the data that are used to populate the read store.

Because the event store is the official source of information, it is possible to delete the materialized views and
replay all past events to create a new representation of the current state when the system evolves, or when the
read model must change. The materialized views are in effect a durable read-only cache of the data.

When using CQRS combined with the Event Sourcing pattern, consider the following:

As with any system where the write and read stores are separate, systems based on this pattern are only
eventually consistent. There will be some delay between the event being generated and the data store
being updated.

The pattern adds complexity because code must be created to initiate and handle events, and assemble or
update the appropriate views or objects required by queries or a read model. The complexity of the CQRS
pattern when used with the Event Sourcing pattern can make a successful implementation more difficult,
and requires a different approach to designing systems. However, event sourcing can make it easier to
model the domain, and makes it easier to rebuild views or create new ones because the intent of the
changes in the data is preserved.

Generating materialized views for use in the read model or projections of the data by replaying and
handling the events for specific entities or collections of entities can require significant processing time
and resource usage. This is especially true if it requires summation or analysis of values over long periods,
because all the associated events might need to be examined. Resolve this by implementing snapshots of
the data at scheduled intervals, such as a total count of the number of a specific action that have occurred,
or the current state of an entity.

The following code shows some extracts from an example of a CQRS implementation that uses different
definitions for the read and the write models. The model interfaces don't dictate any features of the underlying
data stores, and they can evolve and be fine-tuned independently because these interfaces are separated.

The following code shows the read model definition.

// Query interface
namespace ReadModel
{
 public interface ProductsDao
 {
 ProductDisplay FindById(int productId);
 ICollection<ProductDisplay> FindByName(string name);
 ICollection<ProductInventory> FindOutOfStockProducts();
 ICollection<ProductDisplay> FindRelatedProducts(int productId);
 }

 public class ProductDisplay
 {
 public int Id { get; set; }
 public string Name { get; set; }
 public string Description { get; set; }
 public decimal UnitPrice { get; set; }
 public bool IsOutOfStock { get; set; }
 public double UserRating { get; set; }
 }

 public class ProductInventory
 {
 public int Id { get; set; }
 public string Name { get; set; }
 public int CurrentStock { get; set; }
 }
}

public interface ICommand
{
 Guid Id { get; }
}

public class RateProduct : ICommand
{
 public RateProduct()
 {
 this.Id = Guid.NewGuid();
 }
 public Guid Id { get; set; }
 public int ProductId { get; set; }
 public int Rating { get; set; }
 public int UserId {get; set; }
}

The system allows users to rate products. The application code does this using the RateProduct command shown
in the following code.

The system uses the ProductsCommandHandler class to handle commands sent by the application. Clients typically
send commands to the domain through a messaging system such as a queue. The command handler accepts
these commands and invokes methods of the domain interface. The granularity of each command is designed to
reduce the chance of conflicting requests. The following code shows an outline of the ProductsCommandHandler

class.

public class ProductsCommandHandler :
 ICommandHandler<AddNewProduct>,
 ICommandHandler<RateProduct>,
 ICommandHandler<AddToInventory>,
 ICommandHandler<ConfirmItemShipped>,
 ICommandHandler<UpdateStockFromInventoryRecount>
{
 private readonly IRepository<Product> repository;

 public ProductsCommandHandler (IRepository<Product> repository)
 {
 this.repository = repository;
 }

 void Handle (AddNewProduct command)
 {
 ...
 }

 void Handle (RateProduct command)
 {
 var product = repository.Find(command.ProductId);
 if (product != null)
 {
 product.RateProduct(command.UserId, command.Rating);
 repository.Save(product);
 }
 }

 void Handle (AddToInventory command)
 {
 ...
 }

 void Handle (ConfirmItemsShipped command)
 {
 ...
 }

 void Handle (UpdateStockFromInventoryRecount command)
 {
 ...
 }
}

public interface IProductsDomain
{
 void AddNewProduct(int id, string name, string description, decimal price);
 void RateProduct(int userId, int rating);
 void AddToInventory(int productId, int quantity);
 void ConfirmItemsShipped(int productId, int quantity);
 void UpdateStockFromInventoryRecount(int productId, int updatedQuantity);
}

Related patterns and guidance

The following code shows the IProductsDomain interface from the write model.

Also notice how the IProductsDomain interface contains methods that have a meaning in the domain. Typically, in
a CRUD environment these methods would have generic names such as Save or Update , and have a DTO as
the only argument. The CQRS approach can be designed to meet the needs of this organization's business and
inventory management systems.

The following patterns and guidance are useful when implementing this pattern:

For a comparison of CQRS with other architectural styles, see Architecture styles and CQRS architecture
style.

Data Consistency Primer. Explains the issues that are typically encountered due to eventual consistency
between the read and write data stores when using the CQRS pattern, and how these issues can be
resolved.

Data Partitioning Guidance. Describes how the read and write data stores used in the CQRS pattern can
be divided into partitions that can be managed and accessed separately to improve scalability, reduce
contention, and optimize performance.

Event Sourcing pattern. Describes in more detail how Event Sourcing can be used with the CQRS pattern
to simplify tasks in complex domains while improving performance, scalability, and responsiveness. As
well as how to provide consistency for transactional data while maintaining full audit trails and history that
can enable compensating actions.

Materialized View pattern. The read model of a CQRS implementation can contain materialized views of
the write model data, or the read model can be used to generate materialized views.

The patterns & practices guide CQRS Journey. In particular, Introducing the Command Query
Responsibility Segregation pattern explores the pattern and when it's useful, and Epilogue: Lessons
Learned helps you understand some of the issues that come up when using this pattern.

The post CQRS by Martin Fowler, which explains the basics of the pattern and links to other useful
resources.

https://docs.microsoft.com/azure/architecture/guide/architecture-styles/
https://docs.microsoft.com/azure/architecture/guide/architecture-styles/cqrs
https://msdn.microsoft.com/library/dn589800.aspx
https://msdn.microsoft.com/library/dn589795.aspx
https://aka.ms/cqrs
https://msdn.microsoft.com/library/jj591573.aspx
https://msdn.microsoft.com/library/jj591568.aspx
https://martinfowler.com/bliki/CQRS.html

Compensating Transaction pattern
3/13/2019 • 7 minutes to read • Edit Online

Context and problem

Solution

Undo the work performed by a series of steps, which together define an eventually consistent operation, if one
or more of the steps fail. Operations that follow the eventual consistency model are commonly found in cloud-
hosted applications that implement complex business processes and workflows.

Applications running in the cloud frequently modify data. This data might be spread across various data sources
held in different geographic locations. To avoid contention and improve performance in a distributed
environment, an application shouldn't try to provide strong transactional consistency. Rather, the application
should implement eventual consistency. In this model, a typical business operation consists of a series of
separate steps. While these steps are being performed, the overall view of the system state might be
inconsistent, but when the operation has completed and all of the steps have been executed the system should
become consistent again.

The Data Consistency Primer provides information about why distributed transactions don't scale well, and
the principles of the eventual consistency model.

A challenge in the eventual consistency model is how to handle a step that has failed. In this case it might be
necessary to undo all of the work completed by the previous steps in the operation. However, the data can't
simply be rolled back because other concurrent instances of the application might have changed it. Even in cases
where the data hasn't been changed by a concurrent instance, undoing a step might not simply be a matter of
restoring the original state. It might be necessary to apply various business-specific rules (see the travel website
described in the Example section).

If an operation that implements eventual consistency spans several heterogeneous data stores, undoing the
steps in the operation will require visiting each data store in turn. The work performed in every data store must
be undone reliably to prevent the system from remaining inconsistent.

Not all data affected by an operation that implements eventual consistency might be held in a database. In a
service oriented architecture (SOA) environment an operation could invoke an action in a service, and cause a
change in the state held by that service. To undo the operation, this state change must also be undone. This can
involve invoking the service again and performing another action that reverses the effects of the first.

The solution is to implement a compensating transaction. The steps in a compensating transaction must undo
the effects of the steps in the original operation. A compensating transaction might not be able to simply replace
the current state with the state the system was in at the start of the operation because this approach could
overwrite changes made by other concurrent instances of an application. Instead, it must be an intelligent
process that takes into account any work done by concurrent instances. This process will usually be application
specific, driven by the nature of the work performed by the original operation.

A common approach is to use a workflow to implement an eventually consistent operation that requires
compensation. As the original operation proceeds, the system records information about each step and how the
work performed by that step can be undone. If the operation fails at any point, the workflow rewinds back
through the steps it's completed and performs the work that reverses each step. Note that a compensating
transaction might not have to undo the work in the exact reverse order of the original operation, and it might be

https://github.com/mspnp/architecture-center/blob/master/docs/patterns/compensating-transaction.md
https://msdn.microsoft.com/library/dn589800.aspx

Issues and considerations

When to use this pattern

possible to perform some of the undo steps in parallel.

This approach is similar to the Sagas strategy discussed in Clemens Vasters’ blog.

A compensating transaction is also an eventually consistent operation and it could also fail. The system should
be able to resume the compensating transaction at the point of failure and continue. It might be necessary to
repeat a step that's failed, so the steps in a compensating transaction should be defined as idempotent
commands. For more information, see Idempotency Patterns on Jonathan Oliver’s blog.

In some cases it might not be possible to recover from a step that has failed except through manual intervention.
In these situations the system should raise an alert and provide as much information as possible about the
reason for the failure.

Consider the following points when deciding how to implement this pattern:

It might not be easy to determine when a step in an operation that implements eventual consistency has failed. A
step might not fail immediately, but instead could block. It might be necessary to implement some form of time-
out mechanism.

-Compensation logic isn't easily generalized. A compensating transaction is application specific. It relies on the
application having sufficient information to be able to undo the effects of each step in a failed operation.

You should define the steps in a compensating transaction as idempotent commands. This enables the steps to
be repeated if the compensating transaction itself fails.

The infrastructure that handles the steps in the original operation, and the compensating transaction, must be
resilient. It must not lose the information required to compensate for a failing step, and it must be able to reliably
monitor the progress of the compensation logic.

A compensating transaction doesn't necessarily return the data in the system to the state it was in at the start of
the original operation. Instead, it compensates for the work performed by the steps that completed successfully
before the operation failed.

The order of the steps in the compensating transaction doesn't necessarily have to be the exact opposite of the
steps in the original operation. For example, one data store might be more sensitive to inconsistencies than
another, and so the steps in the compensating transaction that undo the changes to this store should occur first.

Placing a short-term timeout-based lock on each resource that's required to complete an operation, and
obtaining these resources in advance, can help increase the likelihood that the overall activity will succeed. The
work should be performed only after all the resources have been acquired. All actions must be finalized before
the locks expire.

Consider using retry logic that is more forgiving than usual to minimize failures that trigger a compensating
transaction. If a step in an operation that implements eventual consistency fails, try handling the failure as a
transient exception and repeat the step. Only stop the operation and initiate a compensating transaction if a step
fails repeatedly or irrecoverably.

Many of the challenges of implementing a compensating transaction are the same as those with
implementing eventual consistency. See the section Considerations for Implementing Eventual Consistency
in the Data Consistency Primer for more information.

Use this pattern only for operations that must be undone if they fail. If possible, design solutions to avoid the

https://vasters.com/clemensv/2012/09/01/Sagas.aspx
https://blog.jonathanoliver.com/idempotency-patterns/
https://msdn.microsoft.com/library/dn589800.aspx

Example

NOTENOTE

complexity of requiring compensating transactions.

A travel website lets customers book itineraries. A single itinerary might comprise a series of flights and hotels.
A customer traveling from Seattle to London and then on to Paris could perform the following steps when
creating an itinerary:

1. Book a seat on flight F1 from Seattle to London.
2. Book a seat on flight F2 from London to Paris.
3. Book a seat on flight F3 from Paris to Seattle.
4. Reserve a room at hotel H1 in London.
5. Reserve a room at hotel H2 in Paris.

These steps constitute an eventually consistent operation, although each step is a separate action. Therefore, as
well as performing these steps, the system must also record the counter operations necessary to undo each step
in case the customer decides to cancel the itinerary. The steps necessary to perform the counter operations can
then run as a compensating transaction.

Notice that the steps in the compensating transaction might not be the exact opposite of the original steps, and
the logic in each step in the compensating transaction must take into account any business-specific rules. For
example, unbooking a seat on a flight might not entitle the customer to a complete refund of any money paid.
The figure illustrates generating a compensating transaction to undo a long-running transaction to book a travel
itinerary.

It might be possible for the steps in the compensating transaction to be performed in parallel, depending on how you've
designed the compensating logic for each step.

In many business solutions, failure of a single step doesn't always necessitate rolling the system back by using a
compensating transaction. For example, if—after having booked flights F1, F2, and F3 in the travel website
scenario—the customer is unable to reserve a room at hotel H1, it's preferable to offer the customer a room at a
different hotel in the same city rather than canceling the flights. The customer can still decide to cancel (in which

Related patterns and guidance

case the compensating transaction runs and undoes the bookings made on flights F1, F2, and F3), but this
decision should be made by the customer rather than by the system.

The following patterns and guidance might also be relevant when implementing this pattern:

Data Consistency Primer. The Compensating Transaction pattern is often used to undo operations that
implement the eventual consistency model. This primer provides information on the benefits and
tradeoffs of eventual consistency.

Scheduler-Agent-Supervisor pattern. Describes how to implement resilient systems that perform
business operations that use distributed services and resources. Sometimes, it might be necessary to
undo the work performed by an operation by using a compensating transaction.

Retry pattern. Compensating transactions can be expensive to perform, and it might be possible to
minimize their use by implementing an effective policy of retrying failing operations by following the
Retry pattern.

https://msdn.microsoft.com/library/dn589800.aspx

Competing Consumers pattern
3/13/2019 • 9 minutes to read • Edit Online

Context and problem

Solution

Enable multiple concurrent consumers to process messages received on the same messaging channel. This
enables a system to process multiple messages concurrently to optimize throughput, to improve scalability and
availability, and to balance the workload.

An application running in the cloud is expected to handle a large number of requests. Rather than process each
request synchronously, a common technique is for the application to pass them through a messaging system to
another service (a consumer service) that handles them asynchronously. This strategy helps to ensure that the
business logic in the application isn't blocked while the requests are being processed.

The number of requests can vary significantly over time for many reasons. A sudden increase in user activity or
aggregated requests coming from multiple tenants can cause an unpredictable workload. At peak hours a system
might need to process many hundreds of requests per second, while at other times the number could be very
small. Additionally, the nature of the work performed to handle these requests might be highly variable. Using a
single instance of the consumer service can cause that instance to become flooded with requests, or the
messaging system might be overloaded by an influx of messages coming from the application. To handle this
fluctuating workload, the system can run multiple instances of the consumer service. However, these consumers
must be coordinated to ensure that each message is only delivered to a single consumer. The workload also
needs to be load balanced across consumers to prevent an instance from becoming a bottleneck.

Use a message queue to implement the communication channel between the application and the instances of the
consumer service. The application posts requests in the form of messages to the queue, and the consumer
service instances receive messages from the queue and process them. This approach enables the same pool of
consumer service instances to handle messages from any instance of the application. The figure illustrates using
a message queue to distribute work to instances of a service.

This solution has the following benefits:

It provides a load-leveled system that can handle wide variations in the volume of requests sent by
application instances. The queue acts as a buffer between the application instances and the consumer
service instances. This can help to minimize the impact on availability and responsiveness for both the

https://github.com/mspnp/architecture-center/blob/master/docs/patterns/competing-consumers.md

Issues and considerations

application and the service instances, as described by the Queue-based Load Leveling pattern. Handling a
message that requires some long-running processing doesn't prevent other messages from being handled
concurrently by other instances of the consumer service.

It improves reliability. If a producer communicates directly with a consumer instead of using this pattern,
but doesn't monitor the consumer, there's a high probability that messages could be lost or fail to be
processed if the consumer fails. In this pattern, messages aren't sent to a specific service instance. A failed
service instance won't block a producer, and messages can be processed by any working service instance.

It doesn't require complex coordination between the consumers, or between the producer and the
consumer instances. The message queue ensures that each message is delivered at least once.

It's scalable. The system can dynamically increase or decrease the number of instances of the consumer
service as the volume of messages fluctuates.

It can improve resiliency if the message queue provides transactional read operations. If a consumer
service instance reads and processes the message as part of a transactional operation, and the consumer
service instance fails, this pattern can ensure that the message will be returned to the queue to be picked
up and handled by another instance of the consumer service.

Consider the following points when deciding how to implement this pattern:

Message ordering. The order in which consumer service instances receive messages isn't guaranteed,
and doesn't necessarily reflect the order in which the messages were created. Design the system to ensure
that message processing is idempotent because this will help to eliminate any dependency on the order in
which messages are handled. For more information, see Idempotency Patterns on Jonathon Oliver’s blog.

Microsoft Azure Service Bus Queues can implement guaranteed first-in-first-out ordering of
messages by using message sessions. For more information, see Messaging Patterns Using Sessions.

Designing services for resiliency. If the system is designed to detect and restart failed service instances,
it might be necessary to implement the processing performed by the service instances as idempotent
operations to minimize the effects of a single message being retrieved and processed more than once.

Detecting poison messages. A malformed message, or a task that requires access to resources that
aren't available, can cause a service instance to fail. The system should prevent such messages being
returned to the queue, and instead capture and store the details of these messages elsewhere so that they
can be analyzed if necessary.

Handling results. The service instance handling a message is fully decoupled from the application logic
that generates the message, and they might not be able to communicate directly. If the service instance
generates results that must be passed back to the application logic, this information must be stored in a
location that's accessible to both. In order to prevent the application logic from retrieving incomplete data
the system must indicate when processing is complete.

If you're using Azure, a worker process can pass results back to the application logic by using a
dedicated message reply queue. The application logic must be able to correlate these results with the
original message. This scenario is described in more detail in the Asynchronous Messaging Primer.

Scaling the messaging system. In a large-scale solution, a single message queue could be overwhelmed
by the number of messages and become a bottleneck in the system. In this situation, consider partitioning
the messaging system to send messages from specific producers to a particular queue, or use load
balancing to distribute messages across multiple message queues.

https://blog.jonathanoliver.com/idempotency-patterns/
https://msdn.microsoft.com/magazine/jj863132.aspx
https://msdn.microsoft.com/library/dn589781.aspx

When to use this pattern

Example

Ensuring reliability of the messaging system. A reliable messaging system is needed to guarantee that
after the application enqueues a message it won't be lost. This is essential for ensuring that all messages
are delivered at least once.

Use this pattern when:

The workload for an application is divided into tasks that can run asynchronously.
Tasks are independent and can run in parallel.
The volume of work is highly variable, requiring a scalable solution.
The solution must provide high availability, and must be resilient if the processing for a task fails.

This pattern might not be useful when:

It's not easy to separate the application workload into discrete tasks, or there's a high degree of dependence
between tasks.
Tasks must be performed synchronously, and the application logic must wait for a task to complete before
continuing.
Tasks must be performed in a specific sequence.

Some messaging systems support sessions that enable a producer to group messages together and ensure
that they're all handled by the same consumer. This mechanism can be used with prioritized messages (if they
are supported) to implement a form of message ordering that delivers messages in sequence from a
producer to a single consumer.

Azure provides storage queues and Service Bus queues that can act as a mechanism for implementing this
pattern. The application logic can post messages to a queue, and consumers implemented as tasks in one or
more roles can retrieve messages from this queue and process them. For resiliency, a Service Bus queue enables
a consumer to use PeekLock mode when it retrieves a message from the queue. This mode doesn't actually
remove the message, but simply hides it from other consumers. The original consumer can delete the message
when it's finished processing it. If the consumer fails, the peek lock will time out and the message will become
visible again, allowing another consumer to retrieve it.

For detailed information on using Azure Service Bus queues, see Service Bus queues, topics, and subscriptions.

For information on using Azure storage queues, see Get started with Azure Queue storage using .NET.

The following code from the QueueManager class in CompetingConsumers solution available on GitHub shows
how you can create a queue by using a QueueClient instance in the Start event handler in a web or worker role.

https://msdn.microsoft.com/library/windowsazure/hh367516.aspx
https://docs.microsoft.com/azure/storage/queues/storage-dotnet-how-to-use-queues
https://github.com/mspnp/cloud-design-patterns/tree/master/competing-consumers

private string queueName = ...;
private string connectionString = ...;
...

public async Task Start()
{
 // Check if the queue already exists.
 var manager = NamespaceManager.CreateFromConnectionString(this.connectionString);
 if (!manager.QueueExists(this.queueName))
 {
 var queueDescription = new QueueDescription(this.queueName);

 // Set the maximum delivery count for messages in the queue. A message
 // is automatically dead-lettered after this number of deliveries. The
 // default value for dead letter count is 10.
 queueDescription.MaxDeliveryCount = 3;

 await manager.CreateQueueAsync(queueDescription);
 }
 ...

 // Create the queue client. By default the PeekLock method is used.
 this.client = QueueClient.CreateFromConnectionString(
 this.connectionString, this.queueName);
}

public async Task SendMessagesAsync()
{
 // Simulate sending a batch of messages to the queue.
 var messages = new List<BrokeredMessage>();

 for (int i = 0; i < 10; i++)
 {
 var message = new BrokeredMessage() { MessageId = Guid.NewGuid().ToString() };
 messages.Add(message);
 }
 await this.client.SendBatchAsync(messages);
}

The next code snippet shows how an application can create and send a batch of messages to the queue.

The following code shows how a consumer service instance can receive messages from the queue by following
an event-driven approach. The processMessageTask parameter to the ReceiveMessages method is a delegate that
references the code to run when a message is received. This code is run asynchronously.

private ManualResetEvent pauseProcessingEvent;
...

public void ReceiveMessages(Func<BrokeredMessage, Task> processMessageTask)
{
 // Set up the options for the message pump.
 var options = new OnMessageOptions();

 // When AutoComplete is disabled it's necessary to manually
 // complete or abandon the messages and handle any errors.
 options.AutoComplete = false;
 options.MaxConcurrentCalls = 10;
 options.ExceptionReceived += this.OptionsOnExceptionReceived;

 // Use of the Service Bus OnMessage message pump.
 // The OnMessage method must be called once, otherwise an exception will occur.
 this.client.OnMessageAsync(
 async (msg) =>
 {
 // Will block the current thread if Stop is called.
 this.pauseProcessingEvent.WaitOne();

 // Execute processing task here.
 await processMessageTask(msg);
 },
 options);
}
...

private void OptionsOnExceptionReceived(object sender,
 ExceptionReceivedEventArgs exceptionReceivedEventArgs)
{
 ...
}

Related patterns and guidance

Note that autoscaling features, such as those available in Azure, can be used to start and stop role instances as
the queue length fluctuates. For more information, see Autoscaling Guidance. Also, it's not necessary to maintain
a one-to-one correspondence between role instances and worker processes—a single role instance can
implement multiple worker processes. For more information, see Compute Resource Consolidation pattern.

The following patterns and guidance might be relevant when implementing this pattern:

Asynchronous Messaging Primer. Message queues are an asynchronous communications mechanism. If a
consumer service needs to send a reply to an application, it might be necessary to implement some form
of response messaging. The Asynchronous Messaging Primer provides information on how to implement
request/reply messaging using message queues.

Autoscaling Guidance. It might be possible to start and stop instances of a consumer service since the
length of the queue applications post messages on varies. Autoscaling can help to maintain throughput
during times of peak processing.

Compute Resource Consolidation pattern. It might be possible to consolidate multiple instances of a
consumer service into a single process to reduce costs and management overhead. The Compute
Resource Consolidation pattern describes the benefits and tradeoffs of following this approach.

Queue-based Load Leveling pattern. Introducing a message queue can add resiliency to the system,
enabling service instances to handle widely varying volumes of requests from application instances. The
message queue acts as a buffer, which levels the load. The Queue-based Load Leveling pattern describes
this scenario in more detail.

https://msdn.microsoft.com/library/dn589774.aspx
https://msdn.microsoft.com/library/dn589781.aspx
https://msdn.microsoft.com/library/dn589774.aspx

This pattern has a sample application associated with it.

https://github.com/mspnp/cloud-design-patterns/tree/master/competing-consumers

Compute Resource Consolidation pattern
3/13/2019 • 12 minutes to read • Edit Online

Context and problem

Solution

Consolidate multiple tasks or operations into a single computational unit. This can increase compute resource
utilization, and reduce the costs and management overhead associated with performing compute processing in
cloud-hosted applications.

A cloud application often implements a variety of operations. In some solutions it makes sense to follow the
design principle of separation of concerns initially, and divide these operations into separate computational units
that are hosted and deployed individually (for example, as separate App Service web apps, separate Virtual
Machines, or separate Cloud Service roles). However, although this strategy can help simplify the logical design of
the solution, deploying a large number of computational units as part of the same application can increase
runtime hosting costs and make management of the system more complex.

As an example, the figure shows the simplified structure of a cloud-hosted solution that is implemented using
more than one computational unit. Each computational unit runs in its own virtual environment. Each function
has been implemented as a separate task (labeled Task A through Task E) running in its own computational unit.

Each computational unit consumes chargeable resources, even when it's idle or lightly used. Therefore, this isn't
always the most cost-effective solution.

In Azure, this concern applies to roles in a Cloud Service, App Services, and Virtual Machines. These items run in
their own virtual environment. Running a collection of separate roles, websites, or virtual machines that are
designed to perform a set of well-defined operations, but that need to communicate and cooperate as part of a
single solution, can be an inefficient use of resources.

To help reduce costs, increase utilization, improve communication speed, and reduce management it's possible to
consolidate multiple tasks or operations into a single computational unit.

Tasks can be grouped according to criteria based on the features provided by the environment and the costs
associated with these features. A common approach is to look for tasks that have a similar profile concerning their

https://github.com/mspnp/architecture-center/blob/master/docs/patterns/compute-resource-consolidation.md

Issues and considerations

scalability, lifetime, and processing requirements. Grouping these together allows them to scale as a unit. The
elasticity provided by many cloud environments enables additional instances of a computational unit to be started
and stopped according to the workload. For example, Azure provides autoscaling that you can apply to roles in a
Cloud Service, App Services, and Virtual Machines. For more information, see Autoscaling Guidance.

As a counter example to show how scalability can be used to determine which operations shouldn't be grouped
together, consider the following two tasks:

Task 1 polls for infrequent, time-insensitive messages sent to a queue.
Task 2 handles high-volume bursts of network traffic.

The second task requires elasticity that can involve starting and stopping a large number of instances of the
computational unit. Applying the same scaling to the first task would simply result in more tasks listening for
infrequent messages on the same queue, and is a waste of resources.

In many cloud environments it's possible to specify the resources available to a computational unit in terms of the
number of CPU cores, memory, disk space, and so on. Generally, the more resources specified, the greater the
cost. To save money, it's important to maximize the work an expensive computational unit performs, and not let it
become inactive for an extended period.

If there are tasks that require a great deal of CPU power in short bursts, consider consolidating these into a single
computational unit that provides the necessary power. However, it's important to balance this need to keep
expensive resources busy against the contention that could occur if they are over stressed. Long-running,
compute-intensive tasks shouldn't share the same computational unit, for example.

Consider the following points when implementing this pattern:

Scalability and elasticity. Many cloud solutions implement scalability and elasticity at the level of the
computational unit by starting and stopping instances of units. Avoid grouping tasks that have conflicting
scalability requirements in the same computational unit.

Lifetime. The cloud infrastructure periodically recycles the virtual environment that hosts a computational unit.
When there are many long-running tasks inside a computational unit, it might be necessary to configure the unit
to prevent it from being recycled until these tasks have finished. Alternatively, design the tasks by using a check-
pointing approach that enables them to stop cleanly, and continue at the point they were interrupted when the
computational unit is restarted.

Release cadence. If the implementation or configuration of a task changes frequently, it might be necessary to
stop the computational unit hosting the updated code, reconfigure and redeploy the unit, and then restart it. This
process will also require that all other tasks within the same computational unit are stopped, redeployed, and
restarted.

Security. Tasks in the same computational unit might share the same security context and be able to access the
same resources. There must be a high degree of trust between the tasks, and confidence that one task isn't going
to corrupt or adversely affect another. Additionally, increasing the number of tasks running in a computational
unit increases the attack surface of the unit. Each task is only as secure as the one with the most vulnerabilities.

Fault tolerance. If one task in a computational unit fails or behaves abnormally, it can affect the other tasks
running within the same unit. For example, if one task fails to start correctly it can cause the entire startup logic
for the computational unit to fail, and prevent other tasks in the same unit from running.

Contention. Avoid introducing contention between tasks that compete for resources in the same computational
unit. Ideally, tasks that share the same computational unit should exhibit different resource utilization
characteristics. For example, two compute-intensive tasks should probably not reside in the same computational
unit, and neither should two tasks that consume large amounts of memory. However, mixing a compute intensive

https://msdn.microsoft.com/library/dn589774.aspx

NOTENOTE

When to use this pattern

Example

task with a task that requires a large amount of memory is a workable combination.

Consider consolidating compute resources only for a system that's been in production for a period of time so that operators
and developers can monitor the system and create a heat map that identifies how each task utilizes differing resources. This
map can be used to determine which tasks are good candidates for sharing compute resources.

Complexity. Combining multiple tasks into a single computational unit adds complexity to the code in the unit,
possibly making it more difficult to test, debug, and maintain.

Stable logical architecture. Design and implement the code in each task so that it shouldn't need to change,
even if the physical environment the task runs in does change.

Other strategies. Consolidating compute resources is only one way to help reduce costs associated with running
multiple tasks concurrently. It requires careful planning and monitoring to ensure that it remains an effective
approach. Other strategies might be more appropriate, depending on the nature of the work and where the users
these tasks are running are located. For example, functional decomposition of the workload (as described by the
Compute Partitioning Guidance) might be a better option.

Use this pattern for tasks that are not cost effective if they run in their own computational units. If a task spends
much of its time idle, running this task in a dedicated unit can be expensive.

This pattern might not be suitable for tasks that perform critical fault-tolerant operations, or tasks that process
highly sensitive or private data and require their own security context. These tasks should run in their own
isolated environment, in a separate computational unit.

When building a cloud service on Azure, it’s possible to consolidate the processing performed by multiple tasks
into a single role. Typically this is a worker role that performs background or asynchronous processing tasks.

In some cases it's possible to include background or asynchronous processing tasks in the web role. This
technique helps to reduce costs and simplify deployment, although it can impact the scalability and
responsiveness of the public-facing interface provided by the web role.

The role is responsible for starting and stopping the tasks. When the Azure fabric controller loads a role, it raises
the Start event for the role. You can override the OnStart method of the WebRole or WorkerRole class to handle
this event, perhaps to initialize the data and other resources the tasks in this method depend on.

When the OnStart method completes, the role can start responding to requests. You can find more information
and guidance about using the OnStart and Run methods in a role in the Application Startup Processes section in
the patterns & practices guide Moving Applications to the Cloud.

Keep the code in the OnStart method as concise as possible. Azure doesn't impose any limit on the time
taken for this method to complete, but the role won't be able to start responding to network requests sent to it
until this method completes.

When the OnStart method has finished, the role executes the Run method. At this point, the fabric controller can
start sending requests to the role.

Place the code that actually creates the tasks in the Run method. Note that the Run method defines the lifetime

https://msdn.microsoft.com/library/dn589773.aspx
https://msdn.microsoft.com/library/ff803371.aspx#sec16
https://msdn.microsoft.com/library/ff728592.aspx

of the role instance. When this method completes, the fabric controller will arrange for the role to be shut down.

When a role shuts down or is recycled, the fabric controller prevents any more incoming requests being received
from the load balancer and raises the Stop event. You can capture this event by overriding the OnStop method of
the role and perform any tidying up required before the role terminates.

Any actions performed in the OnStop method must be completed within five minutes (or 30 seconds if you
are using the Azure emulator on a local computer). Otherwise the Azure fabric controller assumes that the
role has stalled and will force it to stop.

The tasks are started by the Run method that waits for the tasks to complete. The tasks implement the business
logic of the cloud service, and can respond to messages posted to the role through the Azure load balancer. The
figure shows the lifecycle of tasks and resources in a role in an Azure cloud service.

The WorkerRole.cs file in the ComputeResourceConsolidation.Worker project shows an example of how you
might implement this pattern in an Azure cloud service.

The ComputeResourceConsolidation.Worker project is part of the ComputeResourceConsolidation solution
available for download from GitHub.

The MyWorkerTask1 and the MyWorkerTask2 methods illustrate how to perform different tasks within the same
worker role. The following code shows MyWorkerTask1 . This is a simple task that sleeps for 30 seconds and then
outputs a trace message. It repeats this process until the task is canceled. The code in MyWorkerTask2 is similar.

https://github.com/mspnp/cloud-design-patterns/tree/master/compute-resource-consolidation

// A sample worker role task.
private static async Task MyWorkerTask1(CancellationToken ct)
{
 // Fixed interval to wake up and check for work and/or do work.
 var interval = TimeSpan.FromSeconds(30);

 try
 {
 while (!ct.IsCancellationRequested)
 {
 // Wake up and do some background processing if not canceled.
 // TASK PROCESSING CODE HERE
 Trace.TraceInformation("Doing Worker Task 1 Work");

 // Go back to sleep for a period of time unless asked to cancel.
 // Task.Delay will throw an OperationCanceledException when canceled.
 await Task.Delay(interval, ct);
 }
 }
 catch (OperationCanceledException)
 {
 // Expect this exception to be thrown in normal circumstances or check
 // the cancellation token. If the role instances are shutting down, a
 // cancellation request will be signaled.
 Trace.TraceInformation("Stopping service, cancellation requested");

 // Rethrow the exception.
 throw;
 }
}

The sample code shows a common implementation of a background process. In a real world application you
can follow this same structure, except that you should place your own processing logic in the body of the loop
that waits for the cancellation request.

After the worker role has initialized the resources it uses, the Run method starts the two tasks concurrently, as
shown here.

/// <summary>
/// The cancellation token source use to cooperatively cancel running tasks
/// </summary>
private readonly CancellationTokenSource cts = new CancellationTokenSource();

/// <summary>
/// List of running tasks on the role instance
/// </summary>
private readonly List<Task> tasks = new List<Task>();

// RoleEntry Run() is called after OnStart().
// Returning from Run() will cause a role instance to recycle.
public override void Run()
{
 // Start worker tasks and add to the task list
 tasks.Add(MyWorkerTask1(cts.Token));
 tasks.Add(MyWorkerTask2(cts.Token));

 foreach (var worker in this.workerTasks)
 {
 this.tasks.Add(worker);
 }

 Trace.TraceInformation("Worker host tasks started");
 // The assumption is that all tasks should remain running and not return,
 // similar to role entry Run() behavior.
 try
 {
 Task.WaitAll(tasks.ToArray());
 }
 catch (AggregateException ex)
 {
 Trace.TraceError(ex.Message);

 // If any of the inner exceptions in the aggregate exception
 // are not cancellation exceptions then re-throw the exception.
 ex.Handle(innerEx => (innerEx is OperationCanceledException));
 }

 // If there wasn't a cancellation request, stop all tasks and return from Run()
 // An alternative to canceling and returning when a task exits would be to
 // restart the task.
 if (!cts.IsCancellationRequested)
 {
 Trace.TraceInformation("Task returned without cancellation request");
 Stop(TimeSpan.FromMinutes(5));
 }
}
...

In this example, the Run method waits for tasks to be completed. If a task is canceled, the Run method assumes
that the role is being shut down and waits for the remaining tasks to be canceled before finishing (it waits for a
maximum of five minutes before terminating). If a task fails due to an expected exception, the Run method
cancels the task.

You could implement more comprehensive monitoring and exception handling strategies in the Run method
such as restarting tasks that have failed, or including code that enables the role to stop and start individual
tasks.

The Stop method shown in the following code is called when the fabric controller shuts down the role instance
(it's invoked from the OnStop method). The code stops each task gracefully by canceling it. If any task takes more
than five minutes to complete, the cancellation processing in the Stop method ceases waiting and the role is

// Stop running tasks and wait for tasks to complete before returning
// unless the timeout expires.
private void Stop(TimeSpan timeout)
{
 Trace.TraceInformation("Stop called. Canceling tasks.");
 // Cancel running tasks.
 cts.Cancel();

 Trace.TraceInformation("Waiting for canceled tasks to finish and return");

 // Wait for all the tasks to complete before returning. Note that the
 // emulator currently allows 30 seconds and Azure allows five
 // minutes for processing to complete.
 try
 {
 Task.WaitAll(tasks.ToArray(), timeout);
 }
 catch (AggregateException ex)
 {
 Trace.TraceError(ex.Message);

 // If any of the inner exceptions in the aggregate exception
 // are not cancellation exceptions then rethrow the exception.
 ex.Handle(innerEx => (innerEx is OperationCanceledException));
 }
}

Related patterns and guidance

terminated.

The following patterns and guidance might also be relevant when implementing this pattern:

Autoscaling Guidance. Autoscaling can be used to start and stop instances of service hosting
computational resources, depending on the anticipated demand for processing.

Compute Partitioning Guidance. Describes how to allocate the services and components in a cloud service
in a way that helps to minimize running costs while maintaining the scalability, performance, availability,
and security of the service.

This pattern includes a downloadable sample application.

https://msdn.microsoft.com/library/dn589774.aspx
https://msdn.microsoft.com/library/dn589773.aspx
https://github.com/mspnp/cloud-design-patterns/tree/master/compute-resource-consolidation

Event Sourcing pattern
3/13/2019 • 14 minutes to read • Edit Online

Context and problem

Solution

Instead of storing just the current state of the data in a domain, use an append-only store to record the full series
of actions taken on that data. The store acts as the system of record and can be used to materialize the domain
objects. This can simplify tasks in complex domains, by avoiding the need to synchronize the data model and the
business domain, while improving performance, scalability, and responsiveness. It can also provide consistency
for transactional data, and maintain full audit trails and history that can enable compensating actions.

Most applications work with data, and the typical approach is for the application to maintain the current state of
the data by updating it as users work with it. For example, in the traditional create, read, update, and delete
(CRUD) model a typical data process is to read data from the store, make some modifications to it, and update
the current state of the data with the new values—often by using transactions that lock the data.

The CRUD approach has some limitations:

CRUD systems perform update operations directly against a data store, which can slow down
performance and responsiveness, and limit scalability, due to the processing overhead it requires.

In a collaborative domain with many concurrent users, data update conflicts are more likely because the
update operations take place on a single item of data.

Unless there's an additional auditing mechanism that records the details of each operation in a separate
log, history is lost.

For a deeper understanding of the limits of the CRUD approach see CRUD, Only When You Can Afford It.

The Event Sourcing pattern defines an approach to handling operations on data that's driven by a sequence of
events, each of which is recorded in an append-only store. Application code sends a series of events that
imperatively describe each action that has occurred on the data to the event store, where they're persisted. Each
event represents a set of changes to the data (such as AddedItemToOrder).

The events are persisted in an event store that acts as the system of record (the authoritative data source) about
the current state of the data. The event store typically publishes these events so that consumers can be notified
and can handle them if needed. Consumers could, for example, initiate tasks that apply the operations in the
events to other systems, or perform any other associated action that's required to complete the operation. Notice
that the application code that generates the events is decoupled from the systems that subscribe to the events.

Typical uses of the events published by the event store are to maintain materialized views of entities as actions in
the application change them, and for integration with external systems. For example, a system can maintain a
materialized view of all customer orders that's used to populate parts of the UI. As the application adds new
orders, adds or removes items on the order, and adds shipping information, the events that describe these
changes can be handled and used to update the materialized view.

In addition, at any point it's possible for applications to read the history of events, and use it to materialize the
current state of an entity by playing back and consuming all the events related to that entity. This can occur on
demand to materialize a domain object when handling a request, or through a scheduled task so that the state of
the entity can be stored as a materialized view to support the presentation layer.

https://github.com/mspnp/architecture-center/blob/master/docs/patterns/event-sourcing.md
https://blogs.msdn.microsoft.com/maarten_mullender/2004/07/23/crud-only-when-you-can-afford-it-revisited/

The figure shows an overview of the pattern, including some of the options for using the event stream such as
creating a materialized view, integrating events with external applications and systems, and replaying events to
create projections of the current state of specific entities.

The Event Sourcing pattern provides the following advantages:

Events are immutable and can be stored using an append-only operation. The user interface, workflow, or
process that initiated an event can continue, and tasks that handle the events can run in the background.
This, combined with the fact that there's no contention during the processing of transactions, can vastly
improve performance and scalability for applications, especially for the presentation level or user
interface.

Events are simple objects that describe some action that occurred, together with any associated data
required to describe the action represented by the event. Events don't directly update a data store. They're
simply recorded for handling at the appropriate time. This can simplify implementation and management.

Events typically have meaning for a domain expert, whereas object-relational impedance mismatch can
make complex database tables hard to understand. Tables are artificial constructs that represent the
current state of the system, not the events that occurred.

Event sourcing can help prevent concurrent updates from causing conflicts because it avoids the
requirement to directly update objects in the data store. However, the domain model must still be
designed to protect itself from requests that might result in an inconsistent state.

The append-only storage of events provides an audit trail that can be used to monitor actions taken
against a data store, regenerate the current state as materialized views or projections by replaying the
events at any time, and assist in testing and debugging the system. In addition, the requirement to use
compensating events to cancel changes provides a history of changes that were reversed, which wouldn't
be the case if the model simply stored the current state. The list of events can also be used to analyze
application performance and detect user behavior trends, or to obtain other useful business information.

The event store raises events, and tasks perform operations in response to those events. This decoupling
of the tasks from the events provides flexibility and extensibility. Tasks know about the type of event and
the event data, but not about the operation that triggered the event. In addition, multiple tasks can handle

https://en.wikipedia.org/wiki/Object-relational_impedance_mismatch

Issues and considerations

NOTENOTE

each event. This enables easy integration with other services and systems that only listen for new events
raised by the event store. However, the event sourcing events tend to be very low level, and it might be
necessary to generate specific integration events instead.

Event sourcing is commonly combined with the CQRS pattern by performing the data management tasks in
response to the events, and by materializing views from the stored events.

Consider the following points when deciding how to implement this pattern:

The system will only be eventually consistent when creating materialized views or generating projections of data
by replaying events. There's some delay between an application adding events to the event store as the result of
handling a request, the events being published, and consumers of the events handling them. During this period,
new events that describe further changes to entities might have arrived at the event store.

See the Data Consistency Primer for information about eventual consistency.

The event store is the permanent source of information, and so the event data should never be updated. The only
way to update an entity to undo a change is to add a compensating event to the event store. If the format (rather
than the data) of the persisted events needs to change, perhaps during a migration, it can be difficult to combine
existing events in the store with the new version. It might be necessary to iterate through all the events making
changes so they're compliant with the new format, or add new events that use the new format. Consider using a
version stamp on each version of the event schema to maintain both the old and the new event formats.

Multi-threaded applications and multiple instances of applications might be storing events in the event store. The
consistency of events in the event store is vital, as is the order of events that affect a specific entity (the order that
changes occur to an entity affects its current state). Adding a timestamp to every event can help to avoid issues.
Another common practice is to annotate each event resulting from a request with an incremental identifier. If two
actions attempt to add events for the same entity at the same time, the event store can reject an event that
matches an existing entity identifier and event identifier.

There's no standard approach, or existing mechanisms such as SQL queries, for reading the events to obtain
information. The only data that can be extracted is a stream of events using an event identifier as the criteria. The
event ID typically maps to individual entities. The current state of an entity can be determined only by replaying
all of the events that relate to it against the original state of that entity.

The length of each event stream affects managing and updating the system. If the streams are large, consider
creating snapshots at specific intervals such as a specified number of events. The current state of the entity can
be obtained from the snapshot and by replaying any events that occurred after that point in time. For more
information about creating snapshots of data, see Snapshot on Martin Fowler’s Enterprise Application
Architecture website and Master-Subordinate Snapshot Replication.

Even though event sourcing minimizes the chance of conflicting updates to the data, the application must still be
able to deal with inconsistencies that result from eventual consistency and the lack of transactions. For example,
an event that indicates a reduction in stock inventory might arrive in the data store while an order for that item is
being placed, resulting in a requirement to reconcile the two operations either by advising the customer or
creating a back order.

Event publication might be “at least once,” and so consumers of the events must be idempotent. They must not
reapply the update described in an event if the event is handled more than once. For example, if multiple
instances of a consumer maintain an aggregate an entity's property, such as the total number of orders placed,
only one must succeed in incrementing the aggregate when an order placed event occurs. While this isn't a key

https://msdn.microsoft.com/library/dn589800.aspx
https://martinfowler.com/eaaDev/Snapshot.html
https://msdn.microsoft.com/library/ff650012.aspx

When to use this pattern

Example

characteristic of event sourcing, it's the usual implementation decision.

Use this pattern in the following scenarios:

When you want to capture intent, purpose, or reason in the data. For example, changes to a customer
entity can be captured as a series of specific event types such as Moved home, Closed account, or
Deceased.

When it's vital to minimize or completely avoid the occurrence of conflicting updates to data.

When you want to record events that occur, and be able to replay them to restore the state of a system,
roll back changes, or keep a history and audit log. For example, when a task involves multiple steps you
might need to execute actions to revert updates and then replay some steps to bring the data back into a
consistent state.

When using events is a natural feature of the operation of the application, and requires little additional
development or implementation effort.

When you need to decouple the process of inputting or updating data from the tasks required to apply
these actions. This might be to improve UI performance, or to distribute events to other listeners that take
action when the events occur. For example, integrating a payroll system with an expense submission
website so that events raised by the event store in response to data updates made in the website are
consumed by both the website and the payroll system.

When you want flexibility to be able to change the format of materialized models and entity data if
requirements change, or—when used in conjunction with CQRS—you need to adapt a read model or the
views that expose the data.

When used in conjunction with CQRS, and eventual consistency is acceptable while a read model is
updated, or the performance impact of rehydrating entities and data from an event stream is acceptable.

This pattern might not be useful in the following situations:

Small or simple domains, systems that have little or no business logic, or nondomain systems that
naturally work well with traditional CRUD data management mechanisms.

Systems where consistency and real-time updates to the views of the data are required.

Systems where audit trails, history, and capabilities to roll back and replay actions are not required.

Systems where there's only a very low occurrence of conflicting updates to the underlying data. For
example, systems that predominantly add data rather than updating it.

A conference management system needs to track the number of completed bookings for a conference so that it
can check whether there are seats still available when a potential attendee tries to make a booking. The system
could store the total number of bookings for a conference in at least two ways:

The system could store the information about the total number of bookings as a separate entity in a
database that holds booking information. As bookings are made or canceled, the system could increment
or decrement this number as appropriate. This approach is simple in theory, but can cause scalability
issues if a large number of attendees are attempting to book seats during a short period of time. For
example, in the last day or so prior to the booking period closing.

The system could store information about bookings and cancellations as events held in an event store. It

could then calculate the number of seats available by replaying these events. This approach can be more
scalable due to the immutability of events. The system only needs to be able to read data from the event
store, or append data to the event store. Event information about bookings and cancellations is never
modified.

The following diagram illustrates how the seat reservation subsystem of the conference management system
might be implemented using event sourcing.

The sequence of actions for reserving two seats is as follows:

1. The user interface issues a command to reserve seats for two attendees. The command is handled by a
separate command handler. A piece of logic that is decoupled from the user interface and is responsible
for handling requests posted as commands.

2. An aggregate containing information about all reservations for the conference is constructed by querying
the events that describe bookings and cancellations. This aggregate is called SeatAvailability , and is
contained within a domain model that exposes methods for querying and modifying the data in the
aggregate.

Some optimizations to consider are using snapshots (so that you don’t need to query and replay the
full list of events to obtain the current state of the aggregate), and maintaining a cached copy of the

Related patterns and guidance

aggregate in memory.

3. The command handler invokes a method exposed by the domain model to make the reservations.

4. The SeatAvailability aggregate records an event containing the number of seats that were reserved. The
next time the aggregate applies events, all the reservations will be used to compute how many seats
remain.

5. The system appends the new event to the list of events in the event store.

If a user cancels a seat, the system follows a similar process except the command handler issues a command that
generates a seat cancellation event and appends it to the event store.

As well as providing more scope for scalability, using an event store also provides a complete history, or audit
trail, of the bookings and cancellations for a conference. The events in the event store are the accurate record.
There is no need to persist aggregates in any other way because the system can easily replay the events and
restore the state to any point in time.

You can find more information about this example in Introducing Event Sourcing.

The following patterns and guidance might also be relevant when implementing this pattern:

Command and Query Responsibility Segregation (CQRS) pattern. The write store that provides the
permanent source of information for a CQRS implementation is often based on an implementation of the
Event Sourcing pattern. Describes how to segregate the operations that read data in an application from
the operations that update data by using separate interfaces.

Materialized View pattern. The data store used in a system based on event sourcing is typically not well
suited to efficient querying. Instead, a common approach is to generate prepopulated views of the data at
regular intervals, or when the data changes. Shows how this can be done.

Compensating Transaction pattern. The existing data in an event sourcing store is not updated, instead
new entries are added that transition the state of entities to the new values. To reverse a change,
compensating entries are used because it isn't possible to simply reverse the previous change. Describes
how to undo the work that was performed by a previous operation.

Data Consistency Primer. When using event sourcing with a separate read store or materialized views, the
read data won't be immediately consistent, instead it'll be only eventually consistent. Summarizes the
issues surrounding maintaining consistency over distributed data.

Data Partitioning Guidance. Data is often partitioned when using event sourcing to improve scalability,
reduce contention, and optimize performance. Describes how to divide data into discrete partitions, and
the issues that can arise.

https://msdn.microsoft.com/library/jj591559.aspx
https://msdn.microsoft.com/library/dn589800.aspx
https://msdn.microsoft.com/library/dn589795.aspx

External Configuration Store pattern
3/13/2019 • 10 minutes to read • Edit Online

Context and problem

Solution

Move configuration information out of the application deployment package to a centralized location. This can
provide opportunities for easier management and control of configuration data, and for sharing configuration
data across applications and application instances.

The majority of application runtime environments include configuration information that's held in files deployed
with the application. In some cases, it's possible to edit these files to change the application behavior after it's been
deployed. However, changes to the configuration require the application be redeployed, often resulting in
unacceptable downtime and other administrative overhead.

Local configuration files also limit the configuration to a single application, but sometimes it would be useful to
share configuration settings across multiple applications. Examples include database connection strings, UI theme
information, or the URLs of queues and storage used by a related set of applications.

It's challenging to manage changes to local configurations across multiple running instances of the application,
especially in a cloud-hosted scenario. It can result in instances using different configuration settings while the
update is being deployed.

In addition, updates to applications and components might require changes to configuration schemas. Many
configuration systems don't support different versions of configuration information.

Store the configuration information in external storage, and provide an interface that can be used to quickly and
efficiently read and update configuration settings. The type of external store depends on the hosting and runtime
environment of the application. In a cloud-hosted scenario it's typically a cloud-based storage service, but could be
a hosted database or other system.

The backing store you choose for configuration information should have an interface that provides consistent and
easy-to-use access. It should expose the information in a correctly typed and structured format. The
implementation might also need to authorize users’ access in order to protect configuration data, and be flexible
enough to allow storage of multiple versions of the configuration (such as development, staging, or production,
including multiple release versions of each one).

Many built-in configuration systems read the data when the application starts up, and cache the data in
memory to provide fast access and minimize the impact on application performance. Depending on the type
of backing store used, and the latency of this store, it might be helpful to implement a caching mechanism
within the external configuration store. For more information, see the Caching Guidance. The figure illustrates
an overview of the External Configuration Store pattern with optional local cache.

https://github.com/mspnp/architecture-center/blob/master/docs/patterns/external-configuration-store.md
https://msdn.microsoft.com/library/dn589802.aspx

Issues and considerations
Consider the following points when deciding how to implement this pattern:

Choose a backing store that offers acceptable performance, high availability, robustness, and can be backed up as
part of the application maintenance and administration process. In a cloud-hosted application, using a cloud
storage mechanism is usually a good choice to meet these requirements.

Design the schema of the backing store to allow flexibility in the types of information it can hold. Ensure that it
provides for all configuration requirements such as typed data, collections of settings, multiple versions of settings,
and any other features that the applications using it require. The schema should be easy to extend to support
additional settings as requirements change.

Consider the physical capabilities of the backing store, how it relates to the way configuration information is
stored, and the effects on performance. For example, storing an XML document containing configuration
information will require either the configuration interface or the application to parse the document in order to
read individual settings. It'll make updating a setting more complicated, though caching the settings can help to
offset slower read performance.

Consider how the configuration interface will permit control of the scope and inheritance of configuration settings.
For example, it might be a requirement to scope configuration settings at the organization, application, and the
machine level. It might need to support delegation of control over access to different scopes, and to prevent or
allow individual applications to override settings.

Ensure that the configuration interface can expose the configuration data in the required formats such as typed
values, collections, key/value pairs, or property bags.

Consider how the configuration store interface will behave when settings contain errors, or don't exist in the
backing store. It might be appropriate to return default settings and log errors. Also consider aspects such as the
case sensitivity of configuration setting keys or names, the storage and handling of binary data, and the ways that
null or empty values are handled.

Consider how to protect the configuration data to allow access to only the appropriate users and applications. This
is likely a feature of the configuration store interface, but it's also necessary to ensure that the data in the backing
store can't be accessed directly without the appropriate permission. Ensure strict separation between the
permissions required to read and to write configuration data. Also consider whether you need to encrypt some or
all of the configuration settings, and how this'll be implemented in the configuration store interface.

Centrally stored configurations, which change application behavior during runtime, are critically important and
should be deployed, updated, and managed using the same mechanisms as deploying application code. For
example, changes that can affect more than one application must be carried out using a full test and staged
deployment approach to ensure that the change is appropriate for all applications that use this configuration. If an
administrator edits a setting to update one application, it could adversely impact other applications that use the

When to use this pattern

Example

public interface ISettingsStore
{
 Task<string> GetVersionAsync();

 Task<Dictionary<string, string>> FindAllAsync();
}

same setting.

If an application caches configuration information, the application needs to be alerted if the configuration changes.
It might be possible to implement an expiration policy over cached configuration data so that this information is
automatically refreshed periodically and any changes picked up (and acted on).

This pattern is useful for:

Configuration settings that are shared between multiple applications and application instances, or where a
standard configuration must be enforced across multiple applications and application instances.

A standard configuration system that doesn't support all of the required configuration settings, such as
storing images or complex data types.

As a complementary store for some of the settings for applications, perhaps allowing applications to
override some or all of the centrally-stored settings.

As a way to simplify administration of multiple applications, and optionally for monitoring use of
configuration settings by logging some or all types of access to the configuration store.

In a Microsoft Azure hosted application, a typical choice for storing configuration information externally is to use
Azure Storage. This is resilient, offers high performance, and is replicated three times with automatic failover to
offer high availability. Azure Table storage provides a key/value store with the ability to use a flexible schema for
the values. Azure Blob storage provides a hierarchical, container-based store that can hold any type of data in
individually named blobs.

The following example shows how a configuration store can be implemented over Blob storage to store and
expose configuration information. The BlobSettingsStore class abstracts Blob storage for holding configuration
information, and implements the ISettingsStore interface shown in the following code.

This code is provided in the ExternalConfigurationStore.Cloud project in the ExternalConfigurationStore
solution, available from GitHub.

This interface defines methods for retrieving and updating configuration settings held in the configuration store,
and includes a version number that can be used to detect whether any configuration settings have been modified
recently. The BlobSettingsStore class uses the ETag property of the blob to implement versioning. The ETag

property is updated automatically each time the blob is written.

By design, this simple solution exposes all configuration settings as string values rather than typed values.

The ExternalConfigurationManager class provides a wrapper around a BlobSettingsStore object. An application
can use this class to store and retrieve configuration information. This class uses the Microsoft Reactive Extensions
library to expose any changes made to the configuration through an implementation of the IObservable interface.
If a setting is modified by calling the SetAppSetting method, the Changed event is raised and all subscribers to

https://github.com/mspnp/cloud-design-patterns/tree/master/external-configuration-store
https://msdn.microsoft.com/library/hh242985.aspx

public class ExternalConfigurationManager : IDisposable
{
 // An abstraction of the configuration store.
 private readonly ISettingsStore settings;
 private readonly ISubject<KeyValuePair<string, string>> changed;
 ...
 private readonly ReaderWriterLockSlim settingsCacheLock = new ReaderWriterLockSlim();
 private readonly SemaphoreSlim syncCacheSemaphore = new SemaphoreSlim(1);
 ...
 private Dictionary<string, string> settingsCache;
 private string currentVersion;
 ...
 public ExternalConfigurationManager(ISettingsStore settings, ...)
 {
 this.settings = settings;
 ...
 }
 ...
 public IObservable<KeyValuePair<string, string>> Changed => this.changed.AsObservable();
 ...

 public string GetAppSetting(string key)
 {
 ...
 // Try to get the value from the settings cache.
 // If there's a cache miss, get the setting from the settings store and refresh the settings cache.

 string value;
 try
 {
 this.settingsCacheLock.EnterReadLock();

 this.settingsCache.TryGetValue(key, out value);
 }
 finally
 {
 this.settingsCacheLock.ExitReadLock();
 }

 return value;
 }
 ...
 private void CheckForConfigurationChanges()
 {
 try
 {
 // It is assumed that updates are infrequent.
 // To avoid race conditions in refreshing the cache, synchronize access to the in-memory cache.
 await this.syncCacheSemaphore.WaitAsync();

this event will be notified.

Note that all settings are also cached in a Dictionary object inside the ExternalConfigurationManager class for fast
access. The GetSetting method used to retrieve a configuration setting reads the data from the cache. If the
setting isn't found in the cache, it's retrieved from the BlobSettingsStore object instead.

The GetSettings method invokes the CheckForConfigurationChanges method to detect whether the configuration
information in blob storage has changed. It does this by examining the version number and comparing it with the
current version number held by the ExternalConfigurationManager object. If one or more changes have occurred,
the Changed event is raised and the configuration settings cached in the Dictionary object are refreshed. This is
an application of the Cache-Aside pattern.

The following code sample shows how the Changed event, the GetSettings method, and the
CheckForConfigurationChanges method are implemented:

 var latestVersion = await this.settings.GetVersionAsync();

 // If the versions are the same, nothing has changed in the configuration.
 if (this.currentVersion == latestVersion) return;

 // Get the latest settings from the settings store and publish changes.
 var latestSettings = await this.settings.FindAllAsync();

 // Refresh the settings cache.
 try
 {
 this.settingsCacheLock.EnterWriteLock();

 if (this.settingsCache != null)
 {
 //Notify settings changed
 latestSettings.Except(this.settingsCache).ToList().ForEach(kv => this.changed.OnNext(kv));
 }
 this.settingsCache = latestSettings;
 }
 finally
 {
 this.settingsCacheLock.ExitWriteLock();
 }

 // Update the current version.
 this.currentVersion = latestVersion;
 }
 catch (Exception ex)
 {
 this.changed.OnError(ex);
 }
 finally
 {
 this.syncCacheSemaphore.Release();
 }
 }
}

public class ExternalConfigurationManager : IDisposable
{
 ...
 private readonly ISubject<KeyValuePair<string, string>> changed;
 private Dictionary<string, string> settingsCache;
 private readonly CancellationTokenSource cts = new CancellationTokenSource();
 private Task monitoringTask;
 private readonly TimeSpan interval;

 private readonly SemaphoreSlim timerSemaphore = new SemaphoreSlim(1);
 ...
 public ExternalConfigurationManager(string environment) : this(new BlobSettingsStore(environment),
TimeSpan.FromSeconds(15), environment)
 {
 }

 public ExternalConfigurationManager(ISettingsStore settings, TimeSpan interval, string environment)
 {
 this.settings = settings;

The ExternalConfigurationManager class also provides a property named Environment . This property supports
varying configurations for an application running in different environments, such as staging and production.

An ExternalConfigurationManager object can also query the BlobSettingsStore object periodically for any changes.
In the following code, the StartMonitor method calls CheckForConfigurationChanges at an interval to detect any
changes and raise the Changed event, as described earlier.

 this.settings = settings;
 this.interval = interval;
 this.CheckForConfigurationChangesAsync().Wait();
 this.changed = new Subject<KeyValuePair<string, string>>();
 this.Environment = environment;
 }
 ...
 /// <summary>
 /// Check to see if the current instance is monitoring for changes
 /// </summary>
 public bool IsMonitoring => this.monitoringTask != null && !this.monitoringTask.IsCompleted;

 /// <summary>
 /// Start the background monitoring for configuration changes in the central store
 /// </summary>
 public void StartMonitor()
 {
 if (this.IsMonitoring)
 return;

 try
 {
 this.timerSemaphore.Wait();

 // Check again to make sure we are not already running.
 if (this.IsMonitoring)
 return;

 // Start running our task loop.
 this.monitoringTask = ConfigChangeMonitor();
 }
 finally
 {
 this.timerSemaphore.Release();
 }
 }

 /// <summary>
 /// Loop that monitors for configuration changes
 /// </summary>
 /// <returns></returns>
 public async Task ConfigChangeMonitor()
 {
 while (!cts.Token.IsCancellationRequested)
 {
 await this.CheckForConfigurationChangesAsync();
 await Task.Delay(this.interval, cts.Token);
 }
 }

 /// <summary>
 /// Stop monitoring for configuration changes
 /// </summary>
 public void StopMonitor()
 {
 try
 {
 this.timerSemaphore.Wait();

 // Signal the task to stop.
 this.cts.Cancel();

 // Wait for the loop to stop.
 this.monitoringTask.Wait();

 this.monitoringTask = null;
 }
 finally
 {
 this.timerSemaphore.Release();

 this.timerSemaphore.Release();
 }
 }

 public void Dispose()
 {
 this.cts.Cancel();
 }
 ...
}

public static class ExternalConfiguration
{
 private static readonly Lazy<ExternalConfigurationManager> configuredInstance = new
Lazy<ExternalConfigurationManager>(
 () =>
 {
 var environment = CloudConfigurationManager.GetSetting("environment");
 return new ExternalConfigurationManager(environment);
 });

 public static ExternalConfigurationManager Instance => configuredInstance.Value;
}

public override void Run()
{
 // Start monitoring configuration changes.
 ExternalConfiguration.Instance.StartMonitor();

 // Get a setting.
 var setting = ExternalConfiguration.Instance.GetAppSetting("setting1");
 Trace.TraceInformation("Worker Role: Get setting1, value: " + setting);

 this.completeEvent.WaitOne();
}

public override bool OnStart()
{
 ...
 // Subscribe to the event.
 ExternalConfiguration.Instance.Changed.Subscribe(
 m => Trace.TraceInformation("Configuration has changed. Key:{0} Value:{1}",
 m.Key, m.Value),
 ex => Trace.TraceError("Error detected: " + ex.Message));
 ...
}

Related patterns and guidance

The ExternalConfigurationManager class is instantiated as a singleton instance by the ExternalConfiguration class
shown below.

The following code is taken from the WorkerRole class in the ExternalConfigurationStore.Cloud project. It shows
how the application uses the ExternalConfiguration class to read a setting.

The following code, also from the WorkerRole class, shows how the application subscribes to configuration events.

A sample that demonstrates this pattern is available on GitHub.

https://github.com/mspnp/cloud-design-patterns/tree/master/external-configuration-store

Federated Identity pattern
3/13/2019 • 7 minutes to read • Edit Online

Context and problem

Solution

Delegate authentication to an external identity provider. This can simplify development, minimize the requirement
for user administration, and improve the user experience of the application.

Users typically need to work with multiple applications provided and hosted by different organizations they have a
business relationship with. These users might be required to use specific (and different) credentials for each one.
This can:

Cause a disjointed user experience. Users often forget sign-in credentials when they have many
different ones.

Expose security vulnerabilities. When a user leaves the company the account must immediately be
deprovisioned. It's easy to overlook this in large organizations.

Complicate user management. Administrators must manage credentials for all of the users, and perform
additional tasks such as providing password reminders.

Users typically prefer to use the same credentials for all these applications.

Implement an authentication mechanism that can use federated identity. Separate user authentication from the
application code, and delegate authentication to a trusted identity provider. This can simplify development and
allow users to authenticate using a wider range of identity providers (IdP) while minimizing the administrative
overhead. It also allows you to clearly decouple authentication from authorization.

The trusted identity providers include corporate directories, on-premises federation services, other security token
services (STS) provided by business partners, or social identity providers that can authenticate users who have, for
example, a Microsoft, Google, Yahoo!, or Facebook account.

The figure illustrates the Federated Identity pattern when a client application needs to access a service that
requires authentication. The authentication is performed by an IdP that works in concert with an STS. The IdP
issues security tokens that provide information about the authenticated user. This information, referred to as
claims, includes the user ’s identity, and might also include other information such as role membership and more
granular access rights.

https://github.com/mspnp/architecture-center/blob/master/docs/patterns/federated-identity.md

Issues and considerations

This model is often called claims-based access control. Applications and services authorize access to features and
functionality based on the claims contained in the token. The service that requires authentication must trust the
IdP. The client application contacts the IdP that performs the authentication. If the authentication is successful, the
IdP returns a token containing the claims that identify the user to the STS (note that the IdP and STS can be the
same service). The STS can transform and augment the claims in the token based on predefined rules, before
returning it to the client. The client application can then pass this token to the service as proof of its identity.

There might be additional STSs in the chain of trust. For example, in the scenario described later, an on-
premises STS trusts another STS that is responsible for accessing an identity provider to authenticate the user.
This approach is common in enterprise scenarios where there's an on-premises STS and directory.

Federated authentication provides a standards-based solution to the issue of trusting identities across diverse
domains, and can support single sign-on. It's becoming more common across all types of applications, especially
cloud-hosted applications, because it supports single sign-on without requiring a direct network connection to
identity providers. The user doesn't have to enter credentials for every application. This increases security because
it prevents the creation of credentials required to access many different applications, and it also hides the user ’s
credentials from all but the original identity provider. Applications see just the authenticated identity information
contained within the token.

Federated identity also has the major advantage that management of the identity and credentials is the
responsibility of the identity provider. The application or service doesn't need to provide identity management
features. In addition, in corporate scenarios, the corporate directory doesn't need to know about the user if it trusts
the identity provider. This removes all the administrative overhead of managing the user identity within the
directory.

Consider the following when designing applications that implement federated authentication:

Authentication can be a single point of failure. If you deploy your application to multiple datacenters,
consider deploying your identity management mechanism to the same datacenters to maintain application
reliability and availability.

Authentication tools make it possible to configure access control based on role claims contained in the
authentication token. This is often referred to as role-based access control (RBAC), and it can allow a more
granular level of control over access to features and resources.

Unlike a corporate directory, claims-based authentication using social identity providers doesn't usually

When to use this pattern

Example

provide information about the authenticated user other than an email address, and perhaps a name. Some
social identity providers, such as a Microsoft account, provide only a unique identifier. The application
usually needs to maintain some information on registered users, and be able to match this information to
the identifier contained in the claims in the token. Typically this is done through registration when the user
first accesses the application, and information is then injected into the token as additional claims after each
authentication.

If there's more than one identity provider configured for the STS, it must detect which identity provider the
user should be redirected to for authentication. This process is called home realm discovery. The STS might
be able to do this automatically based on an email address or user name that the user provides, a
subdomain of the application that the user is accessing, the user’s IP address scope, or on the contents of a
cookie stored in the user’s browser. For example, if the user entered an email address in the Microsoft
domain, such as user@live.com, the STS will redirect the user to the Microsoft account sign-in page. On
later visits, the STS could use a cookie to indicate that the last sign in was with a Microsoft account. If
automatic discovery can't determine the home realm, the STS will display a home realm discovery page
that lists the trusted identity providers, and the user must select the one they want to use.

This pattern is useful for scenarios such as:

Single sign-on in the enterprise. In this scenario you need to authenticate employees for corporate
applications that are hosted in the cloud outside the corporate security boundary, without requiring them to
sign in every time they visit an application. The user experience is the same as when using on-premises
applications where they're authenticated when signing in to a corporate network, and from then on have
access to all relevant applications without needing to sign in again.

Federated identity with multiple partners. In this scenario you need to authenticate both corporate
employees and business partners who don't have accounts in the corporate directory. This is common in
business-to-business applications, applications that integrate with third-party services, and where
companies with different IT systems have merged or shared resources.

Federated identity in SaaS applications. In this scenario independent software vendors provide a ready-
to-use service for multiple clients or tenants. Each tenant authenticates using a suitable identity provider.
For example, business users will use their corporate credentials, while consumers and clients of the tenant
will use their social identity credentials.

This pattern might not be useful in the following situations:

All users of the application can be authenticated by one identity provider, and there's no requirement to
authenticate using any other identity provider. This is typical in business applications that use a corporate
directory (accessible within the application) for authentication, by using a VPN, or (in a cloud-hosted
scenario) through a virtual network connection between the on-premises directory and the application.

The application was originally built using a different authentication mechanism, perhaps with custom user
stores, or doesn't have the capability to handle the negotiation standards used by claims-based
technologies. Retrofitting claims-based authentication and access control into existing applications can be
complex, and probably not cost effective.

An organization hosts a multi-tenant software as a service (SaaS) application in Microsoft Azure. The application
includes a website that tenants can use to manage the application for their own users. The application allows
tenants to access the website by using a federated identity that is generated by Active Directory Federation
Services (ADFS) when a user is authenticated by that organization’s own Active Directory.

Related guidance

The figure shows how tenants authenticate with their own identity provider (step 1), in this case ADFS. After
successfully authenticating a tenant, ADFS issues a token. The client browser forwards this token to the SaaS
application’s federation provider, which trusts tokens issued by the tenant’s ADFS, in order to get back a token that
is valid for the SaaS federation provider (step 2). If necessary, the SaaS federation provider performs a
transformation on the claims in the token into claims that the application recognizes (step 3) before returning the
new token to the client browser. The application trusts tokens issued by the SaaS federation provider and uses the
claims in the token to apply authorization rules (step 4).

Tenants won't need to remember separate credentials to access the application, and an administrator at the
tenant’s company can configure in its own ADFS the list of users that can access the application.

Microsoft Azure Active Directory
Active Directory Domain Services
Active Directory Federation Services
Identity management for multitenant applications in Microsoft Azure
Multitenant Applications in Azure

https://azure.microsoft.com/services/active-directory/
https://msdn.microsoft.com/library/bb897402.aspx
https://msdn.microsoft.com/library/bb897402.aspx
https://docs.microsoft.com/azure/architecture/multitenant-identity
https://docs.microsoft.com/azure/dotnet-develop-multitenant-applications

Gatekeeper pattern
3/13/2019 • 4 minutes to read • Edit Online

Context and problem

Solution

Protect applications and services by using a dedicated host instance that acts as a broker between clients and the
application or service, validates and sanitizes requests, and passes requests and data between them. This can
provide an additional layer of security, and limit the attack surface of the system.

Applications expose their functionality to clients by accepting and processing requests. In cloud-hosted scenarios,
applications expose endpoints clients connect to, and typically include the code to handle the requests from clients.
This code performs authentication and validation, some or all request processing, and is likely to accesses storage
and other services on behalf of the client.

If a malicious user is able to compromise the system and gain access to the application’s hosting environment, the
security mechanisms it uses such as credentials and storage keys, and the services and data it accesses, are
exposed. As a result, the malicious user can gain unrestrained access to sensitive information and other services.

To minimize the risk of clients gaining access to sensitive information and services, decouple hosts or tasks that
expose public endpoints from the code that processes requests and accesses storage. You can achieve this by
using a façade or a dedicated task that interacts with clients and then hands off the request—perhaps through a
decoupled interface—to the hosts or tasks that'll handle the request. The figure provides a high-level overview of
this pattern.

The gatekeeper pattern can be used to simply protect storage, or it can be used as a more comprehensive façade
to protect all of the functions of the application. The important factors are:

Controlled validation. The gatekeeper validates all requests, and rejects those that don't meet validation
requirements.
Limited risk and exposure. The gatekeeper doesn't have access to the credentials or keys used by the trusted
host to access storage and services. If the gatekeeper is compromised, the attacker doesn't get access to these
credentials or keys.
Appropriate security. The gatekeeper runs in a limited privilege mode, while the rest of the application runs
in the full trust mode required to access storage and services. If the gatekeeper is compromised, it can't directly
access the application services or data.

This pattern acts like a firewall in a typical network topography. It allows the gatekeeper to examine requests and
make a decision about whether to pass the request on to the trusted host (sometimes called the keymaster) that

https://github.com/mspnp/architecture-center/blob/master/docs/patterns/gatekeeper.md

Issues and considerations

When to use this pattern

Example

Related patterns

performs the required tasks. This decision typically requires the gatekeeper to validate and sanitize the request
content before passing it on to the trusted host.

Consider the following points when deciding how to implement this pattern:

Ensure that the trusted hosts the gatekeeper passes requests to expose only internal or protected endpoints,
and connect only to the gatekeeper. The trusted hosts shouldn't expose any external endpoints or interfaces.
The gatekeeper must run in a limited privilege mode. Typically this means running the gatekeeper and the
trusted host in separate hosted services or virtual machines.
The gatekeeper shouldn't perform any processing related to the application or services, or access any data. Its
function is purely to validate and sanitize requests. The trusted hosts might need to perform additional
validation of requests, but the core validation should be performed by the gatekeeper.
Use a secure communication channel (HTTPS, SSL, or TLS) between the gatekeeper and the trusted hosts or
tasks where this is possible. However, some hosting environments don't support HTTPS on internal endpoints.
Adding the extra layer to the application to implement the gatekeeper pattern is likely to have some impact on
performance due to the additional processing and network communication it requires.
The gatekeeper instance could be a single point of failure. To minimize the impact of a failure, consider
deploying additional instances and using an autoscaling mechanism to ensure capacity to maintain availability.

This pattern is useful for:

Applications that handle sensitive information, expose services that must have a high degree of protection
from malicious attacks, or perform mission-critical operations that shouldn't be disrupted.
Distributed applications where it's necessary to perform request validation separately from the main tasks, or
to centralize this validation to simplify maintenance and administration.

In a cloud-hosted scenario, this pattern can be implemented by decoupling the gatekeeper role or virtual machine
from the trusted roles and services in an application. Do this by using an internal endpoint, a queue, or storage as
an intermediate communication mechanism. The figure illustrates using an internal endpoint.

The Valet Key pattern might also be relevant when implementing the Gatekeeper pattern. When communicating
between the Gatekeeper and trusted roles it's good practice to enhance security by using keys or tokens that limit
permissions for accessing resources. Describes how to use a token or key that provides clients with restricted

direct access to a specific resource or service.

Gateway Aggregation pattern
3/13/2019 • 3 minutes to read • Edit Online

Context and problem

Solution

Use a gateway to aggregate multiple individual requests into a single request. This pattern is useful when a client
must make multiple calls to different backend systems to perform an operation.

To perform a single task, a client may have to make multiple calls to various backend services. An application that
relies on many services to perform a task must expend resources on each request. When any new feature or
service is added to the application, additional requests are needed, further increasing resource requirements and
network calls. This chattiness between a client and a backend can adversely impact the performance and scale of
the application. Microservice architectures have made this problem more common, as applications built around
many smaller services naturally have a higher amount of cross-service calls.

In the following diagram, the client sends requests to each service (1,2,3). Each service processes the request and
sends the response back to the application (4,5,6). Over a cellular network with typically high latency, using
individual requests in this manner is inefficient and could result in broken connectivity or incomplete requests.
While each request may be done in parallel, the application must send, wait, and process data for each request, all
on separate connections, increasing the chance of failure.

Use a gateway to reduce chattiness between the client and the services. The gateway receives client requests,
dispatches requests to the various backend systems, and then aggregates the results and sends them back to the
requesting client.

This pattern can reduce the number of requests that the application makes to backend services, and improve
application performance over high-latency networks.

In the following diagram, the application sends a request to the gateway (1). The request contains a package of
additional requests. The gateway decomposes these and processes each request by sending it to the relevant
service (2). Each service returns a response to the gateway (3). The gateway combines the responses from each
service and sends the response to the application (4). The application makes a single request and receives only a
single response from the gateway.

https://github.com/mspnp/architecture-center/blob/master/docs/patterns/gateway-aggregation.md

Issues and considerations

When to use this pattern

The gateway should not introduce service coupling across the backend services.
The gateway should be located near the backend services to reduce latency as much as possible.
The gateway service may introduce a single point of failure. Ensure the gateway is properly designed to meet
your application's availability requirements.
The gateway may introduce a bottleneck. Ensure the gateway has adequate performance to handle load and
can be scaled to meet your anticipated growth.
Perform load testing against the gateway to ensure you don't introduce cascading failures for services.
Implement a resilient design, using techniques such as bulkheads, circuit breaking, retry, and timeouts.
If one or more service calls takes too long, it may be acceptable to timeout and return a partial set of data.
Consider how your application will handle this scenario.
Use asynchronous I/O to ensure that a delay at the backend doesn't cause performance issues in the
application.
Implement distributed tracing using correlation IDs to track each individual call.
Monitor request metrics and response sizes.
Consider returning cached data as a failover strategy to handle failures.
Instead of building aggregation into the gateway, consider placing an aggregation service behind the gateway.
Request aggregation will likely have different resource requirements than other services in the gateway and
may impact the gateway's routing and offloading functionality.

Use this pattern when:

A client needs to communicate with multiple backend services to perform an operation.
The client may use networks with significant latency, such as cellular networks.

Example

worker_processes 4;

events {
 worker_connections 1024;
}

http {
 server {
 listen 80;

 location = /batch {
 content_by_lua '
 ngx.req.read_body()

 -- read json body content
 local cjson = require "cjson"
 local batch = cjson.decode(ngx.req.get_body_data())["batch"]

 -- create capture_multi table
 local requests = {}
 for i, item in ipairs(batch) do
 table.insert(requests, {item.relative_url, { method = ngx.HTTP_GET}})
 end

 -- execute batch requests in parallel
 local results = {}
 local resps = { ngx.location.capture_multi(requests) }
 for i, res in ipairs(resps) do
 table.insert(results, {status = res.status, body = cjson.decode(res.body), header = res.header})
 end

 ngx.say(cjson.encode({results = results}))
 ';
 }

 location = /service1 {
 default_type application/json;
 echo '{"attr1":"val1"}';
 }

 location = /service2 {
 default_type application/json;
 echo '{"attr2":"val2"}';
 }
 }
}

Related guidance

This pattern may not be suitable when:

You want to reduce the number of calls between a client and a single service across multiple operations. In
that scenario, it may be better to add a batch operation to the service.
The client or application is located near the backend services and latency is not a significant factor.

The following example illustrates how to create a simple a gateway aggregation NGINX service using Lua.

Backends for Frontends pattern
Gateway Offloading pattern
Gateway Routing pattern

Gateway Offloading pattern
3/13/2019 • 3 minutes to read • Edit Online

Context and problem

Solution

Offload shared or specialized service functionality to a gateway proxy. This pattern can simplify application
development by moving shared service functionality, such as the use of SSL certificates, from other parts of the
application into the gateway.

Some features are commonly used across multiple services, and these features require configuration,
management, and maintenance. A shared or specialized service that is distributed with every application
deployment increases the administrative overhead and increases the likelihood of deployment error. Any updates
to a shared feature must be deployed across all services that share that feature.

Properly handling security issues (token validation, encryption, SSL certificate management) and other complex
tasks can require team members to have highly specialized skills. For example, a certificate needed by an
application must be configured and deployed on all application instances. With each new deployment, the
certificate must be managed to ensure that it does not expire. Any common certificate that is due to expire must
be updated, tested, and verified on every application deployment.

Other common services such as authentication, authorization, logging, monitoring, or throttling can be difficult to
implement and manage across a large number of deployments. It may be better to consolidate this type of
functionality, in order to reduce overhead and the chance of errors.

Offload some features into an API gateway, particularly cross-cutting concerns such as certificate management,
authentication, SSL termination, monitoring, protocol translation, or throttling.

The following diagram shows an API gateway that terminates inbound SSL connections. It requests data on
behalf of the original requestor from any HTTP server upstream of the API gateway.

Benefits of this pattern include:

Simplify the development of services by removing the need to distribute and maintain supporting
resources, such as web server certificates and configuration for secure websites. Simpler configuration
results in easier management and scalability and makes service upgrades simpler.

Allow dedicated teams to implement features that require specialized expertise, such as security. This
allows your core team to focus on the application functionality, leaving these specialized but cross-cutting
concerns to the relevant experts.

Provide some consistency for request and response logging and monitoring. Even if a service is not

https://github.com/mspnp/architecture-center/blob/master/docs/patterns/gateway-offloading.md

Issues and considerations

When to use this pattern

Example

upstream iis {
 server 10.3.0.10 max_fails=3 fail_timeout=15s;
 server 10.3.0.20 max_fails=3 fail_timeout=15s;
 server 10.3.0.30 max_fails=3 fail_timeout=15s;
}

server {
 listen 443;
 ssl on;
 ssl_certificate /etc/nginx/ssl/domain.cer;
 ssl_certificate_key /etc/nginx/ssl/domain.key;

 location / {
 set $targ iis;
 proxy_pass http://$targ;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Proto https;
proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header Host $host;
 }
}

Related guidance

correctly instrumented, the gateway can be configured to ensure a minimum level of monitoring and
logging.

Ensure the API gateway is highly available and resilient to failure. Avoid single points of failure by running
multiple instances of your API gateway.
Ensure the gateway is designed for the capacity and scaling requirements of your application and endpoints.
Make sure the gateway does not become a bottleneck for the application and is sufficiently scalable.
Only offload features that are used by the entire application, such as security or data transfer.
Business logic should never be offloaded to the API gateway.
If you need to track transactions, consider generating correlation IDs for logging purposes.

Use this pattern when:

An application deployment has a shared concern such as SSL certificates or encryption.
A feature that is common across application deployments that may have different resource requirements,
such as memory resources, storage capacity or network connections.
You wish to move the responsibility for issues such as network security, throttling, or other network boundary
concerns to a more specialized team.

This pattern may not be suitable if it introduces coupling across services.

Using Nginx as the SSL offload appliance, the following configuration terminates an inbound SSL connection
and distributes the connection to one of three upstream HTTP servers.

On Azure, this can be achieved by setting up SSL termination on Application Gateway.

Backends for Frontends pattern

https://docs.microsoft.com/azure/application-gateway/tutorial-ssl-cli

Gateway Aggregation pattern
Gateway Routing pattern

Gateway Routing pattern
3/13/2019 • 3 minutes to read • Edit Online

Context and problem

Solution

Route requests to multiple services using a single endpoint. This pattern is useful when you wish to expose
multiple services on a single endpoint and route to the appropriate service based on the request.

When a client needs to consume multiple services, setting up a separate endpoint for each service and having the
client manage each endpoint can be challenging. For example, an e-commerce application might provide services
such as search, reviews, cart, checkout, and order history. Each service has a different API that the client must
interact with, and the client must know about each endpoint in order to connect to the services. If an API
changes, the client must be updated as well. If you refactor a service into two or more separate services, the code
must change in both the service and the client.

Place a gateway in front of a set of applications, services, or deployments. Use application Layer 7 routing to
route the request to the appropriate instances.

With this pattern, the client application only needs to know about and communicate with a single endpoint. If a
service is consolidated or decomposed, the client does not necessarily require updating. It can continue making
requests to the gateway, and only the routing changes.

A gateway also lets you abstract backend services from the clients, allowing you to keep client calls simple while
enabling changes in the backend services behind the gateway. Client calls can be routed to whatever service or
services need to handle the expected client behavior, allowing you to add, split, and reorganize services behind
the gateway without changing the client.

https://github.com/mspnp/architecture-center/blob/master/docs/patterns/gateway-routing.md

Issues and considerations

When to use this pattern

Example

This pattern can also help with deployment, by allowing you to manage how updates are rolled out to users.
When a new version of your service is deployed, it can be deployed in parallel with the existing version. Routing
lets you control what version of the service is presented to the clients, giving you the flexibility to use various
release strategies, whether incremental, parallel, or complete rollouts of updates. Any issues discovered after the
new service is deployed can be quickly reverted by making a configuration change at the gateway, without
affecting clients.

The gateway service may introduce a single point of failure. Ensure it is properly designed to meet your
availability requirements. Consider resiliency and fault tolerance capabilities when implementing.
The gateway service may introduce a bottleneck. Ensure the gateway has adequate performance to handle
load and can easily scale in line with your growth expectations.
Perform load testing against the gateway to ensure you don't introduce cascading failures for services.
Gateway routing is level 7. It can be based on IP, port, header, or URL.

Use this pattern when:

A client needs to consume multiple services that can be accessed behind a gateway.
You wish to simplify client applications by using a single endpoint.
You need to route requests from externally addressable endpoints to internal virtual endpoints, such as
exposing ports on a VM to cluster virtual IP addresses.

This pattern may not be suitable when you have a simple application that uses only one or two services.

Using Nginx as the router, the following is a simple example configuration file for a server that routes requests

server {
 listen 80;
 server_name domain.com;

 location /app1 {
 proxy_pass http://10.0.3.10:80;
 }

 location /app2 {
 proxy_pass http://10.0.3.20:80;
 }

 location /app3 {
 proxy_pass http://10.0.3.30:80;
 }
}

Related guidance

for applications residing on different virtual directories to different machines at the back end.

On Azure, multiple services can be set up behind an Application Gateway instance, which provides layer-7
routing.

Backends for Frontends pattern
Gateway Aggregation pattern
Gateway Offloading pattern

https://docs.microsoft.com/azure/application-gateway/tutorial-multiple-sites-cli

Health Endpoint Monitoring pattern
3/13/2019 • 13 minutes to read • Edit Online

Context and problem

Solution

Implement functional checks in an application that external tools can access through exposed endpoints at
regular intervals. This can help to verify that applications and services are performing correctly.

It's a good practice, and often a business requirement, to monitor web applications and back-end services, to
ensure they're available and performing correctly. However, it's more difficult to monitor services running in the
cloud than it is to monitor on-premises services. For example, you don't have full control of the hosting
environment, and the services typically depend on other services provided by platform vendors and others.

There are many factors that affect cloud-hosted applications such as network latency, the performance and
availability of the underlying compute and storage systems, and the network bandwidth between them. The
service can fail entirely or partially due to any of these factors. Therefore, you must verify at regular intervals that
the service is performing correctly to ensure the required level of availability, which might be part of your service
level agreement (SLA).

Implement health monitoring by sending requests to an endpoint on the application. The application should
perform the necessary checks, and return an indication of its status.

A health monitoring check typically combines two factors:

The checks (if any) performed by the application or service in response to the request to the health
verification endpoint.
Analysis of the results by the tool or framework that performs the health verification check.

The response code indicates the status of the application and, optionally, any components or services it uses. The
latency or response time check is performed by the monitoring tool or framework. The figure provides an
overview of the pattern.

https://github.com/mspnp/architecture-center/blob/master/docs/patterns/health-endpoint-monitoring.md

Other checks that might be carried out by the health monitoring code in the application include:

Checking cloud storage or a database for availability and response time.
Checking other resources or services located in the application, or located elsewhere but used by the
application.

Services and tools are available that monitor web applications by submitting a request to a configurable set of
endpoints, and evaluating the results against a set of configurable rules. It's relatively easy to create a service
endpoint whose sole purpose is to perform some functional tests on the system.

Typical checks that can be performed by the monitoring tools include:

Validating the response code. For example, an HTTP response of 200 (OK) indicates that the application
responded without error. The monitoring system might also check for other response codes to give more
comprehensive results.
Checking the content of the response to detect errors, even when a 200 (OK) status code is returned. This can
detect errors that affect only a section of the returned web page or service response. For example, checking
the title of a page or looking for a specific phrase that indicates the correct page was returned.
Measuring the response time, which indicates a combination of the network latency and the time that the
application took to execute the request. An increasing value can indicate an emerging problem with the
application or network.
Checking resources or services located outside the application, such as a content delivery network used by
the application to deliver content from global caches.
Checking for expiration of SSL certificates.
Measuring the response time of a DNS lookup for the URL of the application to measure DNS latency and
DNS failures.
Validating the URL returned by the DNS lookup to ensure correct entries. This can help to avoid malicious
request redirection through a successful attack on the DNS server.

It's also useful, where possible, to run these checks from different on-premises or hosted locations to measure
and compare response times. Ideally you should monitor applications from locations that are close to customers
to get an accurate view of the performance from each location. In addition to providing a more robust checking
mechanism, the results can help you decide on the deployment location for the application—and whether to
deploy it in more than one datacenter.

Issues and considerations

Tests should also be run against all the service instances that customers use to ensure the application is working
correctly for all customers. For example, if customer storage is spread across more than one storage account, the
monitoring process should check all of these.

Consider the following points when deciding how to implement this pattern:

How to validate the response. For example, is just a single 200 (OK) status code sufficient to verify the
application is working correctly? While this provides the most basic measure of application availability, and is the
minimum implementation of this pattern, it provides little information about the operations, trends, and possible
upcoming issues in the application.

Make sure that the application correctly returns a 200 (OK) only when the target resource is found and
processed. In some scenarios, such as when using a master page to host the target web page, the server
sends back a 200 (OK) status code instead of a 404 (Not Found) code, even when the target content page
was not found.

The number of endpoints to expose for an application. One approach is to expose at least one endpoint for the
core services that the application uses and another for lower priority services, allowing different levels of
importance to be assigned to each monitoring result. Also consider exposing more endpoints, such as one for
each core service, for additional monitoring granularity. For example, a health verification check might check the
database, storage, and an external geocoding service that an application uses, with each requiring a different
level of uptime and response time. The application could still be healthy if the geocoding service, or some other
background task, is unavailable for a few minutes.

Whether to use the same endpoint for monitoring as is used for general access, but to a specific path designed
for health verification checks, for example, /HealthCheck/{GUID}/ on the general access endpoint. This allows
some functional tests in the application to be run by the monitoring tools, such as adding a new user registration,
signing in, and placing a test order, while also verifying that the general access endpoint is available.

The type of information to collect in the service in response to monitoring requests, and how to return this
information. Most existing tools and frameworks look only at the HTTP status code that the endpoint returns. To
return and validate additional information, you might have to create a custom monitoring utility or service.

How much information to collect. Performing excessive processing during the check can overload the application
and impact other users. The time it takes might exceed the timeout of the monitoring system so it marks the
application as unavailable. Most applications include instrumentation such as error handlers and performance
counters that log performance and detailed error information, this might be sufficient instead of returning
additional information from a health verification check.

Caching the endpoint status. It could be expensive to run the health check too frequently. If the health status is
reported through a dashboard, for example, you don't want every request from the dashboard to trigger a health
check. Instead, periodically check the system health and cache the status. Expose an endpoint that returns the
cached status.

How to configure security for the monitoring endpoints to protect them from public access, which might expose
the application to malicious attacks, risk the exposure of sensitive information, or attract denial of service (DoS)
attacks. Typically this should be done in the application configuration so that it can be updated easily without
restarting the application. Consider using one or more of the following techniques:

Secure the endpoint by requiring authentication. You can do this by using an authentication security key in
the request header or by passing credentials with the request, provided that the monitoring service or tool
supports authentication.

Use an obscure or hidden endpoint. For example, expose the endpoint on a different IP address to

When to use this pattern

Example

that used by the default application URL, configure the endpoint on a nonstandard HTTP port,
and/or use a complex path to the test page. You can usually specify additional endpoint addresses
and ports in the application configuration, and add entries for these endpoints to the DNS server if
required to avoid having to specify the IP address directly.

Expose a method on an endpoint that accepts a parameter such as a key value or an operation
mode value. Depending on the value supplied for this parameter, when a request is received the
code can perform a specific test or set of tests, or return a 404 (Not Found) error if the parameter
value isn't recognized. The recognized parameter values could be set in the application
configuration.

DoS attacks are likely to have less impact on a separate endpoint that performs basic functional
tests without compromising the operation of the application. Ideally, avoid using a test that
might expose sensitive information. If you must return information that might be useful to an
attacker, consider how you'll protect the endpoint and the data from unauthorized access. In this
case just relying on obscurity isn't enough. You should also consider using an HTTPS
connection and encrypting any sensitive data, although this will increase the load on the server.

How to access an endpoint that's secured using authentication. Not all tools and frameworks can be
configured to include credentials with the health verification request. For example, Microsoft Azure built-
in health verification features can't provide authentication credentials. Some third-party alternatives are
Pingdom, Panopta, NewRelic, and Statuscake.

How to ensure that the monitoring agent is performing correctly. One approach is to expose an endpoint
that simply returns a value from the application configuration or a random value that can be used to test
the agent.

Also ensure that the monitoring system performs checks on itself, such as a self-test and built-in test,
to avoid it issuing false positive results.

This pattern is useful for:

Monitoring websites and web applications to verify availability.
Monitoring websites and web applications to check for correct operation.
Monitoring middle-tier or shared services to detect and isolate a failure that could disrupt other applications.
Complementing existing instrumentation in the application, such as performance counters and error handlers.
Health verification checking doesn't replace the requirement for logging and auditing in the application.
Instrumentation can provide valuable information for an existing framework that monitors counters and error
logs to detect failures or other issues. However, it can't provide information if the application is unavailable.

The following code examples, taken from the HealthCheckController class (a sample that demonstrates this
pattern is available on GitHub), demonstrates exposing an endpoint for performing a range of health checks.

The CoreServices method, shown below in C#, performs a series of checks on services used in the application. If
all of the tests run without error, the method returns a 200 (OK) status code. If any of the tests raises an
exception, the method returns a 500 (Internal Error) status code. The method could optionally return additional
information when an error occurs, if the monitoring tool or framework is able to use it.

https://www.pingdom.com/
https://www.panopta.com/
https://newrelic.com/
https://www.statuscake.com/
https://github.com/mspnp/cloud-design-patterns/tree/master/health-endpoint-monitoring

public ActionResult CoreServices()
{
 try
 {
 // Run a simple check to ensure the database is available.
 DataStore.Instance.CoreHealthCheck();

 // Run a simple check on our external service.
 MyExternalService.Instance.CoreHealthCheck();
 }
 catch (Exception ex)
 {
 Trace.TraceError("Exception in basic health check: {0}", ex.Message);

 // This can optionally return different status codes based on the exception.
 // Optionally it could return more details about the exception.
 // The additional information could be used by administrators who access the
 // endpoint with a browser, or using a ping utility that can display the
 // additional information.
 return new HttpStatusCodeResult((int)HttpStatusCode.InternalServerError);
 }
 return new HttpStatusCodeResult((int)HttpStatusCode.OK);
}

public ActionResult ObscurePath(string id)
{
 // The id could be used as a simple way to obscure or hide the endpoint.
 // The id to match could be retrieved from configuration and, if matched,
 // perform a specific set of tests and return the result. If not matched it
 // could return a 404 (Not Found) status.

 // The obscure path can be set through configuration to hide the endpoint.
 var hiddenPathKey = CloudConfigurationManager.GetSetting("Test.ObscurePath");

 // If the value passed does not match that in configuration, return 404 (Not Found).
 if (!string.Equals(id, hiddenPathKey))
 {
 return new HttpStatusCodeResult((int)HttpStatusCode.NotFound);
 }

 // Else continue and run the tests...
 // Return results from the core services test.
 return this.CoreServices();
}

The ObscurePath method shows how you can read a path from the application configuration and use it as the
endpoint for tests. This example, in C#, also shows how you can accept an ID as a parameter and use it to check
for valid requests.

The TestResponseFromConfig method shows how you can expose an endpoint that performs a check for a
specified configuration setting value.

public ActionResult TestResponseFromConfig()
{
 // Health check that returns a response code set in configuration for testing.
 var returnStatusCodeSetting = CloudConfigurationManager.GetSetting(
 "Test.ReturnStatusCode");

 int returnStatusCode;

 if (!int.TryParse(returnStatusCodeSetting, out returnStatusCode))
 {
 returnStatusCode = (int)HttpStatusCode.OK;
 }

 return new HttpStatusCodeResult(returnStatusCode);
}

Monitoring endpoints in Azure hosted applications
Some options for monitoring endpoints in Azure applications are:

Use the built-in monitoring features of Azure.

Use a third-party service or a framework such as Microsoft System Center Operations Manager.

Create a custom utility or a service that runs on your own or on a hosted server.

Even though Azure provides a reasonably comprehensive set of monitoring options, you can use
additional services and tools to provide extra information. Azure Management Services provides a
built-in monitoring mechanism for alert rules. The alerts section of the management services page in
the Azure portal allows you to configure up to ten alert rules per subscription for your services. These
rules specify a condition and a threshold value for a service such as CPU load, or the number of
requests or errors per second, and the service can automatically send email notifications to addresses
you define in each rule.

The conditions you can monitor vary depending on the hosting mechanism you choose for your application
(such as Web Sites, Cloud Services, Virtual Machines, or Mobile Services), but all of these include the ability to
create an alert rule that uses a web endpoint you specify in the settings for your service. This endpoint should
respond in a timely way so that the alert system can detect that the application is operating correctly.

Read more information about creating alert notifications.

If you host your application in Azure Cloud Services web and worker roles or Virtual Machines, you can take
advantage of one of the built-in services in Azure called Traffic Manager. Traffic Manager is a routing and load-
balancing service that can distribute requests to specific instances of your Cloud Services hosted application
based on a range of rules and settings.

In addition to routing requests, Traffic Manager pings a URL, port, and relative path that you specify on a regular
basis to determine which instances of the application defined in its rules are active and are responding to
requests. If it detects a status code 200 (OK), it marks the application as available. Any other status code causes
Traffic Manager to mark the application as offline. You can view the status in the Traffic Manager console, and
configure the rule to reroute requests to other instances of the application that are responding.

However, Traffic Manager will only wait ten seconds to receive a response from the monitoring URL. Therefore,
you should ensure that your health verification code executes in this time, allowing for network latency for the
round trip from Traffic Manager to your application and back again.

https://docs.microsoft.com/azure/azure-monitor/platform/alerts-metric

Related guidance

Read more information about using Traffic Manager to monitor your applications. Traffic Manager is also
discussed in Multiple Datacenter Deployment Guidance.

The following guidance can be useful when implementing this pattern:

Instrumentation and Telemetry Guidance. Checking the health of services and components is typically done
by probing, but it's also useful to have information in place to monitor application performance and detect
events that occur at runtime. This data can be transmitted back to monitoring tools as additional information
for health monitoring. Instrumentation and Telemetry Guidance explores gathering remote diagnostics
information that's collected by instrumentation in applications.
Receiving alert notifications.
This pattern includes a downloadable sample application.

https://docs.microsoft.com/azure/traffic-manager/
https://msdn.microsoft.com/library/dn589779.aspx
https://msdn.microsoft.com/library/dn589775.aspx
https://docs.microsoft.com/azure/azure-monitor/platform/alerts-metric
https://github.com/mspnp/cloud-design-patterns/tree/master/health-endpoint-monitoring

Index Table pattern
3/13/2019 • 9 minutes to read • Edit Online

Context and problem

Solution

Create indexes over the fields in data stores that are frequently referenced by queries. This pattern can improve
query performance by allowing applications to more quickly locate the data to retrieve from a data store.

Many data stores organize the data for a collection of entities using the primary key. An application can use this
key to locate and retrieve data. The figure shows an example of a data store holding customer information. The
primary key is the Customer ID. The figure shows customer information organized by the primary key (Customer
ID).

While the primary key is valuable for queries that fetch data based on the value of this key, an application might
not be able to use the primary key if it needs to retrieve data based on some other field. In the customers
example, an application can't use the Customer ID primary key to retrieve customers if it queries data solely by
referencing the value of some other attribute, such as the town in which the customer is located. To perform a
query such as this, the application might have to fetch and examine every customer record, which could be a slow
process.

Many relational database management systems support secondary indexes. A secondary index is a separate data
structure that's organized by one or more nonprimary (secondary) key fields, and it indicates where the data for
each indexed value is stored. The items in a secondary index are typically sorted by the value of the secondary
keys to enable fast lookup of data. These indexes are usually maintained automatically by the database
management system.

You can create as many secondary indexes as you need to support the different queries that your application
performs. For example, in a Customers table in a relational database where the Customer ID is the primary key,
it's beneficial to add a secondary index over the town field if the application frequently looks up customers by the
town where they reside.

However, although secondary indexes are common in relational systems, most NoSQL data stores used by cloud
applications don't provide an equivalent feature.

If the data store doesn't support secondary indexes, you can emulate them manually by creating your own index
tables. An index table organizes the data by a specified key. Three strategies are commonly used for structuring
an index table, depending on the number of secondary indexes that are required and the nature of the queries
that an application performs.

https://github.com/mspnp/architecture-center/blob/master/docs/patterns/index-table.md

The first strategy is to duplicate the data in each index table but organize it by different keys (complete
denormalization). The next figure shows index tables that organize the same customer information by Town and
LastName.

This strategy is appropriate if the data is relatively static compared to the number of times it's queried using each
key. If the data is more dynamic, the processing overhead of maintaining each index table becomes too large for
this approach to be useful. Also, if the volume of data is very large, the amount of space required to store the
duplicate data is significant.

The second strategy is to create normalized index tables organized by different keys and reference the original
data by using the primary key rather than duplicating it, as shown in the following figure. The original data is
called a fact table.

This technique saves space and reduces the overhead of maintaining duplicate data. The disadvantage is that an
application has to perform two lookup operations to find data using a secondary key. It has to find the primary
key for the data in the index table, and then use the primary key to look up the data in the fact table.

The third strategy is to create partially normalized index tables organized by different keys that duplicate
frequently retrieved fields. Reference the fact table to access less frequently accessed fields. The next figure shows
how commonly accessed data is duplicated in each index table.

With this strategy, you can strike a balance between the first two approaches. The data for common queries can
be retrieved quickly by using a single lookup, while the space and maintenance overhead isn't as significant as
duplicating the entire data set.

If an application frequently queries data by specifying a combination of values (for example, “Find all customers
that live in Redmond and that have a last name of Smith”), you could implement the keys to the items in the index
table as a concatenation of the Town attribute and the LastName attribute. The next figure shows an index table
based on composite keys. The keys are sorted by Town, and then by LastName for records that have the same
value for Town.

Index tables can speed up query operations over sharded data, and are especially useful where the shard key is
hashed. The next figure shows an example where the shard key is a hash of the Customer ID. The index table can
organize data by the nonhashed value (Town and LastName), and provide the hashed shard key as the lookup
data. This can save the application from repeatedly calculating hash keys (an expensive operation) if it needs to
retrieve data that falls within a range, or it needs to fetch data in order of the nonhashed key. For example, a
query such as “Find all customers that live in Redmond” can be quickly resolved by locating the matching items in
the index table, where they're all stored in a contiguous block. Then, follow the references to the customer data
using the shard keys stored in the index table.

Issues and considerations

When to use this pattern

Consider the following points when deciding how to implement this pattern:

The overhead of maintaining secondary indexes can be significant. You must analyze and understand the
queries that your application uses. Only create index tables when they're likely to be used regularly. Don't
create speculative index tables to support queries that an application doesn't perform, or performs only
occasionally.

Duplicating data in an index table can add significant overhead in storage costs and the effort required to
maintain multiple copies of data.

Implementing an index table as a normalized structure that references the original data requires an
application to perform two lookup operations to find data. The first operation searches the index table to
retrieve the primary key, and the second uses the primary key to fetch the data.

If a system incorporates a number of index tables over very large data sets, it can be difficult to maintain
consistency between index tables and the original data. It might be possible to design the application
around the eventual consistency model. For example, to insert, update, or delete data, an application could
post a message to a queue and let a separate task perform the operation and maintain the index tables that
reference this data asynchronously. For more information about implementing eventual consistency, see
the Data Consistency Primer.

Microsoft Azure storage tables support transactional updates for changes made to data held in the
same partition (referred to as entity group transactions). If you can store the data for a fact table and
one or more index tables in the same partition, you can use this feature to help ensure consistency.

Index tables might themselves be partitioned or sharded.

Use this pattern to improve query performance when an application frequently needs to retrieve data by using a
key other than the primary (or shard) key.

This pattern might not be useful when:

Data is volatile. An index table can become out of date very quickly, making it ineffective or making the
overhead of maintaining the index table greater than any savings made by using it.

https://msdn.microsoft.com/library/dn589800.aspx

Example

A field selected as the secondary key for an index table is nondiscriminating and can only have a small set of
values (for example, gender).
The balance of the data values for a field selected as the secondary key for an index table are highly skewed.
For example, if 90% of the records contain the same value in a field, then creating and maintaining an index
table to look up data based on this field might create more overhead than scanning sequentially through the
data. However, if queries very frequently target values that lie in the remaining 10%, this index can be useful.
You should understand the queries that your application is performing, and how frequently they're performed.

Azure storage tables provide a highly scalable key/value data store for applications running in the cloud.
Applications store and retrieve data values by specifying a key. The data values can contain multiple fields, but the
structure of a data item is opaque to table storage, which simply handles a data item as an array of bytes.

Azure storage tables also support sharding. The sharding key includes two elements, a partition key and a row
key. Items that have the same partition key are stored in the same partition (shard), and the items are stored in
row key order within a shard. Table storage is optimized for performing queries that fetch data falling within a
contiguous range of row key values within a partition. If you're building cloud applications that store information
in Azure tables, you should structure your data with this feature in mind.

For example, consider an application that stores information about movies. The application frequently queries
movies by genre (action, documentary, historical, comedy, drama, and so on). You could create an Azure table
with partitions for each genre by using the genre as the partition key, and specifying the movie name as the row
key, as shown in the next figure.

This approach is less effective if the application also needs to query movies by starring actor. In this case, you can
create a separate Azure table that acts as an index table. The partition key is the actor and the row key is the
movie name. The data for each actor will be stored in separate partitions. If a movie stars more than one actor, the
same movie will occur in multiple partitions.

You can duplicate the movie data in the values held by each partition by adopting the first approach described in
the Solution section above. However, it's likely that each movie will be replicated several times (once for each
actor), so it might be more efficient to partially denormalize the data to support the most common queries (such
as the names of the other actors) and enable an application to retrieve any remaining details by including the
partition key necessary to find the complete information in the genre partitions. This approach is described by the
third option in the Solution section. The next figure shows this approach.

Related patterns and guidance
The following patterns and guidance might also be relevant when implementing this pattern:

Data Consistency Primer. An index table must be maintained as the data that it indexes changes. In the cloud,
it might not be possible or appropriate to perform operations that update an index as part of the same
transaction that modifies the data. In that case, an eventually consistent approach is more suitable. Provides
information on the issues surrounding eventual consistency.
Sharding pattern. The Index Table pattern is frequently used in conjunction with data partitioned by using
shards. The Sharding pattern provides more information on how to divide a data store into a set of shards.
Materialized View pattern. Instead of indexing data to support queries that summarize data, it might be more
appropriate to create a materialized view of the data. Describes how to support efficient summary queries by
generating prepopulated views over data.

https://msdn.microsoft.com/library/dn589800.aspx

Leader Election pattern
3/13/2019 • 11 minutes to read • Edit Online

Context and problem

Solution

Coordinate the actions performed by a collection of collaborating instances in a distributed application by
electing one instance as the leader that assumes responsibility for managing the others. This can help to ensure
that instances don't conflict with each other, cause contention for shared resources, or inadvertently interfere with
the work that other instances are performing.

A typical cloud application has many tasks acting in a coordinated manner. These tasks could all be instances
running the same code and requiring access to the same resources, or they might be working together in parallel
to perform the individual parts of a complex calculation.

The task instances might run separately for much of the time, but it might also be necessary to coordinate the
actions of each instance to ensure that they don’t conflict, cause contention for shared resources, or accidentally
interfere with the work that other task instances are performing.

For example:

In a cloud-based system that implements horizontal scaling, multiple instances of the same task could be
running at the same time with each instance serving a different user. If these instances write to a shared
resource, it's necessary to coordinate their actions to prevent each instance from overwriting the changes
made by the others.
If the tasks are performing individual elements of a complex calculation in parallel, the results need to be
aggregated when they all complete.

The task instances are all peers, so there isn't a natural leader that can act as the coordinator or aggregator.

A single task instance should be elected to act as the leader, and this instance should coordinate the actions of the
other subordinate task instances. If all of the task instances are running the same code, they are each capable of
acting as the leader. Therefore, the election process must be managed carefully to prevent two or more instances
taking over the leader role at the same time.

The system must provide a robust mechanism for selecting the leader. This method has to cope with events such
as network outages or process failures. In many solutions, the subordinate task instances monitor the leader
through some type of heartbeat method, or by polling. If the designated leader terminates unexpectedly, or a
network failure makes the leader unavailable to the subordinate task instances, it's necessary for them to elect a
new leader.

There are several strategies for electing a leader among a set of tasks in a distributed environment, including:

Selecting the task instance with the lowest-ranked instance or process ID.
Racing to acquire a shared, distributed mutex. The first task instance that acquires the mutex is the leader.
However, the system must ensure that, if the leader terminates or becomes disconnected from the rest of the
system, the mutex is released to allow another task instance to become the leader.
Implementing one of the common leader election algorithms such as the Bully Algorithm or the Ring
Algorithm. These algorithms assume that each candidate in the election has a unique ID, and that it can
communicate with the other candidates reliably.

https://github.com/mspnp/architecture-center/blob/master/docs/patterns/leader-election.md
https://www.cs.colostate.edu/%7Ecs551/CourseNotes/Synchronization/BullyExample.html
https://www.cs.colostate.edu/%7Ecs551/CourseNotes/Synchronization/RingElectExample.html

Issues and considerations

When to use this pattern

Example

Consider the following points when deciding how to implement this pattern:

The process of electing a leader should be resilient to transient and persistent failures.
It must be possible to detect when the leader has failed or has become otherwise unavailable (such as due to a
communications failure). How quickly detection is needed is system dependent. Some systems might be able
to function for a short time without a leader, during which a transient fault might be fixed. In other cases, it
might be necessary to detect leader failure immediately and trigger a new election.
In a system that implements horizontal autoscaling, the leader could be terminated if the system scales back
and shuts down some of the computing resources.
Using a shared, distributed mutex introduces a dependency on the external service that provides the mutex.
The service constitutes a single point of failure. If it becomes unavailable for any reason, the system won't be
able to elect a leader.
Using a single dedicated process as the leader is a straightforward approach. However, if the process fails
there could be a significant delay while it's restarted. The resulting latency can affect the performance and
response times of other processes if they're waiting for the leader to coordinate an operation.
Implementing one of the leader election algorithms manually provides the greatest flexibility for tuning and
optimizing the code.

Use this pattern when the tasks in a distributed application, such as a cloud-hosted solution, need careful
coordination and there's no natural leader.

Avoid making the leader a bottleneck in the system. The purpose of the leader is to coordinate the work of the
subordinate tasks, and it doesn't necessarily have to participate in this work itself—although it should be able
to do so if the task isn't elected as the leader.

This pattern might not be useful if:

There's a natural leader or dedicated process that can always act as the leader. For example, it might be
possible to implement a singleton process that coordinates the task instances. If this process fails or becomes
unhealthy, the system can shut it down and restart it.
The coordination between tasks can be achieved using a more lightweight method. For example, if several task
instances simply need coordinated access to a shared resource, a better solution is to use optimistic or
pessimistic locking to control access.
A third-party solution is more appropriate. For example, the Microsoft Azure HDInsight service (based on
Apache Hadoop) uses the services provided by Apache Zookeeper to coordinate the map and reduce tasks
that collect and summarize data.

The DistributedMutex project in the LeaderElection solution (a sample that demonstrates this pattern is available
on GitHub) shows how to use a lease on an Azure Storage blob to provide a mechanism for implementing a
shared, distributed mutex. This mutex can be used to elect a leader among a group of role instances in an Azure
cloud service. The first role instance to acquire the lease is elected the leader, and remains the leader until it
releases the lease or isn't able to renew the lease. Other role instances can continue to monitor the blob lease in
case the leader is no longer available.

A blob lease is an exclusive write lock over a blob. A single blob can be the subject of only one lease at any
point in time. A role instance can request a lease over a specified blob, and it'll be granted the lease if no other
role instance holds a lease over the same blob. Otherwise the request will throw an exception.

https://github.com/mspnp/cloud-design-patterns/tree/master/leader-election

public class BlobDistributedMutex
{
 ...
 private readonly BlobSettings blobSettings;
 private readonly Func<CancellationToken, Task> taskToRunWhenLeaseAcquired;
 ...

 public BlobDistributedMutex(BlobSettings blobSettings,
 Func<CancellationToken, Task> taskToRunWhenLeaseAquired)
 {
 this.blobSettings = blobSettings;
 this.taskToRunWhenLeaseAquired = taskToRunWhenLeaseAquired;
 }

 public async Task RunTaskWhenMutexAcquired(CancellationToken token)
 {
 var leaseManager = new BlobLeaseManager(blobSettings);
 await this.RunTaskWhenBlobLeaseAcquired(leaseManager, token);
 }
 ...

To avoid a faulted role instance retaining the lease indefinitely, specify a lifetime for the lease. When this
expires, the lease becomes available. However, while a role instance holds the lease it can request that the
lease is renewed, and it'll be granted the lease for a further period of time. The role instance can continually
repeat this process if it wants to retain the lease. For more information on how to lease a blob, see Lease Blob
(REST API).

The BlobDistributedMutex class in the C# example below contains the RunTaskWhenMutexAquired method that
enables a role instance to attempt to acquire a lease over a specified blob. The details of the blob (the name,
container, and storage account) are passed to the constructor in a BlobSettings object when the
BlobDistributedMutex object is created (this object is a simple struct that is included in the sample code). The

constructor also accepts a Task that references the code that the role instance should run if it successfully
acquires the lease over the blob and is elected the leader. Note that the code that handles the low-level details of
acquiring the lease is implemented in a separate helper class named BlobLeaseManager .

The RunTaskWhenMutexAquired method in the code sample above invokes the RunTaskWhenBlobLeaseAcquired

method shown in the following code sample to actually acquire the lease. The RunTaskWhenBlobLeaseAcquired

method runs asynchronously. If the lease is successfully acquired, the role instance has been elected the leader.
The purpose of the taskToRunWhenLeaseAcquired delegate is to perform the work that coordinates the other role
instances. If the lease isn't acquired, another role instance has been elected as the leader and the current role
instance remains a subordinate. Note that the TryAcquireLeaseOrWait method is a helper method that uses the
BlobLeaseManager object to acquire the lease.

https://msdn.microsoft.com/library/azure/ee691972.aspx

 private async Task RunTaskWhenBlobLeaseAcquired(
 BlobLeaseManager leaseManager, CancellationToken token)
 {
 while (!token.IsCancellationRequested)
 {
 // Try to acquire the blob lease.
 // Otherwise wait for a short time before trying again.
 string leaseId = await this.TryAquireLeaseOrWait(leaseManager, token);

 if (!string.IsNullOrEmpty(leaseId))
 {
 // Create a new linked cancellation token source so that if either the
 // original token is canceled or the lease can't be renewed, the
 // leader task can be canceled.
 using (var leaseCts =
 CancellationTokenSource.CreateLinkedTokenSource(new[] { token }))
 {
 // Run the leader task.
 var leaderTask = this.taskToRunWhenLeaseAquired.Invoke(leaseCts.Token);
 ...
 }
 }
 }
 ...
 }

 private async Task RunTaskWhenBlobLeaseAcquired(
 BlobLeaseManager leaseManager, CancellationToken token)
 {
 while (...)
 {
 ...
 if (...)
 {
 ...
 using (var leaseCts = ...)
 {
 ...
 // Keep renewing the lease in regular intervals.
 // If the lease can't be renewed, then the task completes.
 var renewLeaseTask =
 this.KeepRenewingLease(leaseManager, leaseId, leaseCts.Token);

 // When any task completes (either the leader task itself or when it
 // couldn't renew the lease) then cancel the other task.
 await CancelAllWhenAnyCompletes(leaderTask, renewLeaseTask, leaseCts);
 }
 }
 }
 }
 ...
}

The task started by the leader also runs asynchronously. While this task is running, the
RunTaskWhenBlobLeaseAquired method shown in the following code sample periodically attempts to renew the

lease. This helps to ensure that the role instance remains the leader. In the sample solution, the delay between
renewal requests is less than the time specified for the duration of the lease in order to prevent another role
instance from being elected the leader. If the renewal fails for any reason, the task is canceled.

If the lease fails to be renewed or the task is canceled (possibly as a result of the role instance shutting down), the
lease is released. At this point, this or another role instance might be elected as the leader. The code extract below
shows this part of the process.

The KeepRenewingLease method is another helper method that uses the BlobLeaseManager object to renew the
lease. The CancelAllWhenAnyCompletes method cancels the tasks specified as the first two parameters. The
following diagram illustrates using the BlobDistributedMutex class to elect a leader and run a task that
coordinates operations.

The following code example shows how to use the BlobDistributedMutex class in a worker role. This code
acquires a lease over a blob named MyLeaderCoordinatorTask in the lease's container in development storage, and
specifies that the code defined in the MyLeaderCoordinatorTask method should run if the role instance is elected
the leader.

var settings = new BlobSettings(CloudStorageAccount.DevelopmentStorageAccount,
 "leases", "MyLeaderCoordinatorTask");
var cts = new CancellationTokenSource();
var mutex = new BlobDistributedMutex(settings, MyLeaderCoordinatorTask);
mutex.RunTaskWhenMutexAcquired(this.cts.Token);
...

// Method that runs if the role instance is elected the leader
private static async Task MyLeaderCoordinatorTask(CancellationToken token)
{
 ...
}

Related patterns and guidance

Note the following points about the sample solution:

The blob is a potential single point of failure. If the blob service becomes unavailable, or is inaccessible, the
leader won't be able to renew the lease and no other role instance will be able to acquire the lease. In this case,
no role instance will be able to act as the leader. However, the blob service is designed to be resilient, so
complete failure of the blob service is considered to be extremely unlikely.
If the task being performed by the leader stalls, the leader might continue to renew the lease, preventing any
other role instance from acquiring the lease and taking over the leader role in order to coordinate tasks. In the
real world, the health of the leader should be checked at frequent intervals.
The election process is nondeterministic. You can't make any assumptions about which role instance will
acquire the blob lease and become the leader.
The blob used as the target of the blob lease shouldn't be used for any other purpose. If a role instance
attempts to store data in this blob, this data won't be accessible unless the role instance is the leader and holds
the blob lease.

The following guidance might also be relevant when implementing this pattern:

This pattern has a downloadable sample application.
Autoscaling Guidance. It's possible to start and stop instances of the task hosts as the load on the application
varies. Autoscaling can help to maintain throughput and performance during times of peak processing.
Compute Partitioning Guidance. This guidance describes how to allocate tasks to hosts in a cloud service in a
way that helps to minimize running costs while maintaining the scalability, performance, availability, and
security of the service.
The Task-based Asynchronous Pattern.
An example illustrating the Bully Algorithm.
An example illustrating the Ring Algorithm.
Apache Curator a client library for Apache ZooKeeper.
The article Lease Blob (REST API) on MSDN.

https://github.com/mspnp/cloud-design-patterns/tree/master/leader-election
https://msdn.microsoft.com/library/dn589774.aspx
https://msdn.microsoft.com/library/dn589773.aspx
https://msdn.microsoft.com/library/hh873175.aspx
https://www.cs.colostate.edu/%7Ecs551/CourseNotes/Synchronization/BullyExample.html
https://www.cs.colostate.edu/%7Ecs551/CourseNotes/Synchronization/RingElectExample.html
https://curator.apache.org/
https://msdn.microsoft.com/library/azure/ee691972.aspx

Materialized View pattern
3/13/2019 • 7 minutes to read • Edit Online

Context and problem

Solution

Generate prepopulated views over the data in one or more data stores when the data isn't ideally formatted for
required query operations. This can help support efficient querying and data extraction, and improve application
performance.

When storing data, the priority for developers and data administrators is often focused on how the data is
stored, as opposed to how it's read. The chosen storage format is usually closely related to the format of the
data, requirements for managing data size and data integrity, and the kind of store in use. For example, when
using NoSQL document store, the data is often represented as a series of aggregates, each containing all of the
information for that entity.

However, this can have a negative effect on queries. When a query only needs a subset of the data from some
entities, such as a summary of orders for several customers without all of the order details, it must extract all of
the data for the relevant entities in order to obtain the required information.

To support efficient querying, a common solution is to generate, in advance, a view that materializes the data in
a format suited to the required results set. The Materialized View pattern describes generating prepopulated
views of data in environments where the source data isn't in a suitable format for querying, where generating a
suitable query is difficult, or where query performance is poor due to the nature of the data or the data store.

These materialized views, which only contain data required by a query, allow applications to quickly obtain the
information they need. In addition to joining tables or combining data entities, materialized views can include
the current values of calculated columns or data items, the results of combining values or executing
transformations on the data items, and values specified as part of the query. A materialized view can even be
optimized for just a single query.

A key point is that a materialized view and the data it contains is completely disposable because it can be
entirely rebuilt from the source data stores. A materialized view is never updated directly by an application, and
so it's a specialized cache.

When the source data for the view changes, the view must be updated to include the new information. You can
schedule this to happen automatically, or when the system detects a change to the original data. In some cases it
might be necessary to regenerate the view manually. The figure shows an example of how the Materialized View
pattern might be used.

https://github.com/mspnp/architecture-center/blob/master/docs/patterns/materialized-view.md

Issues and considerations

When to use this pattern

Consider the following points when deciding how to implement this pattern:

How and when the view will be updated. Ideally it'll regenerate in response to an event indicating a change to
the source data, although this can lead to excessive overhead if the source data changes rapidly. Alternatively,
consider using a scheduled task, an external trigger, or a manual action to regenerate the view.

In some systems, such as when using the Event Sourcing pattern to maintain a store of only the events that
modified the data, materialized views are necessary. Prepopulating views by examining all events to determine
the current state might be the only way to obtain information from the event store. If you're not using Event
Sourcing, you need to consider whether a materialized view is helpful or not. Materialized views tend to be
specifically tailored to one, or a small number of queries. If many queries are used, materialized views can result
in unacceptable storage capacity requirements and storage cost.

Consider the impact on data consistency when generating the view, and when updating the view if this occurs
on a schedule. If the source data is changing at the point when the view is generated, the copy of the data in the
view won't be fully consistent with the original data.

Consider where you'll store the view. The view doesn't have to be located in the same store or partition as the
original data. It can be a subset from a few different partitions combined.

A view can be rebuilt if lost. Because of that, if the view is transient and is only used to improve query
performance by reflecting the current state of the data, or to improve scalability, it can be stored in a cache or in
a less reliable location.

When defining a materialized view, maximize its value by adding data items or columns to it based on
computation or transformation of existing data items, on values passed in the query, or on combinations of
these values when appropriate.

Where the storage mechanism supports it, consider indexing the materialized view to further increase
performance. Most relational databases support indexing for views, as do big data solutions based on Apache
Hadoop.

This pattern is useful when:

Creating materialized views over data that's difficult to query directly, or where queries must be very
complex to extract data that's stored in a normalized, semi-structured, or unstructured way.
Creating temporary views that can dramatically improve query performance, or can act directly as source

Example

Related patterns and guidance

views or data transfer objects for the UI, for reporting, or for display.
Supporting occasionally connected or disconnected scenarios where connection to the data store isn't always
available. The view can be cached locally in this case.
Simplifying queries and exposing data for experimentation in a way that doesn't require knowledge of the
source data format. For example, by joining different tables in one or more databases, or one or more
domains in NoSQL stores, and then formatting the data to fit its eventual use.
Providing access to specific subsets of the source data that, for security or privacy reasons, shouldn't be
generally accessible, open to modification, or fully exposed to users.
Bridging different data stores, to take advantage of their individual capabilities. For example, using a cloud
store that's efficient for writing as the reference data store, and a relational database that offers good query
and read performance to hold the materialized views.

This pattern isn't useful in the following situations:

The source data is simple and easy to query.
The source data changes very quickly, or can be accessed without using a view. In these cases, you should
avoid the processing overhead of creating views.
Consistency is a high priority. The views might not always be fully consistent with the original data.

The following figure shows an example of using the Materialized View pattern to generate a summary of sales.
Data in the Order, OrderItem, and Customer tables in separate partitions in an Azure storage account are
combined to generate a view containing the total sales value for each product in the Electronics category, along
with a count of the number of customers who made purchases of each item.

Creating this materialized view requires complex queries. However, by exposing the query result as a
materialized view, users can easily obtain the results and use them directly or incorporate them in another query.
The view is likely to be used in a reporting system or dashboard, and can be updated on a scheduled basis such
as weekly.

Although this example utilizes Azure table storage, many relational database management systems also
provide native support for materialized views.

The following patterns and guidance might also be relevant when implementing this pattern:

Data Consistency Primer. The summary information in a materialized view has to be maintained so that it

https://msdn.microsoft.com/library/dn589800.aspx

reflects the underlying data values. As the data values change, it might not be practical to update the
summary data in real time, and instead you'll have to adopt an eventually consistent approach. Summarizes
the issues surrounding maintaining consistency over distributed data, and describes the benefits and
tradeoffs of different consistency models.
Command and Query Responsibility Segregation (CQRS) pattern. Use to update the information in a
materialized view by responding to events that occur when the underlying data values change.
Event Sourcing pattern. Use in conjunction with the CQRS pattern to maintain the information in a
materialized view. When the data values a materialized view is based on are changed, the system can raise
events that describe these changes and save them in an event store.
Index Table pattern. The data in a materialized view is typically organized by a primary key, but queries might
need to retrieve information from this view by examining data in other fields. Use to create secondary
indexes over data sets for data stores that don't support native secondary indexes.

Pipes and Filters pattern
3/13/2019 • 12 minutes to read • Edit Online

Context and problem

Decompose a task that performs complex processing into a series of separate elements that can be reused. This
can improve performance, scalability, and reusability by allowing task elements that perform the processing to be
deployed and scaled independently.

An application is required to perform a variety of tasks of varying complexity on the information that it processes.
A straightforward but inflexible approach to implementing an application is to perform this processing as a
monolithic module. However, this approach is likely to reduce the opportunities for refactoring the code,
optimizing it, or reusing it if parts of the same processing are required elsewhere within the application.

The figure illustrates the issues with processing data using the monolithic approach. An application receives and
processes data from two sources. The data from each source is processed by a separate module that performs a
series of tasks to transform this data, before passing the result to the business logic of the application.

Some of the tasks that the monolithic modules perform are functionally very similar, but the modules have been
designed separately. The code that implements the tasks is closely coupled in a module, and has been developed
with little or no thought given to reuse or scalability.

However, the processing tasks performed by each module, or the deployment requirements for each task, could
change as business requirements are updated. Some tasks might be compute intensive and could benefit from
running on powerful hardware, while others might not require such expensive resources. Also, additional

https://github.com/mspnp/architecture-center/blob/master/docs/patterns/pipes-and-filters.md

Solution

processing might be required in the future, or the order in which the tasks performed by the processing could
change. A solution is required that addresses these issues, and increases the possibilities for code reuse.

Break down the processing required for each stream into a set of separate components (or filters), each
performing a single task. By standardizing the format of the data that each component receives and sends, these
filters can be combined together into a pipeline. This helps to avoid duplicating code, and makes it easy to
remove, replace, or integrate additional components if the processing requirements change. The next figure
shows a solution implemented using pipes and filters.

The time it takes to process a single request depends on the speed of the slowest filter in the pipeline. One or
more filters could be a bottleneck, especially if a large number of requests appear in a stream from a particular
data source. A key advantage of the pipeline structure is that it provides opportunities for running parallel
instances of slow filters, enabling the system to spread the load and improve throughput.

The filters that make up a pipeline can run on different machines, enabling them to be scaled independently and
take advantage of the elasticity that many cloud environments provide. A filter that is computationally intensive
can run on high performance hardware, while other less demanding filters can be hosted on less expensive
commodity hardware. The filters don't even have to be in the same data center or geographical location, which
allows each element in a pipeline to run in an environment that is close to the resources it requires. The next
figure shows an example applied to the pipeline for the data from Source 1.

If the input and output of a filter are structured as a stream, it's possible to perform the processing for each filter
in parallel. The first filter in the pipeline can start its work and output its results, which are passed directly on to
the next filter in the sequence before the first filter has completed its work.

Another benefit is the resiliency that this model can provide. If a filter fails or the machine it's running on is no
longer available, the pipeline can reschedule the work that the filter was performing and direct this work to

Issues and considerations

When to use this pattern

another instance of the component. Failure of a single filter doesn't necessarily result in failure of the entire
pipeline.

Using the Pipes and Filters pattern in conjunction with the Compensating Transaction pattern is an alternative
approach to implementing distributed transactions. A distributed transaction can be broken down into separate,
compensable tasks, each of which can be implemented by using a filter that also implements the Compensating
Transaction pattern. The filters in a pipeline can be implemented as separate hosted tasks running close to the
data that they maintain.

You should consider the following points when deciding how to implement this pattern:

Complexity. The increased flexibility that this pattern provides can also introduce complexity, especially if
the filters in a pipeline are distributed across different servers.

Reliability. Use an infrastructure that ensures that data flowing between filters in a pipeline won't be lost.

Idempotency. If a filter in a pipeline fails after receiving a message and the work is rescheduled to another
instance of the filter, part of the work might have already been completed. If this work updates some aspect
of the global state (such as information stored in a database), the same update could be repeated. A similar
issue might occur if a filter fails after posting its results to the next filter in the pipeline, but before
indicating that it's completed its work successfully. In these cases, the same work could be repeated by
another instance of the filter, causing the same results to be posted twice. This could result in subsequent
filters in the pipeline processing the same data twice. Therefore filters in a pipeline should be designed to
be idempotent. For more information see Idempotency Patterns on Jonathan Oliver’s blog.

Repeated messages. If a filter in a pipeline fails after posting a message to the next stage of the pipeline,
another instance of the filter might be run, and it'll post a copy of the same message to the pipeline. This
could cause two instances of the same message to be passed to the next filter. To avoid this, the pipeline
should detect and eliminate duplicate messages.

If you're implementing the pipeline by using message queues (such as Microsoft Azure Service Bus
queues), the message queuing infrastructure might provide automatic duplicate message detection and
removal.

Context and state. In a pipeline, each filter essentially runs in isolation and shouldn't make any
assumptions about how it was invoked. This means that each filter should be provided with sufficient
context to perform its work. This context could include a large amount of state information.

Use this pattern when:

The processing required by an application can easily be broken down into a set of independent steps.

The processing steps performed by an application have different scalability requirements.

It's possible to group filters that should scale together in the same process. For more information, see
the Compute Resource Consolidation pattern.

Flexibility is required to allow reordering of the processing steps performed by an application, or the
capability to add and remove steps.

The system can benefit from distributing the processing for steps across different servers.

https://blog.jonathanoliver.com/idempotency-patterns/

Example

public class ServiceBusPipeFilter
{
 ...
 private readonly string inQueuePath;
 private readonly string outQueuePath;
 ...
 private QueueClient inQueue;
 private QueueClient outQueue;
 ...

 public ServiceBusPipeFilter(..., string inQueuePath, string outQueuePath = null)
 {
 ...
 this.inQueuePath = inQueuePath;
 this.outQueuePath = outQueuePath;
 }

 public void Start()
 {
 ...
 // Create the outbound filter queue if it doesn't exist.
 ...
 this.outQueue = QueueClient.CreateFromConnectionString(...);

 ...
 // Create the inbound and outbound queue clients.
 this.inQueue = QueueClient.CreateFromConnectionString(...);
 }

A reliable solution is required that minimizes the effects of failure in a step while data is being processed.

This pattern might not be useful when:

The processing steps performed by an application aren't independent, or they have to be performed
together as part of the same transaction.

The amount of context or state information required by a step makes this approach inefficient. It might be
possible to persist state information to a database instead, but don't use this strategy if the additional load
on the database causes excessive contention.

You can use a sequence of message queues to provide the infrastructure required to implement a pipeline. An
initial message queue receives unprocessed messages. A component implemented as a filter task listens for a
message on this queue, performs its work, and then posts the transformed message to the next queue in the
sequence. Another filter task can listen for messages on this queue, process them, post the results to another
queue, and so on until the fully transformed data appears in the final message in the queue. The next figure
illustrates implementing a pipeline using message queues.

If you're building a solution on Azure you can use Service Bus queues to provide a reliable and scalable queuing
mechanism. The ServiceBusPipeFilter class shown below in C# demonstrates how you can implement a filter
that receives input messages from a queue, processes these messages, and posts the results to another queue.

The ServiceBusPipeFilter class is defined in the PipesAndFilters.Shared project available from GitHub.

https://github.com/mspnp/cloud-design-patterns/tree/master/pipes-and-filters

 public void OnPipeFilterMessageAsync(
 Func<BrokeredMessage, Task<BrokeredMessage>> asyncFilterTask, ...)
 {
 ...

 this.inQueue.OnMessageAsync(
 async (msg) =>
 {
 ...
 // Process the filter and send the output to the
 // next queue in the pipeline.
 var outMessage = await asyncFilterTask(msg);

 // Send the message from the filter processor
 // to the next queue in the pipeline.
 if (outQueue != null)
 {
 await outQueue.SendAsync(outMessage);
 }

 // Note: There's a chance that the same message could be sent twice
 // or that a message gets processed by an upstream or downstream
 // filter at the same time.
 // This would happen in a situation where processing of a message was
 // completed, it was sent to the next pipe/queue, and then failed
 // to complete when using the PeekLock method.
 // Idempotent message processing and concurrency should be considered
 // in a real-world implementation.
 },
 options);
 }

 public async Task Close(TimeSpan timespan)
 {
 // Pause the processing threads.
 this.pauseProcessingEvent.Reset();

 // There's no clean approach for waiting for the threads to complete
 // the processing. This example simply stops any new processing, waits
 // for the existing thread to complete, then closes the message pump
 // and finally returns.
 Thread.Sleep(timespan);

 this.inQueue.Close();
 ...
 }

 ...
}

The Start method in the ServiceBusPipeFilter class connects to a pair of input and output queues, and the
Close method disconnects from the input queue. The OnPipeFilterMessageAsync method performs the actual

processing of messages, the asyncFilterTask parameter to this method specifies the processing to be performed.
The OnPipeFilterMessageAsync method waits for incoming messages on the input queue, runs the code specified
by the asyncFilterTask parameter over each message as it arrives, and posts the results to the output queue. The
queues themselves are specified by the constructor.

The sample solution implements filters in a set of worker roles. Each worker role can be scaled independently,
depending on the complexity of the business processing that it performs or the resources required for processing.
Additionally, multiple instances of each worker role can be run in parallel to improve throughput.

The following code shows an Azure worker role named PipeFilterARoleEntry , defined in the PipeFilterA project
in the sample solution.

public class PipeFilterARoleEntry : RoleEntryPoint
{
 ...
 private ServiceBusPipeFilter pipeFilterA;

 public override bool OnStart()
 {
 ...
 this.pipeFilterA = new ServiceBusPipeFilter(
 ...,
 Constants.QueueAPath,
 Constants.QueueBPath);

 this.pipeFilterA.Start();
 ...
 }

 public override void Run()
 {
 this.pipeFilterA.OnPipeFilterMessageAsync(async (msg) =>
 {
 // Clone the message and update it.
 // Properties set by the broker (Deliver count, enqueue time, ...)
 // aren't cloned and must be copied over if required.
 var newMsg = msg.Clone();

 await Task.Delay(500); // DOING WORK

 Trace.TraceInformation("Filter A processed message:{0} at {1}",
 msg.MessageId, DateTime.UtcNow);

 newMsg.Properties.Add(Constants.FilterAMessageKey, "Complete");

 return newMsg;
 });

 ...
 }

 ...
}

This role contains a ServiceBusPipeFilter object. The OnStart method in the role connects to the queues for
receiving input messages and posting output messages (the names of the queues are defined in the Constants

class). The Run method invokes the OnPipeFilterMessagesAsync method to perform some processing on each
message that's received (in this example, the processing is simulated by waiting for a short period of time). When
processing is complete, a new message is constructed containing the results (in this case, the input message has a
custom property added), and this message is posted to the output queue.

The sample code contains another worker role named PipeFilterBRoleEntry in the PipeFilterB project. This role is
similar to PipeFilterARoleEntry except that it performs different processing in the Run method. In the example
solution, these two roles are combined to construct a pipeline, the output queue for the PipeFilterARoleEntry role
is the input queue for the PipeFilterBRoleEntry role.

The sample solution also provides two additional roles named InitialSenderRoleEntry (in the InitialSender
project) and FinalReceiverRoleEntry (in the FinalReceiver project). The InitialSenderRoleEntry role provides the
initial message in the pipeline. The OnStart method connects to a single queue and the Run method posts a
method to this queue. This queue is the input queue used by the PipeFilterARoleEntry role, so posting a message
to it causes the message to be received and processed by the PipeFilterARoleEntry role. The processed message
then passes through the PipeFilterBRoleEntry role.

public class FinalReceiverRoleEntry : RoleEntryPoint
{
 ...
 // Final queue/pipe in the pipeline to process data from.
 private ServiceBusPipeFilter queueFinal;

 public override bool OnStart()
 {
 ...
 // Set up the queue.
 this.queueFinal = new ServiceBusPipeFilter(...,Constants.QueueFinalPath);
 this.queueFinal.Start();
 ...
 }

 public override void Run()
 {
 this.queueFinal.OnPipeFilterMessageAsync(
 async (msg) =>
 {
 await Task.Delay(500); // DOING WORK

 // The pipeline message was received.
 Trace.TraceInformation(
 "Pipeline Message Complete - FilterA:{0} FilterB:{1}",
 msg.Properties[Constants.FilterAMessageKey],
 msg.Properties[Constants.FilterBMessageKey]);

 return null;
 });
 ...
 }

 ...
}

Related patterns and guidance

The input queue for the FinalReceiveRoleEntry role is the output queue for the PipeFilterBRoleEntry role. The
Run method in the FinalReceiveRoleEntry role, shown below, receives the message and performs some final

processing. Then it writes the values of the custom properties added by the filters in the pipeline to the trace
output.

The following patterns and guidance might also be relevant when implementing this pattern:

A sample that demonstrates this pattern is available on GitHub.
Competing Consumers pattern. A pipeline can contain multiple instances of one or more filters. This approach
is useful for running parallel instances of slow filters, enabling the system to spread the load and improve
throughput. Each instance of a filter will compete for input with the other instances, two instances of a filter
shouldn't be able to process the same data. Provides an explanation of this approach.
Compute Resource Consolidation pattern. It might be possible to group filters that should scale together into
the same process. Provides more information about the benefits and tradeoffs of this strategy.
Compensating Transaction pattern. A filter can be implemented as an operation that can be reversed, or that
has a compensating operation that restores the state to a previous version in the event of a failure. Explains
how this can be implemented to maintain or achieve eventual consistency.
Idempotency Patterns on Jonathan Oliver’s blog.

https://github.com/mspnp/cloud-design-patterns/tree/master/pipes-and-filters
https://blog.jonathanoliver.com/idempotency-patterns/

Priority Queue pattern
3/13/2019 • 9 minutes to read • Edit Online

Context and Problem

Solution

Prioritize requests sent to services so that requests with a higher priority are received and processed more
quickly than those with a lower priority. This pattern is useful in applications that offer different service level
guarantees to individual clients.

Applications can delegate specific tasks to other services, for example, to perform background processing or to
integrate with other applications or services. In the cloud, a message queue is typically used to delegate tasks to
background processing. In many cases the order requests are received in by a service isn't important. In some
cases, though, it's necessary to prioritize specific requests. These requests should be processed earlier than lower
priority requests that were sent previously by the application.

A queue is usually a first-in, first-out (FIFO) structure, and consumers typically receive messages in the same
order that they were posted to the queue. However, some message queues support priority messaging. The
application posting a message can assign a priority and the messages in the queue are automatically reordered so
that those with a higher priority will be received before those with a lower priority. The figure illustrates a queue
with priority messaging.

Most message queue implementations support multiple consumers (following the Competing Consumers
pattern), and the number of consumer processes can be scaled up or down depending on demand.

In systems that don't support priority-based message queues, an alternative solution is to maintain a separate
queue for each priority. The application is responsible for posting messages to the appropriate queue. Each queue
can have a separate pool of consumers. Higher priority queues can have a larger pool of consumers running on
faster hardware than lower priority queues. The next figure illustrates using separate message queues for each
priority.

https://github.com/mspnp/architecture-center/blob/master/docs/patterns/priority-queue.md

Issues and Considerations

A variation on this strategy is to have a single pool of consumers that check for messages on high priority queues
first, and only then start to fetch messages from lower priority queues. There are some semantic differences
between a solution that uses a single pool of consumer processes (either with a single queue that supports
messages with different priorities or with multiple queues that each handle messages of a single priority), and a
solution that uses multiple queues with a separate pool for each queue.

In the single pool approach, higher priority messages are always received and processed before lower priority
messages. In theory, messages that have a very low priority could be continually superseded and might never be
processed. In the multiple pool approach, lower priority messages will always be processed, just not as quickly as
those of a higher priority (depending on the relative size of the pools and the resources that they have available).

Using a priority queuing mechanism can provide the following advantages:

It allows applications to meet business requirements that require prioritization of availability or
performance, such as offering different levels of service to specific groups of customers.

It can help to minimize operational costs. In the single queue approach, you can scale back the number of
consumers if necessary. High priority messages will still be processed first (although possibly more
slowly), and lower priority messages might be delayed for longer. If you've implemented the multiple
message queue approach with separate pools of consumers for each queue, you can reduce the pool of
consumers for lower priority queues, or even suspend processing for some very low priority queues by
stopping all the consumers that listen for messages on those queues.

The multiple message queue approach can help maximize application performance and scalability by
partitioning messages based on processing requirements. For example, vital tasks can be prioritized to be
handled by receivers that run immediately while less important background tasks can be handled by
receivers that are scheduled to run at less busy periods.

Consider the following points when deciding how to implement this pattern:

Define the priorities in the context of the solution. For example, high priority could mean that messages should be

When to use this pattern

Example

processed within ten seconds. Identify the requirements for handling high priority items, and the other resources
that should be allocated to meet these criteria.

Decide if all high priority items must be processed before any lower priority items. If the messages are being
processed by a single pool of consumers, you have to provide a mechanism that can preempt and suspend a task
that's handling a low priority message if a higher priority message becomes available.

In the multiple queue approach, when using a single pool of consumer processes that listen on all queues rather
than a dedicated consumer pool for each queue, the consumer must apply an algorithm that ensures it always
services messages from higher priority queues before those from lower priority queues.

Monitor the processing speed on high and low priority queues to ensure that messages in these queues are
processed at the expected rates.

If you need to guarantee that low priority messages will be processed, it's necessary to implement the multiple
message queue approach with multiple pools of consumers. Alternatively, in a queue that supports message
prioritization, it's possible to dynamically increase the priority of a queued message as it ages. However, this
approach depends on the message queue providing this feature.

Using a separate queue for each message priority works best for systems that have a small number of well-
defined priorities.

Message priorities can be determined logically by the system. For example, rather than having explicit high and
low priority messages, they could be designated as “fee paying customer,” or “non-fee paying customer.”
Depending on your business model, your system can allocate more resources to processing messages from fee
paying customers than non-fee paying ones.

There might be a financial and processing cost associated with checking a queue for a message (some
commercial messaging systems charge a small fee each time a message is posted or retrieved, and each time a
queue is queried for messages). This cost increases when checking multiple queues.

It's possible to dynamically adjust the size of a pool of consumers based on the length of the queue that the pool
is servicing. For more information, see the Autoscaling Guidance.

This pattern is useful in scenarios where:

The system must handle multiple tasks that have different priorities.

Different users or tenants should be served with different priority.

Microsoft Azure doesn't provide a queuing mechanism that natively supports automatic prioritization of
messages through sorting. However, it does provide Azure Service Bus topics and subscriptions that support a
queuing mechanism that provides message filtering, together with a wide range of flexible capabilities that make
it ideal for use in most priority queue implementations.

An Azure solution can implement a Service Bus topic an application can post messages to, in the same way as a
queue. Messages can contain metadata in the form of application-defined custom properties. Service Bus
subscriptions can be associated with the topic, and these subscriptions can filter messages based on their
properties. When an application sends a message to a topic, the message is directed to the appropriate
subscription where it can be read by a consumer. Consumer processes can retrieve messages from a subscription
using the same semantics as a message queue (a subscription is a logical queue). The following figure illustrates
implementing a priority queue with Azure Service Bus topics and subscriptions.

https://msdn.microsoft.com/library/dn589774.aspx

In the figure above, the application creates several messages and assigns a custom property called Priority in
each message with a value, either High or Low . The application posts these messages to a topic. The topic has
two associated subscriptions that both filter messages by examining the Priority property. One subscription
accepts messages where the Priority property is set to High , and the other accepts messages where the
Priority property is set to Low . A pool of consumers reads messages from each subscription. The high priority

subscription has a larger pool, and these consumers might be running on more powerful computers with more
resources available than the consumers in the low priority pool.

Note that there's nothing special about the designation of high and low priority messages in this example. They're
simply labels specified as properties in each message, and are used to direct messages to a specific subscription.
If additional priorities are required, it's relatively easy to create further subscriptions and pools of consumer
processes to handle these priorities.

The PriorityQueue solution available on GitHub contains an implementation of this approach. This solution
contains two worker role projects named PriorityQueue.High and PriorityQueue.Low . These worker roles inherit
from the PriorityWorkerRole class that contains the functionality for connecting to a specified subscription in the
OnStart method.

The PriorityQueue.High and PriorityQueue.Low worker roles connect to different subscriptions, defined by their
configuration settings. An administrator can configure different numbers of each role to be run. Typically there'll
be more instances of the PriorityQueue.High worker role than the PriorityQueue.Low worker role.

The Run method in the PriorityWorkerRole class arranges for the virtual ProcessMessage method (also defined
in the PriorityWorkerRole class) to be run for each message received on the queue. The following code shows the
Run and ProcessMessage methods. The QueueManager class, defined in the PriorityQueue.Shared project,

provides helper methods for using Azure Service Bus queues.

https://github.com/mspnp/cloud-design-patterns/tree/master/priority-queue

public class PriorityWorkerRole : RoleEntryPoint
{
 private QueueManager queueManager;
 ...

 public override void Run()
 {
 // Start listening for messages on the subscription.
 var subscriptionName = CloudConfigurationManager.GetSetting("SubscriptionName");
 this.queueManager.ReceiveMessages(subscriptionName, this.ProcessMessage);
 ...;
 }
 ...

 protected virtual async Task ProcessMessage(BrokeredMessage message)
 {
 // Simulating processing.
 await Task.Delay(TimeSpan.FromSeconds(2));
 }
}

protected override async Task ProcessMessage(BrokeredMessage message)
{
 // Simulate message processing for High priority messages.
 await base.ProcessMessage(message);
 Trace.TraceInformation("High priority message processed by " +
 RoleEnvironment.CurrentRoleInstance.Id + " MessageId: " + message.MessageId);
}

The PriorityQueue.High and PriorityQueue.Low worker roles both override the default functionality of the
ProcessMessage method. The code below shows the ProcessMessage method for the PriorityQueue.High worker

role.

When an application posts messages to the topic associated with the subscriptions used by the
PriorityQueue.High and PriorityQueue.Low worker roles, it specifies the priority by using the Priority custom

property, as shown in the following code example. This code (implemented in the WorkerRole class in the
PriorityQueue.Sender project), uses the SendBatchAsync helper method of the QueueManager class to post
messages to a topic in batches.

// Send a low priority batch.
var lowMessages = new List<BrokeredMessage>();

for (int i = 0; i < 10; i++)
{
 var message = new BrokeredMessage() { MessageId = Guid.NewGuid().ToString() };
 message.Properties["Priority"] = Priority.Low;
 lowMessages.Add(message);
}

this.queueManager.SendBatchAsync(lowMessages).Wait();
...

// Send a high priority batch.
var highMessages = new List<BrokeredMessage>();

for (int i = 0; i < 10; i++)
{
 var message = new BrokeredMessage() { MessageId = Guid.NewGuid().ToString() };
 message.Properties["Priority"] = Priority.High;
 highMessages.Add(message);
}

this.queueManager.SendBatchAsync(highMessages).Wait();

Related patterns and guidance
The following patterns and guidance might also be relevant when implementing this pattern:

A sample that demonstrates this pattern is available on GitHub.

Asynchronous Messaging Primer. A consumer service that processes a request might need to send a reply
to the instance of the application that posted the request. Provides information on the strategies that you
can use to implement request/response messaging.

Competing Consumers pattern. To increase the throughput of the queues, it’s possible to have multiple
consumers that listen on the same queue, and process the tasks in parallel. These consumers will compete
for messages, but only one should be able to process each message. Provides more information on the
benefits and tradeoffs of implementing this approach.

Throttling pattern. You can implement throttling by using queues. Priority messaging can be used to
ensure that requests from critical applications, or applications being run by high-value customers, are
given priority over requests from less important applications.

Autoscaling Guidance. It might be possible to scale the size of the pool of consumer processes handling a
queue depending on the length of the queue. This strategy can help to improve performance, especially for
pools handling high priority messages.

Enterprise Integration Patterns with Service Bus on Abhishek Lal’s blog.

https://github.com/mspnp/cloud-design-patterns/tree/master/priority-queue
https://msdn.microsoft.com/library/dn589781.aspx
https://msdn.microsoft.com/library/dn589774.aspx
https://abhishekrlal.com/2013/01/11/enterprise-integration-patterns-with-service-bus-part-2/

Publisher-Subscriber pattern
3/13/2019 • 6 minutes to read • Edit Online

Context and problem

Solution

Enable an application to announce events to multiple interested consumers aynchronously, without coupling the
senders to the receivers.

Also called: Pub/sub messaging

In cloud-based and distributed applications, components of the system often need to provide information to other
components as events happen.

Asynchronous messaging is an effective way to decouple senders from consumers, and avoid blocking the sender
to wait for a response. However, using a dedicated message queue for each consumer does not effectively scale to
many consumers. Also, some of the consumers might be interested in only a subset of the information. How can
the sender announce events to all interested consumers without knowing their identities?

Introduce an asynchronous messaging subsystem that includes the following:

NOTENOTE

An input messaging channel used by the sender. The sender packages events into messages, using a known
message format, and sends these messages via the input channel. The sender in this pattern is also called
the publisher.

A message is a packet of data. An event is a message that notifies other components about a change or an action
that has taken place.

One output messaging channel per consumer. The consumers are known as subscribers.

A mechanism for copying each message from the input channel to the output channels for all subscribers
interested in that message. This operation is typically handled by a intermediary such as a message broker
or event bus.

The following diagram shows the logical components of this pattern:

https://github.com/mspnp/architecture-center/blob/master/docs/patterns/publisher-subscriber.md

Issues and considerations

Pub/sub messaging has the following benefits:

It decouples subsystems that still need to communicate. Subsystems can be managed independently, and
messages can be properly managed even if one or more receivers are offline.

It increases scalability and improves responsiveness of the sender. The sender can quickly send a single
message to the input channel, then return to its core processing responsibilities. The messaging
infrastructure is responsible for ensuring messages are delivered to interested subscribers.

It improves reliability. Asynchronous messaging helps applications continue to run smoothly under
increased loads and handle intermittent failures more effectively.

It allows for deferred or scheduled processing. Subscribers can wait to pick up messages until off-peak
hours, or messages can be routed or processed according to a specific schedule.

It enables simpler integration between systems using different platforms, programming languages, or
communication protocols, as well as between on-premises systems and applications running in the cloud.

It facilitates asynchronous workflows across an enterprise.

It improves testability. Channels can be monitored and messages can be inspected or logged as part of an
overall integration test strategy.

It provides separation of concerns for your applications. Each application can focus on its core capabilities,
while the messaging infrastructure handles everything required to reliably route messages to multiple
consumers.

Consider the following points when deciding how to implement this pattern:

Existing technologies. It is strongly recommended to use available messaging products and services that
support a publish-subscribe model, rather than building your own. In Azure, consider using Service Bus or
Event Grid. Other technologies that can be used for pub/sub messaging include Redis, RabbitMQ, and
Apache Kafka.

Subscription handling. The messaging infrastructure must provide mechanisms that consumers can use
to subscribe to or unsubscribe from available channels.

Security. Connecting to any message channel must be restricted by security policy to prevent
eavesdropping by unauthorized users or applications.

Subsets of messages. Subscribers are usually only interested in subset of the messages distributed by a
publisher. Messaging services often allow subscribers to narrow the set of messages received by:

Topics. Each topic has a dedicated output channel, and each consumer can subscribe to all relevant
topics.
Content filtering. Messages are inspected and distributed based on the content of each message. Each
subscriber can specify the content it is interested in.

Wildcard subscribers. Consider allowing subscribers to subscribe to multiple topics via wildcards.

Bi-directional communication. The channels in a publish-subscribe system are treated as unidirectional.
If a specific subscriber needs to send acknowledgement or communicate status back to the publisher,
consider using the Request/Reply Pattern. This pattern uses one channel to send a message to the
subscriber, and a separate reply channel for communicating back to the publisher.

Message ordering. The order in which consumer instances receive messages isn't guaranteed, and doesn't
necessarily reflect the order in which the messages were created. Design the system to ensure that message

https://docs.microsoft.com/azure/service-bus-messaging/
https://docs.microsoft.com/azure/event-grid/
http://www.enterpriseintegrationpatterns.com/patterns/messaging/RequestReply.html

When to use this pattern

Example

processing is idempotent to help eliminate any dependency on the order of message handling.

Message priority. Some solutions may require that messages are processed in a specific order. The
Priority Queue pattern provides a mechanism for ensuring specific messages are delivered before others.

Poison messages. A malformed message, or a task that requires access to resources that aren't available,
can cause a service instance to fail. The system should prevent such messages being returned to the queue.
Instead, capture and store the details of these messages elsewhere so that they can be analyzed if
necessary.

Repeated messages. The same message might be sent more than once. For example, the sender might fail
after posting a message. Then a new instance of the sender might start up and repeat the message. The
messaging infrastructure should implement duplicate message detection and removal (also known as de-
duping) based on message IDs in order to provide at-most-once delivery of messages.

Message expiration. A message might have a limited lifetime. If it isn't processed within this period, it
might no longer be relevant and should be discarded. A sender can specify an experiation time as part of
the data in the message. A receiver can examine this information before deciding whether to perform the
business logic associated with the message.

Message scheduling. A message might be temporarily embargoed and should not be processed until a
specific date and time. The message should not be available to a receiver until this time.

Use this pattern when:

An application needs to broadcast information to a significant number of consumers.

An application needs to communicate with one or more independently-developed applications or services,
which may use different platforms, programming languages, and communication protocols.

An application can send information to consumers without requiring real-time responses from the
consumers.

The systems being integrated are designed to support an eventual consistency model for their data.

An application needs to communicate information to multiple consumers, which may have different
availability requirements or uptime schedules than the sender.

This pattern might not be useful when:

An application has only a few consumers who need significantly different information from the producing
application.

An application requires near real-time interaction with consumers.

The following diagram shows an enterprise integration architecture that uses Service Bus to coordinate workflows,
and Event Grid notify subsystems of events that occur. For more information, see Enterprise integration on Azure
using message queues and events.

Related patterns and guidance
The following patterns and guidance might be relevant when implementing this pattern:

Choose between Azure services that deliver messages.

The Event-driven architecture style is an architecture style that uses pub/sub messaging.

Asynchronous Messaging Primer. Message queues are an asynchronous communications mechanism. If a
consumer service needs to send a reply to an application, it might be necessary to implement some form of
response messaging. The Asynchronous Messaging Primer provides information on how to implement
request/reply messaging using message queues.

Observer Pattern. The Publish-Subscribe pattern builds on the Observer pattern by decoupling subjects
from observers via asynchronous messaging.

Message Broker Pattern. Many messaging subsystems that support a publish-subscribe modek are
implemented via a message broker.

https://docs.microsoft.com/azure/event-grid/compare-messaging-services
https://msdn.microsoft.com/library/dn589781.aspx
https://en.wikipedia.org/wiki/Observer_pattern
https://en.wikipedia.org/wiki/Message_broker

Queue-Based Load Leveling pattern
3/13/2019 • 5 minutes to read • Edit Online

Context and problem

Solution

Use a queue that acts as a buffer between a task and a service it invokes in order to smooth intermittent heavy
loads that can cause the service to fail or the task to time out. This can help to minimize the impact of peaks in
demand on availability and responsiveness for both the task and the service.

Many solutions in the cloud involve running tasks that invoke services. In this environment, if a service is
subjected to intermittent heavy loads, it can cause performance or reliability issues.

A service could be part of the same solution as the tasks that use it, or it could be a third-party service providing
access to frequently used resources such as a cache or a storage service. If the same service is used by a
number of tasks running concurrently, it can be difficult to predict the volume of requests to the service at any
time.

A service might experience peaks in demand that cause it to overload and be unable to respond to requests in a
timely manner. Flooding a service with a large number of concurrent requests can also result in the service
failing if it's unable to handle the contention these requests cause.

Refactor the solution and introduce a queue between the task and the service. The task and the service run
asynchronously. The task posts a message containing the data required by the service to a queue. The queue
acts as a buffer, storing the message until it's retrieved by the service. The service retrieves the messages from
the queue and processes them. Requests from a number of tasks, which can be generated at a highly variable
rate, can be passed to the service through the same message queue. This figure shows using a queue to level
the load on a service.

The queue decouples the tasks from the service, and the service can handle the messages at its own pace
regardless of the volume of requests from concurrent tasks. Additionally, there's no delay to a task if the service
isn't available at the time it posts a message to the queue.

This pattern provides the following benefits:

It can help to maximize availability because delays arising in services won't have an immediate and direct
impact on the application, which can continue to post messages to the queue even when the service isn't
available or isn't currently processing messages.

https://github.com/mspnp/architecture-center/blob/master/docs/patterns/queue-based-load-leveling.md

Issues and considerations

When to use this pattern

Example

It can help to maximize scalability because both the number of queues and the number of services can be
varied to meet demand.

It can help to control costs because the number of service instances deployed only have to be adequate
to meet average load rather than the peak load.

Some services implement throttling when demand reaches a threshold beyond which the system
could fail. Throttling can reduce the functionality available. You can implement load leveling with
these services to ensure that this threshold isn't reached.

Consider the following points when deciding how to implement this pattern:

It's necessary to implement application logic that controls the rate at which services handle messages to
avoid overwhelming the target resource. Avoid passing spikes in demand to the next stage of the system.
Test the system under load to ensure that it provides the required leveling, and adjust the number of queues
and the number of service instances that handle messages to achieve this.
Message queues are a one-way communication mechanism. If a task expects a reply from a service, it might
be necessary to implement a mechanism that the service can use to send a response. For more information,
see the Asynchronous Messaging Primer.
Be careful if you apply autoscaling to services that are listening for requests on the queue. This can result in
increased contention for any resources that these services share and diminish the effectiveness of using the
queue to level the load.

This pattern is useful to any application that uses services that are subject to overloading.

This pattern isn't useful if the application expects a response from the service with minimal latency.

A web app writes data to an external data store. If a large number of instances of the web app run concurrently,
the data store might be unable to respond to requests quickly enough, causing requests to time out, be
throttled, or otherwise fail. The following diagram shows a data store being overwhelmed by a large number of
concurrent requests from instances of an application.

https://msdn.microsoft.com/library/dn589781.aspx

Related patterns and guidance

To resolve this, you can use a queue to level the load between the application instances and the data store. An
Azure Functions app reads the messages from the queue and performs the read/write requests to the data
store. The application logic in the function app can control the rate at which it passes requests to the data store,
to prevent the store from being overwhelmed. (Otherwise the function app will just re-introduce the same
problem at the back end.)

The following patterns and guidance might also be relevant when implementing this pattern:

Asynchronous Messaging Primer. Message queues are inherently asynchronous. It might be necessary
to redesign the application logic in a task if it's adapted from communicating directly with a service to

https://msdn.microsoft.com/library/dn589781.aspx

using a message queue. Similarly, it might be necessary to refactor a service to accept requests from a
message queue. Alternatively, it might be possible to implement a proxy service, as described in the
example.

Competing Consumers pattern. It might be possible to run multiple instances of a service, each acting as
a message consumer from the load-leveling queue. You can use this approach to adjust the rate at which
messages are received and passed to a service.

Throttling pattern. A simple way to implement throttling with a service is to use queue-based load
leveling and route all requests to a service through a message queue. The service can process requests at
a rate that ensures that resources required by the service aren't exhausted, and to reduce the amount of
contention that could occur.

Choose between Azure messaging services. Information about choosing a messaging and queuing
mechanism in Azure applications.

Improve scalability in an Azure web application. This reference architecture includes queue-based load
leveling as part of the architecture.

https://docs.microsoft.com/azure/event-grid/compare-messaging-services

Retry pattern
3/13/2019 • 10 minutes to read • Edit Online

Context and problem

Solution

Enable an application to handle transient failures when it tries to connect to a service or network resource, by
transparently retrying a failed operation. This can improve the stability of the application.

An application that communicates with elements running in the cloud has to be sensitive to the transient faults
that can occur in this environment. Faults include the momentary loss of network connectivity to components
and services, the temporary unavailability of a service, or timeouts that occur when a service is busy.

These faults are typically self-correcting, and if the action that triggered a fault is repeated after a suitable delay
it's likely to be successful. For example, a database service that's processing a large number of concurrent
requests can implement a throttling strategy that temporarily rejects any further requests until its workload has
eased. An application trying to access the database might fail to connect, but if it tries again after a delay it might
succeed.

In the cloud, transient faults aren't uncommon and an application should be designed to handle them elegantly
and transparently. This minimizes the effects faults can have on the business tasks the application is performing.

If an application detects a failure when it tries to send a request to a remote service, it can handle the failure
using the following strategies:

Cancel. If the fault indicates that the failure isn't transient or is unlikely to be successful if repeated, the
application should cancel the operation and report an exception. For example, an authentication failure
caused by providing invalid credentials is not likely to succeed no matter how many times it's attempted.

Retry. If the specific fault reported is unusual or rare, it might have been caused by unusual
circumstances such as a network packet becoming corrupted while it was being transmitted. In this case,
the application could retry the failing request again immediately because the same failure is unlikely to be
repeated and the request will probably be successful.

Retry after delay. If the fault is caused by one of the more commonplace connectivity or busy failures,
the network or service might need a short period while the connectivity issues are corrected or the
backlog of work is cleared. The application should wait for a suitable time before retrying the request.

For the more common transient failures, the period between retries should be chosen to spread requests from
multiple instances of the application as evenly as possible. This reduces the chance of a busy service continuing
to be overloaded. If many instances of an application are continually overwhelming a service with retry requests,
it'll take the service longer to recover.

If the request still fails, the application can wait and make another attempt. If necessary, this process can be
repeated with increasing delays between retry attempts, until some maximum number of requests have been
attempted. The delay can be increased incrementally or exponentially, depending on the type of failure and the
probability that it'll be corrected during this time.

The following diagram illustrates invoking an operation in a hosted service using this pattern. If the request is
unsuccessful after a predefined number of attempts, the application should treat the fault as an exception and
handle it accordingly.

https://github.com/mspnp/architecture-center/blob/master/docs/patterns/retry.md

Issues and considerations

The application should wrap all attempts to access a remote service in code that implements a retry policy
matching one of the strategies listed above. Requests sent to different services can be subject to different
policies. Some vendors provide libraries that implement retry policies, where the application can specify the
maximum number of retries, the time between retry attempts, and other parameters.

An application should log the details of faults and failing operations. This information is useful to operators. If a
service is frequently unavailable or busy, it's often because the service has exhausted its resources. You can
reduce the frequency of these faults by scaling out the service. For example, if a database service is continually
overloaded, it might be beneficial to partition the database and spread the load across multiple servers.

Microsoft Entity Framework provides facilities for retrying database operations. Also, most Azure services
and client SDKs include a retry mechanism. For more information, see Retry guidance for specific services.

You should consider the following points when deciding how to implement this pattern.

The retry policy should be tuned to match the business requirements of the application and the nature of the
failure. For some noncritical operations, it's better to fail fast rather than retry several times and impact the
throughput of the application. For example, in an interactive web application accessing a remote service, it's
better to fail after a smaller number of retries with only a short delay between retry attempts, and display a
suitable message to the user (for example, “please try again later”). For a batch application, it might be more
appropriate to increase the number of retry attempts with an exponentially increasing delay between attempts.

An aggressive retry policy with minimal delay between attempts, and a large number of retries, could further
degrade a busy service that's running close to or at capacity. This retry policy could also affect the
responsiveness of the application if it's continually trying to perform a failing operation.

If a request still fails after a significant number of retries, it's better for the application to prevent further requests
going to the same resource and simply report a failure immediately. When the period expires, the application
can tentatively allow one or more requests through to see whether they're successful. For more details of this
strategy, see the Circuit Breaker pattern.

Consider whether the operation is idempotent. If so, it's inherently safe to retry. Otherwise, retries could cause
the operation to be executed more than once, with unintended side effects. For example, a service might receive
the request, process the request successfully, but fail to send a response. At that point, the retry logic might re-
send the request, assuming that the first request wasn't received.

A request to a service can fail for a variety of reasons raising different exceptions depending on the nature of the

https://docs.microsoft.com/ef
https://docs.microsoft.com/azure/architecture/best-practices/retry-service-specific

When to use this pattern

Example

failure. Some exceptions indicate a failure that can be resolved quickly, while others indicate that the failure is
longer lasting. It's useful for the retry policy to adjust the time between retry attempts based on the type of the
exception.

Consider how retrying an operation that's part of a transaction will affect the overall transaction consistency.
Fine tune the retry policy for transactional operations to maximize the chance of success and reduce the need to
undo all the transaction steps.

Ensure that all retry code is fully tested against a variety of failure conditions. Check that it doesn't severely
impact the performance or reliability of the application, cause excessive load on services and resources, or
generate race conditions or bottlenecks.

Implement retry logic only where the full context of a failing operation is understood. For example, if a task that
contains a retry policy invokes another task that also contains a retry policy, this extra layer of retries can add
long delays to the processing. It might be better to configure the lower-level task to fail fast and report the
reason for the failure back to the task that invoked it. This higher-level task can then handle the failure based on
its own policy.

It's important to log all connectivity failures that cause a retry so that underlying problems with the application,
services, or resources can be identified.

Investigate the faults that are most likely to occur for a service or a resource to discover if they're likely to be
long lasting or terminal. If they are, it's better to handle the fault as an exception. The application can report or
log the exception, and then try to continue either by invoking an alternative service (if one is available), or by
offering degraded functionality. For more information on how to detect and handle long-lasting faults, see the
Circuit Breaker pattern.

Use this pattern when an application could experience transient faults as it interacts with a remote service or
accesses a remote resource. These faults are expected to be short lived, and repeating a request that has
previously failed could succeed on a subsequent attempt.

This pattern might not be useful:

When a fault is likely to be long lasting, because this can affect the responsiveness of an application. The
application might be wasting time and resources trying to repeat a request that's likely to fail.
For handling failures that aren't due to transient faults, such as internal exceptions caused by errors in the
business logic of an application.
As an alternative to addressing scalability issues in a system. If an application experiences frequent busy
faults, it's often a sign that the service or resource being accessed should be scaled up.

This example in C# illustrates an implementation of the Retry pattern. The OperationWithBasicRetryAsync

method, shown below, invokes an external service asynchronously through the TransientOperationAsync

method. The details of the TransientOperationAsync method will be specific to the service and are omitted from
the sample code.

private int retryCount = 3;
private readonly TimeSpan delay = TimeSpan.FromSeconds(5);

public async Task OperationWithBasicRetryAsync()
{
 int currentRetry = 0;

 for (;;)
 {
 try
 {
 // Call external service.
 await TransientOperationAsync();

 // Return or break.
 break;
 }
 catch (Exception ex)
 {
 Trace.TraceError("Operation Exception");

 currentRetry++;

 // Check if the exception thrown was a transient exception
 // based on the logic in the error detection strategy.
 // Determine whether to retry the operation, as well as how
 // long to wait, based on the retry strategy.
 if (currentRetry > this.retryCount || !IsTransient(ex))
 {
 // If this isn't a transient error or we shouldn't retry,
 // rethrow the exception.
 throw;
 }
 }

 // Wait to retry the operation.
 // Consider calculating an exponential delay here and
 // using a strategy best suited for the operation and fault.
 await Task.Delay(delay);
 }
}

// Async method that wraps a call to a remote service (details not shown).
private async Task TransientOperationAsync()
{
 ...
}

The statement that invokes this method is contained in a try/catch block wrapped in a for loop. The for loop exits
if the call to the TransientOperationAsync method succeeds without throwing an exception. If the
TransientOperationAsync method fails, the catch block examines the reason for the failure. If it's believed to be a

transient error the code waits for a short delay before retrying the operation.

The for loop also tracks the number of times that the operation has been attempted, and if the code fails three
times the exception is assumed to be more long lasting. If the exception isn't transient or it's long lasting, the
catch handler throws an exception. This exception exits the for loop and should be caught by the code that
invokes the OperationWithBasicRetryAsync method.

The IsTransient method, shown below, checks for a specific set of exceptions that are relevant to the
environment the code is run in. The definition of a transient exception will vary according to the resources being
accessed and the environment the operation is being performed in.

private bool IsTransient(Exception ex)
{
 // Determine if the exception is transient.
 // In some cases this is as simple as checking the exception type, in other
 // cases it might be necessary to inspect other properties of the exception.
 if (ex is OperationTransientException)
 return true;

 var webException = ex as WebException;
 if (webException != null)
 {
 // If the web exception contains one of the following status values
 // it might be transient.
 return new[] {WebExceptionStatus.ConnectionClosed,
 WebExceptionStatus.Timeout,
 WebExceptionStatus.RequestCanceled }.
 Contains(webException.Status);
 }

 // Additional exception checking logic goes here.
 return false;
}

Related patterns and guidance
Circuit Breaker pattern. The Retry pattern is useful for handling transient faults. If a failure is expected to be
more long lasting, it might be more appropriate to implement the Circuit Breaker pattern. The Retry pattern
can also be used in conjunction with a circuit breaker to provide a comprehensive approach to handling
faults.
Retry guidance for specific services
Connection Resiliency

https://docs.microsoft.com/azure/architecture/best-practices/retry-service-specific
https://docs.microsoft.com/ef/core/miscellaneous/connection-resiliency

Scheduler Agent Supervisor pattern
3/13/2019 • 16 minutes to read • Edit Online

Context and problem

Solution

Coordinate a set of distributed actions as a single operation. If any of the actions fail, try to handle the failures
transparently, or else undo the work that was performed, so the entire operation succeeds or fails as a whole. This
can add resiliency to a distributed system, by enabling it to recover and retry actions that fail due to transient
exceptions, long-lasting faults, and process failures.

An application performs tasks that include a number of steps, some of which might invoke remote services or
access remote resources. The individual steps might be independent of each other, but they are orchestrated by
the application logic that implements the task.

Whenever possible, the application should ensure that the task runs to completion and resolve any failures that
might occur when accessing remote services or resources. Failures can occur for many reasons. For example, the
network might be down, communications could be interrupted, a remote service might be unresponsive or in an
unstable state, or a remote resource might be temporarily inaccessible, perhaps due to resource constraints. In
many cases the failures will be transient and can be handled by using the Retry pattern.

If the application detects a more permanent fault it can't easily recover from, it must be able to restore the system
to a consistent state and ensure integrity of the entire operation.

The Scheduler Agent Supervisor pattern defines the following actors. These actors orchestrate the steps to be
performed as part of the overall task.

The Scheduler arranges for the steps that make up the task to be executed and orchestrates their
operation. These steps can be combined into a pipeline or workflow. The Scheduler is responsible for
ensuring that the steps in this workflow are performed in the right order. As each step is performed, the
Scheduler records the state of the workflow, such as "step not yet started," "step running," or "step
completed." The state information should also include an upper limit of the time allowed for the step to
finish, called the complete-by time. If a step requires access to a remote service or resource, the Scheduler
invokes the appropriate Agent, passing it the details of the work to be performed. The Scheduler typically
communicates with an Agent using asynchronous request/response messaging. This can be implemented
using queues, although other distributed messaging technologies could be used instead.

The Scheduler performs a similar function to the Process Manager in the Process Manager pattern.
The actual workflow is typically defined and implemented by a workflow engine that's controlled by
the Scheduler. This approach decouples the business logic in the workflow from the Scheduler.

The Agent contains logic that encapsulates a call to a remote service, or access to a remote resource
referenced by a step in a task. Each Agent typically wraps calls to a single service or resource,
implementing the appropriate error handling and retry logic (subject to a timeout constraint, described
later). If the steps in the workflow being run by the Scheduler use several services and resources across
different steps, each step might reference a different Agent (this is an implementation detail of the
pattern).

The Supervisor monitors the status of the steps in the task being performed by the Scheduler. It runs
periodically (the frequency will be system specific), and examines the status of steps maintained by the

https://github.com/mspnp/architecture-center/blob/master/docs/patterns/scheduler-agent-supervisor.md
https://www.enterpriseintegrationpatterns.com/patterns/messaging/ProcessManager.html

NOTENOTE

Scheduler. If it detects any that have timed out or failed, it arranges for the appropriate Agent to recover
the step or execute the appropriate remedial action (this might involve modifying the status of a step).
Note that the recovery or remedial actions are implemented by the Scheduler and Agents. The Supervisor
should simply request that these actions be performed.

The Scheduler, Agent, and Supervisor are logical components and their physical implementation depends on the
technology being used. For example, several logical agents might be implemented as part of a single web service.

The Scheduler maintains information about the progress of the task and the state of each step in a durable data
store, called the state store. The Supervisor can use this information to help determine whether a step has failed.
The figure illustrates the relationship between the Scheduler, the Agents, the Supervisor, and the state store.

This diagram shows a simplified version of the pattern. In a real implementation, there might be many instances of the
Scheduler running concurrently, each a subset of tasks. Similarly, the system could run multiple instances of each Agent, or
even multiple Supervisors. In this case, Supervisors must coordinate their work with each other carefully to ensure that they
don’t compete to recover the same failed steps and tasks. The Leader Election pattern provides one possible solution to
this problem.

When the application is ready to run a task, it submits a request to the Scheduler. The Scheduler records initial
state information about the task and its steps (for example, step not yet started) in the state store and then starts
performing the operations defined by the workflow. As the Scheduler starts each step, it updates the information
about the state of that step in the state store (for example, step running).

If a step references a remote service or resource, the Scheduler sends a message to the appropriate Agent. The
message contains the information that the Agent needs to pass to the service or access the resource, in addition
to the complete-by time for the operation. If the Agent completes its operation successfully, it returns a response
to the Scheduler. The Scheduler can then update the state information in the state store (for example, step

Issues and considerations

completed) and perform the next step. This process continues until the entire task is complete.

An Agent can implement any retry logic that's necessary to perform its work. However, if the Agent doesn't
complete its work before the complete-by period expires, the Scheduler will assume that the operation has failed.
In this case, the Agent should stop its work and not try to return anything to the Scheduler (not even an error
message), or try any form of recovery. The reason for this restriction is that, after a step has timed out or failed,
another instance of the Agent might be scheduled to run the failing step (this process is described later).

If the Agent fails, the Scheduler won't receive a response. The pattern doesn't make a distinction between a step
that has timed out and one that has genuinely failed.

If a step times out or fails, the state store will contain a record that indicates that the step is running, but the
complete-by time will have passed. The Supervisor looks for steps like this and tries to recover them. One
possible strategy is for the Supervisor to update the complete-by value to extend the time available to complete
the step, and then send a message to the Scheduler identifying the step that has timed out. The Scheduler can
then try to repeat this step. However, this design requires the tasks to be idempotent.

The Supervisor might need to prevent the same step from being retried if it continually fails or times out. To do
this, the Supervisor could maintain a retry count for each step, along with the state information, in the state store.
If this count exceeds a predefined threshold the Supervisor can adopt a strategy of waiting for an extended
period before notifying the Scheduler that it should retry the step, in the expectation that the fault will be
resolved during this period. Alternatively, the Supervisor can send a message to the Scheduler to request the
entire task be undone by implementing a Compensating Transaction pattern. This approach will depend on the
Scheduler and Agents providing the information necessary to implement the compensating operations for each
step that completed successfully.

It isn't the purpose of the Supervisor to monitor the Scheduler and Agents, and restart them if they fail. This
aspect of the system should be handled by the infrastructure these components are running in. Similarly, the
Supervisor shouldn't have knowledge of the actual business operations that the tasks being performed by the
Scheduler are running (including how to compensate should these tasks fail). This is the purpose of the
workflow logic implemented by the Scheduler. The sole responsibility of the Supervisor is to determine
whether a step has failed and arrange either for it to be repeated or for the entire task containing the failed
step to be undone.

If the Scheduler is restarted after a failure, or the workflow being performed by the Scheduler terminates
unexpectedly, the Scheduler should be able to determine the status of any inflight task that it was handling when
it failed, and be prepared to resume this task from that point. The implementation details of this process are likely
to be system specific. If the task can't be recovered, it might be necessary to undo the work already performed by
the task. This might also require implementing a compensating transaction.

The key advantage of this pattern is that the system is resilient in the event of unexpected temporary or
unrecoverable failures. The system can be constructed to be self healing. For example, if an Agent or the
Scheduler fails, a new one can be started and the Supervisor can arrange for a task to be resumed. If the
Supervisor fails, another instance can be started and can take over from where the failure occurred. If the
Supervisor is scheduled to run periodically, a new instance can be automatically started after a predefined
interval. The state store can be replicated to reach an even greater degree of resiliency.

You should consider the following points when deciding how to implement this pattern:

This pattern can be difficult to implement and requires thorough testing of each possible failure mode of
the system.

The recovery/retry logic implemented by the Scheduler is complex and dependent on state information

When to use this pattern

Example

held in the state store. It might also be necessary to record the information required to implement a
compensating transaction in a durable data store.

How often the Supervisor runs will be important. It should run often enough to prevent any failed steps
from blocking an application for an extended period, but it shouldn't run so often that it becomes an
overhead.

The steps performed by an Agent could be run more than once. The logic that implements these steps
should be idempotent.

Use this pattern when a process that runs in a distributed environment, such as the cloud, must be resilient to
communications failure and/or operational failure.

This pattern might not be suitable for tasks that don't invoke remote services or access remote resources.

A web application that implements an ecommerce system has been deployed on Microsoft Azure. Users can run
this application to browse the available products and to place orders. The user interface runs as a web role, and
the order processing elements of the application are implemented as a set of worker roles. Part of the order
processing logic involves accessing a remote service, and this aspect of the system could be prone to transient or
more long-lasting faults. For this reason, the designers used the Scheduler Agent Supervisor pattern to
implement the order processing elements of the system.

When a customer places an order, the application constructs a message that describes the order and posts this
message to a queue. A separate submission process, running in a worker role, retrieves the message, inserts the
order details into the orders database, and creates a record for the order process in the state store. Note that the
inserts into the orders database and the state store are performed as part of the same operation. The submission
process is designed to ensure that both inserts complete together.

The state information that the submission process creates for the order includes:

OrderID . The ID of the order in the orders database.

LockedBy. The instance ID of the worker role handling the order. There might be multiple current
instances of the worker role running the Scheduler, but each order should only be handled by a single
instance.

CompleteBy. The time the order should be processed by.

ProcessState. The current state of the task handling the order. The possible states are:

Pending. The order has been created but processing hasn't yet been started.
Processing. The order is currently being processed.
Processed. The order has been processed successfully.
Error. The order processing has failed.

FailureCount. The number of times that processing has been tried for the order.

In this state information, the OrderID field is copied from the order ID of the new order. The LockedBy and
CompleteBy fields are set to null , the ProcessState field is set to Pending , and the FailureCount field is set to

0.

NOTENOTE
In this example, the order handling logic is relatively simple and only has a single step that invokes a remote service. In a
more complex multistep scenario, the submission process would likely involve several steps, and so several records would
be created in the state store — each one describing the state of an individual step.

The Scheduler also runs as part of a worker role and implements the business logic that handles the order. An
instance of the Scheduler polling for new orders examines the state store for records where the LockedBy field is
null and the ProcessState field is pending. When the Scheduler finds a new order, it immediately populates the
LockedBy field with its own instance ID, sets the CompleteBy field to an appropriate time, and sets the
ProcessState field to processing. The code is designed to be exclusive and atomic to ensure that two concurrent

instances of the Scheduler can't try to handle the same order simultaneously.

The Scheduler then runs the business workflow to process the order asynchronously, passing it the value in the
OrderID field from the state store. The workflow handling the order retrieves the details of the order from the

orders database and performs its work. When a step in the order processing workflow needs to invoke the
remote service, it uses an Agent. The workflow step communicates with the Agent using a pair of Azure Service
Bus message queues acting as a request/response channel. The figure shows a high level view of the solution.

Related patterns and guidance

The message sent to the Agent from a workflow step describes the order and includes the complete-by time. If
the Agent receives a response from the remote service before the complete-by time expires, it posts a reply
message on the Service Bus queue on which the workflow is listening. When the workflow step receives the valid
reply message, it completes its processing and the Scheduler sets the `ProcessState field of the order state to
processed. At this point, the order processing has completed successfully.

If the complete-by time expires before the Agent receives a response from the remote service, the Agent simply
halts its processing and terminates handling the order. Similarly, if the workflow handling the order exceeds the
complete-by time, it also terminates. In both cases, the state of the order in the state store remains set to
processing, but the complete-by time indicates that the time for processing the order has passed and the process
is deemed to have failed. Note that if the Agent that's accessing the remote service, or the workflow that's
handling the order (or both) terminate unexpectedly, the information in the state store will again remain set to
processing and eventually will have an expired complete-by value.

If the Agent detects an unrecoverable, nontransient fault while it's trying to contact the remote service, it can
send an error response back to the workflow. The Scheduler can set the status of the order to error and raise an
event that alerts an operator. The operator can then try to resolve the reason for the failure manually and
resubmit the failed processing step.

The Supervisor periodically examines the state store looking for orders with an expired complete-by value. If the
Supervisor finds a record, it increments the FailureCount field. If the failure count value is below a specified
threshold value, the Supervisor resets the LockedBy field to null, updates the CompleteBy field with a new
expiration time, and sets the ProcessState field to pending. An instance of the Scheduler can pick up this order
and perform its processing as before. If the failure count value exceeds a specified threshold, the reason for the
failure is assumed to be nontransient. The Supervisor sets the status of the order to error and raises an event that
alerts an operator.

In this example, the Supervisor is implemented in a separate worker role. You can use a variety of strategies
to arrange for the Supervisor task to be run, including using the Azure Scheduler service (not to be confused
with the Scheduler component in this pattern). For more information about the Azure Scheduler service, visit
the Scheduler page.

Although it isn't shown in this example, the Scheduler might need to keep the application that submitted the
order informed about the progress and status of the order. The application and the Scheduler are isolated from
each other to eliminate any dependencies between them. The application has no knowledge of which instance of
the Scheduler is handling the order, and the Scheduler is unaware of which specific application instance posted
the order.

To allow the order status to be reported, the application could use its own private response queue. The details of
this response queue would be included as part of the request sent to the submission process, which would
include this information in the state store. The Scheduler would then post messages to this queue indicating the
status of the order (request received, order completed, order failed, and so on). It should include the order ID in
these messages so they can be correlated with the original request by the application.

The following patterns and guidance might also be relevant when implementing this pattern:

Retry pattern. An Agent can use this pattern to transparently retry an operation that accesses a remote service
or resource that has previously failed. Use when the expectation is that the cause of the failure is transient and
can be corrected.
Circuit Breaker pattern. An Agent can use this pattern to handle faults that take a variable amount of time to
correct when connecting to a remote service or resource.
Compensating Transaction pattern. If the workflow being performed by a Scheduler can't be completed

https://azure.microsoft.com/services/scheduler/

successfully, it might be necessary to undo any work it's previously performed. The Compensating Transaction
pattern describes how this can be achieved for operations that follow the eventual consistency model. These
types of operations are commonly implemented by a Scheduler that performs complex business processes
and workflows.
Asynchronous Messaging Primer. The components in the Scheduler Agent Supervisor pattern typically run
decoupled from each other and communicate asynchronously. Describes some of the approaches that can be
used to implement asynchronous communication based on message queues.
Leader Election pattern. It might be necessary to coordinate the actions of multiple instances of a Supervisor
to prevent them from attempting to recover the same failed process. The Leader Election pattern describes
how to do this.
Cloud Architecture: The Scheduler-Agent-Supervisor Pattern on Clemens Vasters' blog
Process Manager pattern
Reference 6: A Saga on Sagas. An example showing how the CQRS pattern uses a process manager (part of
the CQRS Journey guidance).
Microsoft Azure Scheduler

https://msdn.microsoft.com/library/dn589781.aspx
https://blogs.msdn.microsoft.com/clemensv/2010/09/27/cloud-architecture-the-scheduler-agent-supervisor-pattern/
https://www.enterpriseintegrationpatterns.com/patterns/messaging/ProcessManager.html
https://msdn.microsoft.com/library/jj591569.aspx
https://azure.microsoft.com/services/scheduler/

Sharding pattern
3/13/2019 • 19 minutes to read • Edit Online

Context and problem

Solution

Divide a data store into a set of horizontal partitions or shards. This can improve scalability when storing and
accessing large volumes of data.

A data store hosted by a single server might be subject to the following limitations:

Storage space. A data store for a large-scale cloud application is expected to contain a huge volume of
data that could increase significantly over time. A server typically provides only a finite amount of disk
storage, but you can replace existing disks with larger ones, or add further disks to a machine as data
volumes grow. However, the system will eventually reach a limit where it isn't possible to easily increase
the storage capacity on a given server.

Computing resources. A cloud application is required to support a large number of concurrent users,
each of which run queries that retrieve information from the data store. A single server hosting the data
store might not be able to provide the necessary computing power to support this load, resulting in
extended response times for users and frequent failures as applications attempting to store and retrieve
data time out. It might be possible to add memory or upgrade processors, but the system will reach a limit
when it isn't possible to increase the compute resources any further.

Network bandwidth. Ultimately, the performance of a data store running on a single server is governed
by the rate the server can receive requests and send replies. It's possible that the volume of network traffic
might exceed the capacity of the network used to connect to the server, resulting in failed requests.

Geography. It might be necessary to store data generated by specific users in the same region as those
users for legal, compliance, or performance reasons, or to reduce latency of data access. If the users are
dispersed across different countries or regions, it might not be possible to store the entire data for the
application in a single data store.

Scaling vertically by adding more disk capacity, processing power, memory, and network connections can
postpone the effects of some of these limitations, but it's likely to only be a temporary solution. A commercial
cloud application capable of supporting large numbers of users and high volumes of data must be able to scale
almost indefinitely, so vertical scaling isn't necessarily the best solution.

Divide the data store into horizontal partitions or shards. Each shard has the same schema, but holds its own
distinct subset of the data. A shard is a data store in its own right (it can contain the data for many entities of
different types), running on a server acting as a storage node.

This pattern has the following benefits:

You can scale the system out by adding further shards running on additional storage nodes.

A system can use off-the-shelf hardware rather than specialized and expensive computers for each storage
node.

You can reduce contention and improve performance by balancing the workload across shards.

In the cloud, shards can be located physically close to the users that'll access the data.

https://github.com/mspnp/architecture-center/blob/master/docs/patterns/sharding.md

Sharding strategies

When dividing a data store up into shards, decide which data should be placed in each shard. A shard typically
contains items that fall within a specified range determined by one or more attributes of the data. These
attributes form the shard key (sometimes referred to as the partition key). The shard key should be static. It
shouldn't be based on data that might change.

Sharding physically organizes the data. When an application stores and retrieves data, the sharding logic directs
the application to the appropriate shard. This sharding logic can be implemented as part of the data access code
in the application, or it could be implemented by the data storage system if it transparently supports sharding.

Abstracting the physical location of the data in the sharding logic provides a high level of control over which
shards contain which data. It also enables data to migrate between shards without reworking the business logic
of an application if the data in the shards need to be redistributed later (for example, if the shards become
unbalanced). The tradeoff is the additional data access overhead required in determining the location of each data
item as it's retrieved.

To ensure optimal performance and scalability, it's important to split the data in a way that's appropriate for the
types of queries that the application performs. In many cases, it's unlikely that the sharding scheme will exactly
match the requirements of every query. For example, in a multi-tenant system an application might need to
retrieve tenant data using the tenant ID, but it might also need to look up this data based on some other attribute
such as the tenant’s name or location. To handle these situations, implement a sharding strategy with a shard key
that supports the most commonly performed queries.

If queries regularly retrieve data using a combination of attribute values, you can likely define a composite shard
key by linking attributes together. Alternatively, use a pattern such as Index Table to provide fast lookup to data
based on attributes that aren't covered by the shard key.

Three strategies are commonly used when selecting the shard key and deciding how to distribute data across
shards. Note that there doesn't have to be a one-to-one correspondence between shards and the servers that
host them—a single server can host multiple shards. The strategies are:

The Lookup strategy. In this strategy the sharding logic implements a map that routes a request for data to the
shard that contains that data using the shard key. In a multi-tenant application all the data for a tenant might be
stored together in a shard using the tenant ID as the shard key. Multiple tenants might share the same shard, but
the data for a single tenant won't be spread across multiple shards. The figure illustrates sharding tenant data
based on tenant IDs.

The mapping between the shard key and the physical storage can be based on physical shards where each shard
key maps to a physical partition. Alternatively, a more flexible technique for rebalancing shards is virtual
partitioning, where shard keys map to the same number of virtual shards, which in turn map to fewer physical
partitions. In this approach, an application locates data using a shard key that refers to a virtual shard, and the
system transparently maps virtual shards to physical partitions. The mapping between a virtual shard and a
physical partition can change without requiring the application code be modified to use a different set of shard
keys.

The Range strategy. This strategy groups related items together in the same shard, and orders them by shard
key—the shard keys are sequential. It's useful for applications that frequently retrieve sets of items using range
queries (queries that return a set of data items for a shard key that falls within a given range). For example, if an
application regularly needs to find all orders placed in a given month, this data can be retrieved more quickly if all
orders for a month are stored in date and time order in the same shard. If each order was stored in a different
shard, they'd have to be fetched individually by performing a large number of point queries (queries that return a
single data item). The next figure illustrates storing sequential sets (ranges) of data in shard.

In this example, the shard key is a composite key containing the order month as the most significant element,
followed by the order day and the time. The data for orders is naturally sorted when new orders are created and
added to a shard. Some data stores support two-part shard keys containing a partition key element that
identifies the shard and a row key that uniquely identifies an item in the shard. Data is usually held in row key
order in the shard. Items that are subject to range queries and need to be grouped together can use a shard key
that has the same value for the partition key but a unique value for the row key.

The Hash strategy. The purpose of this strategy is to reduce the chance of hotspots (shards that receive a
disproportionate amount of load). It distributes the data across the shards in a way that achieves a balance
between the size of each shard and the average load that each shard will encounter. The sharding logic computes
the shard to store an item in based on a hash of one or more attributes of the data. The chosen hashing function
should distribute data evenly across the shards, possibly by introducing some random element into the
computation. The next figure illustrates sharding tenant data based on a hash of tenant IDs.

Scaling and data movement operations

To understand the advantage of the Hash strategy over other sharding strategies, consider how a multi-tenant
application that enrolls new tenants sequentially might assign the tenants to shards in the data store. When using
the Range strategy, the data for tenants 1 to n will all be stored in shard A, the data for tenants n+1 to m will all
be stored in shard B, and so on. If the most recently registered tenants are also the most active, most data activity
will occur in a small number of shards, which could cause hotspots. In contrast, the Hash strategy allocates
tenants to shards based on a hash of their tenant ID. This means that sequential tenants are most likely to be
allocated to different shards, which will distribute the load across them. The previous figure shows this for
tenants 55 and 56.

The three sharding strategies have the following advantages and considerations:

Lookup. This offers more control over the way that shards are configured and used. Using virtual shards
reduces the impact when rebalancing data because new physical partitions can be added to even out the
workload. The mapping between a virtual shard and the physical partitions that implement the shard can
be modified without affecting application code that uses a shard key to store and retrieve data. Looking up
shard locations can impose an additional overhead.

Range. This is easy to implement and works well with range queries because they can often fetch multiple
data items from a single shard in a single operation. This strategy offers easier data management. For
example, if users in the same region are in the same shard, updates can be scheduled in each time zone
based on the local load and demand pattern. However, this strategy doesn't provide optimal balancing
between shards. Rebalancing shards is difficult and might not resolve the problem of uneven load if the
majority of activity is for adjacent shard keys.

Hash. This strategy offers a better chance of more even data and load distribution. Request routing can be
accomplished directly by using the hash function. There's no need to maintain a map. Note that computing
the hash might impose an additional overhead. Also, rebalancing shards is difficult.

Most common sharding systems implement one of the approaches described above, but you should also
consider the business requirements of your applications and their patterns of data usage. For example, in a multi-
tenant application:

You can shard data based on workload. You could segregate the data for highly volatile tenants in separate
shards. The speed of data access for other tenants might be improved as a result.

You can shard data based on the location of tenants. You can take the data for tenants in a specific
geographic region offline for backup and maintenance during off-peak hours in that region, while the data
for tenants in other regions remains online and accessible during their business hours.

High-value tenants could be assigned their own private, high performing, lightly loaded shards, whereas
lower-value tenants might be expected to share more densely-packed, busy shards.

The data for tenants that need a high degree of data isolation and privacy can be stored on a completely
separate server.

Each of the sharding strategies implies different capabilities and levels of complexity for managing scale in, scale
out, data movement, and maintaining state.

The Lookup strategy permits scaling and data movement operations to be carried out at the user level, either
online or offline. The technique is to suspend some or all user activity (perhaps during off-peak periods), move
the data to the new virtual partition or physical shard, change the mappings, invalidate or refresh any caches that
hold this data, and then allow user activity to resume. Often this type of operation can be centrally managed. The
Lookup strategy requires state to be highly cacheable and replica friendly.

The Range strategy imposes some limitations on scaling and data movement operations, which must typically be

Issues and considerations

carried out when a part or all of the data store is offline because the data must be split and merged across the
shards. Moving the data to rebalance shards might not resolve the problem of uneven load if the majority of
activity is for adjacent shard keys or data identifiers that are within the same range. The Range strategy might
also require some state to be maintained in order to map ranges to the physical partitions.

The Hash strategy makes scaling and data movement operations more complex because the partition keys are
hashes of the shard keys or data identifiers. The new location of each shard must be determined from the hash
function, or the function modified to provide the correct mappings. However, the Hash strategy doesn't require
maintenance of state.

Consider the following points when deciding how to implement this pattern:

Sharding is complementary to other forms of partitioning, such as vertical partitioning and functional
partitioning. For example, a single shard can contain entities that have been partitioned vertically, and a
functional partition can be implemented as multiple shards. For more information about partitioning, see
the Data Partitioning Guidance.

Keep shards balanced so they all handle a similar volume of I/O. As data is inserted and deleted, it's
necessary to periodically rebalance the shards to guarantee an even distribution and to reduce the chance
of hotspots. Rebalancing can be an expensive operation. To reduce the necessity of rebalancing, plan for
growth by ensuring that each shard contains sufficient free space to handle the expected volume of
changes. You should also develop strategies and scripts you can use to quickly rebalance shards if this
becomes necessary.

Use stable data for the shard key. If the shard key changes, the corresponding data item might have to
move between shards, increasing the amount of work performed by update operations. For this reason,
avoid basing the shard key on potentially volatile information. Instead, look for attributes that are invariant
or that naturally form a key.

Ensure that shard keys are unique. For example, avoid using autoincrementing fields as the shard key. Is
some systems, autoincremented fields can't be coordinated across shards, possibly resulting in items in
different shards having the same shard key.

Autoincremented values in other fields that are not shard keys can also cause problems. For example,
if you use autoincremented fields to generate unique IDs, then two different items located in different
shards might be assigned the same ID.

It might not be possible to design a shard key that matches the requirements of every possible query
against the data. Shard the data to support the most frequently performed queries, and if necessary create
secondary index tables to support queries that retrieve data using criteria based on attributes that aren't
part of the shard key. For more information, see the Index Table pattern.

Queries that access only a single shard are more efficient than those that retrieve data from multiple
shards, so avoid implementing a sharding system that results in applications performing large numbers of
queries that join data held in different shards. Remember that a single shard can contain the data for
multiple types of entities. Consider denormalizing your data to keep related entities that are commonly
queried together (such as the details of customers and the orders that they have placed) in the same shard
to reduce the number of separate reads that an application performs.

If an entity in one shard references an entity stored in another shard, include the shard key for the
second entity as part of the schema for the first entity. This can help to improve the performance of
queries that reference related data across shards.

https://msdn.microsoft.com/library/dn589795.aspx

When to use this pattern

NOTENOTE

If an application must perform queries that retrieve data from multiple shards, it might be possible to fetch
this data by using parallel tasks. Examples include fan-out queries, where data from multiple shards is
retrieved in parallel and then aggregated into a single result. However, this approach inevitably adds some
complexity to the data access logic of a solution.

For many applications, creating a larger number of small shards can be more efficient than having a small
number of large shards because they can offer increased opportunities for load balancing. This can also be
useful if you anticipate the need to migrate shards from one physical location to another. Moving a small
shard is quicker than moving a large one.

Make sure the resources available to each shard storage node are sufficient to handle the scalability
requirements in terms of data size and throughput. For more information, see the section “Designing
Partitions for Scalability” in the Data Partitioning Guidance.

Consider replicating reference data to all shards. If an operation that retrieves data from a shard also
references static or slow-moving data as part of the same query, add this data to the shard. The application
can then fetch all of the data for the query easily, without having to make an additional round trip to a
separate data store.

If reference data held in multiple shards changes, the system must synchronize these changes across
all shards. The system can experience a degree of inconsistency while this synchronization occurs. If
you do this, you should design your applications to be able to handle it.

It can be difficult to maintain referential integrity and consistency between shards, so you should minimize
operations that affect data in multiple shards. If an application must modify data across shards, evaluate
whether complete data consistency is actually required. Instead, a common approach in the cloud is to
implement eventual consistency. The data in each partition is updated separately, and the application logic
must take responsibility for ensuring that the updates all complete successfully, as well as handling the
inconsistencies that can arise from querying data while an eventually consistent operation is running. For
more information about implementing eventual consistency, see the Data Consistency Primer.

Configuring and managing a large number of shards can be a challenge. Tasks such as monitoring,
backing up, checking for consistency, and logging or auditing must be accomplished on multiple shards
and servers, possibly held in multiple locations. These tasks are likely to be implemented using scripts or
other automation solutions, but that might not completely eliminate the additional administrative
requirements.

Shards can be geolocated so that the data that they contain is close to the instances of an application that
use it. This approach can considerably improve performance, but requires additional consideration for
tasks that must access multiple shards in different locations.

Use this pattern when a data store is likely to need to scale beyond the resources available to a single storage
node, or to improve performance by reducing contention in a data store.

The primary focus of sharding is to improve the performance and scalability of a system, but as a by-product it
can also improve availability due to how the data is divided into separate partitions. A failure in one partition
doesn't necessarily prevent an application from accessing data held in other partitions, and an operator can
perform maintenance or recovery of one or more partitions without making the entire data for an application
inaccessible. For more information, see the Data Partitioning Guidance.

https://msdn.microsoft.com/library/dn589795.aspx
https://msdn.microsoft.com/library/dn589800.aspx
https://msdn.microsoft.com/library/dn589795.aspx

Example

private IEnumerable<ShardInformation> GetShards()
{
 // This retrieves the connection information from a shard store
 // (commonly a root database).
 return new[]
 {
 new ShardInformation
 {
 Id = 1,
 ConnectionString = ...
 },
 new ShardInformation
 {
 Id = 2,
 ConnectionString = ...
 }
 };
}

The following example in C# uses a set of SQL Server databases acting as shards. Each database holds a subset
of the data used by an application. The application retrieves data that's distributed across the shards using its own
sharding logic (this is an example of a fan-out query). The details of the data that's located in each shard is
returned by a method called GetShards . This method returns an enumerable list of ShardInformation objects,
where the ShardInformation type contains an identifier for each shard and the SQL Server connection string that
an application should use to connect to the shard (the connection strings aren't shown in the code example).

The code below shows how the application uses the list of ShardInformation objects to perform a query that
fetches data from each shard in parallel. The details of the query aren't shown, but in this example the data that's
retrieved contains a string that could hold information such as the name of a customer if the shards contain the
details of customers. The results are aggregated into a ConcurrentBag collection for processing by the application.

// Retrieve the shards as a ShardInformation[] instance.
var shards = GetShards();

var results = new ConcurrentBag<string>();

// Execute the query against each shard in the shard list.
// This list would typically be retrieved from configuration
// or from a root/master shard store.
Parallel.ForEach(shards, shard =>
{
 // NOTE: Transient fault handling isn't included,
 // but should be incorporated when used in a real world application.
 using (var con = new SqlConnection(shard.ConnectionString))
 {
 con.Open();
 var cmd = new SqlCommand("SELECT ... FROM ...", con);

 Trace.TraceInformation("Executing command against shard: {0}", shard.Id);

 var reader = cmd.ExecuteReader();
 // Read the results in to a thread-safe data structure.
 while (reader.Read())
 {
 results.Add(reader.GetString(0));
 }
 }
});

Trace.TraceInformation("Fanout query complete - Record Count: {0}",
 results.Count);

Related patterns and guidance
The following patterns and guidance might also be relevant when implementing this pattern:

Data Consistency Primer. It might be necessary to maintain consistency for data distributed across different
shards. Summarizes the issues surrounding maintaining consistency over distributed data, and describes the
benefits and tradeoffs of different consistency models.
Data Partitioning Guidance. Sharding a data store can introduce a range of additional issues. Describes these
issues in relation to partitioning data stores in the cloud to improve scalability, reduce contention, and
optimize performance.
Index Table pattern. Sometimes it isn't possible to completely support queries just through the design of the
shard key. Enables an application to quickly retrieve data from a large data store by specifying a key other
than the shard key.
Materialized View pattern. To maintain the performance of some query operations, it's useful to create
materialized views that aggregate and summarize data, especially if this summary data is based on
information that's distributed across shards. Describes how to generate and populate these views.

https://msdn.microsoft.com/library/dn589800.aspx
https://msdn.microsoft.com/library/dn589795.aspx

Sidecar pattern
3/13/2019 • 5 minutes to read • Edit Online

Context and Problem

Solution

Deploy components of an application into a separate process or container to provide isolation and encapsulation.
This pattern can also enable applications to be composed of heterogeneous components and technologies.

This pattern is named Sidecar because it resembles a sidecar attached to a motorcycle. In the pattern, the sidecar
is attached to a parent application and provides supporting features for the application. The sidecar also shares
the same lifecycle as the parent application, being created and retired alongside the parent. The sidecar pattern is
sometimes referred to as the sidekick pattern and is a decomposition pattern.

Applications and services often require related functionality, such as monitoring, logging, configuration, and
networking services. These peripheral tasks can be implemented as separate components or services.

If they are tightly integrated into the application, they can run in the same process as the application, making
efficient use of shared resources. However, this also means they are not well isolated, and an outage in one of
these components can affect other components or the entire application. Also, they usually need to be
implemented using the same language as the parent application. As a result, the component and the application
have close interdependence on each other.

If the application is decomposed into services, then each service can be built using different languages and
technologies. While this gives more flexibility, it means that each component has its own dependencies and
requires language-specific libraries to access the underlying platform and any resources shared with the parent
application. In addition, deploying these features as separate services can add latency to the application.
Managing the code and dependencies for these language-specific interfaces can also add considerable
complexity, especially for hosting, deployment, and management.

Co-locate a cohesive set of tasks with the primary application, but place them inside their own process or
container, providing a homogeneous interface for platform services across languages.

A sidecar service is not necessarily part of the application, but is connected to it. It goes wherever the parent
application goes. Sidecars are supporting processes or services that are deployed with the primary application.

https://github.com/mspnp/architecture-center/blob/master/docs/patterns/sidecar.md

Issues and Considerations

When to Use this Pattern

On a motorcycle, the sidecar is attached to one motorcycle, and each motorcycle can have its own sidecar. In the
same way, a sidecar service shares the fate of its parent application. For each instance of the application, an
instance of the sidecar is deployed and hosted alongside it.

Advantages of using a sidecar pattern include:

A sidecar is independent from its primary application in terms of runtime environment and programming
language, so you don't need to develop one sidecar per language.

The sidecar can access the same resources as the primary application. For example, a sidecar can monitor
system resources used by both the sidecar and the primary application.

Because of its proximity to the primary application, there’s no significant latency when communicating
between them.

Even for applications that don’t provide an extensibility mechanism, you can use a sidecar to extend
functionality by attaching it as own process in the same host or sub-container as the primary application.

The sidecar pattern is often used with containers and referred to as a sidecar container or sidekick container.

Consider the deployment and packaging format you will use to deploy services, processes, or containers.
Containers are particularly well suited to the sidecar pattern.
When designing a sidecar service, carefully decide on the interprocess communication mechanism. Try to use
language- or framework-agnostic technologies unless performance requirements make that impractical.
Before putting functionality into a sidecar, consider whether it would work better as a separate service or a
more traditional daemon.
Also consider whether the functionality could be implemented as a library or using a traditional extension
mechanism. Language-specific libraries may have a deeper level of integration and less network overhead.

Use this pattern when:

Your primary application uses a heterogeneous set of languages and frameworks. A component located in a
sidecar service can be consumed by applications written in different languages using different frameworks.
A component is owned by a remote team or a different organization.
A component or feature must be co-located on the same host as the application
You need a service that shares the overall lifecycle of your main application, but can be independently
updated.
You need fine-grained control over resource limits for a particular resource or component. For example, you
may want to restrict the amount of memory a specific component uses. You can deploy the component as a
sidecar and manage memory usage independently of the main application.

This pattern may not be suitable:

When interprocess communication needs to be optimized. Communication between a parent application and
sidecar services includes some overhead, notably latency in the calls. This may not be an acceptable trade-off
for chatty interfaces.
For small applications where the resource cost of deploying a sidecar service for each instance is not worth
the advantage of isolation.
When the service needs to scale differently than or independently from the main applications. If so, it may be
better to deploy the feature as a separate service.

Example

Related guidance

The sidecar pattern is applicable to many scenarios. Some common examples:

Infrastructure API. The infrastructure development team creates a service that's deployed alongside each
application, instead of a language-specific client library to access the infrastructure. The service is loaded as a
sidecar and provides a common layer for infrastructure services, including logging, environment data,
configuration store, discovery, health checks, and watchdog services. The sidecar also monitors the parent
application's host environment and process (or container) and logs the information to a centralized service.
Manage NGINX/HAProxy. Deploy NGINX with a sidecar service that monitors environment state, then
updates the NGINX configuration file and recycles the process when a change in state is needed.
Ambassador sidecar. Deploy an ambassador service as a sidecar. The application calls through the
ambassador, which handles request logging, routing, circuit breaking, and other connectivity related features.
Offload proxy. Place an NGINX proxy in front of a node.js service instance, to handle serving static file content
for the service.

Ambassador pattern

Static Content Hosting pattern
3/13/2019 • 5 minutes to read • Edit Online

Context and problem

Solution

Issues and considerations

Deploy static content to a cloud-based storage service that can deliver them directly to the client. This can reduce
the need for potentially expensive compute instances.

Web applications typically include some elements of static content. This static content might include HTML pages
and other resources such as images and documents that are available to the client, either as part of an HTML
page (such as inline images, style sheets, and client-side JavaScript files) or as separate downloads (such as PDF
documents).

Although web servers are optimized for dynamic rendering and output caching, they still have to handle requests
to download static content. This consumes processing cycles that could often be put to better use.

In most cloud hosting environments, you can put some of an application's resources and static pages in a storage
service. The storage service can serve requests for these resources, reducing load on the compute resources that
handle other web requests. The cost for cloud-hosted storage is typically much less than for compute instances.

When hosting some parts of an application in a storage service, the main considerations are related to
deployment of the application and to securing resources that aren't intended to be available to anonymous users.

Consider the following points when deciding how to implement this pattern:

The hosted storage service must expose an HTTP endpoint that users can access to download the static
resources. Some storage services also support HTTPS, so it's possible to host resources in storage services
that require SSL.

For maximum performance and availability, consider using a content delivery network (CDN) to cache the
contents of the storage container in multiple datacenters around the world. However, you'll likely have to
pay for using the CDN.

Storage accounts are often geo-replicated by default to provide resiliency against events that might affect a
datacenter. This means that the IP address might change, but the URL will remain the same.

When some content is located in a storage account and other content is in a hosted compute instance, it
becomes more challenging to deploy and update the application. You might have to perform separate
deployments, and version the application and content to manage it more easily—especially when the static
content includes script files or UI components. However, if only static resources have to be updated, they
can simply be uploaded to the storage account without needing to redeploy the application package.

Storage services might not support the use of custom domain names. In this case it's necessary to specify
the full URL of the resources in links because they'll be in a different domain from the dynamically-
generated content containing the links.

The storage containers must be configured for public read access, but it's vital to ensure that they aren't
configured for public write access to prevent users being able to upload content.

https://github.com/mspnp/architecture-center/blob/master/docs/patterns/static-content-hosting.md

When to use this pattern

Example

Consider using a valet key or token to control access to resources that shouldn't be available anonymously.
See the Valet Key pattern for more information.

This pattern is useful for:

Minimizing the hosting cost for websites and applications that contain some static resources.

Minimizing the hosting cost for websites that consist of only static content and resources. Depending on
the capabilities of the hosting provider's storage system, it might be possible to entirely host a fully static
website in a storage account.

Exposing static resources and content for applications running in other hosting environments or on-
premises servers.

Locating content in more than one geographical area using a content delivery network that caches the
contents of the storage account in multiple datacenters around the world.

Monitoring costs and bandwidth usage. Using a separate storage account for some or all of the static
content allows the costs to be more easily separated from hosting and runtime costs.

This pattern might not be useful in the following situations:

The application needs to perform some processing on the static content before delivering it to the client.
For example, it might be necessary to add a timestamp to a document.

The volume of static content is very small. The overhead of retrieving this content from separate storage
can outweigh the cost benefit of separating it out from the compute resource.

Azure Storage supports serving static content directly from a storage container. Files are served through
anonymous access requests. By default, files have a URL in a subdomain of core.windows.net , such as
https://contoso.z4.web.core.windows.net/image.png . You can configure a custom domain name, and use Azure

CDN to access the files over HTTPS. For more information, see Static website hosting in Azure Storage.

Static website hosting makes the files available for anonymous access. If you need to control who can access the
files, you can store files in Azure blob storage and then generate shared access signatures to limit access.

The links in the pages delivered to the client must specify the full URL of the resource. If the resource is protected
with a valet key, such as a shared access signature, this signature must be included in the URL.

A sample application that demonstrates using external storage for static resources is available on GitHub. This

https://docs.microsoft.com/azure/storage/blobs/storage-blob-static-website
https://docs.microsoft.com/azure/storage/common/storage-dotnet-shared-access-signature-part-1
https://github.com/mspnp/cloud-design-patterns/tree/master/static-content-hosting

<Setting name="StaticContent.StorageConnectionString"
 value="UseDevelopmentStorage=true" />
<Setting name="StaticContent.Container" value="static-content" />

public class Settings
{
 public static string StaticContentStorageConnectionString {
 get
 {
 return RoleEnvironment.GetConfigurationSettingValue(
 "StaticContent.StorageConnectionString");
 }
 }

 public static string StaticContentContainer
 {
 get
 {
 return RoleEnvironment.GetConfigurationSettingValue("StaticContent.Container");
 }
 }

 public static string StaticContentBaseUrl
 {
 get
 {
 var account = CloudStorageAccount.Parse(StaticContentStorageConnectionString);

 return string.Format("{0}/{1}", account.BlobEndpoint.ToString().TrimEnd('/'),
 StaticContentContainer.TrimStart('/'));
 }
 }
}

public static class StaticContentUrlHtmlHelper
{
 public static string StaticContentUrl(this HtmlHelper helper, string contentPath)
 {
 if (contentPath.StartsWith("~"))
 {
 contentPath = contentPath.Substring(1);
 }

 contentPath = string.Format("{0}/{1}", Settings.StaticContentBaseUrl.TrimEnd('/'),
 contentPath.TrimStart('/'));

 var url = new UrlHelper(helper.ViewContext.RequestContext);

 return url.Content(contentPath);
 }
}

sample uses configuration files to specify the storage account and container that holds the static content.

The Settings class in the file Settings.cs of the StaticContentHosting.Web project contains methods to extract
these values and build a string value containing the cloud storage account container URL.

The StaticContentUrlHtmlHelper class in the file StaticContentUrlHtmlHelper.cs exposes a method named
StaticContentUrl that generates a URL containing the path to the cloud storage account if the URL passed to it

starts with the ASP.NET root path character (~).

The file Index.cshtml in the Views\Home folder contains an image element that uses the StaticContentUrl

Related patterns and guidance

method to create the URL for its src attribute.

Static Content Hosting sample. A sample application that demonstrates this pattern.
Valet Key pattern. If the target resources aren't supposed to be available to anonymous users, use this pattern
to restrict direct access.
Serverless web application on Azure. A reference architecture that uses static website hosting with Azure
Functions to implement a serverless web app.

https://github.com/mspnp/cloud-design-patterns/tree/master/static-content-hosting

Strangler pattern
3/13/2019 • 2 minutes to read • Edit Online

Context and problem

Solution

Issues and considerations

Incrementally migrate a legacy system by gradually replacing specific pieces of functionality with new applications
and services. As features from the legacy system are replaced, the new system eventually replaces all of the old
system's features, strangling the old system and allowing you to decommission it.

As systems age, the development tools, hosting technology, and even system architectures they were built on can
become increasingly obsolete. As new features and functionality are added, the complexity of these applications
can increase dramatically, making them harder to maintain or add new features to.

Completely replacing a complex system can be a huge undertaking. Often, you will need a gradual migration to a
new system, while keeping the old system to handle features that haven't been migrated yet. However, running
two separate versions of an application means that clients have to know where particular features are located.
Every time a feature or service is migrated, clients need to be updated to point to the new location.

Incrementally replace specific pieces of functionality with new applications and services. Create a façade that
intercepts requests going to the backend legacy system. The façade routes these requests either to the legacy
application or the new services. Existing features can be migrated to the new system gradually, and consumers
can continue using the same interface, unaware that any migration has taken place.

This pattern helps to minimize risk from the migration, and spread the development effort over time. With the
façade safely routing users to the correct application, you can add functionality to the new system at whatever
pace you like, while ensuring the legacy application continues to function. Over time, as features are migrated to
the new system, the legacy system is eventually "strangled" and is no longer necessary. Once this process is
complete, the legacy system can safely be retired.

Consider how to handle services and data stores that are potentially used by both new and legacy systems.
Make sure both can access these resources side-by-side.
Structure new applications and services in a way that they can easily be intercepted and replaced in future
strangler migrations.
At some point, when the migration is complete, the strangler façade will either go away or evolve into an
adaptor for legacy clients.

https://github.com/mspnp/architecture-center/blob/master/docs/patterns/strangler.md

When to use this pattern

Related guidance

Make sure the façade keeps up with the migration.
Make sure the façade doesn't become a single point of failure or a performance bottleneck.

Use this pattern when gradually migrating a back-end application to a new architecture.

This pattern may not be suitable:

When requests to the back-end system cannot be intercepted.
For smaller systems where the complexity of wholesale replacement is low.

Martin Fowler's blog post on StranglerApplication

https://www.martinfowler.com/bliki/StranglerApplication.html

Throttling pattern
3/13/2019 • 7 minutes to read • Edit Online

Context and problem

Solution

Control the consumption of resources used by an instance of an application, an individual tenant, or an entire
service. This can allow the system to continue to function and meet service level agreements, even when an
increase in demand places an extreme load on resources.

The load on a cloud application typically varies over time based on the number of active users or the types of
activities they are performing. For example, more users are likely to be active during business hours, or the
system might be required to perform computationally expensive analytics at the end of each month. There might
also be sudden and unanticipated bursts in activity. If the processing requirements of the system exceed the
capacity of the resources that are available, it'll suffer from poor performance and can even fail. If the system has
to meet an agreed level of service, such failure could be unacceptable.

There're many strategies available for handling varying load in the cloud, depending on the business goals for
the application. One strategy is to use autoscaling to match the provisioned resources to the user needs at any
given time. This has the potential to consistently meet user demand, while optimizing running costs. However,
while autoscaling can trigger the provisioning of additional resources, this provisioning isn't immediate. If
demand grows quickly, there can be a window of time where there's a resource deficit.

An alternative strategy to autoscaling is to allow applications to use resources only up to a limit, and then throttle
them when this limit is reached. The system should monitor how it's using resources so that, when usage
exceeds the threshold, it can throttle requests from one or more users. This will enable the system to continue
functioning and meet any service level agreements (SLAs) that are in place. For more information on monitoring
resource usage, see the Instrumentation and Telemetry Guidance.

The system could implement several throttling strategies, including:

Rejecting requests from an individual user who's already accessed system APIs more than n times per
second over a given period of time. This requires the system to meter the use of resources for each tenant
or user running an application. For more information, see the Service Metering Guidance.

Disabling or degrading the functionality of selected nonessential services so that essential services can
run unimpeded with sufficient resources. For example, if the application is streaming video output, it could
switch to a lower resolution.

Using load leveling to smooth the volume of activity (this approach is covered in more detail by the
Queue-based Load Leveling pattern). In a multi-tenant environment, this approach will reduce the
performance for every tenant. If the system must support a mix of tenants with different SLAs, the work
for high-value tenants might be performed immediately. Requests for other tenants can be held back, and
handled when the backlog has eased. The Priority Queue pattern could be used to help implement this
approach.

Deferring operations being performed on behalf of lower priority applications or tenants. These
operations can be suspended or limited, with an exception generated to inform the tenant that the system
is busy and that the operation should be retried later.

The figure shows an area graph for resource use (a combination of memory, CPU, bandwidth, and other factors)

https://github.com/mspnp/architecture-center/blob/master/docs/patterns/throttling.md
https://msdn.microsoft.com/library/dn589775.aspx
https://msdn.microsoft.com/library/dn589796.aspx

against time for applications that are making use of three features. A feature is an area of functionality, such as a
component that performs a specific set of tasks, a piece of code that performs a complex calculation, or an
element that provides a service such as an in-memory cache. These features are labeled A, B, and C.

The area immediately below the line for a feature indicates the resources that are used by applications when
they invoke this feature. For example, the area below the line for Feature A shows the resources used by
applications that are making use of Feature A, and the area between the lines for Feature A and Feature B
indicates the resources used by applications invoking Feature B. Aggregating the areas for each feature
shows the total resource use of the system.

The previous figure illustrates the effects of deferring operations. Just prior to time T1, the total resources
allocated to all applications using these features reach a threshold (the limit of resource use). At this point, the
applications are in danger of exhausting the resources available. In this system, Feature B is less critical than
Feature A or Feature C, so it's temporarily disabled and the resources that it was using are released. Between
times T1 and T2, the applications using Feature A and Feature C continue running as normal. Eventually, the
resource use of these two features diminishes to the point when, at time T2, there is sufficient capacity to enable
Feature B again.

The autoscaling and throttling approaches can also be combined to help keep the applications responsive and
within SLAs. If the demand is expected to remain high, throttling provides a temporary solution while the system
scales out. At this point, the full functionality of the system can be restored.

The next figure shows an area graph of the overall resource use by all applications running in a system against
time, and illustrates how throttling can be combined with autoscaling.

Issues and considerations

When to use this pattern

At time T1, the threshold specifying the soft limit of resource use is reached. At this point, the system can start to
scale out. However, if the new resources don't become available quickly enough, then the existing resources
might be exhausted and the system could fail. To prevent this from occurring, the system is temporarily throttled,
as described earlier. When autoscaling has completed and the additional resources are available, throttling can
be relaxed.

You should consider the following points when deciding how to implement this pattern:

Throttling an application, and the strategy to use, is an architectural decision that impacts the entire
design of a system. Throttling should be considered early in the application design process because it isn't
easy to add once a system has been implemented.

Throttling must be performed quickly. The system must be capable of detecting an increase in activity and
react accordingly. The system must also be able to revert to its original state quickly after the load has
eased. This requires that the appropriate performance data is continually captured and monitored.

If a service needs to temporarily deny a user request, it should return a specific error code so the client
application understands that the reason for the refusal to perform an operation is due to throttling. The
client application can wait for a period before retrying the request.

Throttling can be used as a temporary measure while a system autoscales. In some cases it's better to
simply throttle, rather than to scale, if a burst in activity is sudden and isn't expected to be long lived
because scaling can add considerably to running costs.

If throttling is being used as a temporary measure while a system autoscales, and if resource demands
grow very quickly, the system might not be able to continue functioning—even when operating in a
throttled mode. If this isn't acceptable, consider maintaining larger capacity reserves and configuring
more aggressive autoscaling.

Use this pattern:

Example

Related patterns and guidance

To ensure that a system continues to meet service level agreements.

To prevent a single tenant from monopolizing the resources provided by an application.

To handle bursts in activity.

To help cost-optimize a system by limiting the maximum resource levels needed to keep it functioning.

The final figure illustrates how throttling can be implemented in a multi-tenant system. Users from each of the
tenant organizations access a cloud-hosted application where they fill out and submit surveys. The application
contains instrumentation that monitors the rate at which these users are submitting requests to the application.

In order to prevent the users from one tenant affecting the responsiveness and availability of the application for
all other users, a limit is applied to the number of requests per second the users from any one tenant can submit.
The application blocks requests that exceed this limit.

The following patterns and guidance may also be relevant when implementing this pattern:

Instrumentation and Telemetry Guidance. Throttling depends on gathering information about how heavily a
service is being used. Describes how to generate and capture custom monitoring information.
Service Metering Guidance. Describes how to meter the use of services in order to gain an understanding of
how they are used. This information can be useful in determining how to throttle a service.
Autoscaling Guidance. Throttling can be used as an interim measure while a system autoscales, or to remove
the need for a system to autoscale. Contains information on autoscaling strategies.
Queue-based Load Leveling pattern. Queue-based load leveling is a commonly used mechanism for
implementing throttling. A queue can act as a buffer that helps to even out the rate at which requests sent by
an application are delivered to a service.
Priority Queue pattern. A system can use priority queuing as part of its throttling strategy to maintain
performance for critical or higher value applications, while reducing the performance of less important

https://msdn.microsoft.com/library/dn589775.aspx
https://msdn.microsoft.com/library/dn589796.aspx
https://msdn.microsoft.com/library/dn589774.aspx

applications.

Valet Key pattern
3/13/2019 • 13 minutes to read • Edit Online

Context and problem

Solution

Use a token that provides clients with restricted direct access to a specific resource, in order to offload data
transfer from the application. This is particularly useful in applications that use cloud-hosted storage systems or
queues, and can minimize cost and maximize scalability and performance.

Client programs and web browsers often need to read and write files or data streams to and from an application’s
storage. Typically, the application will handle the movement of the data — either by fetching it from storage and
streaming it to the client, or by reading the uploaded stream from the client and storing it in the data store.
However, this approach absorbs valuable resources such as compute, memory, and bandwidth.

Data stores have the ability to handle upload and download of data directly, without requiring that the application
perform any processing to move this data. But, this typically requires the client to have access to the security
credentials for the store. This can be a useful technique to minimize data transfer costs and the requirement to
scale out the application, and to maximize performance. It means, though, that the application is no longer able to
manage the security of the data. After the client has a connection to the data store for direct access, the
application can't act as the gatekeeper. It's no longer in control of the process and can't prevent subsequent
uploads or downloads from the data store.

This isn't a realistic approach in distributed systems that need to serve untrusted clients. Instead, applications
must be able to securely control access to data in a granular way, but still reduce the load on the server by setting
up this connection and then allowing the client to communicate directly with the data store to perform the
required read or write operations.

You need to resolve the problem of controlling access to a data store where the store can't manage authentication
and authorization of clients. One typical solution is to restrict access to the data store’s public connection and
provide the client with a key or token that the data store can validate.

This key or token is usually referred to as a valet key. It provides time-limited access to specific resources and
allows only predefined operations such as reading and writing to storage or queues, or uploading and
downloading in a web browser. Applications can create and issue valet keys to client devices and web browsers
quickly and easily, allowing clients to perform the required operations without requiring the application to directly
handle the data transfer. This removes the processing overhead, and the impact on performance and scalability,
from the application and the server.

The client uses this token to access a specific resource in the data store for only a specific period, and with specific
restrictions on access permissions, as shown in the figure. After the specified period, the key becomes invalid and
won't allow access to the resource.

https://github.com/mspnp/architecture-center/blob/master/docs/patterns/valet-key.md

Issues and considerations

It's also possible to configure a key that has other dependencies, such as the scope of the data. For example,
depending on the data store capabilities, the key can specify a complete table in a data store, or only specific rows
in a table. In cloud storage systems the key can specify a container, or just a specific item within a container.

The key can also be invalidated by the application. This is a useful approach if the client notifies the server that the
data transfer operation is complete. The server can then invalidate that key to prevent further access.

Using this pattern can simplify managing access to resources because there's no requirement to create and
authenticate a user, grant permissions, and then remove the user again. It also makes it easy to limit the location,
the permission, and the validity period—all by simply generating a key at runtime. The important factors are to
limit the validity period, and especially the location of the resource, as tightly as possible so that the recipient can
only use it for the intended purpose.

Consider the following points when deciding how to implement this pattern:

Manage the validity status and period of the key. If leaked or compromised, the key effectively unlocks the
target item and makes it available for malicious use during the validity period. A key can usually be revoked or
disabled, depending on how it was issued. Server-side policies can be changed or, the server key it was signed
with can be invalidated. Specify a short validity period to minimize the risk of allowing unauthorized operations
to take place against the data store. However, if the validity period is too short, the client might not be able to
complete the operation before the key expires. Allow authorized users to renew the key before the validity period
expires if multiple accesses to the protected resource are required.

Control the level of access the key will provide. Typically, the key should allow the user to only perform the
actions necessary to complete the operation, such as read-only access if the client shouldn't be able to upload
data to the data store. For file uploads, it's common to specify a key that provides write-only permission, as well
as the location and the validity period. It's critical to accurately specify the resource or the set of resources to
which the key applies.

Consider how to control users’ behavior. Implementing this pattern means some loss of control over the
resources users are granted access to. The level of control that can be exerted is limited by the capabilities of the
policies and permissions available for the service or the target data store. For example, it's usually not possible to
create a key that limits the size of the data to be written to storage, or the number of times the key can be used to
access a file. This can result in huge unexpected costs for data transfer, even when used by the intended client, and
might be caused by an error in the code that causes repeated upload or download. To limit the number of times a
file can be uploaded, where possible, force the client to notify the application when one operation has completed.
For example, some data stores raise events the application code can use to monitor operations and control user
behavior. However, it's hard to enforce quotas for individual users in a multi-tenant scenario where the same key
is used by all the users from one tenant.

When to use this pattern

Validate, and optionally sanitize, all uploaded data. A malicious user that gains access to the key could
upload data designed to compromise the system. Alternatively, authorized users might upload data that's invalid
and, when processed, could result in an error or system failure. To protect against this, ensure that all uploaded
data is validated and checked for malicious content before use.

Audit all operations. Many key-based mechanisms can log operations such as uploads, downloads, and failures.
These logs can usually be incorporated into an audit process, and also used for billing if the user is charged based
on file size or data volume. Use the logs to detect authentication failures that might be caused by issues with the
key provider, or accidental removal of a stored access policy.

Deliver the key securely. It can be embedded in a URL that the user activates in a web page, or it can be used in
a server redirection operation so that the download occurs automatically. Always use HTTPS to deliver the key
over a secure channel.

Protect sensitive data in transit. Sensitive data delivered through the application will usually take place using
SSL or TLS, and this should be enforced for clients accessing the data store directly.

Other issues to be aware of when implementing this pattern are:

If the client doesn't, or can't, notify the server of completion of the operation, and the only limit is the
expiration period of the key, the application won't be able to perform auditing operations such as counting
the number of uploads or downloads, or preventing multiple uploads or downloads.

The flexibility of key policies that can be generated might be limited. For example, some mechanisms only
allow the use of a timed expiration period. Others aren't able to specify a sufficient granularity of
read/write permissions.

If the start time for the key or token validity period is specified, ensure that it's a little earlier than the
current server time to allow for client clocks that might be slightly out of synchronization. The default, if
not specified, is usually the current server time.

The URL containing the key will be recorded in server log files. While the key will typically have expired
before the log files are used for analysis, ensure that you limit access to them. If log data is transmitted to a
monitoring system or stored in another location, consider implementing a delay to prevent leakage of keys
until after their validity period has expired.

If the client code runs in a web browser, the browser might need to support cross-origin resource sharing
(CORS) to enable code that executes within the web browser to access data in a different domain from the
one that served the page. Some older browsers and some data stores don't support CORS, and code that
runs in these browsers might be able to use a valet key to provide access to data in a different domain,
such as a cloud storage account.

This pattern is useful for the following situations:

To minimize resource loading and maximize performance and scalability. Using a valet key doesn't require
the resource to be locked, no remote server call is required, there's no limit on the number of valet keys
that can be issued, and it avoids a single point of failure resulting from performing the data transfer
through the application code. Creating a valet key is typically a simple cryptographic operation of signing a
string with a key.

To minimize operational cost. Enabling direct access to stores and queues is resource and cost efficient, can
result in fewer network round trips, and might allow for a reduction in the number of compute resources
required.

When clients regularly upload or download data, particularly where there's a large volume or when each

Example

operation involves large files.

When the application has limited compute resources available, either due to hosting limitations or cost
considerations. In this scenario, the pattern is even more helpful if there are many concurrent data uploads
or downloads because it relieves the application from handling the data transfer.

When the data is stored in a remote data store or a different datacenter. If the application was required to
act as a gatekeeper, there might be a charge for the additional bandwidth of transferring the data between
datacenters, or across public or private networks between the client and the application, and then between
the application and the data store.

This pattern might not be useful in the following situations:

If the application must perform some task on the data before it's stored or before it's sent to the client. For
example, if the application needs to perform validation, log access success, or execute a transformation on
the data. However, some data stores and clients are able to negotiate and carry out simple transformations
such as compression and decompression (for example, a web browser can usually handle GZip formats).

If the design of an existing application makes it difficult to incorporate the pattern. Using this pattern
typically requires a different architectural approach for delivering and receiving data.

If it's necessary to maintain audit trails or control the number of times a data transfer operation is
executed, and the valet key mechanism in use doesn't support notifications that the server can use to
manage these operations.

If it's necessary to limit the size of the data, especially during upload operations. The only solution to this is
for the application to check the data size after the operation is complete, or check the size of uploads after a
specified period or on a scheduled basis.

Azure supports shared access signatures on Azure Storage for granular access control to data in blobs, tables,
and queues, and for Service Bus queues and topics. A shared access signature token can be configured to provide
specific access rights such as read, write, update, and delete to a specific table; a key range within a table; a queue;
a blob; or a blob container. The validity can be a specified time period or with no time limit.

Azure shared access signatures also support server-stored access policies that can be associated with a specific
resource such as a table or blob. This feature provides additional control and flexibility compared to application-
generated shared access signature tokens, and should be used whenever possible. Settings defined in a server-
stored policy can be changed and are reflected in the token without requiring a new token to be issued, but
settings defined in the token can't be changed without issuing a new token. This approach also makes it possible
to revoke a valid shared access signature token before it's expired.

For more information see Introducing Table SAS (Shared Access Signature), Queue SAS and update to Blob
SAS and Using Shared Access Signatures on MSDN.

The following code shows how to create a shared access signature token that's valid for five minutes. The
GetSharedAccessReferenceForUpload method returns a shared access signatures token that can be used to upload a

file to Azure Blob Storage.

https://blogs.msdn.microsoft.com/windowsazurestorage/2012/06/12/introducing-table-sas-shared-access-signature-queue-sas-and-update-to-blob-sas/
https://docs.microsoft.com/azure/storage/common/storage-dotnet-shared-access-signature-part-1

public class ValuesController : ApiController
{
 private readonly CloudStorageAccount account;
 private readonly string blobContainer;
 ...
 /// <summary>
 /// Return a limited access key that allows the caller to upload a file
 /// to this specific destination for a defined period of time.
 /// </summary>
 private StorageEntitySas GetSharedAccessReferenceForUpload(string blobName)
 {
 var blobClient = this.account.CreateCloudBlobClient();
 var container = blobClient.GetContainerReference(this.blobContainer);

 var blob = container.GetBlockBlobReference(blobName);

 var policy = new SharedAccessBlobPolicy
 {
 Permissions = SharedAccessBlobPermissions.Write,

 // Specify a start time five minutes earlier to allow for client clock skew.
 SharedAccessStartTime = DateTime.UtcNow.AddMinutes(-5),

 // Specify a validity period of five minutes starting from now.
 SharedAccessExpiryTime = DateTime.UtcNow.AddMinutes(5)
 };

 // Create the signature.
 var sas = blob.GetSharedAccessSignature(policy);

 return new StorageEntitySas
 {
 BlobUri = blob.Uri,
 Credentials = sas,
 Name = blobName
 };
 }

 public struct StorageEntitySas
 {
 public string Credentials;
 public Uri BlobUri;
 public string Name;
 }
}

Next steps

The complete sample is available in the ValetKey solution available for download from GitHub. The
ValetKey.Web project in this solution contains a web application that includes the ValuesController class
shown above. A sample client application that uses this web application to retrieve a shared access signatures
key and upload a file to blob storage is available in the ValetKey.Client project.

The following patterns and guidance might also be relevant when implementing this pattern:

A sample that demonstrates this pattern is available on GitHub.
Gatekeeper pattern. This pattern can be used in conjunction with the Valet Key pattern to protect applications
and services by using a dedicated host instance that acts as a broker between clients and the application or
service. The gatekeeper validates and sanitizes requests, and passes requests and data between the client and
the application. Can provide an additional layer of security, and reduce the attack surface of the system.
Static Content Hosting pattern. Describes how to deploy static resources to a cloud-based storage service that

https://github.com/mspnp/cloud-design-patterns/tree/master/valet-key
https://github.com/mspnp/cloud-design-patterns/tree/master/valet-key

can deliver these resources directly to the client to reduce the requirement for expensive compute instances.
Where the resources aren't intended to be publicly available, the Valet Key pattern can be used to secure them.
Introducing Table SAS (Shared Access Signature), Queue SAS and update to Blob SAS
Using Shared Access Signatures
Shared Access Signature Authentication with Service Bus

https://blogs.msdn.microsoft.com/windowsazurestorage/2012/06/12/introducing-table-sas-shared-access-signature-queue-sas-and-update-to-blob-sas/
https://docs.microsoft.com/azure/storage/common/storage-dotnet-shared-access-signature-part-1
https://docs.microsoft.com/azure/service-bus-messaging/service-bus-sas

API design
3/13/2019 • 28 minutes to read • Edit Online

Introduction to REST

Most modern web applications expose APIs that clients can use to interact with the application. A well-designed
web API should aim to support:

Platform independence. Any client should be able to call the API, regardless of how the API is
implemented internally. This requires using standard protocols, and having a mechanism whereby the client
and the web service can agree on the format of the data to exchange.

Service evolution. The web API should be able to evolve and add functionality independently from client
applications. As the API evolves, existing client applications should continue to function without
modification. All functionality should be discoverable so that client applications can fully use it.

This guidance describes issues that you should consider when designing a web API.

In 2000, Roy Fielding proposed Representational State Transfer (REST) as an architectural approach to designing
web services. REST is an architectural style for building distributed systems based on hypermedia. REST is
independent of any underlying protocol and is not necessarily tied to HTTP. However, most common REST
implementations use HTTP as the application protocol, and this guide focuses on designing REST APIs for HTTP.

A primary advantage of REST over HTTP is that it uses open standards, and does not bind the implementation of
the API or the client applications to any specific implementation. For example, a REST web service could be
written in ASP.NET, and client applications can use any language or toolset that can generate HTTP requests and
parse HTTP responses.

Here are some of the main design principles of RESTful APIs using HTTP:

https://adventure-works.com/orders/1

{"orderId":1,"orderValue":99.90,"productId":1,"quantity":1}

REST APIs are designed around resources, which are any kind of object, data, or service that can be
accessed by the client.

A resource has an identifier, which is a URI that uniquely identifies that resource. For example, the URI for a
particular customer order might be:

Clients interact with a service by exchanging representations of resources. Many web APIs use JSON as the
exchange format. For example, a GET request to the URI listed above might return this response body:

REST APIs use a uniform interface, which helps to decouple the client and service implementations. For
REST APIs built on HTTP, the uniform interface includes using standard HTTP verbs to perform operations
on resources. The most common operations are GET, POST, PUT, PATCH, and DELETE.

REST APIs use a stateless request model. HTTP requests should be independent and may occur in any
order, so keeping transient state information between requests is not feasible. The only place where
information is stored is in the resources themselves, and each request should be an atomic operation. This
constraint enables web services to be highly scalable, because there is no need to retain any affinity

https://github.com/mspnp/architecture-center/blob/master/docs/best-practices/api-design.md

Organize the API around resources

https://adventure-works.com/orders // Good

https://adventure-works.com/create-order // Avoid

https://adventure-works.com/orders

{
 "orderID":3,
 "productID":2,
 "quantity":4,
 "orderValue":16.60,
 "links": [
 {"rel":"product","href":"https://adventure-works.com/customers/3", "action":"GET" },
 {"rel":"product","href":"https://adventure-works.com/customers/3", "action":"PUT" }
]
}

between clients and specific servers. Any server can handle any request from any client. That said, other
factors can limit scalability. For example, many web services write to a backend data store, which may be
hard to scale out. (The article Data Partitioning describes strategies to scale out a data store.)

REST APIs are driven by hypermedia links that are contained in the representation. For example, the
following shows a JSON representation of an order. It contains links to get or update the customer
associated with the order.

In 2008, Leonard Richardson proposed the following maturity model for web APIs:

Level 0: Define one URI, and all operations are POST requests to this URI.
Level 1: Create separate URIs for individual resources.
Level 2: Use HTTP methods to define operations on resources.
Level 3: Use hypermedia (HATEOAS, described below).

Level 3 corresponds to a truly RESTful API according to Fielding's definition. In practice, many published web
APIs fall somewhere around level 2.

Focus on the business entities that the web API exposes. For example, in an e-commerce system, the primary
entities might be customers and orders. Creating an order can be achieved by sending an HTTP POST request
that contains the order information. The HTTP response indicates whether the order was placed successfully or
not. When possible, resource URIs should be based on nouns (the resource) and not verbs (the operations on the
resource).

A resource does not have to be based on a single physical data item. For example, an order resource might be
implemented internally as several tables in a relational database, but presented to the client as a single entity.
Avoid creating APIs that simply mirror the internal structure of a database. The purpose of REST is to model
entities and the operations that an application can perform on those entities. A client should not be exposed to the
internal implementation.

Entities are often grouped together into collections (orders, customers). A collection is a separate resource from
the item within the collection, and should have its own URI. For example, the following URI might represent the
collection of orders:

Sending an HTTP GET request to the collection URI retrieves a list of items in the collection. Each item in the
collection also has its own unique URI. An HTTP GET request to the item's URI returns the details of that item.

https://martinfowler.com/articles/richardsonMaturityModel.html

TIPTIP

Define operations in terms of HTTP methods

Adopt a consistent naming convention in URIs. In general, it helps to use plural nouns for URIs that reference
collections. It's a good practice to organize URIs for collections and items into a hierarchy. For example,
/customers is the path to the customers collection, and /customers/5 is the path to the customer with ID equal to

5. This approach helps to keep the web API intuitive. Also, many web API frameworks can route requests based
on parameterized URI paths, so you could define a route for the path /customers/{id} .

Also consider the relationships between different types of resources and how you might expose these
associations. For example, the /customers/5/orders might represent all of the orders for customer 5. You could
also go in the other direction, and represent the association from an order back to a customer with a URI such as
/orders/99/customer . However, extending this model too far can become cumbersome to implement. A better

solution is to provide navigable links to associated resources in the body of the HTTP response message. This
mechanism is described in more detail in the section Using the HATEOAS Approach to Enable Navigation To
Related Resources later.

In more complex systems, it can be tempting to provide URIs that enable a client to navigate through several
levels of relationships, such as /customers/1/orders/99/products . However, this level of complexity can be difficult
to maintain and is inflexible if the relationships between resources change in the future. Instead, try to keep URIs
relatively simple. Once an application has a reference to a resource, it should be possible to use this reference to
find items related to that resource. The preceding query can be replaced with the URI /customers/1/orders to find
all the orders for customer 1, and then /orders/99/products to find the products in this order.

Avoid requiring resource URIs more complex than collection/item/collection.

Another factor is that all web requests impose a load on the web server. The more requests, the bigger the load.
Therefore, try to avoid "chatty" web APIs that expose a large number of small resources. Such an API may require
a client application to send multiple requests to find all of the data that it requires. Instead, you might want to
denormalize the data and combine related information into bigger resources that can be retrieved with a single
request. However, you need to balance this approach against the overhead of fetching data that the client doesn't
need. Retrieving large objects can increase the latency of a request and incur additional bandwidth costs. For more
information about these performance antipatterns, see Chatty I/O and Extraneous Fetching.

Avoid introducing dependencies between the web API and the underlying data sources. For example, if your data
is stored in a relational database, the web API doesn't need to expose each table as a collection of resources. In
fact, that's probably a poor design. Instead, think of the web API as an abstraction of the database. If necessary,
introduce a mapping layer between the database and the web API. That way, client applications are isolated from
changes to the underlying database scheme.

Finally, it might not be possible to map every operation implemented by a web API to a specific resource. You can
handle such non-resource scenarios through HTTP requests that invoke a function and return the results as an
HTTP response message. For example, a web API that implements simple calculator operations such as add and
subtract could provide URIs that expose these operations as pseudo resources and use the query string to specify
the parameters required. For example a GET request to the URI /add?operand1=99&operand2=1 would return a
response message with the body containing the value 100. However, only use these forms of URIs sparingly.

The HTTP protocol defines a number of methods that assign semantic meaning to a request. The common HTTP
methods used by most RESTful web APIs are:

GET retrieves a representation of the resource at the specified URI. The body of the response message
contains the details of the requested resource.
POST creates a new resource at the specified URI. The body of the request message provides the details of the

RESOURCE POST GET PUT DELETE

/customers Create a new
customer

Retrieve all customers Bulk update of
customers

Remove all customers

/customers/1 Error Retrieve the details
for customer 1

Update the details of
customer 1 if it exists

Remove customer 1

/customers/1/orders Create a new order
for customer 1

Retrieve all orders for
customer 1

Bulk update of orders
for customer 1

Remove all orders for
customer 1

Conform to HTTP semantics

Media typesMedia types

new resource. Note that POST can also be used to trigger operations that don't actually create resources.
PUT either creates or replaces the resource at the specified URI. The body of the request message specifies the
resource to be created or updated.
PATCH performs a partial update of a resource. The request body specifies the set of changes to apply to the
resource.
DELETE removes the resource at the specified URI.

The effect of a specific request should depend on whether the resource is a collection or an individual item. The
following table summarizes the common conventions adopted by most RESTful implementations using the
ecommerce example. Note that not all of these requests might be implemented; it depends on the specific
scenario.

The differences between POST, PUT, and PATCH can be confusing.

A POST request creates a resource. The server assigns a URI for the new resource, and returns that URI to
the client. In the REST model, you frequently apply POST requests to collections. The new resource is
added to the collection. A POST request can also be used to submit data for processing to an existing
resource, without any new resource being created.

A PUT request creates a resource or updates an existing resource. The client specifies the URI for the
resource. The request body contains a complete representation of the resource. If a resource with this URI
already exists, it is replaced. Otherwise a new resource is created, if the server supports doing so. PUT
requests are most frequently applied to resources that are individual items, such as a specific customer,
rather than collections. A server might support updates but not creation via PUT. Whether to support
creation via PUT depends on whether the client can meaningfully assign a URI to a resource before it exists.
If not, then use POST to create resources and PUT or PATCH to update.

A PATCH request performs a partial update to an existing resource. The client specifies the URI for the
resource. The request body specifies a set of changes to apply to the resource. This can be more efficient
than using PUT, because the client only sends the changes, not the entire representation of the resource.
Technically PATCH can also create a new resource (by specifying a set of updates to a "null" resource), if the
server supports this.

PUT requests must be idempotent. If a client submits the same PUT request multiple times, the results should
always be the same (the same resource will be modified with the same values). POST and PATCH requests are not
guaranteed to be idempotent.

This section describes some typical considerations for designing an API that conforms to the HTTP specification.
However, it doesn't cover every possible detail or scenario. When in doubt, consult the HTTP specifications.

As mentioned earlier, clients and servers exchange representations of resources. For example, in a POST request,

POST https://adventure-works.com/orders HTTP/1.1
Content-Type: application/json; charset=utf-8
Content-Length: 57

{"Id":1,"Name":"Gizmo","Category":"Widgets","Price":1.99}

GET https://adventure-works.com/orders/2 HTTP/1.1
Accept: application/json

GET methodsGET methods

POST methodsPOST methods

PUT methodsPUT methods

PATCH methodsPATCH methods

the request body contains a representation of the resource to create. In a GET request, the response body contains
a representation of the fetched resource.

In the HTTP protocol, formats are specified through the use of media types, also called MIME types. For non-
binary data, most web APIs support JSON (media type = application/json) and possibly XML (media type =
application/xml).

The Content-Type header in a request or response specifies the format of the representation. Here is an example
of a POST request that includes JSON data:

If the server doesn't support the media type, it should return HTTP status code 415 (Unsupported Media Type).

A client request can include an Accept header that contains a list of media types the client will accept from the
server in the response message. For example:

If the server cannot match any of the media type(s) listed, it should return HTTP status code 406 (Not Acceptable).

A successful GET method typically returns HTTP status code 200 (OK). If the resource cannot be found, the
method should return 404 (Not Found).

If a POST method creates a new resource, it returns HTTP status code 201 (Created). The URI of the new resource
is included in the Location header of the response. The response body contains a representation of the resource.

If the method does some processing but does not create a new resource, the method can return HTTP status code
200 and include the result of the operation in the response body. Alternatively, if there is no result to return, the
method can return HTTP status code 204 (No Content) with no response body.

If the client puts invalid data into the request, the server should return HTTP status code 400 (Bad Request). The
response body can contain additional information about the error or a link to a URI that provides more details.

If a PUT method creates a new resource, it returns HTTP status code 201 (Created), as with a POST method. If the
method updates an existing resource, it returns either 200 (OK) or 204 (No Content). In some cases, it might not
be possible to update an existing resource. In that case, consider returning HTTP status code 409 (Conflict).

Consider implementing bulk HTTP PUT operations that can batch updates to multiple resources in a collection.
The PUT request should specify the URI of the collection, and the request body should specify the details of the
resources to be modified. This approach can help to reduce chattiness and improve performance.

With a PATCH request, the client sends a set of updates to an existing resource, in the form of a patch document.
The server processes the patch document to perform the update. The patch document doesn't describe the whole
resource, only a set of changes to apply. The specification for the PATCH method (RFC 5789) doesn't define a
particular format for patch documents. The format must be inferred from the media type in the request.

https://tools.ietf.org/html/rfc5789

{
 "name":"gizmo",
 "category":"widgets",
 "color":"blue",
 "price":10
}

{
 "price":12,
 "color":null,
 "size":"small"
}

ERROR CONDITION HTTP STATUS CODE

The patch document format isn't supported. 415 (Unsupported Media Type)

Malformed patch document. 400 (Bad Request)

The patch document is valid, but the changes can't be applied
to the resource in its current state.

409 (Conflict)

DELETE methodsDELETE methods

Asynchronous operationsAsynchronous operations

JSON is probably the most common data format for web APIs. There are two main JSON-based patch formats,
called JSON patch and JSON merge patch.

JSON merge patch is somewhat simpler. The patch document has the same structure as the original JSON
resource, but includes just the subset of fields that should be changed or added. In addition, a field can be deleted
by specifying null for the field value in the patch document. (That means merge patch is not suitable if the
original resource can have explicit null values.)

For example, suppose the original resource has the following JSON representation:

Here is a possible JSON merge patch for this resource:

This tells the server to update price , delete color , and add size — name and category are not modified. For
the exact details of JSON merge patch, see RFC 7396. The media type for JSON merge patch is
application/merge-patch+json .

Merge patch is not suitable if the original resource can contain explicit null values, due to the special meaning of
null in the patch document. Also, the patch document doesn't specify the order that the server should apply the

updates. That may or may not matter, depending on the data and the domain. JSON patch, defined in RFC 6902,
is more flexible. It specifies the changes as a sequence of operations to apply. Operations include add, remove,
replace, copy, and test (to validate values). The media type for JSON patch is application/json-patch+json .

Here are some typical error conditions that might be encountered when processing a PATCH request, along with
the appropriate HTTP status code.

If the delete operation is successful, the web server should respond with HTTP status code 204, indicating that the
process has been successfully handled, but that the response body contains no further information. If the resource
doesn't exist, the web server can return HTTP 404 (Not Found).

Sometimes a POST, PUT, PATCH, or DELETE operation might require processing that takes awhile to complete. If
you wait for completion before sending a response to the client, it may cause unacceptable latency. If so, consider

https://tools.ietf.org/html/rfc7396
https://tools.ietf.org/html/rfc6902

HTTP/1.1 202 Accepted
Location: /api/status/12345

HTTP/1.1 200 OK
Content-Type: application/json

{
 "status":"In progress",
 "link": { "rel":"cancel", "method":"delete", "href":"/api/status/12345" }
}

HTTP/1.1 303 See Other
Location: /api/orders/12345

Filter and paginate data

/orders?limit=25&offset=50

making the operation asynchronous. Return HTTP status code 202 (Accepted) to indicate the request was
accepted for processing but is not completed.

You should expose an endpoint that returns the status of an asynchronous request, so the client can monitor the
status by polling the status endpoint. Include the URI of the status endpoint in the Location header of the 202
response. For example:

If the client sends a GET request to this endpoint, the response should contain the current status of the request.
Optionally, it could also include an estimated time to completion or a link to cancel the operation.

If the asynchronous operation creates a new resource, the status endpoint should return status code 303 (See
Other) after the operation completes. In the 303 response, include a Location header that gives the URI of the new
resource:

For more information, see Asynchronous operations in REST.

Exposing a collection of resources through a single URI can lead to applications fetching large amounts of data
when only a subset of the information is required. For example, suppose a client application needs to find all
orders with a cost over a specific value. It might retrieve all orders from the /orders URI and then filter these
orders on the client side. Clearly this process is highly inefficient. It wastes network bandwidth and processing
power on the server hosting the web API.

Instead, the API can allow passing a filter in the query string of the URI, such as /orders?minCost=n. The web API
is then responsible for parsing and handling the minCost parameter in the query string and returning the filtered
results on the server side.

GET requests over collection resources can potentially return a large number of items. You should design a web
API to limit the amount of data returned by any single request. Consider supporting query strings that specify the
maximum number of items to retrieve and a starting offset into the collection. For example:

Also consider imposing an upper limit on the number of items returned, to help prevent Denial of Service attacks.
To assist client applications, GET requests that return paginated data should also include some form of metadata
that indicate the total number of resources available in the collection.

You can use a similar strategy to sort data as it is fetched, by providing a sort parameter that takes a field name as
the value, such as /orders?sort=ProductID. However, this approach can have a negative effect on caching, because

https://www.adayinthelifeof.nl/2011/06/02/asynchronous-operations-in-rest/

Support partial responses for large binary resources

HEAD https://adventure-works.com/products/10?fields=productImage HTTP/1.1

HTTP/1.1 200 OK

Accept-Ranges: bytes
Content-Type: image/jpeg
Content-Length: 4580

GET https://adventure-works.com/products/10?fields=productImage HTTP/1.1
Range: bytes=0-2499

HTTP/1.1 206 Partial Content

Accept-Ranges: bytes
Content-Type: image/jpeg
Content-Length: 2500
Content-Range: bytes 0-2499/4580

[...]

query string parameters form part of the resource identifier used by many cache implementations as the key to
cached data.

You can extend this approach to limit the fields returned for each item, if each item contains a large amount of
data. For example, you could use a query string parameter that accepts a comma-delimited list of fields, such as
/orders?fields=ProductID,Quantity.

Give all optional parameters in query strings meaningful defaults. For example, set the limit parameter to 10
and the offset parameter to 0 if you implement pagination, set the sort parameter to the key of the resource if
you implement ordering, and set the fields parameter to all fields in the resource if you support projections.

A resource may contain large binary fields, such as files or images. To overcome problems caused by unreliable
and intermittent connections and to improve response times, consider enabling such resources to be retrieved in
chunks. To do this, the web API should support the Accept-Ranges header for GET requests for large resources.
This header indicates that the GET operation supports partial requests. The client application can submit GET
requests that return a subset of a resource, specified as a range of bytes.

Also, consider implementing HTTP HEAD requests for these resources. A HEAD request is similar to a GET
request, except that it only returns the HTTP headers that describe the resource, with an empty message body. A
client application can issue a HEAD request to determine whether to fetch a resource by using partial GET
requests. For example:

Here is an example response message:

The Content-Length header gives the total size of the resource, and the Accept-Ranges header indicates that the
corresponding GET operation supports partial results. The client application can use this information to retrieve
the image in smaller chunks. The first request fetches the first 2500 bytes by using the Range header:

The response message indicates that this is a partial response by returning HTTP status code 206. The Content-
Length header specifies the actual number of bytes returned in the message body (not the size of the resource),
and the Content-Range header indicates which part of the resource this is (bytes 0-2499 out of 4580):

A subsequent request from the client application can retrieve the remainder of the resource.

Use HATEOAS to enable navigation to related resources

NOTENOTE

{
 "orderID":3,
 "productID":2,
 "quantity":4,
 "orderValue":16.60,
 "links":[
 {
 "rel":"customer",
 "href":"https://adventure-works.com/customers/3",
 "action":"GET",
 "types":["text/xml","application/json"]
 },
 {
 "rel":"customer",
 "href":"https://adventure-works.com/customers/3",
 "action":"PUT",
 "types":["application/x-www-form-urlencoded"]
 },
 {
 "rel":"customer",
 "href":"https://adventure-works.com/customers/3",
 "action":"DELETE",
 "types":[]
 },
 {
 "rel":"self",
 "href":"https://adventure-works.com/orders/3",
 "action":"GET",
 "types":["text/xml","application/json"]
 },
 {
 "rel":"self",
 "href":"https://adventure-works.com/orders/3",
 "action":"PUT",
 "types":["application/x-www-form-urlencoded"]
 },
 {
 "rel":"self",
 "href":"https://adventure-works.com/orders/3",
 "action":"DELETE",
 "types":[]
 }]
}

One of the primary motivations behind REST is that it should be possible to navigate the entire set of resources
without requiring prior knowledge of the URI scheme. Each HTTP GET request should return the information
necessary to find the resources related directly to the requested object through hyperlinks included in the
response, and it should also be provided with information that describes the operations available on each of these
resources. This principle is known as HATEOAS, or Hypertext as the Engine of Application State. The system is
effectively a finite state machine, and the response to each request contains the information necessary to move
from one state to another ; no other information should be necessary.

Currently there are no standards or specifications that define how to model the HATEOAS principle. The examples shown in
this section illustrate one possible solution.

For example, to handle the relationship between an order and a customer, the representation of an order could
include links that identify the available operations for the customer of the order. Here is a possible representation:

 Versioning a RESTful web API

No versioningNo versioning

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8

{"id":3,"name":"Contoso LLC","address":"1 Microsoft Way Redmond WA 98053"}

NOTENOTE

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8

{"id":3,"name":"Contoso LLC","dateCreated":"2014-09-04T12:11:38.0376089Z","address":"1 Microsoft Way Redmond
WA 98053"}

In this example, the links array has a set of links. Each link represents an operation on a related entity. The data
for each link includes the relationship ("customer"), the URI (https://adventure-works.com/customers/3), the HTTP
method, and the supported MIME types. This is all the information that a client application needs to be able to
invoke the operation.

The links array also includes self-referencing information about the resource itself that has been retrieved. These
have the relationship self.

The set of links that are returned may change, depending on the state of the resource. This is what is meant by
hypertext being the "engine of application state."

It is highly unlikely that a web API will remain static. As business requirements change new collections of
resources may be added, the relationships between resources might change, and the structure of the data in
resources might be amended. While updating a web API to handle new or differing requirements is a relatively
straightforward process, you must consider the effects that such changes will have on client applications
consuming the web API. The issue is that although the developer designing and implementing a web API has full
control over that API, the developer does not have the same degree of control over client applications which may
be built by third party organizations operating remotely. The primary imperative is to enable existing client
applications to continue functioning unchanged while allowing new client applications to take advantage of new
features and resources.

Versioning enables a web API to indicate the features and resources that it exposes, and a client application can
submit requests that are directed to a specific version of a feature or resource. The following sections describe
several different approaches, each of which has its own benefits and trade-offs.

This is the simplest approach, and may be acceptable for some internal APIs. Big changes could be represented as
new resources or new links. Adding content to existing resources might not present a breaking change as client
applications that are not expecting to see this content will simply ignore it.

For example, a request to the URI https://adventure-works.com/customers/3 should return the details of a single
customer containing id , name , and address fields expected by the client application:

For simplicity, the example responses shown in this section do not include HATEOAS links.

If the DateCreated field is added to the schema of the customer resource, then the response would look like this:

Existing client applications might continue functioning correctly if they are capable of ignoring unrecognized fields,
while new client applications can be designed to handle this new field. However, if more radical changes to the

URI versioningURI versioning

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8

{"id":3,"name":"Contoso LLC","dateCreated":"2014-09-04T12:11:38.0376089Z","address":{"streetAddress":"1
Microsoft Way","city":"Redmond","state":"WA","zipCode":98053}}

Query string versioningQuery string versioning

NOTENOTE

Header versioningHeader versioning

GET https://adventure-works.com/customers/3 HTTP/1.1
Custom-Header: api-version=1

schema of resources occur (such as removing or renaming fields) or the relationships between resources change
then these may constitute breaking changes that prevent existing client applications from functioning correctly. In
these situations you should consider one of the following approaches.

Each time you modify the web API or change the schema of resources, you add a version number to the URI for
each resource. The previously existing URIs should continue to operate as before, returning resources that
conform to their original schema.

Extending the previous example, if the address field is restructured into sub-fields containing each constituent
part of the address (such as streetAddress , city , state , and zipCode), this version of the resource could be
exposed through a URI containing a version number, such as https://adventure-works.com/v2/customers/3 :

This versioning mechanism is very simple but depends on the server routing the request to the appropriate
endpoint. However, it can become unwieldy as the web API matures through several iterations and the server has
to support a number of different versions. Also, from a purist’s point of view, in all cases the client applications are
fetching the same data (customer 3), so the URI should not really be different depending on the version. This
scheme also complicates implementation of HATEOAS as all links will need to include the version number in their
URIs.

Rather than providing multiple URIs, you can specify the version of the resource by using a parameter within the
query string appended to the HTTP request, such as https://adventure-works.com/customers/3?version=2 . The
version parameter should default to a meaningful value such as 1 if it is omitted by older client applications.

This approach has the semantic advantage that the same resource is always retrieved from the same URI, but it
depends on the code that handles the request to parse the query string and send back the appropriate HTTP
response. This approach also suffers from the same complications for implementing HATEOAS as the URI
versioning mechanism.

Some older web browsers and web proxies will not cache responses for requests that include a query string in the URI. This
can degrade performance for web applications that use a web API and that run from within such a web browser.

Rather than appending the version number as a query string parameter, you could implement a custom header
that indicates the version of the resource. This approach requires that the client application adds the appropriate
header to any requests, although the code handling the client request could use a default value (version 1) if the
version header is omitted. The following examples use a custom header named Custom-Header. The value of this
header indicates the version of web API.

Version 1:

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8

{"id":3,"name":"Contoso LLC","address":"1 Microsoft Way Redmond WA 98053"}

GET https://adventure-works.com/customers/3 HTTP/1.1
Custom-Header: api-version=2

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8

{"id":3,"name":"Contoso LLC","dateCreated":"2014-09-04T12:11:38.0376089Z","address":{"streetAddress":"1
Microsoft Way","city":"Redmond","state":"WA","zipCode":98053}}

Media type versioningMedia type versioning

GET https://adventure-works.com/customers/3 HTTP/1.1
Accept: application/vnd.adventure-works.v1+json

HTTP/1.1 200 OK
Content-Type: application/vnd.adventure-works.v1+json; charset=utf-8

{"id":3,"name":"Contoso LLC","address":"1 Microsoft Way Redmond WA 98053"}

Version 2:

Note that as with the previous two approaches, implementing HATEOAS requires including the appropriate
custom header in any links.

When a client application sends an HTTP GET request to a web server it should stipulate the format of the content
that it can handle by using an Accept header, as described earlier in this guidance. Frequently the purpose of the
Accept header is to allow the client application to specify whether the body of the response should be XML, JSON,
or some other common format that the client can parse. However, it is possible to define custom media types that
include information enabling the client application to indicate which version of a resource it is expecting. The
following example shows a request that specifies an Accept header with the value application/vnd.adventure-
works.v1+json. The vnd.adventure-works.v1 element indicates to the web server that it should return version 1 of
the resource, while the json element specifies that the format of the response body should be JSON:

The code handling the request is responsible for processing the Accept header and honoring it as far as possible
(the client application may specify multiple formats in the Accept header, in which case the web server can choose
the most appropriate format for the response body). The web server confirms the format of the data in the
response body by using the Content-Type header:

If the Accept header does not specify any known media types, the web server could generate an HTTP 406 (Not
Acceptable) response message or return a message with a default media type.

This approach is arguably the purest of the versioning mechanisms and lends itself naturally to HATEOAS, which
can include the MIME type of related data in resource links.

NOTENOTE

Open API Initiative

More information

When you select a versioning strategy, you should also consider the implications on performance, especially caching on the
web server. The URI versioning and Query String versioning schemes are cache-friendly inasmuch as the same URI/query
string combination refers to the same data each time.

The Header versioning and Media Type versioning mechanisms typically require additional logic to examine the values in the
custom header or the Accept header. In a large-scale environment, many clients using different versions of a web API can
result in a significant amount of duplicated data in a server-side cache. This issue can become acute if a client application
communicates with a web server through a proxy that implements caching, and that only forwards a request to the web
server if it does not currently hold a copy of the requested data in its cache.

The Open API Initiative was created by an industry consortium to standardize REST API descriptions across
vendors. As part of this initiative, the Swagger 2.0 specification was renamed the OpenAPI Specification (OAS)
and brought under the Open API Initiative.

You may want to adopt OpenAPI for your web APIs. Some points to consider:

The OpenAPI Specification comes with a set of opinionated guidelines on how a REST API should be
designed. That has advantages for interoperability, but requires more care when designing your API to
conform to the specification.

OpenAPI promotes a contract-first approach, rather than an implementation-first approach. Contract-first
means you design the API contract (the interface) first and then write code that implements the contract.

Tools like Swagger can generate client libraries or documentation from API contracts. For example, see
ASP.NET Web API Help Pages using Swagger.

Microsoft REST API Guidelines. Detailed recommendations for designing public REST APIs.

Web API Checklist. A useful list of items to consider when designing and implementing a web API.

Open API Initiative. Documentation and implementation details on Open API.

https://www.openapis.org/
https://docs.microsoft.com/aspnet/core/tutorials/web-api-help-pages-using-swagger
https://github.com/Microsoft/api-guidelines/blob/master/Guidelines.md
https://mathieu.fenniak.net/the-api-checklist/
https://www.openapis.org/

API implementation
3/13/2019 • 46 minutes to read • Edit Online

Processing requests

GET, PUT, DELETE, HEAD, and PATCH actions should be idempotentGET, PUT, DELETE, HEAD, and PATCH actions should be idempotent

NOTENOTE

POST actions that create new resources should not have unrelated side-effectsPOST actions that create new resources should not have unrelated side-effects

Avoid implementing chatty POST, PUT, and DELETE operationsAvoid implementing chatty POST, PUT, and DELETE operations

Follow the HTTP specification when sending a responseFollow the HTTP specification when sending a response

A carefully-designed RESTful web API defines the resources, relationships, and navigation schemes that are
accessible to client applications. When you implement and deploy a web API, you should consider the physical
requirements of the environment hosting the web API and the way in which the web API is constructed rather than
the logical structure of the data. This guidance focusses on best practices for implementing a web API and
publishing it to make it available to client applications. For detailed information about web API design, see API
Design Guidance.

Consider the following points when you implement the code to handle requests.

The code that implements these requests should not impose any side-effects. The same request repeated over the
same resource should result in the same state. For example, sending multiple DELETE requests to the same URI
should have the same effect, although the HTTP status code in the response messages may be different. The first
DELETE request might return status code 204 (No Content), while a subsequent DELETE request might return
status code 404 (Not Found).

The article Idempotency Patterns on Jonathan Oliver’s blog provides an overview of idempotency and how it relates to data
management operations.

If a POST request is intended to create a new resource, the effects of the request should be limited to the new
resource (and possibly any directly related resources if there is some sort of linkage involved) For example, in an
ecommerce system, a POST request that creates a new order for a customer might also amend inventory levels
and generate billing information, but it should not modify information not directly related to the order or have any
other side-effects on the overall state of the system.

Support POST, PUT and DELETE requests over resource collections. A POST request can contain the details for
multiple new resources and add them all to the same collection, a PUT request can replace the entire set of
resources in a collection, and a DELETE request can remove an entire collection.

The OData support included in ASP.NET Web API 2 provides the ability to batch requests. A client application can
package up several web API requests and send them to the server in a single HTTP request, and receive a single
HTTP response that contains the replies to each request. For more information, Introducing Batch Support in Web
API and Web API OData.

A web API must return messages that contain the correct HTTP status code to enable the client to determine how
to handle the result, the appropriate HTTP headers so that the client understands the nature of the result, and a
suitably formatted body to enable the client to parse the result.

For example, a POST operation should return status code 201 (Created) and the response message should include
the URI of the newly created resource in the Location header of the response message.

https://github.com/mspnp/architecture-center/blob/master/docs/best-practices/api-implementation.md
https://docs.microsoft.com/azure/architecture/best-practices/api-design
https://blog.jonathanoliver.com/idempotency-patterns/
https://blogs.msdn.microsoft.com/webdev/2013/11/01/introducing-batch-support-in-web-api-and-web-api-odata/

Support content negotiationSupport content negotiation

Provide links to support HATEOAS-style navigation and discovery of resourcesProvide links to support HATEOAS-style navigation and discovery of resources

GET https://adventure-works.com/customers/2 HTTP/1.1
Accept: text/json
...

HTTP/1.1 200 OK
...
Content-Type: application/json; charset=utf-8
...
Content-Length: ...
{"CustomerID":2,"CustomerName":"Bert","Links":[
 {"rel":"self",
 "href":"https://adventure-works.com/customers/2",
 "action":"GET",
 "types":["text/xml","application/json"]},
 {"rel":"self",
 "href":"https://adventure-works.com/customers/2",
 "action":"PUT",
 "types":["application/x-www-form-urlencoded"]},
 {"rel":"self",
 "href":"https://adventure-works.com/customers/2",
 "action":"DELETE",
 "types":[]},
 {"rel":"orders",
 "href":"https://adventure-works.com/customers/2/orders",
 "action":"GET",
 "types":["text/xml","application/json"]},
 {"rel":"orders",
 "href":"https://adventure-works.com/customers/2/orders",
 "action":"POST",
 "types":["application/x-www-form-urlencoded"]}
]}

The body of a response message may contain data in a variety of formats. For example, an HTTP GET request
could return data in JSON, or XML format. When the client submits a request, it can include an Accept header that
specifies the data formats that it can handle. These formats are specified as media types. For example, a client that
issues a GET request that retrieves an image can specify an Accept header that lists the media types that the client
can handle, such as image/jpeg, image/gif, image/png . When the web API returns the result, it should format the
data by using one of these media types and specify the format in the Content-Type header of the response.

If the client does not specify an Accept header, then use a sensible default format for the response body. As an
example, the ASP.NET Web API framework defaults to JSON for text-based data.

The HATEOAS approach enables a client to navigate and discover resources from an initial starting point. This is
achieved by using links containing URIs; when a client issues an HTTP GET request to obtain a resource, the
response should contain URIs that enable a client application to quickly locate any directly related resources. For
example, in a web API that supports an e-commerce solution, a customer may have placed many orders. When a
client application retrieves the details for a customer, the response should include links that enable the client
application to send HTTP GET requests that can retrieve these orders. Additionally, HATEOAS-style links should
describe the other operations (POST, PUT, DELETE, and so on) that each linked resource supports together with
the corresponding URI to perform each request. This approach is described in more detail in API Design.

Currently there are no standards that govern the implementation of HATEOAS, but the following example
illustrates one possible approach. In this example, an HTTP GET request that finds the details for a customer
returns a response that include HATEOAS links that reference the orders for that customer:

In this example, the customer data is represented by the Customer class shown in the following code snippet. The

public class Customer
{
 public int CustomerID { get; set; }
 public string CustomerName { get; set; }
 public List<Link> Links { get; set; }
 ...
}

public class Link
{
 public string Rel { get; set; }
 public string Href { get; set; }
 public string Action { get; set; }
 public string [] Types { get; set; }
}

Handling exceptions

Capture exceptions and return a meaningful response to clientsCapture exceptions and return a meaningful response to clients

HATEOAS links are held in the Links collection property:

The HTTP GET operation retrieves the customer data from storage and constructs a Customer object, and then
populates the Links collection. The result is formatted as a JSON response message. Each link comprises the
following fields:

The relationship between the object being returned and the object described by the link. In this case self

indicates that the link is a reference back to the object itself (similar to a this pointer in many object-oriented
languages), and orders is the name of a collection containing the related order information.
The hyperlink (Href) for the object being described by the link in the form of a URI.
The type of HTTP request (Action) that can be sent to this URI.
The format of any data (Types) that should be provided in the HTTP request or that can be returned in the
response, depending on the type of the request.

The HATEOAS links shown in the example HTTP response indicate that a client application can perform the
following operations:

An HTTP GET request to the URI https://adventure-works.com/customers/2 to fetch the details of the customer
(again). The data can be returned as XML or JSON.
An HTTP PUT request to the URI https://adventure-works.com/customers/2 to modify the details of the
customer. The new data must be provided in the request message in x-www-form-urlencoded format.
An HTTP DELETE request to the URI https://adventure-works.com/customers/2 to delete the customer. The
request does not expect any additional information or return data in the response message body.
An HTTP GET request to the URI https://adventure-works.com/customers/2/orders to find all the orders for the
customer. The data can be returned as XML or JSON.
An HTTP PUT request to the URI https://adventure-works.com/customers/2/orders to create a new order for this
customer. The data must be provided in the request message in x-www-form-urlencoded format.

Consider the following points if an operation throws an uncaught exception.

The code that implements an HTTP operation should provide comprehensive exception handling rather than
letting uncaught exceptions propagate to the framework. If an exception makes it impossible to complete the
operation successfully, the exception can be passed back in the response message, but it should include a
meaningful description of the error that caused the exception. The exception should also include the appropriate
HTTP status code rather than simply returning status code 500 for every situation. For example, if a user request
causes a database update that violates a constraint (such as attempting to delete a customer that has outstanding

[HttpDelete]
[Route("customers/{id:int}")]
public IHttpActionResult DeleteCustomer(int id)
{
 try
 {
 // Find the customer to be deleted in the repository
 var customerToDelete = repository.GetCustomer(id);

 // If there is no such customer, return an error response
 // with status code 404 (Not Found)
 if (customerToDelete == null)
 {
 return NotFound();
 }

 // Remove the customer from the repository
 // The DeleteCustomer method returns true if the customer
 // was successfully deleted
 if (repository.DeleteCustomer(id))
 {
 // Return a response message with status code 204 (No Content)
 // To indicate that the operation was successful
 return StatusCode(HttpStatusCode.NoContent);
 }
 else
 {
 // Otherwise return a 400 (Bad Request) error response
 return BadRequest(Strings.CustomerNotDeleted);
 }
 }
 catch
 {
 // If an uncaught exception occurs, return an error response
 // with status code 500 (Internal Server Error)
 return InternalServerError();
 }
}

TIPTIP

Handle exceptions consistently and log information about errorsHandle exceptions consistently and log information about errors

Distinguish between client-side errors and server-side errorsDistinguish between client-side errors and server-side errors

orders), you should return status code 409 (Conflict) and a message body indicating the reason for the conflict. If
some other condition renders the request unachievable, you can return status code 400 (Bad Request). You can find
a full list of HTTP status codes on the Status Code Definitions page on the W3C website.

The code example traps different conditions and returns an appropriate response.

Do not include information that could be useful to an attacker attempting to penetrate your API.

Many web servers trap error conditions themselves before they reach the web API. For example, if you configure
authentication for a web site and the user fails to provide the correct authentication information, the web server
should respond with status code 401 (Unauthorized). Once a client has been authenticated, your code can perform
its own checks to verify that the client should be able access the requested resource. If this authorization fails, you
should return status code 403 (Forbidden).

To handle exceptions in a consistent manner, consider implementing a global error handling strategy across the
entire web API. You should also incorporate error logging which captures the full details of each exception; this
error log can contain detailed information as long as it is not made accessible over the web to clients.

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

 Optimizing client-side data access

Support client-side cachingSupport client-side caching

GET https://adventure-works.com/orders/2 HTTP/1.1

HTTP/1.1 200 OK
...
Cache-Control: max-age=600, private
Content-Type: text/json; charset=utf-8
Content-Length: ...
{"orderID":2,"productID":4,"quantity":2,"orderValue":10.00}

The HTTP protocol distinguishes between errors that occur due to the client application (the HTTP 4xx status
codes), and errors that are caused by a mishap on the server (the HTTP 5xx status codes). Make sure that you
respect this convention in any error response messages.

In a distributed environment such as that involving a web server and client applications, one of the primary
sources of concern is the network. This can act as a considerable bottleneck, especially if a client application is
frequently sending requests or receiving data. Therefore you should aim to minimize the amount of traffic that
flows across the network. Consider the following points when you implement the code to retrieve and maintain
data:

The HTTP 1.1 protocol supports caching in clients and intermediate servers through which a request is routed by
the use of the Cache-Control header. When a client application sends an HTTP GET request to the web API, the
response can include a Cache-Control header that indicates whether the data in the body of the response can be
safely cached by the client or an intermediate server through which the request has been routed, and for how long
before it should expire and be considered out-of-date. The following example shows an HTTP GET request and the
corresponding response that includes a Cache-Control header:

In this example, the Cache-Control header specifies that the data returned should be expired after 600 seconds,
and is only suitable for a single client and must not be stored in a shared cache used by other clients (it is private).
The Cache-Control header could specify public rather than private in which case the data can be stored in a shared
cache, or it could specify no-store in which case the data must not be cached by the client. The following code
example shows how to construct a Cache-Control header in a response message:

public class OrdersController : ApiController
{
 ...
 [Route("api/orders/{id:int:min(0)}")]
 [HttpGet]
 public IHttpActionResult FindOrderByID(int id)
 {
 // Find the matching order
 Order order = ...;
 ...
 // Create a Cache-Control header for the response
 var cacheControlHeader = new CacheControlHeaderValue();
 cacheControlHeader.Private = true;
 cacheControlHeader.MaxAge = new TimeSpan(0, 10, 0);
 ...

 // Return a response message containing the order and the cache control header
 OkResultWithCaching<Order> response = new OkResultWithCaching<Order>(order, this)
 {
 CacheControlHeader = cacheControlHeader
 };
 return response;
 }
 ...
}

public class OkResultWithCaching<T> : OkNegotiatedContentResult<T>
{
 public OkResultWithCaching(T content, ApiController controller)
 : base(content, controller) { }

 public OkResultWithCaching(T content, IContentNegotiator contentNegotiator, HttpRequestMessage request,
IEnumerable<MediaTypeFormatter> formatters)
 : base(content, contentNegotiator, request, formatters) { }

 public CacheControlHeaderValue CacheControlHeader { get; set; }
 public EntityTagHeaderValue ETag { get; set; }

 public override async Task<HttpResponseMessage> ExecuteAsync(CancellationToken cancellationToken)
 {
 HttpResponseMessage response;
 try
 {
 response = await base.ExecuteAsync(cancellationToken);
 response.Headers.CacheControl = this.CacheControlHeader;
 response.Headers.ETag = ETag;
 }
 catch (OperationCanceledException)
 {
 response = new HttpResponseMessage(HttpStatusCode.Conflict) {ReasonPhrase = "Operation was
cancelled"};
 }
 return response;
 }
}

This code makes use of a custom IHttpActionResult class named OkResultWithCaching . This class enables the
controller to set the cache header contents:

NOTENOTE

NOTENOTE

Provide ETags to optimize query processingProvide ETags to optimize query processing

public class OrdersController : ApiController
{
 ...
 public IHttpActionResult FindOrderByID(int id)
 {
 // Find the matching order
 Order order = ...;
 ...

 var hashedOrder = order.GetHashCode();
 string hashedOrderEtag = $"\"{hashedOrder}\"";
 var eTag = new EntityTagHeaderValue(hashedOrderEtag);

 // Return a response message containing the order and the cache control header
 OkResultWithCaching<Order> response = new OkResultWithCaching<Order>(order, this)
 {
 ...,
 ETag = eTag
 };
 return response;
 }
 ...
}

The HTTP protocol also defines the no-cache directive for the Cache-Control header. Rather confusingly, this directive does
not mean "do not cache" but rather "revalidate the cached information with the server before returning it"; the data can still
be cached, but it is checked each time it is used to ensure that it is still current.

Cache management is the responsibility of the client application or intermediate server, but if properly
implemented it can save bandwidth and improve performance by removing the need to fetch data that has already
been recently retrieved.

The max-age value in the Cache-Control header is only a guide and not a guarantee that the corresponding data
won't change during the specified time. The web API should set the max-age to a suitable value depending on the
expected volatility of the data. When this period expires, the client should discard the object from the cache.

Most modern web browsers support client-side caching by adding the appropriate cache-control headers to requests and
examining the headers of the results, as described. However, some older browsers will not cache the values returned from a
URL that includes a query string. This is not usually an issue for custom client applications which implement their own cache
management strategy based on the protocol discussed here.

Some older proxies exhibit the same behavior and might not cache requests based on URLs with query strings. This could be
an issue for custom client applications that connect to a web server through such a proxy.

When a client application retrieves an object, the response message can also include an ETag (Entity Tag). An ETag
is an opaque string that indicates the version of a resource; each time a resource changes the Etag is also modified.
This ETag should be cached as part of the data by the client application. The following code example shows how to
add an ETag as part of the response to an HTTP GET request. This code uses the GetHashCode method of an object
to generate a numeric value that identifies the object (you can override this method if necessary and generate your
own hash using an algorithm such as MD5) :

The response message posted by the web API looks like this:

HTTP/1.1 200 OK
...
Cache-Control: max-age=600, private
Content-Type: text/json; charset=utf-8
ETag: "2147483648"
Content-Length: ...
{"orderID":2,"productID":4,"quantity":2,"orderValue":10.00}

TIPTIP

NOTENOTE

For security reasons, do not allow sensitive data or data returned over an authenticated (HTTPS) connection to be cached.

A client application can issue a subsequent GET request to retrieve the same resource at any time, and if the
resource has changed (it has a different ETag) the cached version should be discarded and the new version added
to the cache. If a resource is large and requires a significant amount of bandwidth to transmit back to the client,
repeated requests to fetch the same data can become inefficient. To combat this, the HTTP protocol defines the
following process for optimizing GET requests that you should support in a web API:

GET https://adventure-works.com/orders/2 HTTP/1.1
If-None-Match: "2147483648"

The client constructs a GET request containing the ETag for the currently cached version of the resource
referenced in an If-None-Match HTTP header:

The GET operation in the web API obtains the current ETag for the requested data (order 2 in the above
example), and compares it to the value in the If-None-Match header.

If the current ETag for the requested data matches the ETag provided by the request, the resource has not
changed and the web API should return an HTTP response with an empty message body and a status code
of 304 (Not Modified).

If the current ETag for the requested data does not match the ETag provided by the request, then the data
has changed and the web API should return an HTTP response with the new data in the message body and
a status code of 200 (OK).

If the requested data no longer exists then the web API should return an HTTP response with the status
code of 404 (Not Found).

The client uses the status code to maintain the cache. If the data has not changed (status code 304) then the
object can remain cached and the client application should continue to use this version of the object. If the
data has changed (status code 200) then the cached object should be discarded and the new one inserted. If
the data is no longer available (status code 404) then the object should be removed from the cache.

If the response header contains the Cache-Control header no-store then the object should always be removed from the
cache regardless of the HTTP status code.

The code below shows the FindOrderByID method extended to support the If-None-Match header. Notice that if
the If-None-Match header is omitted, the specified order is always retrieved:

public class OrdersController : ApiController
{
 [Route("api/orders/{id:int:min(0)}")]
 [HttpGet]
 public IHttpActionResult FindOrderByID(int id)
 {
 try
 {
 // Find the matching order
 Order order = ...;

 // If there is no such order then return NotFound
 if (order == null)
 {
 return NotFound();
 }

 // Generate the ETag for the order
 var hashedOrder = order.GetHashCode();
 string hashedOrderEtag = $"\"{hashedOrder}\"";

 // Create the Cache-Control and ETag headers for the response
 IHttpActionResult response;
 var cacheControlHeader = new CacheControlHeaderValue();
 cacheControlHeader.Public = true;
 cacheControlHeader.MaxAge = new TimeSpan(0, 10, 0);
 var eTag = new EntityTagHeaderValue(hashedOrderEtag);

 // Retrieve the If-None-Match header from the request (if it exists)
 var nonMatchEtags = Request.Headers.IfNoneMatch;

 // If there is an ETag in the If-None-Match header and
 // this ETag matches that of the order just retrieved,
 // then create a Not Modified response message
 if (nonMatchEtags.Count > 0 &&
 String.CompareOrdinal(nonMatchEtags.First().Tag, hashedOrderEtag) == 0)
 {
 response = new EmptyResultWithCaching()
 {
 StatusCode = HttpStatusCode.NotModified,
 CacheControlHeader = cacheControlHeader,
 ETag = eTag
 };
 }
 // Otherwise create a response message that contains the order details
 else
 {
 response = new OkResultWithCaching<Order>(order, this)
 {
 CacheControlHeader = cacheControlHeader,
 ETag = eTag
 };
 }

 return response;
 }
 catch
 {
 return InternalServerError();
 }
 }
...
}

This example incorporates an additional custom IHttpActionResult class named EmptyResultWithCaching . This
class simply acts as a wrapper around an HttpResponseMessage object that does not contain a response body:

public class EmptyResultWithCaching : IHttpActionResult
{
 public CacheControlHeaderValue CacheControlHeader { get; set; }
 public EntityTagHeaderValue ETag { get; set; }
 public HttpStatusCode StatusCode { get; set; }
 public Uri Location { get; set; }

 public async Task<HttpResponseMessage> ExecuteAsync(CancellationToken cancellationToken)
 {
 HttpResponseMessage response = new HttpResponseMessage(StatusCode);
 response.Headers.CacheControl = this.CacheControlHeader;
 response.Headers.ETag = this.ETag;
 response.Headers.Location = this.Location;
 return response;
 }
}

TIPTIP

Use ETags to Support Optimistic ConcurrencyUse ETags to Support Optimistic Concurrency

In this example, the ETag for the data is generated by hashing the data retrieved from the underlying data source. If the ETag
can be computed in some other way, then the process can be optimized further and the data only needs to be fetched from
the data source if it has changed. This approach is especially useful if the data is large or accessing the data source can result
in significant latency (for example, if the data source is a remote database).

To enable updates over previously cached data, the HTTP protocol supports an optimistic concurrency strategy. If,
after fetching and caching a resource, the client application subsequently sends a PUT or DELETE request to
change or remove the resource, it should include in If-Match header that references the ETag. The web API can
then use this information to determine whether the resource has already been changed by another user since it
was retrieved and send an appropriate response back to the client application as follows:

PUT https://adventure-works.com/orders/1 HTTP/1.1
If-Match: "2282343857"
Content-Type: application/x-www-form-urlencoded
Content-Length: ...
productID=3&quantity=5&orderValue=250

The client constructs a PUT request containing the new details for the resource and the ETag for the
currently cached version of the resource referenced in an If-Match HTTP header. The following example
shows a PUT request that updates an order:

The PUT operation in the web API obtains the current ETag for the requested data (order 1 in the above
example), and compares it to the value in the If-Match header.

If the current ETag for the requested data matches the ETag provided by the request, the resource has not
changed and the web API should perform the update, returning a message with HTTP status code 204 (No
Content) if it is successful. The response can include Cache-Control and ETag headers for the updated
version of the resource. The response should always include the Location header that references the URI of
the newly updated resource.

If the current ETag for the requested data does not match the ETag provided by the request, then the data
has been changed by another user since it was fetched and the web API should return an HTTP response
with an empty message body and a status code of 412 (Precondition Failed).

If the resource to be updated no longer exists then the web API should return an HTTP response with the
status code of 404 (Not Found).

public class OrdersController : ApiController
{
 [HttpPut]
 [Route("api/orders/{id:int}")]
 public IHttpActionResult UpdateExistingOrder(int id, DTOOrder order)
 {
 try
 {
 var baseUri = Constants.GetUriFromConfig();
 var orderToUpdate = this.ordersRepository.GetOrder(id);
 if (orderToUpdate == null)
 {
 return NotFound();
 }

 var hashedOrder = orderToUpdate.GetHashCode();
 string hashedOrderEtag = $"\"{hashedOrder}\"";

 // Retrieve the If-Match header from the request (if it exists)
 var matchEtags = Request.Headers.IfMatch;

 // If there is an Etag in the If-Match header and
 // this etag matches that of the order just retrieved,
 // or if there is no etag, then update the Order
 if (((matchEtags.Count > 0 &&
 String.CompareOrdinal(matchEtags.First().Tag, hashedOrderEtag) == 0)) ||
 matchEtags.Count == 0)
 {
 // Modify the order
 orderToUpdate.OrderValue = order.OrderValue;
 orderToUpdate.ProductID = order.ProductID;
 orderToUpdate.Quantity = order.Quantity;

 // Save the order back to the data store
 // ...

 // Create the No Content response with Cache-Control, ETag, and Location headers
 var cacheControlHeader = new CacheControlHeaderValue();
 cacheControlHeader.Private = true;
 cacheControlHeader.MaxAge = new TimeSpan(0, 10, 0);

 hashedOrder = order.GetHashCode();
 hashedOrderEtag = $"\"{hashedOrder}\"";
 var eTag = new EntityTagHeaderValue(hashedOrderEtag);

 var location = new Uri($"{baseUri}/{Constants.ORDERS}/{id}");
 var response = new EmptyResultWithCaching()
 {
 StatusCode = HttpStatusCode.NoContent,
 CacheControlHeader = cacheControlHeader,
 ETag = eTag,
 Location = location
 };

 return response;
 }

 // Otherwise return a Precondition Failed response
 return StatusCode(HttpStatusCode.PreconditionFailed);
 }

The client uses the status code and response headers to maintain the cache. If the data has been updated
(status code 204) then the object can remain cached (as long as the Cache-Control header does not specify
no-store) but the ETag should be updated. If the data was changed by another user changed (status code
412) or not found (status code 404) then the cached object should be discarded.

The next code example shows an implementation of the PUT operation for the Orders controller:

 }
 catch
 {
 return InternalServerError();
 }
 }
 ...
}

TIPTIP

Handling large requests and responses

Optimize requests and responses that involve large objectsOptimize requests and responses that involve large objects

Implement partial responses for clients that do not support asynchronous operationsImplement partial responses for clients that do not support asynchronous operations

Use of the If-Match header is entirely optional, and if it is omitted the web API will always attempt to update the specified
order, possibly blindly overwriting an update made by another user. To avoid problems due to lost updates, always provide
an If-Match header.

There may be occasions when a client application needs to issue requests that send or receive data that may be
several megabytes (or bigger) in size. Waiting while this amount of data is transmitted could cause the client
application to become unresponsive. Consider the following points when you need to handle requests that include
significant amounts of data:

Some resources may be large objects or include large fields, such as graphics images or other types of binary data.
A web API should support streaming to enable optimized uploading and downloading of these resources.

The HTTP protocol provides the chunked transfer encoding mechanism to stream large data objects back to a
client. When the client sends an HTTP GET request for a large object, the web API can send the reply back in
piecemeal chunks over an HTTP connection. The length of the data in the reply may not be known initially (it might
be generated), so the server hosting the web API should send a response message with each chunk that specifies
the Transfer-Encoding: Chunked header rather than a Content-Length header. The client application can receive
each chunk in turn to build up the complete response. The data transfer completes when the server sends back a
final chunk with zero size.

A single request could conceivably result in a massive object that consumes considerable resources. If, during the
streaming process, the web API determines that the amount of data in a request has exceeded some acceptable
bounds, it can abort the operation and return a response message with status code 413 (Request Entity Too Large).

You can minimize the size of large objects transmitted over the network by using HTTP compression. This
approach helps to reduce the amount of network traffic and the associated network latency, but at the cost of
requiring additional processing at the client and the server hosting the web API. For example, a client application
that expects to receive compressed data can include an Accept-Encoding: gzip request header (other data
compression algorithms can also be specified). If the server supports compression it should respond with the
content held in gzip format in the message body and the Content-Encoding: gzip response header.

You can combine encoded compression with streaming; compress the data first before streaming it, and specify the
gzip content encoding and chunked transfer encoding in the message headers. Also note that some web servers
(such as Internet Information Server) can be configured to automatically compress HTTP responses regardless of
whether the web API compresses the data or not.

As an alternative to asynchronous streaming, a client application can explicitly request data for large objects in
chunks, known as partial responses. The client application sends an HTTP HEAD request to obtain information
about the object. If the web API supports partial responses if should respond to the HEAD request with a response
message that contains an Accept-Ranges header and a Content-Length header that indicates the total size of the
object, but the body of the message should be empty. The client application can use this information to construct a

Avoid sending unnecessary 100-Continue status messages in client applicationsAvoid sending unnecessary 100-Continue status messages in client applications

Uri uri = new Uri("https://www.contoso.com/");
ServicePoint sp = ServicePointManager.FindServicePoint(uri);
sp.Expect100Continue = false;

Support pagination for requests that may return large numbers of objectsSupport pagination for requests that may return large numbers of objects

series of GET requests that specify a range of bytes to receive. The web API should return a response message with
HTTP status 206 (Partial Content), a Content-Length header that specifies the actual amount of data included in
the body of the response message, and a Content-Range header that indicates which part (such as bytes 4000 to
8000) of the object this data represents.

HTTP HEAD requests and partial responses are described in more detail in API Design.

A client application that is about to send a large amount of data to a server may determine first whether the server
is actually willing to accept the request. Prior to sending the data, the client application can submit an HTTP request
with an Expect: 100-Continue header, a Content-Length header that indicates the size of the data, but an empty
message body. If the server is willing to handle the request, it should respond with a message that specifies the
HTTP status 100 (Continue). The client application can then proceed and send the complete request including the
data in the message body.

If you are hosting a service by using IIS, the HTTP.sys driver automatically detects and handles Expect: 100-
Continue headers before passing requests to your web application. This means that you are unlikely to see these
headers in your application code, and you can assume that IIS has already filtered any messages that it deems to
be unfit or too large.

If you are building client applications by using the .NET Framework, then all POST and PUT messages will first
send messages with Expect: 100-Continue headers by default. As with the server-side, the process is handled
transparently by the .NET Framework. However, this process results in each POST and PUT request causing two
round-trips to the server, even for small requests. If your application is not sending requests with large amounts of
data, you can disable this feature by using the ServicePointManager class to create ServicePoint objects in the
client application. A ServicePoint object handles the connections that the client makes to a server based on the
scheme and host fragments of URIs that identify resources on the server. You can then set the Expect100Continue

property of the ServicePoint object to false. All subsequent POST and PUT requests made by the client through a
URI that matches the scheme and host fragments of the ServicePoint object will be sent without Expect: 100-
Continue headers. The following code shows how to configure a ServicePoint object that configures all requests
sent to URIs with a scheme of http and a host of www.contoso.com .

You can also set the static Expect100Continue property of the ServicePointManager class to specify the default value
of this property for all subsequently created ServicePoint objects.

If a collection contains a large number of resources, issuing a GET request to the corresponding URI could result in
significant processing on the server hosting the web API affecting performance, and generate a significant amount
of network traffic resulting in increased latency.

To handle these cases, the web API should support query strings that enable the client application to refine
requests or fetch data in more manageable, discrete blocks (or pages). The code below shows the GetAllOrders

method in the Orders controller. This method retrieves the details of orders. If this method was unconstrained, it
could conceivably return a large amount of data. The limit and offset parameters are intended to reduce the
volume of data to a smaller subset, in this case only the first 10 orders by default:

https://docs.microsoft.com/dotnet/api/system.net.servicepoint

public class OrdersController : ApiController
{
 ...
 [Route("api/orders")]
 [HttpGet]
 public IEnumerable<Order> GetAllOrders(int limit=10, int offset=0)
 {
 // Find the number of orders specified by the limit parameter
 // starting with the order specified by the offset parameter
 var orders = ...
 return orders;
 }
 ...
}

TIPTIP

Maintaining responsiveness, scalability, and availability

Provide asynchronous support for long-running requestsProvide asynchronous support for long-running requests

A client application can issue a request to retrieve 30 orders starting at offset 50 by using the URI
https://www.adventure-works.com/api/orders?limit=30&offset=50 .

Avoid enabling client applications to specify query strings that result in a URI that is more than 2000 characters long. Many
web clients and servers cannot handle URIs that are this long.

The same web API might be used by many client applications running anywhere in the world. It is important to
ensure that the web API is implemented to maintain responsiveness under a heavy load, to be scalable to support
a highly varying workload, and to guarantee availability for clients that perform business-critical operations.
Consider the following points when determining how to meet these requirements:

A request that might take a long time to process should be performed without blocking the client that submitted
the request. The web API can perform some initial checking to validate the request, initiate a separate task to
perform the work, and then return a response message with HTTP code 202 (Accepted). The task could run
asynchronously as part of the web API processing, or it could be offloaded to a background task.

The web API should also provide a mechanism to return the results of the processing to the client application. You
can achieve this by providing a polling mechanism for client applications to periodically query whether the
processing has finished and obtain the result, or enabling the web API to send a notification when the operation
has completed.

You can implement a simple polling mechanism by providing a polling URI that acts as a virtual resource using the
following approach:

1. The client application sends the initial request to the web API.
2. The web API stores information about the request in a table held in table storage or Microsoft Azure Cache, and

generates a unique key for this entry, possibly in the form of a GUID.
3. The web API initiates the processing as a separate task. The web API records the state of the task in the table as

Running.
4. The web API returns a response message with HTTP status code 202 (Accepted), and the GUID of the table

entry in the body of the message.
5. When the task has completed, the web API stores the results in the table, and sets the state of the task to

Complete. Note that if the task fails, the web API could also store information about the failure and set the
status to Failed.

6. While the task is running, the client can continue performing its own processing. It can periodically send a

Ensure that each request is statelessEnsure that each request is stateless

Track clients and implement throttling to reduce the chances of DOS attacksTrack clients and implement throttling to reduce the chances of DOS attacks

Manage persistent HTTP connections carefullyManage persistent HTTP connections carefully

request to the URI /polling/{guid} where {guid} is the GUID returned in the 202 response message by the web
API.

7. The web API at the /polling/{guid} URI queries the state of the corresponding task in the table and returns a
response message with HTTP status code 200 (OK) containing this state (Running, Complete, or Failed). If the
task has completed or failed, the response message can also include the results of the processing or any
information available about the reason for the failure.

Options for implementing notifications include:

Using an Azure Notification Hub to push asynchronous responses to client applications. For more information,
see Azure Notification Hubs Notify Users.
Using the Comet model to retain a persistent network connection between the client and the server hosting the
web API, and using this connection to push messages from the server back to the client. The MSDN magazine
article Building a Simple Comet Application in the Microsoft .NET Framework describes an example solution.
Using SignalR to push data in real-time from the web server to the client over a persistent network connection.
SignalR is available for ASP.NET web applications as a NuGet package. You can find more information on the
ASP.NET SignalR website.

Each request should be considered atomic. There should be no dependencies between one request made by a
client application and any subsequent requests submitted by the same client. This approach assists in scalability;
instances of the web service can be deployed on a number of servers. Client requests can be directed at any of
these instances and the results should always be the same. It also improves availability for a similar reason; if a web
server fails requests can be routed to another instance (by using Azure Traffic Manager) while the server is
restarted with no ill effects on client applications.

If a specific client makes a large number of requests within a given period of time it might monopolize the service
and affect the performance of other clients. To mitigate this issue, a web API can monitor calls from client
applications either by tracking the IP address of all incoming requests or by logging each authenticated access. You
can use this information to limit resource access. If a client exceeds a defined limit, the web API can return a
response message with status 503 (Service Unavailable) and include a Retry-After header that specifies when the
client can send the next request without it being declined. This strategy can help to reduce the chances of a Denial
Of Service (DOS) attack from a set of clients stalling the system.

The HTTP protocol supports persistent HTTP connections where they are available. The HTTP 1.0 specificiation
added the Connection:Keep-Alive header that enables a client application to indicate to the server that it can use
the same connection to send subsequent requests rather than opening new ones. The connection closes
automatically if the client does not reuse the connection within a period defined by the host. This behavior is the
default in HTTP 1.1 as used by Azure services, so there is no need to include Keep-Alive headers in messages.

Keeping a connection open can help to improve responsiveness by reducing latency and network congestion, but it
can be detrimental to scalability by keeping unnecessary connections open for longer than required, limiting the
ability of other concurrent clients to connect. It can also affect battery life if the client application is running on a
mobile device; if the application only makes occasional requests to the server, maintaining an open connection can
cause the battery to drain more quickly. To ensure that a connection is not made persistent with HTTP 1.1, the
client can include a Connection:Close header with messages to override the default behavior. Similarly, if a server is
handling a very large number of clients it can include a Connection:Close header in response messages which
should close the connection and save server resources.

https://docs.microsoft.com/azure/notification-hubs/notification-hubs-aspnet-backend-windows-dotnet-wns-notification/
https://msdn.microsoft.com/magazine/jj891053.aspx
https://www.asp.net/signalr

NOTENOTE

Publishing and managing a web API

Testing a web API

Persistent HTTP connections are a purely optional feature to reduce the network overhead associated with repeatedly
establishing a communications channel. Neither the web API nor the client application should depend on a persistent HTTP
connection being available. Do not use persistent HTTP connections to implement Comet-style notification systems; instead
you should utilize sockets (or websockets if available) at the TCP layer. Finally, note Keep-Alive headers are of limited use if a
client application communicates with a server via a proxy; only the connection with the client and the proxy will be persistent.

To make a web API available for client applications, the web API must be deployed to a host environment. This
environment is typically a web server, although it may be some other type of host process. You should consider the
following points when publishing a web API:

All requests must be authenticated and authorized, and the appropriate level of access control must be
enforced.
A commercial web API might be subject to various quality guarantees concerning response times. It is
important to ensure that host environment is scalable if the load can vary significantly over time.
It may be necessary to meter requests for monetization purposes.
It might be necessary to regulate the flow of traffic to the web API, and implement throttling for specific clients
that have exhausted their quotas.
Regulatory requirements might mandate logging and auditing of all requests and responses.
To ensure availability, it may be necessary to monitor the health of the server hosting the web API and restart it
if necessary.

It is useful to be able to decouple these issues from the technical issues concerning the implementation of the web
API. For this reason, consider creating a façade, running as a separate process and that routes requests to the web
API. The façade can provide the management operations and forward validated requests to the web API. Using a
façade can also bring many functional advantages, including:

Acting as an integration point for multiple web APIs.
Transforming messages and translating communications protocols for clients built by using varying
technologies.
Caching requests and responses to reduce load on the server hosting the web API.

A web API should be tested as thoroughly as any other piece of software. You should consider creating unit tests to
validate the functionality.

The nature of a web API brings its own additional requirements to verify that it operates correctly. You should pay
particular attention to the following aspects:

Test all routes to verify that they invoke the correct operations. Be especially aware of HTTP status code 405
(Method Not Allowed) being returned unexpectedly as this can indicate a mismatch between a route and the
HTTP methods (GET, POST, PUT, DELETE) that can be dispatched to that route.

Send HTTP requests to routes that do not support them, such as submitting a POST request to a specific
resource (POST requests should only be sent to resource collections). In these cases, the only valid response
should be status code 405 (Not Allowed).

Verify that all routes are protected properly and are subject to the appropriate authentication and
authorization checks.

https://en.wikipedia.org/wiki/Facade_pattern

Using Azure API Management

NOTENOTE
Some aspects of security such as user authentication are most likely to be the responsibility of the host environment
rather than the web API, but it is still necessary to include security tests as part of the deployment process.

Test the exception handling performed by each operation and verify that an appropriate and meaningful
HTTP response is passed back to the client application.

Verify that request and response messages are well-formed. For example, if an HTTP POST request
contains the data for a new resource in x-www-form-urlencoded format, confirm that the corresponding
operation correctly parses the data, creates the resources, and returns a response containing the details of
the new resource, including the correct Location header.

Verify all links and URIs in response messages. For example, an HTTP POST message should return the
URI of the newly-created resource. All HATEOAS links should be valid.

Ensure that each operation returns the correct status codes for different combinations of input. For example:

If a query is successful, it should return status code 200 (OK)
If a resource is not found, the operation should return HTTP status code 404 (Not Found).
If the client sends a request that successfully deletes a resource, the status code should be 204 (No
Content).
If the client sends a request that creates a new resource, the status code should be 201 (Created).

Watch out for unexpected response status codes in the 5xx range. These messages are usually reported by the host
server to indicate that it was unable to fulfill a valid request.

Test the different request header combinations that a client application can specify and ensure that the web
API returns the expected information in response messages.

Test query strings. If an operation can take optional parameters (such as pagination requests), test the
different combinations and order of parameters.

Verify that asynchronous operations complete successfully. If the web API supports streaming for requests
that return large binary objects (such as video or audio), ensure that client requests are not blocked while
the data is streamed. If the web API implements polling for long-running data modification operations,
verify that that the operations report their status correctly as they proceed.

You should also create and run performance tests to check that the web API operates satisfactorily under duress.
You can build a web performance and load test project by using Visual Studio Ultimate. For more information, see
Run performance tests on an application before a release.

On Azure, consider using Azue API Management to publish and manage a web API. Using this facility, you can
generate a service that acts as a façade for one or more web APIs. The service is itself a scalable web service that
you can create and configure by using the Azure Management portal. You can use this service to publish and
manage a web API as follows:

1. Deploy the web API to a website, Azure cloud service, or Azure virtual machine.

2. Connect the API management service to the web API. Requests sent to the URL of the management API are
mapped to URIs in the web API. The same API management service can route requests to more than one
web API. This enables you to aggregate multiple web APIs into a single management service. Similarly, the
same web API can be referenced from more than one API management service if you need to restrict or
partition the functionality available to different applications.

https://msdn.microsoft.com/library/dn250793.aspx
https://docs.microsoft.com/azure/api-management//services/api-management/

TIPTIP

Supporting client-side developers

NOTENOTE

NOTENOTE

The URIs in HATEOAS links generated as part of the response for HTTP GET requests should reference the URL of the
API management service and not the web server hosting the web API.

3. For each web API, specify the HTTP operations that the web API exposes together with any optional
parameters that an operation can take as input. You can also configure whether the API management
service should cache the response received from the web API to optimize repeated requests for the same
data. Record the details of the HTTP responses that each operation can generate. This information is used to
generate documentation for developers, so it is important that it is accurate and complete.

You can either define operations manually using the wizards provided by the Azure Management portal, or
you can import them from a file containing the definitions in WADL or Swagger format.

4. Configure the security settings for communications between the API management service and the web
server hosting the web API. The API management service currently supports Basic authentication and
mutual authentication using certificates, and OAuth 2.0 user authorization.

5. Create a product. A product is the unit of publication; you add the web APIs that you previously connected
to the management service to the product. When the product is published, the web APIs become available
to developers.

Prior to publishing a product, you can also define user-groups that can access the product and add users to these
groups. This gives you control over the developers and applications that can use the web API. If a web API is subject
to approval, prior to being able to access it a developer must send a request to the product administrator. The
administrator can grant or deny access to the developer. Existing developers can also be blocked if circumstances
change.

6. Configure policies for each web API. Policies govern aspects such as whether cross-domain calls should be
allowed, how to authenticate clients, whether to convert between XML and JSON data formats
transparently, whether to restrict calls from a given IP range, usage quotas, and whether to limit the call rate.
Policies can be applied globally across the entire product, for a single web API in a product, or for individual
operations in a web API.

For more information, see the API Management Documentation.

Azure provides the Azure Traffic Manager which enables you to implement failover and load-balancing, and reduce latency
across multiple instances of a web site hosted in different geographic locations. You can use Azure Traffic Manager in
conjunction with the API Management Service; the API Management Service can route requests to instances of a web site
through Azure Traffic Manager. For more information, see Traffic Manager routing Methods.

In this structure, if you are using custom DNS names for your web sites, you should configure the appropriate CNAME record
for each web site to point to the DNS name of the Azure Traffic Manager web site.

Developers constructing client applications typically require information on how to access the web API, and
documentation concerning the parameters, data types, return types, and return codes that describe the different
requests and responses between the web service and the client application.

https://docs.microsoft.com/azure/api-management/
https://docs.microsoft.com/azure/traffic-manager/traffic-manager-routing-methods/

Document the REST operations for a web APIDocument the REST operations for a web API

Implement a client SDKImplement a client SDK

Monitoring a web API

Monitoring a web API directlyMonitoring a web API directly

The Azure API Management Service includes a developer portal that describes the REST operations exposed by a
web API. When a product has been published it appears on this portal. Developers can use this portal to sign up
for access; the administrator can then approve or deny the request. If the developer is approved, they are assigned
a subscription key that is used to authenticate calls from the client applications that they develop. This key must be
provided with each web API call otherwise it will be rejected.

This portal also provides:

Documentation for the product, listing the operations that it exposes, the parameters required, and the different
responses that can be returned. Note that this information is generated from the details provided in step 3 in
the list in the Publishing a web API by using the Microsoft Azure API Management Service section.
Code snippets that show how to invoke operations from several languages, including JavaScript, C#, Java,
Ruby, Python, and PHP.
A developers' console that enables a developer to send an HTTP request to test each operation in the product
and view the results.
A page where the developer can report any issues or problems found.

The Azure Management portal enables you to customize the developer portal to change the styling and layout to
match the branding of your organization.

Building a client application that invokes REST requests to access a web API requires writing a significant amount
of code to construct each request and format it appropriately, send the request to the server hosting the web
service, and parse the response to work out whether the request succeeded or failed and extract any data returned.
To insulate the client application from these concerns, you can provide an SDK that wraps the REST interface and
abstracts these low-level details inside a more functional set of methods. A client application uses these methods,
which transparently convert calls into REST requests and then convert the responses back into method return
values. This is a common technique that is implemented by many services, including the Azure SDK.

Creating a client-side SDK is a considerable undertaking as it has to be implemented consistently and tested
carefully. However, much of this process can be made mechanical, and many vendors supply tools that can
automate many of these tasks.

Depending on how you have published and deployed your web API you can monitor the web API directly, or you
can gather usage and health information by analyzing the traffic that passes through the API Management service.

If you have implemented your web API by using the ASP.NET Web API template (either as a Web API project or
as a Web role in an Azure cloud service) and Visual Studio 2013, you can gather availability, performance, and
usage data by using ASP.NET Application Insights. Application Insights is a package that transparently tracks and
records information about requests and responses when the web API is deployed to the cloud; once the package is
installed and configured, you don't need to amend any code in your web API to use it. When you deploy the web
API to an Azure web site, all traffic is examined and the following statistics are gathered:

Server response time.
Number of server requests and the details of each request.
The top slowest requests in terms of average response time.
The details of any failed requests.
The number of sessions initiated by different browsers and user agents.
The most frequently viewed pages (primarily useful for web applications rather than web APIs).
The different user roles accessing the web API.

Monitoring a web API through the API Management ServiceMonitoring a web API through the API Management Service

NOTENOTE

More information

You can view this data in real time from the Azure Management portal. You can also create webtests that monitor
the health of the web API. A webtest sends a periodic request to a specified URI in the web API and captures the
response. You can specify the definition of a successful response (such as HTTP status code 200), and if the request
does not return this response you can arrange for an alert to be sent to an administrator. If necessary, the
administrator can restart the server hosting the web API if it has failed.

For more information, see Application Insights - Get started with ASP.NET.

If you have published your web API by using the API Management service, the API Management page on the
Azure Management portal contains a dashboard that enables you to view the overall performance of the service.
The Analytics page enables you to drill down into the details of how the product is being used. This page contains
the following tabs:

Usage. This tab provides information about the number of API calls made and the bandwidth used to handle
these calls over time. You can filter usage details by product, API, and operation.
Health. This tab enables you to view the outcome of API requests (the HTTP status codes returned), the
effectiveness of the caching policy, the API response time, and the service response time. Again, you can filter
health data by product, API, and operation.
Activity. This tab provides a text summary of the numbers of successful calls, failed calls, blocked calls, average
response time, and response times for each product, web API, and operation. This page also lists the number of
calls made by each developer.
At a glance. This tab displays a summary of the performance data, including the developers responsible for
making the most API calls, and the products, web APIs, and operations that received these calls.

You can use this information to determine whether a particular web API or operation is causing a bottleneck, and if
necessary scale the host environment and add more servers. You can also ascertain whether one or more
applications are using a disproportionate volume of resources and apply the appropriate policies to set quotas and
limit call rates.

You can change the details for a published product, and the changes are applied immediately. For example, you can add or
remove an operation from a web API without requiring that you republish the product that contains the web API.

ASP.NET Web API OData contains examples and further information on implementing an OData web API by
using ASP.NET.
Introducing batch support in Web API and Web API OData describes how to implement batch operations in a
web API by using OData.
Idempotency patterns on Jonathan Oliver’s blog provides an overview of idempotency and how it relates to
data management operations.
Status Code Definitions on the W3C website contains a full list of HTTP status codes and their descriptions.
Run background tasks with WebJobs provides information and examples on using WebJobs to perform
background operations.
Azure Notification Hubs notify users shows how to use an Azure Notification Hub to push asynchronous
responses to client applications.
API Management describes how to publish a product that provides controlled and secure access to a web API.
Azure API Management REST API reference describes how to use the API Management REST API to build
custom management applications.

https://docs.microsoft.com/azure/application-insights/app-insights-asp-net/
https://www.asp.net/web-api/overview/odata-support-in-aspnet-web-api
https://blogs.msdn.microsoft.com/webdev/2013/11/01/introducing-batch-support-in-web-api-and-web-api-odata/
https://blog.jonathanoliver.com/idempotency-patterns/
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://docs.microsoft.com/azure/app-service-web/web-sites-create-web-jobs/
https://docs.microsoft.com/azure/notification-hubs/notification-hubs-aspnet-backend-windows-dotnet-wns-notification/
https://azure.microsoft.com/services/api-management/
https://msdn.microsoft.com/library/azure/dn776326.aspx

Traffic Manager routing methods summarizes how Azure Traffic Manager can be used to load-balance requests
across multiple instances of a website hosting a web API.
Application Insights - Get started with ASP.NET provides detailed information on installing and configuring
Application Insights in an ASP.NET Web API project.

https://docs.microsoft.com/azure/traffic-manager/traffic-manager-routing-methods/
https://docs.microsoft.com/azure/application-insights/app-insights-asp-net/

Autoscaling
3/13/2019 • 13 minutes to read • Edit Online

NOTENOTE

Overview

Configure autoscaling for an Azure solution

Autoscaling is the process of dynamically allocating resources to match performance requirements. As the
volume of work grows, an application may need additional resources to maintain the desired performance levels
and satisfy service-level agreements (SLAs). As demand slackens and the additional resources are no longer
needed, they can be de-allocated to minimize costs.

Autoscaling takes advantage of the elasticity of cloud-hosted environments while easing management overhead.
It reduces the need for an operator to continually monitor the performance of a system and make decisions about
adding or removing resources.

There are two main ways that an application can scale:

Vertical scaling, also called scaling up and down, means changing the capacity of a resource. For
example, you could move an application to a larger VM size. Vertical scaling often requires making the
system temporarily unavailable while it is being redeployed. Therefore, it's less common to automate
vertical scaling.

Horizontal scaling, also called scaling out and in, means adding or removing instances of a resource. The
application continues running without interruption as new resources are provisioned. When the
provisioning process is complete, the solution is deployed on these additional resources. If demand drops,
the additional resources can be shut down cleanly and deallocated.

Many cloud-based systems, including Microsoft Azure, support automatic horizontal scaling. The rest of this
article focuses on horizontal scaling.

Autoscaling mostly applies to compute resources. While it's possible to horizontally scale a database or message queue, this
usually involves data partitioning, which is generally not automated.

An autoscaling strategy typically involves the following pieces:

Instrumentation and monitoring systems at the application, service, and infrastructure levels. These systems
capture key metrics, such as response times, queue lengths, CPU utilization, and memory usage.
Decision-making logic that evaluates these metrics against predefined thresholds or schedules, and decides
whether to scale.
Components that scale the system.
Testing, monitoring, and tuning of the autoscaling strategy to ensure that it functions as expected.

Azure provides built-in autoscaling mechanisms that address common scenarios. If a particular service or
technology does not have built-in autoscaling functionality, or if you have specific autoscaling requirements
beyond its capabilities, you might consider a custom implementation. A custom implementation would collect
operational and system metrics, analyze the metrics, and then scale resources accordingly.

Azure provides built-in autoscaling for most compute options.

https://github.com/mspnp/architecture-center/blob/master/docs/best-practices/auto-scaling.md

Use Azure Monitor autoscale

Virtual Machines support autoscaling through the use of VM Scale Sets, which are a way to manage a
set of Azure virtual machines as a group. See How to use automatic scaling and Virtual Machine Scale
Sets.

Service Fabric also supports auto-scaling through VM Scale Sets. Every node type in a Service Fabric
cluster is set up as a separate VM scale set. That way, each node type can be scaled in or out independently.
See Scale a Service Fabric cluster in or out using auto-scale rules.

Azure App Service has built-in autoscaling. Autoscale settings apply to all of the apps within an App
Service. See Scale instance count manually or automatically.

Azure Cloud Services has built-in autoscaling at the role level. See How to configure auto scaling for a
Cloud Service in the portal.

These compute options all use Azure Monitor autoscale to provide a common set of autoscaling functionality.

Azure Functions differs from the previous compute options, because you don't need to configure any
autoscale rules. Instead, Azure Functions automatically allocates compute power when your code is running,
scaling out as necessary to handle load. For more information, see Choose the correct hosting plan for Azure
Functions.

Finally, a custom autoscaling solution can sometimes be useful. For example, you could use Azure diagnostics
and application-based metrics, along with custom code to monitor and export the application metrics. Then you
could define custom rules based on these metrics, and use Resource Manager REST APIs to trigger autoscaling.
However, a custom solution is not simple to implement, and should be considered only if none of the previous
approaches can fulfill your requirements.

Use the built-in autoscaling features of the platform, if they meet your requirements. If not, carefully consider
whether you really need more complex scaling features. Examples of additional requirements may include more
granularity of control, different ways to detect trigger events for scaling, scaling across subscriptions, and scaling
other types of resources.

Azure Monitor autoscale provide a common set of autoscaling functionality for VM Scale Sets, Azure App
Service, and Azure Cloud Service. Scaling can be performed on a schedule, or based on a runtime metric, such as
CPU or memory usage. Examples:

Scale out to 10 instances on weekdays, and scale in to 4 instances on Saturday and Sunday.
Scale out by one instance if average CPU usage is above 70%, and scale in by one instance if CPU usage falls
below 50%.
Scale out by one instance if the number of messages in a queue exceeds a certain threshold.

For a list of built-in metrics, see Azure Monitor autoscaling common metrics. You can also implement custom
metrics by using Application Insights.

You can configure autoscaling by using PowerShell, the Azure CLI, an Azure Resource Manager template, or the
Azure portal. For more detailed control, use the Azure Resource Manager REST API. The Azure Monitoring
Service Management Library and the Microsoft Insights Library (in preview) are SDKs that allow collecting
metrics from different resources, and perform autoscaling by making use of the REST APIs. For resources where
Azure Resource Manager support isn't available, or if you are using Azure Cloud Services, the Service
Management REST API can be used for autoscaling. In all other cases, use Azure Resource Manager.

Consider the following points when using Azure autoscale:

Consider whether you can predict the load on the application well enough to use scheduled autoscaling,
adding and removing instances to meet anticipated peaks in demand. If this isn't possible, use reactive

https://docs.microsoft.com/azure/virtual-machine-scale-sets/virtual-machine-scale-sets-overview
https://docs.microsoft.com/azure/virtual-machine-scale-sets/virtual-machine-scale-sets-autoscale-overview
https://docs.microsoft.com/azure/service-fabric/service-fabric-cluster-scale-up-down
https://docs.microsoft.com/azure/monitoring-and-diagnostics/insights-how-to-scale?toc=%2fazure%2fapp-service-web%2ftoc.json#scaling-based-on-a-pre-set-metric
https://docs.microsoft.com/azure/cloud-services/cloud-services-how-to-scale-portal
https://docs.microsoft.com/azure/monitoring-and-diagnostics/monitoring-overview-autoscale
https://docs.microsoft.com/azure/azure-functions/functions-scale
https://docs.microsoft.com/azure/monitoring-and-diagnostics/monitoring-overview-autoscale
https://docs.microsoft.com/azure/monitoring-and-diagnostics/insights-autoscale-common-metrics
https://msdn.microsoft.com//library/azure/dn790568.aspx
https://www.nuget.org/packages/Microsoft.WindowsAzure.Management.Monitoring
https://www.nuget.org/packages/Microsoft.Azure.Insights/

autoscaling based on runtime metrics, in order to handle unpredictable changes in demand. Typically, you
can combine these approaches. For example, create a strategy that adds resources based on a schedule of
the times when you know the application is most busy. This helps to ensure that capacity is available when
required, without any delay from starting new instances. For each scheduled rule, define metrics that allow
reactive autoscaling during that period to ensure that the application can handle sustained but
unpredictable peaks in demand.

It's often difficult to understand the relationship between metrics and capacity requirements, especially
when an application is initially deployed. Provision a little extra capacity at the beginning, and then monitor
and tune the autoscaling rules to bring the capacity closer to the actual load.

Configure the autoscaling rules, and then monitor the performance of your application over time. Use the
results of this monitoring to adjust the way in which the system scales if necessary. However, keep in mind
that autoscaling is not an instantaneous process. It takes time to react to a metric such as average CPU
utilization exceeding (or falling below) a specified threshold.

Autoscaling rules that use a detection mechanism based on a measured trigger attribute (such as CPU
usage or queue length) use an aggregated value over time, rather than instantaneous values, to trigger an
autoscaling action. By default, the aggregate is an average of the values. This prevents the system from
reacting too quickly, or causing rapid oscillation. It also allows time for new instances that are auto-started
to settle into running mode, preventing additional autoscaling actions from occurring while the new
instances are starting up. For Azure Cloud Services and Azure Virtual Machines, the default period for the
aggregation is 45 minutes, so it can take up to this period of time for the metric to trigger autoscaling in
response to spikes in demand. You can change the aggregation period by using the SDK, but be aware that
periods of fewer than 25 minutes may cause unpredictable results. For Web Apps, the averaging period is
much shorter, allowing new instances to be available in about five minutes after a change to the average
trigger measure.

If you configure autoscaling using the SDK rather than the portal, you can specify a more detailed
schedule during which the rules are active. You can also create your own metrics and use them with or
without any of the existing ones in your autoscaling rules. For example, you may wish to use alternative
counters, such as the number of requests per second or the average memory availability, or use custom
counters that measure specific business processes.

When autoscaling Service Fabric, the node types in your cluster are made of VM scale sets at the backend,
so you need to set up auto-scale rules for each node type. Take into account the number of nodes that you
must have before you set up auto-scaling. The minimum number of nodes that you must have for the
primary node type is driven by the reliability level you have chosen. For more info, see scale a Service
Fabric cluster in or out using auto-scale rules.

You can use the portal to link resources such as SQL Database instances and queues to a Cloud Service
instance. This allows you to more easily access the separate manual and automatic scaling configuration
options for each of the linked resources. For more information, see How to: Link a resource to a cloud
service.

When you configure multiple policies and rules, they could conflict with each other. Autoscale uses the
following conflict resolution rules to ensure that there is always a sufficient number of instances running:

Scale out operations always take precedence over scale in operations.
When scale out operations conflict, the rule that initiates the largest increase in the number of instances
takes precedence.
When scale in operations conflict, the rule that initiates the smallest decrease in the number of
instances takes precedence.

In an App Service Environment any worker pool or front-end metrics can be used to define autoscale
rules. For more information, see Autoscaling and App Service Environment.

https://docs.microsoft.com/azure/service-fabric/service-fabric-cluster-scale-up-down
https://docs.microsoft.com/azure/cloud-services/cloud-services-how-to-manage
https://docs.microsoft.com/azure/app-service/app-service-environment-auto-scale

Application design considerations
Autoscaling isn't an instant solution. Simply adding resources to a system or running more instances of a process
doesn't guarantee that the performance of the system will improve. Consider the following points when
designing an autoscaling strategy:

The system must be designed to be horizontally scalable. Avoid making assumptions about instance
affinity; do not design solutions that require that the code is always running in a specific instance of a
process. When scaling a cloud service or web site horizontally, don't assume that a series of requests from
the same source will always be routed to the same instance. For the same reason, design services to be
stateless to avoid requiring a series of requests from an application to always be routed to the same
instance of a service. When designing a service that reads messages from a queue and processes them,
don't make any assumptions about which instance of the service handles a specific message. Autoscaling
could start additional instances of a service as the queue length grows. The Competing Consumers pattern
describes how to handle this scenario.

If the solution implements a long-running task, design this task to support both scaling out and scaling in.
Without due care, such a task could prevent an instance of a process from being shut down cleanly when
the system scales in, or it could lose data if the process is forcibly terminated. Ideally, refactor a long-
running task and break up the processing that it performs into smaller, discrete chunks. The Pipes and
Filters pattern provides an example of how you can achieve this.

Alternatively, you can implement a checkpoint mechanism that records state information about the task at
regular intervals, and save this state in durable storage that can be accessed by any instance of the process
running the task. In this way, if the process is shutdown, the work that it was performing can be resumed
from the last checkpoint by using another instance.

When background tasks run on separate compute instances, such as in worker roles of a cloud services
hosted application, you may need to scale different parts of the application using different scaling policies.
For example, you may need to deploy additional user interface (UI) compute instances without increasing
the number of background compute instances, or the opposite of this. If you offer different levels of
service (such as basic and premium service packages), you may need to scale out the compute resources
for premium service packages more aggressively than those for basic service packages in order to meet
SLAs.

Consider using the length of the queue over which UI and background compute instances communicate as
a criterion for your autoscaling strategy. This is the best indicator of an imbalance or difference between
the current load and the processing capacity of the background task.

If you base your autoscaling strategy on counters that measure business processes, such as the number of
orders placed per hour or the average execution time of a complex transaction, ensure that you fully
understand the relationship between the results from these types of counters and the actual compute
capacity requirements. It may be necessary to scale more than one component or compute unit in
response to changes in business process counters.

To prevent a system from attempting to scale out excessively, and to avoid the costs associated with
running many thousands of instances, consider limiting the maximum number of instances that can be
automatically added. Most autoscaling mechanisms allow you to specify the minimum and maximum
number of instances for a rule. In addition, consider gracefully degrading the functionality that the system
provides if the maximum number of instances have been deployed, and the system is still overloaded.

Keep in mind that autoscaling might not be the most appropriate mechanism to handle a sudden burst in
workload. It takes time to provision and start new instances of a service or add resources to a system, and
the peak demand may have passed by the time these additional resources have been made available. In
this scenario, it may be better to throttle the service. For more information, see the Throttling pattern.

Related patterns and guidance

Conversely, if you do need the capacity to process all requests when the volume fluctuates rapidly, and
cost isn't a major contributing factor, consider using an aggressive autoscaling strategy that starts
additional instances more quickly. You can also use a scheduled policy that starts a sufficient number of
instances to meet the maximum load before that load is expected.

The autoscaling mechanism should monitor the autoscaling process, and log the details of each
autoscaling event (what triggered it, what resources were added or removed, and when). If you create a
custom autoscaling mechanism, ensure that it incorporates this capability. Analyze the information to help
measure the effectiveness of the autoscaling strategy, and tune it if necessary. You can tune both in the
short term, as the usage patterns become more obvious, and over the long term, as the business expands
or the requirements of the application evolve. If an application reaches the upper limit defined for
autoscaling, the mechanism might also alert an operator who could manually start additional resources if
necessary. Note that, under these circumstances, the operator may also be responsible for manually
removing these resources after the workload eases.

The following patterns and guidance may also be relevant to your scenario when implementing autoscaling:

Throttling pattern. This pattern describes how an application can continue to function and meet SLAs
when an increase in demand places an extreme load on resources. Throttling can be used with autoscaling
to prevent a system from being overwhelmed while the system scales out.

Competing Consumers pattern. This pattern describes how to implement a pool of service instances that
can handle messages from any application instance. Autoscaling can be used to start and stop service
instances to match the anticipated workload. This approach enables a system to process multiple
messages concurrently to optimize throughput, improve scalability and availability, and balance the
workload.

Monitoring and diagnostics. Instrumentation and telemetry are vital for gathering the information that can
drive the autoscaling process.

Background jobs
3/13/2019 • 23 minutes to read • Edit Online

Types of background jobs

Triggers

Event-driven triggersEvent-driven triggers

Many types of applications require background tasks that run independently of the user interface (UI). Examples
include batch jobs, intensive processing tasks, and long-running processes such as workflows. Background jobs
can be executed without requiring user interaction--the application can start the job and then continue to process
interactive requests from users. This can help to minimize the load on the application UI, which can improve
availability and reduce interactive response times.

For example, if an application is required to generate thumbnails of images that are uploaded by users, it can do
this as a background job and save the thumbnail to storage when it is complete--without the user needing to wait
for the process to be completed. In the same way, a user placing an order can initiate a background workflow that
processes the order, while the UI allows the user to continue browsing the web app. When the background job is
complete, it can update the stored orders data and send an email to the user that confirms the order.

When you consider whether to implement a task as a background job, the main criteria is whether the task can run
without user interaction and without the UI needing to wait for the job to be completed. Tasks that require the user
or the UI to wait while they are completed might not be appropriate as background jobs.

Background jobs typically include one or more of the following types of jobs:

CPU-intensive jobs, such as mathematical calculations or structural model analysis.
I/O-intensive jobs, such as executing a series of storage transactions or indexing files.
Batch jobs, such as nightly data updates or scheduled processing.
Long-running workflows, such as order fulfillment, or provisioning services and systems.
Sensitive-data processing where the task is handed off to a more secure location for processing. For example,
you might not want to process sensitive data within a web app. Instead, you might use a pattern such as the
Gatekeeper pattern to transfer the data to an isolated background process that has access to protected storage.

Background jobs can be initiated in several different ways. They fall into one of the following categories:

Event-driven triggers. The task is started in response to an event, typically an action taken by a user or a step
in a workflow.
Schedule-driven triggers. The task is invoked on a schedule based on a timer. This might be a recurring
schedule or a one-off invocation that is specified for a later time.

Event-driven invocation uses a trigger to start the background task. Examples of using event-driven triggers
include:

The UI or another job places a message in a queue. The message contains data about an action that has taken
place, such as the user placing an order. The background task listens on this queue and detects the arrival of a
new message. It reads the message and uses the data in it as the input to the background job.
The UI or another job saves or updates a value in storage. The background task monitors the storage and
detects changes. It reads the data and uses it as the input to the background job.
The UI or another job makes a request to an endpoint, such as an HTTPS URI, or an API that is exposed as a

https://github.com/mspnp/architecture-center/blob/master/docs/best-practices/background-jobs.md

 Schedule-driven triggersSchedule-driven triggers

Returning results

Hosting environment

web service. It passes the data that is required to complete the background task as part of the request. The
endpoint or web service invokes the background task, which uses the data as its input.

Typical examples of tasks that are suited to event-driven invocation include image processing, workflows, sending
information to remote services, sending email messages, and provisioning new users in multitenant applications.

Schedule-driven invocation uses a timer to start the background task. Examples of using schedule-driven triggers
include:

A timer that is running locally within the application or as part of the application's operating system invokes a
background task on a regular basis.
A timer that is running in a different application, or a timer service such as Azure Scheduler, sends a request to
an API or web service on a regular basis. The API or web service invokes the background task.
A separate process or application starts a timer that causes the background task to be invoked once after a
specified time delay, or at a specific time.

Typical examples of tasks that are suited to schedule-driven invocation include batch-processing routines (such as
updating related-products lists for users based on their recent behavior), routine data processing tasks (such as
updating indexes or generating accumulated results), data analysis for daily reports, data retention cleanup, and
data consistency checks.

If you use a schedule-driven task that must run as a single instance, be aware of the following:

If the compute instance that is running the scheduler (such as a virtual machine using Windows scheduled
tasks) is scaled, you will have multiple instances of the scheduler running. These could start multiple instances
of the task.
If tasks run for longer than the period between scheduler events, the scheduler may start another instance of
the task while the previous one is still running.

Background jobs execute asynchronously in a separate process, or even in a separate location, from the UI or the
process that invoked the background task. Ideally, background tasks are “fire and forget” operations, and their
execution progress has no impact on the UI or the calling process. This means that the calling process does not
wait for completion of the tasks. Therefore, it cannot automatically detect when the task ends.

If you require a background task to communicate with the calling task to indicate progress or completion, you
must implement a mechanism for this. Some examples are:

Write a status indicator value to storage that is accessible to the UI or caller task, which can monitor or check
this value when required. Other data that the background task must return to the caller can be placed into the
same storage.
Establish a reply queue that the UI or caller listens on. The background task can send messages to the queue
that indicate status and completion. Data that the background task must return to the caller can be placed into
the messages. If you are using Azure Service Bus, you can use the ReplyTo and CorrelationId properties to
implement this capability.
Expose an API or endpoint from the background task that the UI or caller can access to obtain status
information. Data that the background task must return to the caller can be included in the response.
Have the background task call back to the UI or caller through an API to indicate status at predefined points or
on completion. This might be through events raised locally or through a publish-and-subscribe mechanism.
Data that the background task must return to the caller can be included in the request or event payload.

 Azure Web Apps and WebJobsAzure Web Apps and WebJobs

You can host background tasks by using a range of different Azure platform services:

Azure Web Apps and WebJobs. You can use WebJobs to execute custom jobs based on a range of different
types of scripts or executable programs within the context of a web app.
Azure Virtual Machines. If you have a Windows service or want to use the Windows Task Scheduler, it is
common to host your background tasks within a dedicated virtual machine.
Azure Batch. Batch is a platform service that schedules compute-intensive work to run on a managed
collection of virtual machines. It can automatically scale compute resources.
Azure Kubernetes Service (AKS). Azure Kubernetes Service provides a managed hosting environment for
Kubernetes on Azure.

The following sections describe each of these options in more detail, and include considerations to help you
choose the appropriate option.

You can use Azure WebJobs to execute custom jobs as background tasks within an Azure Web App. WebJobs run
within the context of your web app as a continuous process. WebJobs also run in response to a trigger event from
Azure Scheduler or external factors, such as changes to storage blobs and message queues. Jobs can be started
and stopped on demand, and shut down gracefully. If a continuously running WebJob fails, it is automatically
restarted. Retry and error actions are configurable.

When you configure a WebJob:

If you want the job to respond to an event-driven trigger, you should configure it as Run continuously. The
script or program is stored in the folder named site/wwwroot/app_data/jobs/continuous.
If you want the job to respond to a schedule-driven trigger, you should configure it as Run on a schedule. The
script or program is stored in the folder named site/wwwroot/app_data/jobs/triggered.
If you choose the Run on demand option when you configure a job, it will execute the same code as the Run
on a schedule option when you start it.

Azure WebJobs run within the sandbox of the web app. This means that they can access environment variables
and share information, such as connection strings, with the web app. The job has access to the unique identifier of
the machine that is running the job. The connection string named AzureWebJobsStorage provides access to
Azure storage queues, blobs, and tables for application data, and access to Service Bus for messaging and
communication. The connection string named AzureWebJobsDashboard provides access to the job action log
files.

Azure WebJobs have the following characteristics:

Security: WebJobs are protected by the deployment credentials of the web app.
Supported file types: You can define WebJobs by using command scripts (.cmd), batch files (.bat), PowerShell
scripts (.ps1), bash shell scripts (.sh), PHP scripts (.php), Python scripts (.py), JavaScript code (.js), and
executable programs (.exe, .jar, and more).
Deployment: You can deploy scripts and executables by using the Azure portal, by using Visual Studio, by
using the Azure WebJobs SDK, or by copying them directly to the following locations:

Logging: Console.Out is treated (marked) as INFO. Console.Error is treated as ERROR. You can access
monitoring and diagnostics information by using the Azure portal. You can download log files directly from the
site. They are saved in the following locations:

Configuration: You can configure WebJobs by using the portal, the REST API, and PowerShell. You can use a
configuration file named settings.job in the same root directory as the job script to provide configuration

For triggered execution: site/wwwroot/app_data/jobs/triggered/{job name}
For continuous execution: site/wwwroot/app_data/jobs/continuous/{job name}

For triggered execution: Vfs/data/jobs/triggered/jobName
For continuous execution: Vfs/data/jobs/continuous/jobName

https://docs.microsoft.com/azure/app-service-web/web-sites-create-web-jobs
https://docs.microsoft.com/azure/app-service-web/websites-dotnet-deploy-webjobs
https://docs.microsoft.com/azure/app-service/webjobs-sdk-get-started

ConsiderationsConsiderations

Azure Virtual MachinesAzure Virtual Machines

ConsiderationsConsiderations

information for a job. For example:
{ "stopping_wait_time": 60 }
{ "is_singleton": true }

By default, WebJobs scale with the web app. However, you can configure jobs to run on single instance by
setting the is_singleton configuration property to true. Single instance WebJobs are useful for tasks that you
do not want to scale or run as simultaneous multiple instances, such as reindexing, data analysis, and similar
tasks.
To minimize the impact of jobs on the performance of the web app, consider creating an empty Azure Web App
instance in a new App Service plan to host WebJobs that may be long running or resource intensive.

Background tasks might be implemented in a way that prevents them from being deployed to Azure Web Apps, or
these options might not be convenient. Typical examples are Windows services, and third-party utilities and
executable programs. Another example might be programs written for an execution environment that is different
than that hosting the application. For example, it might be a Unix or Linux program that you want to execute from
a Windows or .NET application. You can choose from a range of operating systems for an Azure virtual machine,
and run your service or executable on that virtual machine.

To help you choose when to use Virtual Machines, see Azure App Services, Cloud Services and Virtual Machines
comparison. For information about the options for Virtual Machines, see Sizes for Windows virtual machines in
Azure. For more information about the operating systems and prebuilt images that are available for Virtual
Machines, see Azure Virtual Machines Marketplace.

To initiate the background task in a separate virtual machine, you have a range of options:

You can execute the task on demand directly from your application by sending a request to an endpoint that
the task exposes. This passes in any data that the task requires. This endpoint invokes the task.
You can configure the task to run on a schedule by using a scheduler or timer that is available in your chosen
operating system. For example, on Windows you can use Windows Task Scheduler to execute scripts and tasks.
Or, if you have SQL Server installed on the virtual machine, you can use the SQL Server Agent to execute
scripts and tasks.
You can use Azure Scheduler to initiate the task by adding a message to a queue that the task listens on, or by
sending a request to an API that the task exposes.

See the earlier section Triggers for more information about how you can initiate background tasks.

Consider the following points when you are deciding whether to deploy background tasks in an Azure virtual
machine:

Hosting background tasks in a separate Azure virtual machine provides flexibility and allows precise control
over initiation, execution, scheduling, and resource allocation. However, it will increase runtime cost if a virtual
machine must be deployed just to run background tasks.
There is no facility to monitor the tasks in the Azure portal and no automated restart capability for failed tasks-
-although you can monitor the basic status of the virtual machine and manage it by using the Azure Resource
Manager Cmdlets. However, there are no facilities to control processes and threads in compute nodes.
Typically, using a virtual machine will require additional effort to implement a mechanism that collects data
from instrumentation in the task, and from the operating system in the virtual machine. One solution that
might be appropriate is to use the System Center Management Pack for Azure.
You might consider creating monitoring probes that are exposed through HTTP endpoints. The code for these
probes could perform health checks, collect operational information and statistics--or collate error information
and return it to a management application. For more information, see the Health Endpoint Monitoring pattern.

https://docs.microsoft.com/azure/app-service-web/choose-web-site-cloud-service-vm/
https://docs.microsoft.com/azure/virtual-machines/windows/sizes
https://azure.microsoft.com/gallery/virtual-machines/
https://msdn.microsoft.com/library/mt125356.aspx
https://www.microsoft.com/download/details.aspx?id=50013

Azure BatchAzure Batch

ConsiderationsConsiderations

Azure Kubernetes ServiceAzure Kubernetes Service

ConsiderationsConsiderations

Partitioning

For more information, see:

Virtual Machines
Azure Virtual Machines FAQ

Consider Azure Batch if you need to run large, parallel high-performance computing (HPC) workloads across tens,
hundreds, or thousands of VMs.

The Batch service provisions the VMs, assign tasks to the VMs, runs the tasks, and monitors the progress. Batch
can automatically scale out the VMs in response to the workload. Batch also provides job scheduling. Azure Batch
supports both Linux and Windows VMs.

Batch works well with intrinsically parallel workloads. It can also perform parallel calculations with a reduce step at
the end, or run Message Passing Interface (MPI) applications for parallel tasks that require message passing
between nodes.

An Azure Batch job runs on a pool of nodes (VMs). One approach is to allocate a pool only when needed and then
delete it after the job completes. This maximizes utilization, because nodes are not idle, but the job must wait for
nodes to be allocated. Alternatively, you can create a pool ahead of time. That approach minimizes the time that it
takes for a job to start, but can result in having nodes that sit idle. For more information, see Pool and compute
node lifetime.

For more information, see:

What is Azure Batch?
Develop large-scale parallel compute solutions with Batch
Batch and HPC solutions for large-scale computing workloads

Azure Kubernetes Service (AKS) manages your hosted Kubernetes environment, which makes it easy to deploy
and manage containerized applications.

Containers can be useful for running background jobs. Some of the benefits include:

Containers support high-density hosting. You can isolate a background task in a container, while placing
multiple containers in each VM.
The container orchestrator handles internal load balancing, configuring the internal network, and other
configuration tasks.
Containers can be started and stopped as needed.
Azure Container Registry allows you to register your containers inside Azure boundaries. This comes with
security, privacy, and proximity benefits.

Requires an understanding of how to use a container orchestrator. Depending on the skillset of your DevOps
team, this may or may not be an issue.

For more information, see:

Overview of containers in Azure

Introduction to private Docker container registries

If you decide to include background tasks within an existing compute instance, you must consider how this will

https://azure.microsoft.com/services/virtual-machines/
https://docs.microsoft.com/azure/virtual-machines/virtual-machines-linux-classic-faq?toc=%2fazure%2fvirtual-machines%2flinux%2fclassic%2ftoc.json
https://docs.microsoft.com/azure/batch/
https://docs.microsoft.com/azure/batch/batch-mpi
https://docs.microsoft.com/azure/batch/batch-api-basics#pool-and-compute-node-lifetime
https://docs.microsoft.com/azure/batch/batch-technical-overview
https://docs.microsoft.com/azure/batch/batch-api-basics
https://docs.microsoft.com/azure/batch/batch-hpc-solutions
https://azure.microsoft.com/overview/containers/
https://docs.microsoft.com/azure/container-registry/container-registry-intro

Conflicts

affect the quality attributes of the compute instance and the background task itself. These factors will help you to
decide whether to colocate the tasks with the existing compute instance or separate them out into a separate
compute instance:

Availability: Background tasks might not need to have the same level of availability as other parts of the
application, in particular the UI and other parts that are directly involved in user interaction. Background
tasks might be more tolerant of latency, retried connection failures, and other factors that affect availability
because the operations can be queued. However, there must be sufficient capacity to prevent the backup of
requests that could block queues and affect the application as a whole.

Scalability: Background tasks are likely to have a different scalability requirement than the UI and the
interactive parts of the application. Scaling the UI might be necessary to meet peaks in demand, while
outstanding background tasks might be completed during less busy times by a fewer number of compute
instances.

Resiliency: Failure of a compute instance that just hosts background tasks might not fatally affect the
application as a whole if the requests for these tasks can be queued or postponed until the task is available
again. If the compute instance and/or tasks can be restarted within an appropriate interval, users of the
application might not be affected.

Security: Background tasks might have different security requirements or restrictions than the UI or other
parts of the application. By using a separate compute instance, you can specify a different security
environment for the tasks. You can also use patterns such as Gatekeeper to isolate the background compute
instances from the UI in order to maximize security and separation.

Performance: You can choose the type of compute instance for background tasks to specifically match the
performance requirements of the tasks. This might mean using a less expensive compute option if the tasks
do not require the same processing capabilities as the UI, or a larger instance if they require additional
capacity and resources.

Manageability: Background tasks might have a different development and deployment rhythm from the
main application code or the UI. Deploying them to a separate compute instance can simplify updates and
versioning.

Cost: Adding compute instances to execute background tasks increases hosting costs. You should carefully
consider the trade-off between additional capacity and these extra costs.

For more information, see the Leader Election pattern and the Competing Consumers pattern.

If you have multiple instances of a background job, it is possible that they will compete for access to resources and
services, such as databases and storage. This concurrent access can result in resource contention, which might
cause conflicts in availability of the services and in the integrity of data in storage. You can resolve resource
contention by using a pessimistic locking approach. This prevents competing instances of a task from concurrently
accessing a service or corrupting data.

Another approach to resolve conflicts is to define background tasks as a singleton, so that there is only ever one
instance running. However, this eliminates the reliability and performance benefits that a multiple-instance
configuration can provide. This is especially true if the UI can supply sufficient work to keep more than one
background task busy.

It is vital to ensure that the background task can automatically restart and that it has sufficient capacity to cope
with peaks in demand. You can achieve this by allocating a compute instance with sufficient resources, by
implementing a queueing mechanism that can store requests for later execution when demand decreases, or by
using a combination of these techniques.

Coordination

Resiliency considerations

The background tasks might be complex and might require multiple individual tasks to execute to produce a result
or to fulfil all the requirements. It is common in these scenarios to divide the task into smaller discreet steps or
subtasks that can be executed by multiple consumers. Multistep jobs can be more efficient and more flexible
because individual steps might be reusable in multiple jobs. It is also easy to add, remove, or modify the order of
the steps.

Coordinating multiple tasks and steps can be challenging, but there are three common patterns that you can use
to guide your implementation of a solution:

Decomposing a task into multiple reusable steps. An application might be required to perform a
variety of tasks of varying complexity on the information that it processes. A straightforward but inflexible
approach to implementing this application might be to perform this processing as a monolithic module.
However, this approach is likely to reduce the opportunities for refactoring the code, optimizing it, or
reusing it if parts of the same processing are required elsewhere within the application. For more
information, see the Pipes and Filters pattern.

Managing execution of the steps for a task. An application might perform tasks that comprise a
number of steps (some of which might invoke remote services or access remote resources). The individual
steps might be independent of each other, but they are orchestrated by the application logic that
implements the task. For more information, see Scheduler Agent Supervisor pattern.

Managing recovery for task steps that fail. An application might need to undo the work that is
performed by a series of steps (which together define an eventually consistent operation) if one or more of
the steps fail. For more information, see the Compensating Transaction pattern.

Background tasks must be resilient in order to provide reliable services to the application. When you are planning
and designing background tasks, consider the following points:

Background tasks must be able to gracefully handle restarts without corrupting data or introducing
inconsistency into the application. For long-running or multistep tasks, consider using check pointing by
saving the state of jobs in persistent storage, or as messages in a queue if this is appropriate. For example,
you can persist state information in a message in a queue and incrementally update this state information
with the task progress so that the task can be processed from the last known good checkpoint--instead of
restarting from the beginning. When using Azure Service Bus queues, you can use message sessions to
enable the same scenario. Sessions allow you to save and retrieve the application processing state by using
the SetState and GetState methods. For more information about designing reliable multistep processes and
workflows, see the Scheduler Agent Supervisor pattern.

When you use queues to communicate with background tasks, the queues can act as a buffer to store
requests that are sent to the tasks while the application is under higher than usual load. This allows the
tasks to catch up with the UI during less busy periods. It also means that restarts will not block the UI. For
more information, see the Queue-Based Load Leveling pattern. If some tasks are more important than
others, consider implementing the Priority Queue pattern to ensure that these tasks run before less
important ones.

Background tasks that are initiated by messages or process messages must be designed to handle
inconsistencies, such as messages arriving out of order, messages that repeatedly cause an error (often
referred to as poison messages), and messages that are delivered more than once. Consider the following:

Messages that must be processed in a specific order, such as those that change data based on the
existing data value (for example, adding a value to an existing value), might not arrive in the original
order in which they were sent. Alternatively, they might be handled by different instances of a

https://docs.microsoft.com/dotnet/api/microsoft.servicebus.messaging.messagesession.setstate?view=azureservicebus-4.0.0
https://docs.microsoft.com/dotnet/api/microsoft.servicebus.messaging.messagesession.getstate?view=azureservicebus-4.0.0

Scaling and performance considerations

background task in a different order due to varying loads on each instance. Messages that must be
processed in a specific order should include a sequence number, key, or some other indicator that
background tasks can use to ensure that they are processed in the correct order. If you are using
Azure Service Bus, you can use message sessions to guarantee the order of delivery. However, it is
usually more efficient, where possible, to design the process so that the message order is not
important.

Typically, a background task will peek at messages in the queue, which temporarily hides them from
other message consumers. Then it deletes the messages after they have been successfully processed.
If a background task fails when processing a message, that message will reappear on the queue after
the peek time-out expires. It will be processed by another instance of the task or during the next
processing cycle of this instance. If the message consistently causes an error in the consumer, it will
block the task, the queue, and eventually the application itself when the queue becomes full.
Therefore, it is vital to detect and remove poison messages from the queue. If you are using Azure
Service Bus, messages that cause an error can be moved automatically or manually to an associated
dead letter queue.

Queues are guaranteed at least once delivery mechanisms, but they might deliver the same message
more than once. In addition, if a background task fails after processing a message but before
deleting it from the queue, the message will become available for processing again. Background
tasks should be idempotent, which means that processing the same message more than once does
not cause an error or inconsistency in the application’s data. Some operations are naturally
idempotent, such as setting a stored value to a specific new value. However, operations such as
adding a value to an existing stored value without checking that the stored value is still the same as
when the message was originally sent will cause inconsistencies. Azure Service Bus queues can be
configured to automatically remove duplicated messages.

Some messaging systems, such as Azure storage queues and Azure Service Bus queues, support a
de-queue count property that indicates the number of times a message has been read from the
queue. This can be useful in handling repeated and poison messages. For more information, see
Asynchronous Messaging Primer and Idempotency Patterns.

Background tasks must offer sufficient performance to ensure they do not block the application, or cause
inconsistencies due to delayed operation when the system is under load. Typically, performance is improved by
scaling the compute instances that host the background tasks. When you are planning and designing background
tasks, consider the following points around scalability and performance:

Azure supports autoscaling (both scaling out and scaling back in) based on current demand and load or on
a predefined schedule, for Web Apps and Virtual Machines hosted deployments. Use this feature to ensure
that the application as a whole has sufficient performance capabilities while minimizing runtime costs.

Where background tasks have a different performance capability from the other parts of a application (for
example, the UI or components such as the data access layer), hosting the background tasks together in a
separate compute service allows the UI and background tasks to scale independently to manage the load. If
multiple background tasks have significantly different performance capabilities from each other, consider
dividing them and scaling each type independently. However, note that this might increase runtime costs.

Simply scaling the compute resources might not be sufficient to prevent loss of performance under load.
You might also need to scale storage queues and other resources to prevent a single point of the overall
processing chain from becoming a bottleneck. Also, consider other limitations, such as the maximum
throughput of storage and other services that the application and the background tasks rely on.

Background tasks must be designed for scaling. For example, they must be able to dynamically detect the

https://msdn.microsoft.com/library/dn589781.aspx
https://blog.jonathanoliver.com/idempotency-patterns/

Related patterns

number of storage queues in use in order to listen on or send messages to the appropriate queue.

By default, WebJobs scale with their associated Azure Web Apps instance. However, if you want a WebJob
to run as only a single instance, you can create a Settings.job file that contains the JSON data {
"is_singleton": true }. This forces Azure to only run one instance of the WebJob, even if there are multiple
instances of the associated web app. This can be a useful technique for scheduled jobs that must run as only
a single instance.

Compute Partitioning Guidance

https://msdn.microsoft.com/library/dn589773.aspx

Caching
3/13/2019 • 55 minutes to read • Edit Online

Caching in distributed applications

Private cachingPrivate caching

Caching is a common technique that aims to improve the performance and scalability of a system. It does this by
temporarily copying frequently accessed data to fast storage that's located close to the application. If this fast data
storage is located closer to the application than the original source, then caching can significantly improve
response times for client applications by serving data more quickly.

Caching is most effective when a client instance repeatedly reads the same data, especially if all the following
conditions apply to the original data store:

It remains relatively static.
It's slow compared to the speed of the cache.
It's subject to a high level of contention.
It's far away when network latency can cause access to be slow.

Distributed applications typically implement either or both of the following strategies when caching data:

Using a private cache, where data is held locally on the computer that's running an instance of an application
or service.
Using a shared cache, serving as a common source which can be accessed by multiple processes and/or
machines.

In both cases, caching can be performed client-side and/or server-side. Client-side caching is done by the process
that provides the user interface for a system, such as a web browser or desktop application. Server-side caching is
done by the process that provides the business services that are running remotely.

The most basic type of cache is an in-memory store. It's held in the address space of a single process and
accessed directly by the code that runs in that process. This type of cache is very quick to access. It can also
provide an extremely effective means for storing modest amounts of static data, since the size of a cache is
typically constrained by the volume of memory that's available on the machine hosting the process.

If you need to cache more information than is physically possible in memory, you can write cached data to the
local file system. This will be slower to access than data that's held in-memory, but should still be faster and more
reliable than retrieving data across a network.

If you have multiple instances of an application that uses this model running concurrently, each application
instance has its own independent cache holding its own copy of the data.

Think of a cache as a snapshot of the original data at some point in the past. If this data is not static, it is likely that
different application instances hold different versions of the data in their caches. Therefore, the same query
performed by these instances can return different results, as shown in Figure 1.

https://github.com/mspnp/architecture-center/blob/master/docs/best-practices/caching.md

Shared cachingShared caching

Figure 1: Using an in-memory cache in different instances of an application.

Using a shared cache can help alleviate concerns that data might differ in each cache, which can occur with in-
memory caching. Shared caching ensures that different application instances see the same view of cached data. It
does this by locating the cache in a separate location, typically hosted as part of a separate service, as shown in
Figure 2.

Figure 2: Using a shared cache.

An important benefit of the shared caching approach is the scalability it provides. Many shared cache services are
implemented by using a cluster of servers, and utilize software that distributes the data across the cluster in a
transparent manner. An application instance simply sends a request to the cache service. The underlying

Considerations for using caching

Decide when to cache dataDecide when to cache data

Determine how to cache data effectivelyDetermine how to cache data effectively

infrastructure is responsible for determining the location of the cached data in the cluster. You can easily scale the
cache by adding more servers.

There are two main disadvantages of the shared caching approach:

The cache is slower to access because it is no longer held locally to each application instance.
The requirement to implement a separate cache service might add complexity to the solution.

The following sections describe in more detail the considerations for designing and using a cache.

Caching can dramatically improve performance, scalability, and availability. The more data that you have and the
larger the number of users that need to access this data, the greater the benefits of caching become. That's
because caching reduces the latency and contention that's associated with handling large volumes of concurrent
requests in the original data store.

For example, a database might support a limited number of concurrent connections. Retrieving data from a
shared cache, however, rather than the underlying database, makes it possible for a client application to access
this data even if the number of available connections is currently exhausted. Additionally, if the database becomes
unavailable, client applications might be able to continue by using the data that's held in the cache.

Consider caching data that is read frequently but modified infrequently (for example, data that has a higher
proportion of read operations than write operations). However, we don't recommend that you use the cache as
the authoritative store of critical information. Instead, ensure that all changes that your application cannot afford
to lose are always saved to a persistent data store. This means that if the cache is unavailable, your application can
still continue to operate by using the data store, and you won't lose important information.

The key to using a cache effectively lies in determining the most appropriate data to cache, and caching it at the
appropriate time. The data can be added to the cache on demand the first time it is retrieved by an application.
This means that the application needs to fetch the data only once from the data store, and that subsequent access
can be satisfied by using the cache.

Alternatively, a cache can be partially or fully populated with data in advance, typically when the application starts
(an approach known as seeding). However, it might not be advisable to implement seeding for a large cache
because this approach can impose a sudden, high load on the original data store when the application starts
running.

Often an analysis of usage patterns can help you decide whether to fully or partially prepopulate a cache, and to
choose the data to cache. For example, it can be useful to seed the cache with the static user profile data for
customers who use the application regularly (perhaps every day), but not for customers who use the application
only once a week.

Caching typically works well with data that is immutable or that changes infrequently. Examples include reference
information such as product and pricing information in an e-commerce application, or shared static resources that
are costly to construct. Some or all of this data can be loaded into the cache at application startup to minimize
demand on resources and to improve performance. It might also be appropriate to have a background process
that periodically updates reference data in the cache to ensure it is up to date, or that refreshes the cache when
reference data changes.

Caching is less useful for dynamic data, although there are some exceptions to this consideration (see the section
Cache highly dynamic data later in this article for more information). When the original data changes regularly,
either the cached information becomes stale very quickly or the overhead of synchronizing the cache with the
original data store reduces the effectiveness of caching.

Cache highly dynamic dataCache highly dynamic data

Manage data expiration in a cacheManage data expiration in a cache

NOTENOTE

Note that a cache does not have to include the complete data for an entity. For example, if a data item represents
a multivalued object such as a bank customer with a name, address, and account balance, some of these elements
might remain static (such as the name and address), while others (such as the account balance) might be more
dynamic. In these situations, it can be useful to cache the static portions of the data and retrieve (or calculate) only
the remaining information when it is required.

We recommend that you carry out performance testing and usage analysis to determine whether pre-population
or on-demand loading of the cache, or a combination of both, is appropriate. The decision should be based on the
volatility and usage pattern of the data. Cache utilization and performance analysis is particularly important in
applications that encounter heavy loads and must be highly scalable. For example, in highly scalable scenarios it
might make sense to seed the cache to reduce the load on the data store at peak times.

Caching can also be used to avoid repeating computations while the application is running. If an operation
transforms data or performs a complicated calculation, it can save the results of the operation in the cache. If the
same calculation is required afterward, the application can simply retrieve the results from the cache.

An application can modify data that's held in a cache. However, we recommend thinking of the cache as a
transient data store that could disappear at any time. Do not store valuable data in the cache only; make sure that
you maintain the information in the original data store as well. This means that if the cache becomes unavailable,
you minimize the chance of losing data.

When you store rapidly-changing information in a persistent data store, it can impose an overhead on the system.
For example, consider a device that continually reports status or some other measurement. If an application
chooses not to cache this data on the basis that the cached information will nearly always be outdated, then the
same consideration could be true when storing and retrieving this information from the data store. In the time it
takes to save and fetch this data, it might have changed.

In a situation such as this, consider the benefits of storing the dynamic information directly in the cache instead of
in the persistent data store. If the data is non-critical and does not require auditing, then it doesn't matter if the
occasional change is lost.

In most cases, data that's held in a cache is a copy of data that's held in the original data store. The data in the
original data store might change after it was cached, causing the cached data to become stale. Many caching
systems enable you to configure the cache to expire data and reduce the period for which data may be out of date.

When cached data expires, it's removed from the cache, and the application must retrieve the data from the
original data store (it can put the newly-fetched information back into cache). You can set a default expiration
policy when you configure the cache. In many cache services, you can also stipulate the expiration period for
individual objects when you store them programmatically in the cache. Some caches enable you to specify the
expiration period as an absolute value, or as a sliding value that causes the item to be removed from the cache if it
is not accessed within the specified time. This setting overrides any cache-wide expiration policy, but only for the
specified objects.

Consider the expiration period for the cache and the objects that it contains carefully. If you make it too short, objects will
expire too quickly and you will reduce the benefits of using the cache. If you make the period too long, you risk the data
becoming stale.

It's also possible that the cache might fill up if data is allowed to remain resident for a long time. In this case, any
requests to add new items to the cache might cause some items to be forcibly removed in a process known as
eviction. Cache services typically evict data on a least-recently-used (LRU) basis, but you can usually override this
policy and prevent items from being evicted. However, if you adopt this approach, you risk exceeding the memory

Invalidate data in a client-side cacheInvalidate data in a client-side cache

Managing concurrency in a cache

Implement high availability and scalability, and improve performanceImplement high availability and scalability, and improve performance

that's available in the cache. An application that attempts to add an item to the cache will fail with an exception.

Some caching implementations might provide additional eviction policies. There are several types of eviction
policies. These include:

A most-recently-used policy (in the expectation that the data will not be required again).
A first-in-first-out policy (oldest data is evicted first).
An explicit removal policy based on a triggered event (such as the data being modified).

Data that's held in a client-side cache is generally considered to be outside the auspices of the service that
provides the data to the client. A service cannot directly force a client to add or remove information from a client-
side cache.

This means that it's possible for a client that uses a poorly configured cache to continue using outdated
information. For example, if the expiration policies of the cache aren't properly implemented, a client might use
outdated information that's cached locally when the information in the original data source has changed.

If you are building a web application that serves data over an HTTP connection, you can implicitly force a web
client (such as a browser or web proxy) to fetch the most recent information. You can do this if a resource is
updated by a change in the URI of that resource. Web clients typically use the URI of a resource as the key in the
client-side cache, so if the URI changes, the web client ignores any previously cached versions of a resource and
fetches the new version instead.

Caches are often designed to be shared by multiple instances of an application. Each application instance can read
and modify data in the cache. Consequently, the same concurrency issues that arise with any shared data store
also apply to a cache. In a situation where an application needs to modify data that's held in the cache, you might
need to ensure that updates made by one instance of the application do not overwrite the changes made by
another instance.

Depending on the nature of the data and the likelihood of collisions, you can adopt one of two approaches to
concurrency:

Optimistic. Immediately prior to updating the data, the application checks to see whether the data in the
cache has changed since it was retrieved. If the data is still the same, the change can be made. Otherwise, the
application has to decide whether to update it. (The business logic that drives this decision will be application-
specific.) This approach is suitable for situations where updates are infrequent, or where collisions are unlikely
to occur.
Pessimistic. When it retrieves the data, the application locks it in the cache to prevent another instance from
changing it. This process ensures that collisions cannot occur, but they can also block other instances that need
to process the same data. Pessimistic concurrency can affect the scalability of a solution and is recommended
only for short-lived operations. This approach might be appropriate for situations where collisions are more
likely, especially if an application updates multiple items in the cache and must ensure that these changes are
applied consistently.

Avoid using a cache as the primary repository of data; this is the role of the original data store from which the
cache is populated. The original data store is responsible for ensuring the persistence of the data.

Be careful not to introduce critical dependencies on the availability of a shared cache service into your solutions.
An application should be able to continue functioning if the service that provides the shared cache is unavailable.
The application should not hang or fail while waiting for the cache service to resume.

Therefore, the application must be prepared to detect the availability of the cache service and fall back to the

original data store if the cache is inaccessible. The Circuit-Breaker pattern is useful for handling this scenario. The
service that provides the cache can be recovered, and once it becomes available, the cache can be repopulated as
data is read from the original data store, following a strategy such as the Cache-aside pattern.

However, system scalability may be affected if the application falls back to the original data store when the cache
is temporarily unavailable. While the data store is being recovered, the original data store could be swamped with
requests for data, resulting in timeouts and failed connections.

Consider implementing a local, private cache in each instance of an application, together with the shared cache
that all application instances access. When the application retrieves an item, it can check first in its local cache,
then in the shared cache, and finally in the original data store. The local cache can be populated using the data in
either the shared cache, or in the database if the shared cache is unavailable.

This approach requires careful configuration to prevent the local cache from becoming too stale with respect to
the shared cache. However, the local cache acts as a buffer if the shared cache is unreachable. Figure 3 shows this
structure.

Figure 3: Using a local private cache with a shared cache.

To support large caches that hold relatively long-lived data, some cache services provide a high-availability option
that implements automatic failover if the cache becomes unavailable. This approach typically involves replicating
the cached data that's stored on a primary cache server to a secondary cache server, and switching to the
secondary server if the primary server fails or connectivity is lost.

To reduce the latency that's associated with writing to multiple destinations, the replication to the secondary
server might occur asynchronously when data is written to the cache on the primary server. This approach leads
to the possibility that some cached information might be lost in the event of a failure, but the proportion of this
data shuld be small compared to the overall size of the cache.

If a shared cache is large, it might be beneficial to partition the cached data across nodes to reduce the chances of
contention and improve scalability. Many shared caches support the ability to dynamically add (and remove)
nodes and rebalance the data across partitions. This approach might involve clustering, in which the collection of
nodes is presented to client applications as a seamless, single cache. Internally, however, the data is dispersed
between nodes following a predefined distribution strategy that balances the load evenly. For more information

Caching and eventual consistency

Protect cached dataProtect cached data

about possible partitioning strategies, see Data partitioning guidance.

Clustering can also increase the availability of the cache. If a node fails, the remainder of the cache is still
accessible. Clustering is frequently used in conjunction with replication and failover. Each node can be replicated,
and the replica can be quickly brought online if the node fails.

Many read and write operations are likely to involve single data values or objects. However, at times it might be
necessary to store or retrieve large volumes of data quickly. For example, seeding a cache could involve writing
hundreds or thousands of items to the cache. An application might also need to retrieve a large number of related
items from the cache as part of the same request.

Many large-scale caches provide batch operations for these purposes. This enables a client application to package
up a large volume of items into a single request and reduces the overhead that's associated with performing a
large number of small requests.

For the cache-aside pattern to work, the instance of the application that populates the cache must have access to
the most recent and consistent version of the data. In a system that implements eventual consistency (such as a
replicated data store) this might not be the case.

One instance of an application could modify a data item and invalidate the cached version of that item. Another
instance of the application might attempt to read this item from a cache, which causes a cache-miss, so it reads
the data from the data store and adds it to the cache. However, if the data store has not been fully synchronized
with the other replicas, the application instance could read and populate the cache with the old value.

For more information about handling data consistency, see the Data consistency primer.

Irrespective of the cache service you use, consider how to protect the data that's held in the cache from
unauthorized access. There are two main concerns:

The privacy of the data in the cache.
The privacy of data as it flows between the cache and the application that's using the cache.

To protect data in the cache, the cache service might implement an authentication mechanism that requires that
applications specify the following:

Which identities can access data in the cache.
Which operations (read and write) that these identities are allowed to perform.

To reduce overhead that's associated with reading and writing data, after an identity has been granted write
and/or read access to the cache, that identity can use any data in the cache.

If you need to restrict access to subsets of the cached data, you can do one of the following:

Split the cache into partitions (by using different cache servers) and only grant access to identities for the
partitions that they should be allowed to use.
Encrypt the data in each subset by using different keys, and provide the encryption keys only to identities that
should have access to each subset. A client application might still be able to retrieve all of the data in the cache,
but it will only be able to decrypt the data for which it has the keys.

You must also protect the data as it flows in and out of the cache. To do this, you depend on the security features
provided by the network infrastructure that client applications use to connect to the cache. If the cache is
implemented using an on-site server within the same organization that hosts the client applications, then the
isolation of the network itself might not require you to take additional steps. If the cache is located remotely and
requires a TCP or HTTP connection over a public network (such as the Internet), consider implementing SSL.

https://msdn.microsoft.com/library/dn589795.aspx
https://msdn.microsoft.com/library/dn589800.aspx

Considerations for implementing caching in Azure

Features of RedisFeatures of Redis

Redis as an in-memory databaseRedis as an in-memory database

NOTENOTE

Redis data typesRedis data types

Redis replication and clusteringRedis replication and clustering

Azure Redis Cache is an implementation of the open source Redis cache that runs as a service in an Azure
datacenter. It provides a caching service that can be accessed from any Azure application, whether the application
is implemented as a cloud service, a website, or inside an Azure virtual machine. Caches can be shared by client
applications that have the appropriate access key.

Azure Redis Cache is a high-performance caching solution that provides availability, scalability and security. It
typically runs as a service spread across one or more dedicated machines. It attempts to store as much
information as it can in memory to ensure fast access. This architecture is intended to provide low latency and
high throughput by reducing the need to perform slow I/O operations.

Azure Redis Cache is compatible with many of the various APIs that are used by client applications. If you have
existing applications that already use Azure Redis Cache running on-premises, the Azure Redis Cache provides a
quick migration path to caching in the cloud.

Redis is more than a simple cache server. It provides a distributed in-memory database with an extensive
command set that supports many common scenarios. These are described later in this document, in the section
Using Redis caching. This section summarizes some of the key features that Redis provides.

Redis supports both read and write operations. In Redis, writes can be protected from system failure either by
being stored periodically in a local snapshot file or in an append-only log file. This is not the case in many caches
(which should be considered transitory data stores).

All writes are asynchronous and do not block clients from reading and writing data. When Redis starts running, it
reads the data from the snapshot or log file and uses it to construct the in-memory cache. For more information,
see Redis persistence on the Redis website.

Redis does not guarantee that all writes will be saved in the event of a catastrophic failure, but at worst you might lose only
a few seconds worth of data. Remember that a cache is not intended to act as an authoritative data source, and it is the
responsibility of the applications using the cache to ensure that critical data is saved successfully to an appropriate data
store. For more information, see the Cache-aside pattern.

Redis is a key-value store, where values can contain simple types or complex data structures such as hashes, lists,
and sets. It supports a set of atomic operations on these data types. Keys can be permanent or tagged with a
limited time-to-live, at which point the key and its corresponding value are automatically removed from the cache.
For more information about Redis keys and values, visit the page An introduction to Redis data types and
abstractions on the Redis website.

Redis supports master/subordinate replication to help ensure availability and maintain throughput. Write
operations to a Redis master node are replicated to one or more subordinate nodes. Read operations can be
served by the master or any of the subordinates.

In the event of a network partition, subordinates can continue to serve data and then transparently resynchronize
with the master when the connection is reestablished. For further details, visit the Replication page on the Redis
website.

Redis also provides clustering, which enables you to transparently partition data into shards across servers and
spread the load. This feature improves scalability, because new Redis servers can be added and the data
repartitioned as the size of the cache increases.

https://docs.microsoft.com/azure/redis-cache/
https://redis.io/topics/persistence
https://redis.io/topics/data-types-intro
https://redis.io/topics/replication

Redis memory useRedis memory use

Redis transactions and batchesRedis transactions and batches

Redis securityRedis security

Furthermore, each server in the cluster can be replicated by using master/subordinate replication. This ensures
availability across each node in the cluster. For more information about clustering and sharding, visit the Redis
cluster tutorial page on the Redis website.

A Redis cache has a finite size that depends on the resources available on the host computer. When you configure
a Redis server, you can specify the maximum amount of memory it can use. You can also configure a key in a
Redis cache to have an expiration time, after which it is automatically removed from the cache. This feature can
help prevent the in-memory cache from filling with old or stale data.

As memory fills up, Redis can automatically evict keys and their values by following a number of policies. The
default is LRU (least recently used), but you can also select other policies such as evicting keys at random or
turning off eviction altogether (in which, case attempts to add items to the cache fail if it is full). The page Using
Redis as an LRU cache provides more information.

Redis enables a client application to submit a series of operations that read and write data in the cache as an
atomic transaction. All the commands in the transaction are guaranteed to run sequentially, and no commands
issued by other concurrent clients will be interwoven between them.

However, these are not true transactions as a relational database would perform them. Transaction processing
consists of two stages--the first is when the commands are queued, and the second is when the commands are
run. During the command queuing stage, the commands that comprise the transaction are submitted by the
client. If some sort of error occurs at this point (such as a syntax error, or the wrong number of parameters) then
Redis refuses to process the entire transaction and discards it.

During the run phase, Redis performs each queued command in sequence. If a command fails during this phase,
Redis continues with the next queued command and does not roll back the effects of any commands that have
already been run. This simplified form of transaction helps to maintain performance and avoid performance
problems that are caused by contention.

Redis does implement a form of optimistic locking to assist in maintaining consistency. For detailed information
about transactions and locking with Redis, visit the Transactions page on the Redis website.

Redis also supports non-transactional batching of requests. The Redis protocol that clients use to send commands
to a Redis server enables a client to send a series of operations as part of the same request. This can help to
reduce packet fragmentation on the network. When the batch is processed, each command is performed. If any of
these commands are malformed, they will be rejected (which doesn't happen with a transaction), but the
remaining commands will be performed. There is also no guarantee about the order in which the commands in
the batch will be processed.

Redis is focused purely on providing fast access to data, and is designed to run inside a trusted environment that
can be accessed only by trusted clients. Redis supports a limited security model based on password
authentication. (It is possible to remove authentication completely, although we don't recommend this.)

All authenticated clients share the same global password and have access to the same resources. If you need
more comprehensive sign-in security, you must implement your own security layer in front of the Redis server,
and all client requests should pass through this additional layer. Redis should not be directly exposed to untrusted
or unauthenticated clients.

You can restrict access to commands by disabling them or renaming them (and by providing only privileged
clients with the new names).

Redis does not directly support any form of data encryption, so all encoding must be performed by client
applications. Additionally, Redis does not provide any form of transport security. If you need to protect data as it

https://redis.io/topics/cluster-tutorial
https://redis.io/topics/lru-cache
https://redis.io/topics/transactions

NOTENOTE

Azure Redis cacheAzure Redis cache

Caching session state and HTML output

flows across the network, we recommend implementing an SSL proxy.

For more information, visit the Redis security page on the Redis website.

Azure Redis Cache provides its own security layer through which clients connect. The underlying Redis servers are not
exposed to the public network.

Azure Redis Cache provides access to Redis servers that are hosted at an Azure datacenter. It acts as a façade that
provides access control and security. You can provision a cache by using the Azure portal.

The portal provides a number of predefined configurations. These range from a 53 GB cache running as a
dedicated service that supports SSL communications (for privacy) and master/subordinate replication with an
SLA of 99.9% availability, down to a 250 MB cache without replication (no availability guarantees) running on
shared hardware.

Using the Azure portal, you can also configure the eviction policy of the cache, and control access to the cache by
adding users to the roles provided. These roles, which define the operations that members can perform, include
Owner, Contributor, and Reader. For example, members of the Owner role have complete control over the cache
(including security) and its contents, members of the Contributor role can read and write information in the cache,
and members of the Reader role can only retrieve data from the cache.

Most administrative tasks are performed through the Azure portal. For this reason, many of the administrative
commands that are available in the standard version of Redis are not available, including the ability to modify the
configuration programmatically, shut down the Redis server, configure additional subordinates, or forcibly save
data to disk.

The Azure portal includes a convenient graphical display that enables you to monitor the performance of the
cache. For example, you can view the number of connections being made, the number of requests being
performed, the volume of reads and writes, and the number of cache hits versus cache misses. Using this
information, you can determine the effectiveness of the cache and if necessary, switch to a different configuration
or change the eviction policy.

Additionally, you can create alerts that send email messages to an administrator if one or more critical metrics fall
outside of an expected range. For example, you might want to alert an administrator if the number of cache
misses exceeds a specified value in the last hour, because it means the cache might be too small or data might be
being evicted too quickly.

You can also monitor the CPU, memory, and network usage for the cache.

For further information and examples showing how to create and configure an Azure Redis Cache, visit the page
Lap around Azure Redis Cache on the Azure blog.

If you're building ASP.NET web applications that run by using Azure web roles, you can save session state
information and HTML output in an Azure Redis Cache. The session state provider for Azure Redis Cache enables
you to share session information between different instances of an ASP.NET web application, and is very useful
in web farm situations where client-server affinity is not available and caching session data in-memory would not
be appropriate.

Using the session state provider with Azure Redis Cache delivers several benefits, including:

Sharing session state with a large number of instances of ASP.NET web applications.

https://redis.io/topics/security
https://azure.microsoft.com/blog/2014/06/04/lap-around-azure-redis-cache-preview/

NOTENOTE

Building a custom Redis cache

NOTENOTE

Partitioning a Redis cache

Providing improved scalability.
Supporting controlled, concurrent access to the same session state data for multiple readers and a single
writer.
Using compression to save memory and improve network performance.

For more information, see ASP.NET session state provider for Azure Redis Cache.

Do not use the session state provider for Azure Redis Cache with ASP.NET applications that run outside of the Azure
environment. The latency of accessing the cache from outside of Azure can eliminate the performance benefits of caching
data.

Similarly, the output cache provider for Azure Redis Cache enables you to save the HTTP responses generated by
an ASP.NET web application. Using the output cache provider with Azure Redis Cache can improve the response
times of applications that render complex HTML output. Application instances that generate similar responses
can use the shared output fragments in the cache rather than generating this HTML output afresh. For more
information, see ASP.NET output cache provider for Azure Redis Cache.

Azure Redis Cache acts as a façade to the underlying Redis servers. If you require an advanced configuration that
is not covered by the Azure Redis cache (such as a cache bigger than 53 GB) you can build and host your own
Redis servers by using Azure virtual machines.

This is a potentially complex process because you might need to create several VMs to act as master and
subordinate nodes if you want to implement replication. Furthermore, if you wish to create a cluster, then you
need multiple masters and subordinate servers. A minimal clustered replication topology that provides a high
degree of availability and scalability comprises at least six VMs organized as three pairs of master/subordinate
servers (a cluster must contain at least three master nodes).

Each master/subordinate pair should be located close together to minimize latency. However, each set of pairs
can be running in different Azure datacenters located in different regions, if you wish to locate cached data close
to the applications that are most likely to use it. For an example of building and configuring a Redis node running
as an Azure VM, see Running Redis on a CentOS Linux VM in Azure.

Please note that if you implement your own Redis cache in this way, you are responsible for monitoring, managing, and
securing the service.

Partitioning the cache involves splitting the cache across multiple computers. This structure gives you several
advantages over using a single cache server, including:

Creating a cache that is much bigger than can be stored on a single server.
Distributing data across servers, improving availability. If one server fails or becomes inaccessible, the data
that it holds is unavailable, but the data on the remaining servers can still be accessed. For a cache, this is not
crucial because the cached data is only a transient copy of the data that's held in a database. Cached data on a
server that becomes inaccessible can be cached on a different server instead.
Spreading the load across servers, thereby improving performance and scalability.
Geolocating data close to the users that access it, thus reducing latency.

https://docs.microsoft.com/azure/redis-cache/cache-aspnet-session-state-provider/
https://docs.microsoft.com/azure/redis-cache/cache-aspnet-output-cache-provider/
https://blogs.msdn.microsoft.com/tconte/2012/06/08/running-redis-on-a-centos-linux-vm-in-windows-azure/

Implement Redis cache client applicationsImplement Redis cache client applications

For a cache, the most common form of partitioning is sharding. In this strategy, each partition (or shard) is a
Redis cache in its own right. Data is directed to a specific partition by using sharding logic, which can use a variety
of approaches to distribute the data. The Sharding pattern provides more information about implementing
sharding.

To implement partitioning in a Redis cache, you can take one of the following approaches:

Server-side query routing. In this technique, a client application sends a request to any of the Redis servers that
comprise the cache (probably the closest server). Each Redis server stores metadata that describes the
partition that it holds, and also contains information about which partitions are located on other servers. The
Redis server examines the client request. If it can be resolved locally, it will perform the requested operation.
Otherwise it will forward the request on to the appropriate server. This model is implemented by Redis
clustering, and is described in more detail on the Redis cluster tutorial page on the Redis website. Redis
clustering is transparent to client applications, and additional Redis servers can be added to the cluster (and
the data re-partitioned) without requiring that you reconfigure the clients.
Client-side partitioning. In this model, the client application contains logic (possibly in the form of a library)
that routes requests to the appropriate Redis server. This approach can be used with Azure Redis Cache.
Create multiple Azure Redis Caches (one for each data partition) and implement the client-side logic that
routes the requests to the correct cache. If the partitioning scheme changes (if additional Azure Redis Caches
are created, for example), client applications might need to be reconfigured.
Proxy-assisted partitioning. In this scheme, client applications send requests to an intermediary proxy service
which understands how the data is partitioned and then routes the request to the appropriate Redis server.
This approach can also be used with Azure Redis Cache; the proxy service can be implemented as an Azure
cloud service. This approach requires an additional level of complexity to implement the service, and requests
might take longer to perform than using client-side partitioning.

The page Partitioning: how to split data among multiple Redis instances on the Redis website provides further
information about implementing partitioning with Redis.

Redis supports client applications written in numerous programming languages. If you are building new
applications by using the .NET Framework, the recommended approach is to use the StackExchange.Redis client
library. This library provides a .NET Framework object model that abstracts the details for connecting to a Redis
server, sending commands, and receiving responses. It is available in Visual Studio as a NuGet package. You can
use this same library to connect to an Azure Redis Cache, or a custom Redis cache hosted on a VM.

To connect to a Redis server you use the static Connect method of the ConnectionMultiplexer class. The
connection that this method creates is designed to be used throughout the lifetime of the client application, and
the same connection can be used by multiple concurrent threads. Do not reconnect and disconnect each time you
perform a Redis operation because this can degrade performance.

You can specify the connection parameters, such as the address of the Redis host and the password. If you are
using Azure Redis Cache, the password is either the primary or secondary key that is generated for Azure Redis
Cache by using the Azure Management portal.

After you have connected to the Redis server, you can obtain a handle on the Redis database that acts as the
cache. The Redis connection provides the GetDatabase method to do this. You can then retrieve items from the
cache and store data in the cache by using the StringGet and StringSet methods. These methods expect a key
as a parameter, and return the item either in the cache that has a matching value (StringGet) or add the item to
the cache with this key (StringSet).

Depending on the location of the Redis server, many operations might incur some latency while a request is
transmitted to the server and a response is returned to the client. The StackExchange library provides
asynchronous versions of many of the methods that it exposes to help client applications remain responsive.
These methods support the Task-based Asynchronous pattern in the .NET Framework.

https://redis.io/topics/cluster-tutorial
https://redis.io/topics/partitioning
https://docs.microsoft.com/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap

// Connect to the Azure Redis cache
ConfigurationOptions config = new ConfigurationOptions();
config.EndPoints.Add("<your DNS name>.redis.cache.windows.net");
config.Password = "<Redis cache key from management portal>";
ConnectionMultiplexer redisHostConnection = ConnectionMultiplexer.Connect(config);
IDatabase cache = redisHostConnection.GetDatabase();
...
private async Task<string> RetrieveItem(string itemKey)
{
 // Attempt to retrieve the item from the Redis cache
 string itemValue = await cache.StringGetAsync(itemKey);

 // If the value returned is null, the item was not found in the cache
 // So retrieve the item from the data source and add it to the cache
 if (itemValue == null)
 {
 itemValue = await GetItemFromDataSourceAsync(itemKey);
 await cache.StringSetAsync(itemKey, itemValue);
 }

 // Return the item
 return itemValue;
}

The following code snippet shows a method named RetrieveItem . It illustrates an implementation of the cache-
aside pattern based on Redis and the StackExchange library. The method takes a string key value and attempts to
retrieve the corresponding item from the Redis cache by calling the StringGetAsync method (the asynchronous
version of StringGet).

If the item is not found, it is fetched from the underlying data source using the GetItemFromDataSourceAsync

method (which is a local method and not part of the StackExchange library). It's then added to the cache by using
the StringSetAsync method so it can be retrieved more quickly next time.

The StringGet and StringSet methods are not restricted to retrieving or storing string values. They can take any
item that is serialized as an array of bytes. If you need to save a .NET object, you can serialize it as a byte stream
and use the StringSet method to write it to the cache.

Similarly, you can read an object from the cache by using the StringGet method and deserializing it as a .NET
object. The following code shows a set of extension methods for the IDatabase interface (the GetDatabase

method of a Redis connection returns an IDatabase object), and some sample code that uses these methods to
read and write a BlogPost object to the cache:

public static class RedisCacheExtensions
{
 public static async Task<T> GetAsync<T>(this IDatabase cache, string key)
 {
 return Deserialize<T>(await cache.StringGetAsync(key));
 }

 public static async Task<object> GetAsync(this IDatabase cache, string key)
 {
 return Deserialize<object>(await cache.StringGetAsync(key));
 }

 public static async Task SetAsync(this IDatabase cache, string key, object value)
 {
 await cache.StringSetAsync(key, Serialize(value));
 }

 static byte[] Serialize(object o)
 {
 byte[] objectDataAsStream = null;

 if (o != null)
 {
 BinaryFormatter binaryFormatter = new BinaryFormatter();
 using (MemoryStream memoryStream = new MemoryStream())
 {
 binaryFormatter.Serialize(memoryStream, o);
 objectDataAsStream = memoryStream.ToArray();
 }
 }

 return objectDataAsStream;
 }

 static T Deserialize<T>(byte[] stream)
 {
 T result = default(T);

 if (stream != null)
 {
 BinaryFormatter binaryFormatter = new BinaryFormatter();
 using (MemoryStream memoryStream = new MemoryStream(stream))
 {
 result = (T)binaryFormatter.Deserialize(memoryStream);
 }
 }

 return result;
 }
}

The following code illustrates a method named RetrieveBlogPost that uses these extension methods to read and
write a serializable BlogPost object to the cache following the cache-aside pattern:

// The BlogPost type
[Serializable]
public class BlogPost
{
 private HashSet<string> tags;

 public BlogPost(int id, string title, int score, IEnumerable<string> tags)
 {
 this.Id = id;
 this.Title = title;
 this.Score = score;
 this.tags = new HashSet<string>(tags);
 }

 public int Id { get; set; }
 public string Title { get; set; }
 public int Score { get; set; }
 public ICollection<string> Tags => this.tags;
}
...
private async Task<BlogPost> RetrieveBlogPost(string blogPostKey)
{
 BlogPost blogPost = await cache.GetAsync<BlogPost>(blogPostKey);
 if (blogPost == null)
 {
 blogPost = await GetBlogPostFromDataSourceAsync(blogPostKey);
 await cache.SetAsync(blogPostKey, blogPost);
 }

 return blogPost;
}

ConnectionMultiplexer redisHostConnection = ...;
IDatabase cache = redisHostConnection.GetDatabase();
...
var task1 = cache.StringGetAsync("customer:1");
var task2 = cache.StringGetAsync("customer:2");
...
var customer1 = cache.Wait(task1);
var customer2 = cache.Wait(task2);

Using Redis caching

Redis supports command pipelining if a client application sends multiple asynchronous requests. Redis can
multiplex the requests using the same connection rather than receiving and responding to commands in a strict
sequence.

This approach helps to reduce latency by making more efficient use of the network. The following code snippet
shows an example that retrieves the details of two customers concurrently. The code submits two requests and
then performs some other processing (not shown) before waiting to receive the results. The Wait method of the
cache object is similar to the .NET Framework Task.Wait method:

For additional information on writing client applications that can the Azure Redis Cache, see the Azure Cache for
Redis documentation. More information is also available at StackExchange.Redis.

The page Pipelines and multiplexers on the same website provides more information about asynchronous
operations and pipelining with Redis and the StackExchange library.

The simplest use of Redis for caching concerns is key-value pairs where the value is an uninterpreted string of
arbitrary length that can contain any binary data. (It is essentially an array of bytes that can be treated as a string).
This scenario was illustrated in the section Implement Redis Cache client applications earlier in this article.

https://docs.microsoft.com/azure/azure-cache-for-redis/
https://github.com/StackExchange/StackExchange.Redis/blob/master/Docs/Basics.md
https://stackexchange.github.io/StackExchange.Redis/PipelinesMultiplexers

Perform atomic and batch operationsPerform atomic and batch operations

Note that keys also contain uninterpreted data, so you can use any binary information as the key. The longer the
key is, however, the more space it will take to store, and the longer it will take to perform lookup operations. For
usability and ease of maintenance, design your keyspace carefully and use meaningful (but not verbose) keys.

For example, use structured keys such as "customer:100" to represent the key for the customer with ID 100 rather
than simply "100". This scheme enables you to easily distinguish between values that store different data types.
For example, you could also use the key "orders:100" to represent the key for the order with ID 100.

Apart from one-dimensional binary strings, a value in a Redis key-value pair can also hold more structured
information, including lists, sets (sorted and unsorted), and hashes. Redis provides a comprehensive command set
that can manipulate these types, and many of these commands are available to .NET Framework applications
through a client library such as StackExchange. The page An introduction to Redis data types and abstractions on
the Redis website provides a more detailed overview of these types and the commands that you can use to
manipulate them.

This section summarizes some common use cases for these data types and commands.

Redis supports a series of atomic get-and-set operations on string values. These operations remove the possible
race hazards that might occur when using separate GET and SET commands. The operations that are available
include:

ConnectionMultiplexer redisHostConnection = ...;
IDatabase cache = redisHostConnection.GetDatabase();
...
await cache.StringSetAsync("data:counter", 99);
...
long oldValue = await cache.StringIncrementAsync("data:counter");
// Increment by 1 (the default)
// oldValue should be 100

long newValue = await cache.StringDecrementAsync("data:counter", 50);
// Decrement by 50
// newValue should be 50

ConnectionMultiplexer redisHostConnection = ...;
IDatabase cache = redisHostConnection.GetDatabase();
...
string oldValue = await cache.StringGetSetAsync("data:counter", 0);

INCR , INCRBY , DECR , and DECRBY , which perform atomic increment and decrement operations on integer
numeric data values. The StackExchange library provides overloaded versions of the
IDatabase.StringIncrementAsync and IDatabase.StringDecrementAsync methods to perform these

operations and return the resulting value that is stored in the cache. The following code snippet illustrates
how to use these methods:

GETSET , which retrieves the value that's associated with a key and changes it to a new value. The
StackExchange library makes this operation available through the IDatabase.StringGetSetAsync method.
The code snippet below shows an example of this method. This code returns the current value that's
associated with the key "data:counter" from the previous example. Then it resets the value for this key back
to zero, all as part of the same operation:

MGET and MSET , which can return or change a set of string values as a single operation. The
IDatabase.StringGetAsync and IDatabase.StringSetAsync methods are overloaded to support this

functionality, as shown in the following example:

https://redis.io/topics/data-types-intro

ConnectionMultiplexer redisHostConnection = ...;
IDatabase cache = redisHostConnection.GetDatabase();
...
ITransaction transaction = cache.CreateTransaction();
var tx1 = transaction.StringIncrementAsync("data:counter1");
var tx2 = transaction.StringDecrementAsync("data:counter2");
bool result = transaction.Execute();
Console.WriteLine("Transaction {0}", result ? "succeeded" : "failed");
Console.WriteLine("Result of increment: {0}", tx1.Result);
Console.WriteLine("Result of decrement: {0}", tx2.Result);

ConnectionMultiplexer redisHostConnection = ...;
IDatabase cache = redisHostConnection.GetDatabase();
...
// Create a list of key-value pairs
var keysAndValues =
 new List<KeyValuePair<RedisKey, RedisValue>>()
 {
 new KeyValuePair<RedisKey, RedisValue>("data:key1", "value1"),
 new KeyValuePair<RedisKey, RedisValue>("data:key99", "value2"),
 new KeyValuePair<RedisKey, RedisValue>("data:key322", "value3")
 };

// Store the list of key-value pairs in the cache
cache.StringSet(keysAndValues.ToArray());
...
// Find all values that match a list of keys
RedisKey[] keys = { "data:key1", "data:key99", "data:key322"};
// values should contain { "value1", "value2", "value3" }
RedisValue[] values = cache.StringGet(keys);

You can also combine multiple operations into a single Redis transaction as described in the Redis transactions
and batches section earlier in this article. The StackExchange library provides support for transactions through
the ITransaction interface.

You create an ITransaction object by using the IDatabase.CreateTransaction method. You invoke commands to
the transaction by using the methods provided by the ITransaction object.

The ITransaction interface provides access to a set of methods that's similar to those accessed by the IDatabase

interface, except that all the methods are asynchronous. This means that they are only performed when the
ITransaction.Execute method is invoked. The value that's returned by the ITransaction.Execute method

indicates whether the transaction was created successfully (true) or if it failed (false).

The following code snippet shows an example that increments and decrements two counters as part of the same
transaction:

Remember that Redis transactions are unlike transactions in relational databases. The Execute method simply
queues all the commands that comprise the transaction to be run, and if any of them is malformed then the
transaction is stopped. If all the commands have been queued successfully, each command runs asynchronously.

If any command fails, the others still continue processing. If you need to verify that a command has completed
successfully, you must fetch the results of the command by using the Result property of the corresponding task,
as shown in the example above. Reading the Result property will block the calling thread until the task has
completed.

For more information, see Transactions in Redis.

When performing batch operations, you can use the IBatch interface of the StackExchange library. This interface

https://stackexchange.github.io/StackExchange.Redis/Transactions

ConnectionMultiplexer redisHostConnection = ...;
IDatabase cache = redisHostConnection.GetDatabase();
...
IBatch batch = cache.CreateBatch();
batch.StringSetAsync("data:key1", 11);
var t1 = batch.StringIncrementAsync("data:counter1");
var t2 = batch.StringDecrementAsync("data:counter2");
batch.Execute();
Console.WriteLine("{0}", t1.Result);
Console.WriteLine("{0}", t2.Result);

Perform fire and forget cache operationsPerform fire and forget cache operations

ConnectionMultiplexer redisHostConnection = ...;
IDatabase cache = redisHostConnection.GetDatabase();
...
await cache.StringSetAsync("data:key1", 99);
...
cache.StringIncrement("data:key1", flags: CommandFlags.FireAndForget);

Specify automatically expiring keysSpecify automatically expiring keys

ConnectionMultiplexer redisHostConnection = ...;
IDatabase cache = redisHostConnection.GetDatabase();
...
// Add a key with an expiration time of 20 seconds
await cache.StringSetAsync("data:key1", 99, TimeSpan.FromSeconds(20));
...
// Query how much time a key has left to live
// If the key has already expired, the KeyTimeToLive function returns a null
TimeSpan? expiry = cache.KeyTimeToLive("data:key1");

provides access to a set of methods similar to those accessed by the IDatabase interface, except that all the
methods are asynchronous.

You create an IBatch object by using the IDatabase.CreateBatch method, and then run the batch by using the
IBatch.Execute method, as shown in the following example. This code simply sets a string value, increments and

decrements the same counters used in the previous example, and displays the results:

It is important to understand that unlike a transaction, if a command in a batch fails because it is malformed, the
other commands might still run. The IBatch.Execute method does not return any indication of success or failure.

Redis supports fire and forget operations by using command flags. In this situation, the client simply initiates an
operation but has no interest in the result and does not wait for the command to be completed. The example
below shows how to perform the INCR command as a fire and forget operation:

When you store an item in a Redis cache, you can specify a timeout after which the item will be automatically
removed from the cache. You can also query how much more time a key has before it expires by using the TTL

command. This command is available to StackExchange applications by using the IDatabase.KeyTimeToLive

method.

The following code snippet shows how to set an expiration time of 20 seconds on a key, and query the remaining
lifetime of the key:

You can also set the expiration time to a specific date and time by using the EXPIRE command, which is available
in the StackExchange library as the KeyExpireAsync method:

ConnectionMultiplexer redisHostConnection = ...;
IDatabase cache = redisHostConnection.GetDatabase();
...
// Add a key with an expiration date of midnight on 1st January 2015
await cache.StringSetAsync("data:key1", 99);
await cache.KeyExpireAsync("data:key1",
 new DateTime(2015, 1, 1, 0, 0, 0, DateTimeKind.Utc));
...

TIPTIP

Use tags to cross-correlate cached itemsUse tags to cross-correlate cached items

You can manually remove an item from the cache by using the DEL command, which is available through the StackExchange
library as the IDatabase.KeyDeleteAsync method.

A Redis set is a collection of multiple items that share a single key. You can create a set by using the SADD
command. You can retrieve the items in a set by using the SMEMBERS command. The StackExchange library
implements the SADD command with the IDatabase.SetAddAsync method, and the SMEMBERS command with
the IDatabase.SetMembersAsync method.

You can also combine existing sets to create new sets by using the SDIFF (set difference), S INTER (set
intersection), and SUNION (set union) commands. The StackExchange library unifies these operations in the
IDatabase.SetCombineAsync method. The first parameter to this method specifies the set operation to perform.

The following code snippets show how sets can be useful for quickly storing and retrieving collections of related
items. This code uses the BlogPost type that was described in the section Implement Redis Cache Client
Applications earlier in this article.

A BlogPost object contains four fields — an ID, a title, a ranking score, and a collection of tags. The first code
snippet below shows the sample data that's used for populating a C# list of BlogPost objects:

List<string[]> tags = new List<string[]>
{
 new[] { "iot","csharp" },
 new[] { "iot","azure","csharp" },
 new[] { "csharp","git","big data" },
 new[] { "iot","git","database" },
 new[] { "database","git" },
 new[] { "csharp","database" },
 new[] { "iot" },
 new[] { "iot","database","git" },
 new[] { "azure","database","big data","git","csharp" },
 new[] { "azure" }
};

List<BlogPost> posts = new List<BlogPost>();
int blogKey = 1;
int numberOfPosts = 20;
Random random = new Random();
for (int i = 0; i < numberOfPosts; i++)
{
 blogKey++;
 posts.Add(new BlogPost(
 blogKey, // Blog post ID
 string.Format(CultureInfo.InvariantCulture, "Blog Post #{0}",
 blogKey), // Blog post title
 random.Next(100, 10000), // Ranking score
 tags[i % tags.Count])); // Tags--assigned from a collection
 // in the tags list
}

ConnectionMultiplexer redisHostConnection = ...;
IDatabase cache = redisHostConnection.GetDatabase();
...
// Tags are easily represented as Redis Sets
foreach (BlogPost post in posts)
{
 string redisKey = string.Format(CultureInfo.InvariantCulture,
 "blog:posts:{0}:tags", post.Id);
 // Add tags to the blog post in Redis
 await cache.SetAddAsync(
 redisKey, post.Tags.Select(s => (RedisValue)s).ToArray());

 // Now do the inverse so we can figure out which blog posts have a given tag
 foreach (var tag in post.Tags)
 {
 await cache.SetAddAsync(string.Format(CultureInfo.InvariantCulture,
 "tag:{0}:blog:posts", tag), post.Id);
 }
}

You can store the tags for each BlogPost object as a set in a Redis cache and associate each set with the ID of the
BlogPost . This enables an application to quickly find all the tags that belong to a specific blog post. To enable

searching in the opposite direction and find all blog posts that share a specific tag, you can create another set that
holds the blog posts referencing the tag ID in the key:

These structures enable you to perform many common queries very efficiently. For example, you can find and
display all of the tags for blog post 1 like this:

// Show the tags for blog post #1
foreach (var value in await cache.SetMembersAsync("blog:posts:1:tags"))
{
 Console.WriteLine(value);
}

// Show the tags in common for blog posts #1 and #2
foreach (var value in await cache.SetCombineAsync(SetOperation.Intersect, new RedisKey[]
 { "blog:posts:1:tags", "blog:posts:2:tags" }))
{
 Console.WriteLine(value);
}

// Show the ids of the blog posts that have the tag "iot".
foreach (var value in await cache.SetMembersAsync("tag:iot:blog:posts"))
{
 Console.WriteLine(value);
}

Find recently accessed itemsFind recently accessed items

ConnectionMultiplexer redisHostConnection = ...;
IDatabase cache = redisHostConnection.GetDatabase();
...
string redisKey = "blog:recent_posts";
BlogPost blogPost = ...; // Reference to the blog post that has just been read
await cache.ListLeftPushAsync(
 redisKey, blogPost.Title); // Push the blog post onto the list

You can find all tags that are common to blog post 1 and blog post 2 by performing a set intersection operation,
as follows:

And you can find all blog posts that contain a specific tag:

A common task required of many applications is to find the most recently accessed items. For example, a
blogging site might want to display information about the most recently read blog posts.

You can implement this functionality by using a Redis list. A Redis list contains multiple items that share the same
key. The list acts as a double-ended queue. You can push items to either end of the list by using the LPUSH (left
push) and RPUSH (right push) commands. You can retrieve items from either end of the list by using the LPOP
and RPOP commands. You can also return a set of elements by using the LRANGE and RRANGE commands.

The code snippets below show how you can perform these operations by using the StackExchange library. This
code uses the BlogPost type from the previous examples. As a blog post is read by a user, the
IDatabase.ListLeftPushAsync method pushes the title of the blog post onto a list that's associated with the key

"blog:recent_posts" in the Redis cache.

As more blog posts are read, their titles are pushed onto the same list. The list is ordered by the sequence in
which the titles have been added. The most recently read blog posts are towards the left end of the list. (If the
same blog post is read more than once, it will have multiple entries in the list.)

You can display the titles of the most recently read posts by using the IDatabase.ListRange method. This method
takes the key that contains the list, a starting point, and an ending point. The following code retrieves the titles of
the 10 blog posts (items from 0 to 9) at the left-most end of the list:

// Show latest ten posts
foreach (string postTitle in await cache.ListRangeAsync(redisKey, 0, 9))
{
 Console.WriteLine(postTitle);
}

await cache.ListTrimAsync(redisKey, 0, 5);

Implement a leader boardImplement a leader board

ConnectionMultiplexer redisHostConnection = ...;
IDatabase cache = redisHostConnection.GetDatabase();
...
string redisKey = "blog:post_rankings";
BlogPost blogPost = ...; // Reference to a blog post that has just been rated
await cache.SortedSetAddAsync(redisKey, blogPost.Title, blogPost.Score);

foreach (var post in await cache.SortedSetRangeByRankWithScoresAsync(redisKey))
{
 Console.WriteLine(post);
}

NOTENOTE

foreach (var post in await cache.SortedSetRangeByRankWithScoresAsync(
 redisKey, 0, 9, Order.Descending))
{
 Console.WriteLine(post);
}

Note that the ListRangeAsync method does not remove items from the list. To do this, you can use the
IDatabase.ListLeftPopAsync and IDatabase.ListRightPopAsync methods.

To prevent the list from growing indefinitely, you can periodically cull items by trimming the list. The code snippet
below shows you how to remove all but the five left-most items from the list:

By default, the items in a set are not held in any specific order. You can create an ordered set by using the ZADD
command (the IDatabase.SortedSetAdd method in the StackExchange library). The items are ordered by using a
numeric value called a score, which is provided as a parameter to the command.

The following code snippet adds the title of a blog post to an ordered list. In this example, each blog post also has
a score field that contains the ranking of the blog post.

You can retrieve the blog post titles and scores in ascending score order by using the
IDatabase.SortedSetRangeByRankWithScores method:

The StackExchange library also provides the IDatabase.SortedSetRangeByRankAsync method, which returns the data in
score order, but does not return the scores.

You can also retrieve items in descending order of scores, and limit the number of items that are returned by
providing additional parameters to the IDatabase.SortedSetRangeByRankWithScoresAsync method. The next example
displays the titles and scores of the top 10 ranked blog posts:

The next example uses the IDatabase.SortedSetRangeByScoreWithScoresAsync method, which you can use to limit

// Blog posts with scores between 5000 and 100000
foreach (var post in await cache.SortedSetRangeByScoreWithScoresAsync(
 redisKey, 5000, 100000))
{
 Console.WriteLine(post);
}

Message by using channelsMessage by using channels

ConnectionMultiplexer redisHostConnection = ...;
ISubscriber subscriber = redisHostConnection.GetSubscriber();
...
await subscriber.SubscribeAsync("messages:blogPosts", (channel, message) => Console.WriteLine("Title is:
{0}", message));

ConnectionMultiplexer redisHostConnection = ...;
ISubscriber subscriber = redisHostConnection.GetSubscriber();
...
BlogPost blogPost = ...;
subscriber.PublishAsync("messages:blogPosts", blogPost.Title);

the items that are returned to those that fall within a given score range:

Apart from acting as a data cache, a Redis server provides messaging through a high-performance
publisher/subscriber mechanism. Client applications can subscribe to a channel, and other applications or
services can publish messages to the channel. Subscribing applications will then receive these messages and can
process them.

Redis provides the SUBSCRIBE command for client applications to use to subscribe to channels. This command
expects the name of one or more channels on which the application will accept messages. The StackExchange
library includes the ISubscription interface, which enables a .NET Framework application to subscribe and
publish to channels.

You create an ISubscription object by using the GetSubscriber method of the connection to the Redis server.
Then you listen for messages on a channel by using the SubscribeAsync method of this object. The following code
example shows how to subscribe to a channel named "messages:blogPosts":

The first parameter to the Subscribe method is the name of the channel. This name follows the same
conventions that are used by keys in the cache. The name can contain any binary data, although it is advisable to
use relatively short, meaningful strings to help ensure good performance and maintainability.

Note also that the namespace used by channels is separate from that used by keys. This means you can have
channels and keys that have the same name, although this may make your application code more difficult to
maintain.

The second parameter is an Action delegate. This delegate runs asynchronously whenever a new message
appears on the channel. This example simply displays the message on the console (the message will contain the
title of a blog post).

To publish to a channel, an application can use the Redis PUBLISH command. The StackExchange library provides
the IServer.PublishAsync method to perform this operation. The next code snippet shows how to publish a
message to the "messages:blogPosts" channel:

There are several points you should understand about the publish/subscribe mechanism:

Multiple subscribers can subscribe to the same channel, and they will all receive the messages that are
published to that channel.

ConnectionMultiplexer redisHostConnection = ...;
redisHostConnection.PreserveAsyncOrder = false;
ISubscriber subscriber = redisHostConnection.GetSubscriber();

Serialization considerationsSerialization considerations

Related patterns and guidance

Subscribers only receive messages that have been published after they have subscribed. Channels are not
buffered, and once a message is published, the Redis infrastructure pushes the message to each subscriber
and then removes it.
By default, messages are received by subscribers in the order in which they are sent. In a highly active system
with a large number of messages and many subscribers and publishers, guaranteed sequential delivery of
messages can slow performance of the system. If each message is independent and the order is unimportant,
you can enable concurrent processing by the Redis system, which can help to improve responsiveness. You can
achieve this in a StackExchange client by setting the PreserveAsyncOrder of the connection used by the
subscriber to false:

When you choose a serialization format, consider tradeoffs between performance, interoperability, versioning,
compatibility with existing systems, data compression, and memory overhead. When you are evaluating
performance, remember that benchmarks are highly dependent on context. They may not reflect your actual
workload, and may not consider newer libraries or versions. There is no single "fastest" serializer for all scenarios.

Some options to consider include:

Protocol Buffers (also called protobuf) is a serialization format developed by Google for serializing
structured data efficiently. It uses strongly-typed definition files to define message structures. These
definition files are then compiled to language-specific code for serializing and deserializing messages.
Protobuf can be used over existing RPC mechanisms, or it can generate an RPC service.

Apache Thrift uses a similar approach, with strongly typed definition files and a compilation step to
generate the serialization code and RPC services.

Apache Avro provides similar functionality to Protocol Buffers and Thrift, but there is no compilation step.
Instead, serialized data always includes a schema that describes the structure.

JSON is an open standard that uses human-readable text fields. It has broad cross-platform support.
JSON does not use message schemas. Being a text-based format, it is not very efficient over the wire. In
some cases, however, you may be returning cached items directly to a client via HTTP, in which case
storing JSON could save the cost of deserializing from another format and then serializing to JSON.

BSON is a binary serialization format that uses a structure similar to JSON. BSON was designed to be
lightweight, easy to scan, and fast to serialize and deserialize, relative to JSON. Payloads are comparable in
size to JSON. Depending on the data, a BSON payload may be smaller or larger than a JSON payload.
BSON has some additional data types that are not available in JSON, notably BinData (for byte arrays)
and Date.

MessagePack is a binary serialization format that is designed to be compact for transmission over the wire.
There are no message schemas or message type checking.

Bond is a cross-platform framework for working with schematized data. It supports cross-language
serialization and deserialization. Notable differences from other systems listed here are support for
inheritance, type aliases, and generics.

gRPC is an open source RPC system developed by Google. By default, it uses Protocol Buffers as its
definition language and underlying message interchange format.

https://github.com/google/protobuf
https://thrift.apache.org/
https://avro.apache.org/
https://json.org/
http://bsonspec.org/
https://msgpack.org/
https://microsoft.github.io/bond/
https://www.grpc.io/

More information

The following patterns might also be relevant to your scenario when you implement caching in your applications:

Cache-aside pattern: This pattern describes how to load data on demand into a cache from a data store.
This pattern also helps to maintain consistency between data that's held in the cache and the data in the
original data store.

The Sharding pattern provides information about implementing horizontal partitioning to help improve
scalability when storing and accessing large volumes of data.

Azure Redis Cache documentation
Azure Redis Cache FAQ
Task-based Asynchronous pattern
Redis documentation
StackExchange.Redis
Data partitioning guide

https://docs.microsoft.com/azure/azure-cache-for-redis/
https://docs.microsoft.com/azure/redis-cache/cache-faq
https://docs.microsoft.com/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://redis.io/documentation
https://stackexchange.github.io/StackExchange.Redis/
https://msdn.microsoft.com/library/dn589795.aspx

Content delivery networks (CDNs)
3/13/2019 • 8 minutes to read • Edit Online

How and why a CDN is used

A content delivery network (CDN) is a distributed network of servers that can efficiently deliver web content to
users. CDNs store cached content on edge servers that are close to end-users, to minimize latency.

CDNs are typically used to deliver static content such as images, style sheets, documents, client-side scripts, and
HTML pages. The major advantages of using a CDN are lower latency and faster delivery of content to users,
regardless of their geographical location in relation to the datacenter where the application is hosted. CDNs can
also help to reduce load on a web application, because the application does not have to service requests for the
content that is hosted in the CDN.

In Azure, the Azure Content Delivery Network is a global CDN solution for delivering high-bandwidth content
that is hosted in Azure or any other location. Using Azure CDN, you can cache publicly available objects loaded
from Azure blob storage, a web application, virtual machine, any publicly accessible web server.

This topic describes some general best practices and considerations when using a CDN. For more information, see
Azure CDN.

Typical uses for a CDN include:

Delivering static resources for client applications, often from a website. These resources can be images,
style sheets, documents, files, client-side scripts, HTML pages, HTML fragments, or any other content that
the server does not need to modify for each request. The application can create items at runtime and make
them available to the CDN (for example, by creating a list of current news headlines), but it does not do so
for each request.

Delivering public static and shared content to devices such as mobile phones and tablet computers. The
application itself is a web service that offers an API to clients running on the various devices. The CDN can
also deliver static datasets (via the web service) for the clients to use, perhaps to generate the client UI. For
example, the CDN could be used to distribute JSON or XML documents.

Serving entire websites that consist of only public static content to clients, without requiring any dedicated
compute resources.

Streaming video files to the client on demand. Video benefits from the low latency and reliable connectivity
available from the globally located datacenters that offer CDN connections. Microsoft Azure Media
Services (AMS) integrates with Azure CDN to deliver content directly to the CDN for further distribution.

https://github.com/mspnp/architecture-center/blob/master/docs/best-practices/cdn.md
https://docs.microsoft.com/azure/cdn/cdn-overview
https://docs.microsoft.com/azure/cdn/

Challenges

General guidelines and good practices

For more information, see Streaming endpoints overview.

Generally improving the experience for users, especially those located far from the datacenter hosting the
application. These users might otherwise suffer higher latency. A large proportion of the total size of the
content in a web application is often static, and using the CDN can help to maintain performance and
overall user experience while eliminating the requirement to deploy the application to multiple data centers.
For a list of Azure CDN node locations, see Azure CDN POP Locations.

Supporting IoT (Internet of Things) solutions. The huge numbers of devices and appliances involved in an
IoT solution could easily overwhelm an application if it had to distribute firmware updates directly to each
device.

Coping with peaks and surges in demand without requiring the application to scale, avoiding the
consequent increased running costs. For example, when an update to an operating system is released for a
hardware device such as a specific model of router, or for a consumer device such as a smart TV, there will
be a huge peak in demand as it is downloaded by millions of users and devices over a short period.

There are several challenges to take into account when planning to use a CDN.

Deployment. Decide the origin from which the CDN fetches the content, and whether you need to deploy
the content in more than one storage system. Take into account the process for deploying static content and
resources. For example, you may need to implement a separate step to load content into Azure blob
storage.

Versioning and cache-control. Consider how you will update static content and deploy new versions.
Understand how the CDN performs caching and time-to-live (TTL). For Azure CDN, see How caching
works.

Testing. It can be difficult to perform local testing of your CDN settings when developing and testing an
application locally or in a staging environment.

Search engine optimization (SEO). Content such as images and documents are served from a different
domain when you use the CDN. This can have an effect on SEO for this content.

Content security. Not all CDNs offer any form of access control for the content. Some CDN services,
including Azure CDN, support token-based authentication to protect CDN content. For more information,
see Securing Azure Content Delivery Network assets with token authentication.

Client security. Clients might connect from an environment that does not allow access to resources on the
CDN. This could be a security-constrained environment that limits access to only a set of known sources, or
one that prevents loading of resources from anything other than the page origin. A fallback implementation
is required to handle these cases.

Resilience. The CDN is a potential single point of failure for an application.

Scenarios where CDN may be less useful include:

If the content has a low hit rate, it might be accessed only few times while it is valid (determined by its time-
to-live setting).

If the data is private, such as for large enterprises or supply chain ecosystems.

Using a CDN is a good way to minimize the load on your application, and maximize availability and performance.
Consider adopting this strategy for all of the appropriate content and resources your application uses. Consider

https://docs.microsoft.com/azure/media-services/media-services-streaming-endpoints-overview
https://docs.microsoft.com/azure/cdn/cdn-pop-locations/
https://docs.microsoft.com/azure/cdn/cdn-how-caching-works
https://docs.microsoft.com/azure/cdn/cdn-token-auth

DeploymentDeployment

Routing and versioningRouting and versioning

Cache controlCache control

SecuritySecurity

the points in the following sections when designing your strategy to use a CDN.

Static content may need to be provisioned and deployed independently from the application if you do not include
it in the application deployment package or process. Consider how this will affect the versioning approach you use
to manage both the application components and the static resource content.

Consider using bundling and minification techniques to reduce load times for clients. Bundling combines multiple
files into a single file. Minification removes unnecessary characters from scripts and CSS files without altering
functionality.

If you need to deploy the content to an additional location, this will be an extra step in the deployment process. If
the application updates the content for the CDN, perhaps at regular intervals or in response to an event, it must
store the updated content in any additional locations as well as the endpoint for the CDN.

Consider how you will handle local development and testing when some static content is expected to be served
from a CDN. For example, you could pre-deploy the content to the CDN as part of your build script. Alternatively,
use compile directives or flags to control how the application loads the resources. For example, in debug mode,
the application could load static resources from a local folder. In release mode, the application would use the CDN.

Consider the options for file compression, such as gzip (GNU zip). Compression may be performed on the origin
server by the web application hosting or directly on the edge servers by the CDN. For more information, see
Improve performance by compressing files in Azure CDN.

You may need to use different CDN instances at various times. For example, when you deploy a new version of
the application you may want to use a new CDN and retain the old CDN (holding content in an older format) for
previous versions. If you use Azure blob storage as the content origin, you can create a separate storage account
or a separate container and point the CDN endpoint to it.

Do not use the query string to denote different versions of the application in links to resources on the CDN
because, when retrieving content from Azure blob storage, the query string is part of the resource name (the blob
name). This approach can also affect how the client caches resources.

Deploying new versions of static content when you update an application can be a challenge if the previous
resources are cached on the CDN. For more information, see the section on cache control, below.

Consider restricting the CDN content access by country. Azure CDN allows you to filter requests based on the
country of origin and restrict the content delivered. For more information, see Restrict access to your content by
country.

Consider how to manage caching within the system. For example, in Azure CDN, you can set global caching rules,
and then set custom caching for particular origin endpoints. You can also control how caching is performed in a
CDN by sending cache-directive headers at the origin.

For more information, see How caching works.

To prevent objects from being available on the CDN, you can delete them from the origin, remove or delete the
CDN endpoint, or in the case of blob storage, make the container or blob private. However, items are not removed
from the until the time-to-live expires. You can also manually purge a CDN endpoint.

The CDN can deliver content over HTTPS (SSL), by using the certificate provided by the CDN, as well as over
standard HTTP. To avoid browser warnings about mixed content, you might need to use HTTPS to request static
content that is displayed in pages loaded through HTTPS.

https://docs.microsoft.com/azure/cdn/cdn-improve-performance
https://docs.microsoft.com/azure/cdn/cdn-restrict-access-by-country/
https://docs.microsoft.com/azure/cdn/cdn-how-caching-works

CDN fallbackCDN fallback

If you deliver static assets such as font files by using the CDN, you might encounter same-origin policy issues if
you use an XMLHttpRequest call to request these resources from a different domain. Many web browsers prevent
cross-origin resource sharing (CORS) unless the web server is configured to set the appropriate response
headers. You can configure the CDN to support CORS by using one of the following methods:

Configure the CDN to add CORS headers to the responses. For more information, see Using Azure CDN
with CORS.

If the origin is Azure blob storage, add CORS rules to the storage endpoint. For more information, see
Cross-Origin Resource Sharing (CORS) Support for the Azure Storage Services.

Configure the application to set the CORS headers. For example, see Enabling Cross-Origin Requests
(CORS) in the ASP.NET Core documentation.

Consider how your application will cope with a failure or temporary unavailability of the CDN. Client applications
may be able to use copies of the resources that were cached locally (on the client) during previous requests, or you
can include code that detects failure and instead requests resources from the origin (the application folder or
Azure blob container that holds the resources) if the CDN is unavailable.

https://docs.microsoft.com/azure/cdn/cdn-cors
https://docs.microsoft.com/rest/api/storageservices/Cross-Origin-Resource-Sharing--CORS--Support-for-the-Azure-Storage-Services
https://docs.microsoft.com/aspnet/core/security/cors

Horizontal, vertical, and functional data partitioning
3/13/2019 • 17 minutes to read • Edit Online

NOTENOTE

Why partition data?

Designing partitions

In many large-scale solutions, data is divided into partitions that can be managed and accessed separately.
Partitioning can improve scalability, reduce contention, and optimize performance. It can also provide a
mechanism for dividing data by usage pattern. For example, you can archive older data in cheaper data storage.

However, the partitioning strategy must be chosen carefully to maximize the benefits while minimizing adverse
effects.

In this article, the term partitioning means the process of physically dividing data into separate data stores. It is not the
same as SQL Server table partitioning.

Improve scalability. When you scale up a single database system, it will eventually reach a physical
hardware limit. If you divide data across multiple partitions, each hosted on a separate server, you can
scale out the system almost indefinitely.

Improve performance. Data access operations on each partition take place over a smaller volume of
data. Correctly done, partitioning can make your system more efficient. Operations that affect more than
one partition can run in parallel.

Improve security. In some cases, you can separate sensitive and non-sensitive data into different
partitions and apply different security controls to the sensitive data.

Provide operational flexibility. Partitioning offers many opportunities for fine tuning operations,
maximizing administrative efficiency, and minimizing cost. For example, you can define different strategies
for management, monitoring, backup and restore, and other administrative tasks based on the importance
of the data in each partition.

Match the data store to the pattern of use. Partitioning allows each partition to be deployed on a
different type of data store, based on cost and the built-in features that data store offers. For example,
large binary data can be stored in blob storage, while more structured data can be held in a document
database. See Choose the right data store.

Improve availability. Separating data across multiple servers avoids a single point of failure. If one
instance fails, only the data in that partition is unavailable. Operations on other partitions can continue.
For managed PaaS data stores, this consideration is less relevant, because these services are designed
with built-in redundancy.

There are three typical strategies for partitioning data:

Horizontal partitioning (often called sharding). In this strategy, each partition is a separate data store,
but all partitions have the same schema. Each partition is known as a shard and holds a specific subset of
the data, such as all the orders for a specific set of customers.

Vertical partitioning. In this strategy, each partition holds a subset of the fields for items in the data

https://github.com/mspnp/architecture-center/blob/master/docs/best-practices/data-partitioning.md

Horizontal partitioning (sharding)Horizontal partitioning (sharding)

Vertical partitioningVertical partitioning

store. The fields are divided according to their pattern of use. For example, frequently accessed fields
might be placed in one vertical partition and less frequently accessed fields in another.

Functional partitioning. In this strategy, data is aggregated according to how it is used by each bounded
context in the system. For example, an e-commerce system might store invoice data in one partition and
product inventory data in another.

These strategies can be combined, and we recommend that you consider them all when you design a
partitioning scheme. For example, you might divide data into shards and then use vertical partitioning to further
subdivide the data in each shard.

Figure 1 shows horizontal partitioning or sharding. In this example, product inventory data is divided into shards
based on the product key. Each shard holds the data for a contiguous range of shard keys (A-G and H-Z),
organized alphabetically. Sharding spreads the load over more computers, which reduces contention and
improves performance.

Figure 1. Horizontally partitioning (sharding) data based on a partition key.

The most important factor is the choice of a sharding key. It can be difficult to change the key after the system is
in operation. The key must ensure that data is partitioned to spread the workload as evenly as possible across
the shards.

The shards don't have to be the same size. It's more important to balance the number of requests. Some shards
might be very large, but each item has a low number of access operations. Other shards might be smaller, but
each item is accessed much more frequently. It's also important to ensure that a single shard does not exceed the
scale limits (in terms of capacity and processing resources) of the data store.

Avoid creating "hot" partitions that can affect performance and availability. For example, using the first letter of a
customer’s name causes an unbalanced distribution, because some letters are more common Instead, use a hash
of a customer identifier to distribute data more evenly across partitions.

Choose a sharding key that minimizes any future requirements to split large shards, coalesce small shards into
larger partitions, or change the schema. These operations can be very time consuming, and might require taking
one or more shards offline while they are performed.

If shards are replicated, it might be possible to keep some of the replicas online while others are split, merged, or
reconfigured. However, the system might need to limit the operations that can be performed during the
reconfiguration. For example, the data in the replicas might be marked as read-only to prevent data
inconsistences.

For more information about horizontal partitioning, see [Sharding pattern].

The most common use for vertical partitioning is to reduce the I/O and performance costs associated with

Functional partitioningFunctional partitioning

fetching items that are frequently accessed. Figure 2 shows an example of vertical partitioning. In this example,
different properties of an item are stored in different partitions. One partition holds data that is accessed more
frequently, including product name, description, and price. Another partition holds inventory data: the stock
count and last-ordered date.

Figure 2. Vertically partitioning data by its pattern of use.

In this example, the application regularly queries the product name, description, and price when displaying the
product details to customers. Stock count and last- ordered date are held in a separate partition because these
two items are commonly used together.

Other advantages of vertical partitioning:

Relatively slow-moving data (product name, description, and price) can be separated from the more
dynamic data (stock level and last ordered date). Slow moving data is a good candidate for an application
to cache in memory.

Sensitive data can be stored in a separate partition with additional security controls.

Vertical partitioning can reduce the amount of concurrent access that's needed.

Vertical partitioning operates at the entity level within a data store, partially normalizing an entity to break it
down from a wide item to a set of narrow items. It is ideally suited for column-oriented data stores such as
HBase and Cassandra. If the data in a collection of columns is unlikely to change, you can also consider using
column stores in SQL Server.

When it's possible to identify a bounded context for each distinct business area in an application, functional
partitioning is a way to improve isolation and data access performance. Another common use for functional
partitioning is to separate read-write data from read-only data. Figure 3 shows an overview of functional
partitioning where inventory data is separated from customer data.

Designing partitions for scalability

Figure 3. Functionally partitioning data by bounded context or subdomain.

This partitioning strategy can help reduce data access contention across different parts of a system.

It's vital to consider size and workload for each partition and balance them so that data is distributed to achieve
maximum scalability. However, you must also partition the data so that it does not exceed the scaling limits of a
single partition store.

Follow these steps when designing partitions for scalability:

1. Analyze the application to understand the data access patterns, such as the size of the result set returned by
each query, the frequency of access, the inherent latency, and the server-side compute processing
requirements. In many cases, a few major entities will demand most of the processing resources.

2. Use this analysis to determine the current and future scalability targets, such as data size and workload. Then
distribute the data across the partitions to meet the scalability target. For horizontal partitioning, choosing the
right shard key is important to make sure distribution is even. For more information, see the [Sharding
pattern].

3. Make sure each partition has enough resources to handle the scalability requirements, in terms of data size
and throughput. Depending on the data store, there might be a limit on the amount of storage space,
processing power, or network bandwidth per partition. If the requirements are likely to exceed these limits,
you may need to refine your partitioning strategy or split data out further, possibly combining two or more
strategies.

4. Monitor the system to verify that data is distributed as expected and that the partitions can handle the load.
Actual usage does not always match what an analysis predicts. If so, it might be possible to rebalance the
partitions, or else redesign some parts of the system to gain the required balance.

Some cloud environments allocate resources in terms of infrastructure boundaries. Ensure that the limits of your
selected boundary provide enough room for any anticipated growth in the volume of data, in terms of data
storage, processing power, and bandwidth.

For example, if you use Azure table storage, there is a limit to the volume of requests that can be handled by a
single partition in a particular period of time. (See Azure storage scalability and performance targets.) A busy
shard might require more resources than a single partition can handle. If so, the shard might need to be
repartitioned to spread the load. If the total size or throughput of these tables exceeds the capacity of a storage
account, you might need to create additional storage accounts and spread the tables across these accounts.

https://docs.microsoft.com/azure/storage/storage-scalability-targets

Designing partitions for query performance

Designing partitions for availability

Query performance can often be boosted by using smaller data sets and by running parallel queries. Each
partition should contain a small proportion of the entire data set. This reduction in volume can improve the
performance of queries. However, partitioning is not an alternative for designing and configuring a database
appropriately. For example, make sure that you have the necessary indexes in place.

Follow these steps when designing partitions for query performance:

1. Examine the application requirements and performance:

Use business requirements to determine the critical queries that must always perform quickly.
Monitor the system to identify any queries that perform slowly.
Find which queries are performed most frequently. Even if a single query has a minimal cost, the
cumulative resource consumption could be significant.

2. Partition the data that is causing slow performance:

Limit the size of each partition so that the query response time is within target.
If you use horizontal partitioning, design the shard key so that the application can easily select the right
partition. This prevents the query from having to scan through every partition.
Consider the location of a partition. If possible, try to keep data in partitions that are geographically
close to the applications and users that access it.

3. If an entity has throughput and query performance requirements, use functional partitioning based on
that entity. If this still doesn't satisfy the requirements, apply horizontal partitioning as well. In most cases
a single partitioning strategy will suffice, but in some cases it is more efficient to combine both strategies.

4. Consider running queries in parallel across partitions to improve performance.

Partitioning data can improve the availability of applications by ensuring that the entire dataset does not
constitute a single point of failure and that individual subsets of the dataset can be managed independently.

Consider the following factors that affect availability:

How critical the data is to business operations. Identify which data is critical business information, such as
transactions, and which data is less critical operational data, such as log files.

Consider storing critical data in highly-available partitions with an appropriate backup plan.

Establish separate management and monitoring procedures for the different datasets.

Place data that has the same level of criticality in the same partition so that it can be backed up together at
an appropriate frequency. For example, partitions that hold transaction data might need to be backed up
more frequently than partitions that hold logging or trace information.

How individual partitions can be managed. Designing partitions to support independent management and
maintenance provides several advantages. For example:

If a partition fails, it can be recovered independently without applications that access data in other
partitions.

Partitioning data by geographical area allows scheduled maintenance tasks to occur at off-peak hours for
each location. Ensure that partitions are not too big to prevent any planned maintenance from being
completed during this period.

Application design considerations

Whether to replicate critical data across partitions. This strategy can improve availability and performance,
but can also introduce consistency issues. It takes time to synchronize changes with every replica. During this
period, different partitions will contain different data values.

Partitioning adds complexity to the design and development of your system. Consider partitioning as a
fundamental part of system design even if the system initially only contains a single partition. If you address
partitioning as an afterthought, it will be more challenging because you already have a live system to maintain:

Data access logic will need to be modified.
Large quantities of existing data may need to be migrated, to distribute it across partitions
Users expect to be able to continue using the system during the migration.

In some cases, partitioning is not considered important because the initial dataset is small and can be easily
handled by a single server. This might be true for some workloads, but many commercial systems need to
expand as the number of users increases.

Moreover, it's not only large data stores that benefit from partitioning. For example, a small data store might be
heavily accessed by hundreds of concurrent clients. Partitioning the data in this situation can help to reduce
contention and improve throughput.

Consider the following points when you design a data partitioning scheme:

Minimize cross-partition data access operations. Where possible, keep data for the most common database
operations together in each partition to minimize cross-partition data access operations. Querying across
partitions can be more time-consuming than querying within a single partition, but optimizing partitions for one
set of queries might adversely affect other sets of queries. If you must query across partitions, minimize query
time by running parallel queries and aggregating the results within the application. (This approach might not be
possible in some cases, such as when the result from one query is used in the next query.)

Consider replicating static reference data. If queries use relatively static reference data, such as postal code
tables or product lists, consider replicating this data in all of the partitions to reduce separate lookup operations
in different partitions. This approach can also reduce the likelihood of the reference data becoming a "hot"
dataset, with heavy traffic from across the entire system. However, there is an additional cost associated with
synchronizing any changes to the reference data.

Minimize cross-partition joins. Where possible, minimize requirements for referential integrity across vertical
and functional partitions. In these schemes, the application is responsible for maintaining referential integrity
across partitions. Queries that join data across multiple partitions are inefficient because the application typically
needs to perform consecutive queries based on a key and then a foreign key. Instead, consider replicating or de-
normalizing the relevant data. If cross-partition joins are necessary, run parallel queries over the partitions and
join the data within the application.

Embrace eventual consistency. Evaluate whether strong consistency is actually a requirement. A common
approach in distributed systems is to implement eventual consistency. The data in each partition is updated
separately, and the application logic ensures that the updates are all completed successfully. It also handles the
inconsistencies that can arise from querying data while an eventually consistent operation is running.

Consider how queries locate the correct partition. If a query must scan all partitions to locate the required
data, there is a significant impact on performance, even when multiple parallel queries are running. With vertical
and functional partitioning, queries can naturally specify the partition. Horizontal partitioning, on the other hand,
can make locating an item difficult, because every shard has the same schema. A typical solution to maintain a
map that is used to look up the shard location for specific items. This map can be implemented in the sharding
logic of the application, or maintained by the data store if it supports transparent sharding.

Rebalancing partitions

Consider periodically rebalancing shards. With horizontal partitioning, rebalancing shards can help
distribute the data evenly by size and by workload to minimize hotspots, maximize query performance, and work
around physical storage limitations. However, this is a complex task that often requires the use of a custom tool
or process.

Replicate partitions. If you replicate each partition, it provides additional protection against failure. If a single
replica fails, queries can be directed towards a working copy.

If you reach the physical limits of a partitioning strategy, you might need to extend the scalability to a
different level. For example, if partitioning is at the database level, you might need to locate or replicate
partitions in multiple databases. If partitioning is already at the database level, and physical limitations are an
issue, it might mean that you need to locate or replicate partitions in multiple hosting accounts.

Avoid transactions that access data in multiple partitions. Some data stores implement transactional
consistency and integrity for operations that modify data, but only when the data is located in a single partition.
If you need transactional support across multiple partitions, you will probably need to implement this as part of
your application logic because most partitioning systems do not provide native support.

All data stores require some operational management and monitoring activity. The tasks can range from loading
data, backing up and restoring data, reorganizing data, and ensuring that the system is performing correctly and
efficiently.

Consider the following factors that affect operational management:

How to implement appropriate management and operational tasks when the data is partitioned.
These tasks might include backup and restore, archiving data, monitoring the system, and other
administrative tasks. For example, maintaining logical consistency during backup and restore operations
can be a challenge.

How to load the data into multiple partitions and add new data that's arriving from other
sources. Some tools and utilities might not support sharded data operations such as loading data into the
correct partition.

How to archive and delete the data on a regular basis. To prevent the excessive growth of partitions,
you need to archive and delete data on a regular basis (perhaps monthly). It might be necessary to
transform the data to match a different archive schema.

How to locate data integrity issues. Consider running a periodic process to locate any data integrity
issues, such as data in one partition that references missing information in another. The process can either
attempt to fix these issues automatically or simply generate a report for manual review.

As a system matures, you might have to adjust the partitioning scheme. For example, individual partitions might
start get a disproportionate volume of traffic and become hot, leading to excessive contention. Or you might
have underestimated the volume of data in some partitions, causing some partitions to approach capacity limits.

Some data stores, such as Cosmos DB, can automatically rebalance partitions. In other cases, rebalancing is an
administrative task that consists of two stages:

1. Determine a new partitioning strategy.

Which partitions need to be split (or possibly combined)?
What is the new partition key?

2. Migrate data from the old partitioning scheme to the new set of partitions.

Depending on the data store, you might be able to migrate data between partitions while they are in use. This is

Offline migrationOffline migration

Online migration

Related patterns

Next steps

called online migration. If that's not possible, you might need to make partitions unavailable while the data is
relocated (offline migration).

Offline migration is generally simpler, because it reduces the chances of contention occurring. Conceptually,
offline migration works as follows:

1. Mark the partition offline.
2. Split-merge and move the data to the new partitions.
3. Verify the data.
4. Bring the new partitions online.
5. Remove the old partition.

Optionally, you can mark a partition as read-only in step 1, so that applications can still read the data while it is
being moved.

Online migration is more complex to perform but less disruptive. The process is similar to offline migration,
except the original partition is not marked offline. Depending on the granularity of the migration process (for
example, item by item versus shard by shard), the data access code in the client applications might have to
handle reading and writing data that's held in two locations, the original partition and the new partition.

The following design patterns might be relevant to your scenario:

The sharding pattern describes some common strategies for sharding data.

The index table pattern shows how to create secondary indexes over data. An application can quickly
retrieve data with this approach, by using queries that do not reference the primary key of a collection.

The materialized view pattern describes how to generate pre-populated views that summarize data to
support fast query operations. This approach can be useful in a partitioned data store if the partitions that
contain the data being summarized are distributed across multiple sites.

Learn about partitioning strategies for specific Azure services. See Data partitioning strategies

Data partitioning strategies
3/13/2019 • 31 minutes to read • Edit Online

Partitioning Azure SQL Database

This article describes some strategies for partitioning data in various Azure data stores. For general guidance
about when to partition data and best practices, see Data partitioning

A single SQL database has a limit to the volume of data that it can contain. Throughput is constrained by
architectural factors and the number of concurrent connections that it supports.

Elastic pools support horizontal scaling for a SQL database. Using elastic pools, you can partition your data into
shards that are spread across multiple SQL databases. You can also add or remove shards as the volume of data
that you need to handle grows and shrinks. Elastic pools can also help reduce contention by distributing the load
across databases.

Each shard is implemented as a SQL database. A shard can hold more than one dataset (called a shardlet). Each
database maintains metadata that describes the shardlets that it contains. A shardlet can be a single data item, or a
group of items that share the same shardlet key. For example, in a multitenant application, the shardlet key can be
the tenant ID, and all data for a tenant can be held in the same shardlet.

Client applications are responsible for associating a dataset with a shardlet key. A separate SQL database acts as a
global shard map manager. This database has a list of all the shards and shardlets in the system. The application
connects to the shard map manager database to obtain a copy of the shard map. It caches the shard map locally,
and uses the map to route data requests to the appropriate shard. This functionality is hidden behind a series of
APIs that are contained in the Elastic Database client library, which is available for Java and .NET.

For more information about elastic pools, see Scaling out with Azure SQL Database.

To reduce latency and improve availability, you can replicate the global shard map manager database. With the
Premium pricing tiers, you can configure active geo-replication to continuously copy data to databases in different
regions.

Alternatively, use Azure SQL Data Sync or Azure Data Factory to replicate the shard map manager database across
regions. This form of replication runs periodically and is more suitable if the shard map changes infrequently, and
does not require Premium tier.

Elastic Database provides two schemes for mapping data to shardlets and storing them in shards:

A list shard map associates a single key to a shardlet. For example, in a multitenant system, the data for
each tenant can be associated with a unique key and stored in its own shardlet. To guarantee isolation, each
shardlet can be held within its own shard.

https://github.com/mspnp/architecture-center/blob/master/docs/best-practices/data-partitioning-strategies.md
https://docs.microsoft.com/azure/sql-database/sql-database-elastic-pool
https://docs.microsoft.com/azure/sql-database/sql-database-elastic-database-client-library
https://docs.microsoft.com/azure/sql-database/sql-database-elastic-scale-introduction
https://docs.microsoft.com/azure/sql-database/sql-database-sync-data
https://docs.microsoft.com/azure/data-factory/

A range shard map associates a set of contiguous key values to a shardlet. For example, you can group the
data for a set of tenants (each with their own key) within the same shardlet. This scheme is less expensive
than the first, because tenants share data storage, but has less isolation.

A single shard can contain the data for several shardlets. For example, you can use list shardlets to store data for
different non-contiguous tenants in the same shard. You can also mix range shardlets and list shardlets in the same
shard, although they will be addressed through different maps. The following diagram shows this approach:

Elastic pools makes it possible to add and remove shards as the volume of data shrinks and grows. Client
applications can create and delete shards dynamically, and transparently update the shard map manager. However,
removing a shard is a destructive operation that also requires deleting all the data in that shard.

If an application needs to split a shard into two separate shards or combine shards, use the split-merge tool. This
tool runs as an Azure web service, and migrates data safely between shards.

The partitioning scheme can significantly affect the performance of your system. It can also affect the rate at which
shards have to be added or removed, or that data must be repartitioned across shards. Consider the following
points:

Group data that is used together in the same shard, and avoid operations that access data from multiple
shards. A shard is a SQL database in its own right, and cross-database joins must be performed on the
client side.

Although SQL Database does not support cross-database joins, you can use the Elastic Database tools to
perform mutli-shard queries. A multi-shard query sends individual queries to each database and merges the
results.

Don't design a system that has dependencies between shards. Referential integrity constraints, triggers, and

https://docs.microsoft.com/azure/sql-database/sql-database-elastic-scale-overview-split-and-merge
https://docs.microsoft.com/azure/sql-database/sql-database-elastic-scale-multishard-querying

Partitioning Azure table storagePartitioning Azure table storage

stored procedures in one database cannot reference objects in another.

If you have reference data that is frequently used by queries, consider replicating this data across shards.
This approach can remove the need to join data across databases. Ideally, such data should be static or
slow-moving, to minimize the replication effort and reduce the chances of it becoming stale.

Shardlets that belong to the same shard map should have the same schema. This rule is not enforced by
SQL Database, but data management and querying becomes very complex if each shardlet has a different
schema. Instead, create separate shard maps for each schema. Remember that data belonging to different
shardlets can be stored in the same shard.

Transactional operations are only supported for data within a shard, and not across shards. Transactions can
span shardlets as long as they are part of the same shard. Therefore, if your business logic needs to perform
transactions, either store the data in the same shard or implement eventual consistency.

Place shards close to the users that access the data in those shards. This strategy helps reduce latency.

Avoid having a mixture of highly active and relatively inactive shards. Try to spread the load evenly across
shards. This might require hashing the sharding keys. If you are geo-locating shards, make sure that the
hashed keys map to shardlets held in shards stored close to the users that access that data.

Azure table storage is a key-value store that's designed around partitioning. All entities are stored in a partition,
and partitions are managed internally by Azure table storage. Each entity stored in a table must provide a two-part
key that includes:

The partition key. This is a string value that determines the partition where Azure table storage will place
the entity. All entities with the same partition key are stored in the same partition.

The row key. This is a string value that identifies the entity within the partition. All entities within a partition
are sorted lexically, in ascending order, by this key. The partition key/row key combination must be unique
for each entity and cannot exceed 1 KB in length.

If an entity is added to a table with a previously unused partition key, Azure table storage creates a new partition
for this entity. Other entities with the same partition key will be stored in the same partition.

This mechanism effectively implements an automatic scale-out strategy. Each partition is stored on the same
server in an Azure datacenter to help ensure that queries that retrieve data from a single partition run quickly.

Microsoft has published scalability targets for Azure Storage. If your system is likely to exceed these limits,
consider splitting entities into multiple tables. Use vertical partitioning to divide the fields into the groups that are
most likely to be accessed together.

The following diagram shows the logical structure of an example storage account. The storage account contains
three tables: Customer Info, Product Info, and Order Info.

https://docs.microsoft.com/azure/storage/common/storage-scalability-targets

Each table has multiple partitions.

In the Customer Info table, the data is partitioned according to the city where the customer is located. The row
key contains the customer ID.
In the Product Info table, products are partitioned by product category, and the row key contains the product
number.
In the Order Info table, the orders are partitioned by order date, and the row key specifies the time the order
was received. Note that all data is ordered by the row key in each partition.

Consider the following points when you design your entities for Azure table storage:

Select a partition key and row key by how the data is accessed. Choose a partition key/row key combination
that supports the majority of your queries. The most efficient queries retrieve data by specifying the
partition key and the row key. Queries that specify a partition key and a range of row keys can be completed
by scanning a single partition. This is relatively fast because the data is held in row key order. If queries don't
specify which partition to scan, every partition must be scanned.

If an entity has one natural key, then use it as the partition key and specify an empty string as the row key. If
an entity has a composite key consisting of two properties, select the slowest changing property as the
partition key and the other as the row key. If an entity has more than two key properties, use a
concatenation of properties to provide the partition and row keys.

If you regularly perform queries that look up data by using fields other than the partition and row keys,
consider implementing the Index Table pattern, or consider using a different data store that supports
indexing, such as Cosmos DB.

If you generate partition keys by using a monotonic sequence (such as "0001", "0002", "0003") and each
partition only contains a limited amount of data, Azure table storage can physically group these partitions
together on the same server. Azure Storage assumes that the application is most likely to perform queries

Partitioning Azure blob storage

across a contiguous range of partitions (range queries) and is optimized for this case. However, this
approach can lead to hotspots, because all insertions of new entities are likely to be concentrated at one end
the contiguous range. It can also reduce scalability. To spread the load more evenly, consider hashing the
partition key.

Azure table storage supports transactional operations for entities that belong to the same partition. An
application can perform multiple insert, update, delete, replace, or merge operations as an atomic unit, as
long as the transaction doesn't include more than 100 entities and the payload of the request doesn't exceed
4 MB. Operations that span multiple partitions are not transactional, and might require you to implement
eventual consistency. For more information about table storage and transactions, see Performing entity
group transactions.

Consider the granularity of the partition key:

Using the same partition key for every entity results in a single partition that's held on one server.
This prevents the partition from scaling out and focuses the load on a single server. As a result, this
approach is only suitable for storing a small number of entities. However, it does ensure that all
entities can participate in entity group transactions.

Using a unique partition key for every entity causes the table storage service to create a separate
partition for each entity, possibly resulting in a large number of small partitions. This approach is
more scalable than using a single partition key, but entity group transactions are not possible. Also,
queries that fetch more than one entity might involve reading from more than one server. However, if
the application performs range queries, then using a monotonic sequence for the partition keys
might help to optimize these queries.

Sharing the partition key across a subset of entities makes it possible to group related entities in the
same partition. Operations that involve related entities can be performed by using entity group
transactions, and queries that fetch a set of related entities can be satisfied by accessing a single
server.

For more information, see Azure storage table design guide.

Azure blob storage makes it possible to hold large binary objects. Use block blobs in scenarios when you need to
upload or download large volumes of data quickly. Use page blobs for applications that require random rather
than serial access to parts of the data.

Each blob (either block or page) is held in a container in an Azure storage account. You can use containers to group
related blobs that have the same security requirements. This grouping is logical rather than physical. Inside a
container, each blob has a unique name.

The partition key for a blob is account name + container name + blob name. The partition key is used to partition
data into ranges and these ranges are load-balanced across the system. Blobs can be distributed across many
servers in order to scale out access to them, but a single blob can only be served by a single server.

If your naming scheme uses timestamps or numerical identifiers, it can lead to excessive traffic going to one
partition, limiting the system from effectively load balancing. For instance, if you have daily operations that use a
blob object with a timestamp such as yyyy-mm-dd, all the traffic for that operation would go to a single partition
server. Instead, consider prefixing the name with a 3-digit hash. For more information, see Partition Naming
Convention

The actions of writing a single block or page are atomic, but operations that span blocks, pages, or blobs are not. If
you need to ensure consistency when performing write operations across blocks, pages, and blobs, take out a write
lock by using a blob lease.

https://docs.microsoft.com/rest/api/storageservices/Performing-Entity-Group-Transactions
https://docs.microsoft.com/azure/storage/storage-table-design-guide
https://docs.microsoft.com/azure/storage/common/storage-performance-checklist#subheading47

Partitioning Azure storage queues

Partitioning Azure Service Bus

Azure storage queues enable you to implement asynchronous messaging between processes. An Azure storage
account can contain any number of queues, and each queue can contain any number of messages. The only
limitation is the space that's available in the storage account. The maximum size of an individual message is 64 KB.
If you require messages bigger than this, then consider using Azure Service Bus queues instead.

Each storage queue has a unique name within the storage account that contains it. Azure partitions queues based
on the name. All messages for the same queue are stored in the same partition, which is controlled by a single
server. Different queues can be managed by different servers to help balance the load. The allocation of queues to
servers is transparent to applications and users.

In a large-scale application, don't use the same storage queue for all instances of the application because this
approach might cause the server that's hosting the queue to become a hotspot. Instead, use different queues for
different functional areas of the application. Azure storage queues do not support transactions, so directing
messages to different queues should have little effect on messaging consistency.

An Azure storage queue can handle up to 2,000 messages per second. If you need to process messages at a
greater rate than this, consider creating multiple queues. For example, in a global application, create separate
storage queues in separate storage accounts to handle application instances that are running in each region.

Azure Service Bus uses a message broker to handle messages that are sent to a Service Bus queue or topic. By
default, all messages that are sent to a queue or topic are handled by the same message broker process. This
architecture can place a limitation on the overall throughput of the message queue. However, you can also
partition a queue or topic when it is created. You do this by setting the EnablePartitioning property of the queue or
topic description to true.

A partitioned queue or topic is divided into multiple fragments, each of which is backed by a separate message
store and message broker. Service Bus takes responsibility for creating and managing these fragments. When an
application posts a message to a partitioned queue or topic, Service Bus assigns the message to a fragment for
that queue or topic. When an application receives a message from a queue or subscription, Service Bus checks
each fragment for the next available message and then passes it to the application for processing.

This structure helps distribute the load across message brokers and message stores, increasing scalability and
improving availability. If the message broker or message store for one fragment is temporarily unavailable, Service
Bus can retrieve messages from one of the remaining available fragments.

Service Bus assigns a message to a fragment as follows:

NOTENOTE

If the message belongs to a session, all messages with the same value for the SessionId property are sent to
the same fragment.

If the message does not belong to a session, but the sender has specified a value for the PartitionKey
property, then all messages with the same PartitionKey value are sent to the same fragment.

If the SessionId and PartitionKey properties are both specified, then they must be set to the same value or the
message will be rejected.

If the SessionId and PartitionKey properties for a message are not specified, but duplicate detection is
enabled, the MessageId property will be used. All messages with the same MessageId will be directed to the
same fragment.

Partitioning Cosmos DB

NOTENOTE

If messages do not include a SessionId, PartitionKey, or MessageId property, then Service Bus assigns
messages to fragments sequentially. If a fragment is unavailable, Service Bus will move on to the next. This
means that a temporary fault in the messaging infrastructure does not cause the message-send operation to
fail.

Consider the following points when deciding if or how to partition a Service Bus message queue or topic:

Service Bus queues and topics are created within the scope of a Service Bus namespace. Service Bus
currently allows up to 100 partitioned queues or topics per namespace.

Each Service Bus namespace imposes quotas on the available resources, such as the number of
subscriptions per topic, the number of concurrent send and receive requests per second, and the maximum
number of concurrent connections that can be established. These quotas are documented in Service Bus
quotas. If you expect to exceed these values, then create additional namespaces with their own queues and
topics, and spread the work across these namespaces. For example, in a global application, create separate
namespaces in each region and configure application instances to use the queues and topics in the nearest
namespace.

Messages that are sent as part of a transaction must specify a partition key. This can be a SessionId,
PartitionKey, or MessageId property. All messages that are sent as part of the same transaction must
specify the same partition key because they must be handled by the same message broker process. You
cannot send messages to different queues or topics within the same transaction.

Partitioned queues and topics can't be configured to be automatically deleted when they become idle.

Partitioned queues and topics can't currently be used with the Advanced Message Queuing Protocol
(AMQP) if you are building cross-platform or hybrid solutions.

Azure Cosmos DB is a NoSQL database that can store JSON documents using the Azure Cosmos DB SQL API. A
document in a Cosmos DB database is a JSON-serialized representation of an object or other piece of data. No
fixed schemas are enforced except that every document must contain a unique ID.

Documents are organized into collections. You can group related documents together in a collection. For example,
in a system that maintains blog postings, you can store the contents of each blog post as a document in a
collection. You can also create collections for each subject type. Alternatively, in a multitenant application, such as a
system where different authors control and manage their own blog posts, you can partition blogs by author and
create separate collections for each author. The storage space that's allocated to collections is elastic and can shrink
or grow as needed.

Cosmos DB supports automatic partitioning of data based on an application-defined partition key. A logical
partition is a partition that stores all the data for a single partition key value. All documents that share the same
value for the partition key are placed within the same logical partition. Cosmos DB distributes values according to
hash of the partition key. A logical partition has a maximum size of 10 GB. Therefore, the choice of the partition
key is an important decision at design time. Choose a property with a wide range of values and even access
patterns. For more information, see Partition and scale in Azure Cosmos DB.

Each Cosmos DB database has a performance level that determines the amount of resources it gets. A performance level is
associated with a request unit (RU) rate limit. The RU rate limit specifies the volume of resources that's reserved and available
for exclusive use by that collection. The cost of a collection depends on the performance level that's selected for that
collection. The higher the performance level (and RU rate limit) the higher the charge. You can adjust the performance level of
a collection by using the Azure portal. For more information, see Request Units in Azure Cosmos DB.

https://docs.microsoft.com/azure/service-bus-messaging/service-bus-quotas
https://docs.microsoft.com/azure/cosmos-db/sql-api-introduction
https://docs.microsoft.com/azure/cosmos-db/partition-data
https://docs.microsoft.com/azure/cosmos-db/request-units

Partitioning Azure Search

If the partitioning mechanism that Cosmos DB provides is not sufficient, you may need to shard the data at the
application level. Document collections provide a natural mechanism for partitioning data within a single database.
The simplest way to implement sharding is to create a collection for each shard. Containers are logical resources
and can span one or more servers. Fixed-size containers have a maximum limit of 10 GB and 10,000 RU/s
throughput. Unlimited containers do not have a maximum storage size, but must specify a partition key. With
application sharding, the client application must direct requests to the appropriate shard, usually by implementing
its own mapping mechanism based on some attributes of the data that define the shard key.

All databases are created in the context of a Cosmos DB database account. A single account can contain several
databases, and it specifies in which regions the databases are created. Each account also enforces its own access
control. You can use Cosmos DB accounts to geo-locate shards (collections within databases) close to the users
who need to access them, and enforce restrictions so that only those users can connect to them.

Consider the following points when deciding how to partition data with the Cosmos DB SQL API:

The resources available to a Cosmos DB database are subject to the quota limitations of the
account. Each database can hold a number of collections, and each collection is associated with a
performance level that governs the RU rate limit (reserved throughput) for that collection. For more
information, see Azure subscription and service limits, quotas, and constraints.

Each document must have an attribute that can be used to uniquely identify that document
within the collection in which it is held. This attribute is different from the shard key, which defines
which collection holds the document. A collection can contain a large number of documents. In theory, it's
limited only by the maximum length of the document ID. The document ID can be up to 255 characters.

All operations against a document are performed within the context of a transaction. Transactions
are scoped to the collection in which the document is contained. If an operation fails, the work that it
has performed is rolled back. While a document is subject to an operation, any changes that are made are
subject to snapshot-level isolation. This mechanism guarantees that if, for example, a request to create a new
document fails, another user who's querying the database simultaneously will not see a partial document
that is then removed.

Database queries are also scoped to the collection level. A single query can retrieve data from only
one collection. If you need to retrieve data from multiple collections, you must query each collection
individually and merge the results in your application code.

Cosmos DB supports programmable items that can all be stored in a collection alongside
documents. These include stored procedures, user-defined functions, and triggers (written in JavaScript).
These items can access any document within the same collection. Furthermore, these items run either inside
the scope of the ambient transaction (in the case of a trigger that fires as the result of a create, delete, or
replace operation performed against a document), or by starting a new transaction (in the case of a stored
procedure that is run as the result of an explicit client request). If the code in a programmable item throws
an exception, the transaction is rolled back. You can use stored procedures and triggers to maintain integrity
and consistency between documents, but these documents must all be part of the same collection.

The collections that you intend to hold in the databases should be unlikely to exceed the
throughput limits defined by the performance levels of the collections. For more information, see
Request Units in Azure Cosmos DB. If you anticipate reaching these limits, consider splitting collections
across databases in different accounts to reduce the load per collection.

The ability to search for data is often the primary method of navigation and exploration that's provided by many
web applications. It helps users find resources quickly (for example, products in an e-commerce application) based
on combinations of search criteria. The Azure Search service provides full-text search capabilities over web
content, and includes features such as type-ahead, suggested queries based on near matches, and faceted

https://docs.microsoft.com/azure/azure-subscription-service-limits
https://docs.microsoft.com/azure/cosmos-db/request-units

NOTENOTE

Partitioning Azure Redis Cache

navigation. For more information, see What is Azure Search?.

Azure Search stores searchable content as JSON documents in a database. You define indexes that specify the
searchable fields in these documents and provide these definitions to Azure Search. When a user submits a search
request, Azure Search uses the appropriate indexes to find matching items.

To reduce contention, the storage that's used by Azure Search can be divided into 1, 2, 3, 4, 6, or 12 partitions, and
each partition can be replicated up to 6 times. The product of the number of partitions multiplied by the number of
replicas is called the search unit (SU). A single instance of Azure Search can contain a maximum of 36 SUs (a
database with 12 partitions only supports a maximum of 3 replicas).

You are billed for each SU that is allocated to your service. As the volume of searchable content increases or the
rate of search requests grows, you can add SUs to an existing instance of Azure Search to handle the extra load.
Azure Search itself distributes the documents evenly across the partitions. No manual partitioning strategies are
currently supported.

Each partition can contain a maximum of 15 million documents or occupy 300 GB of storage space (whichever is
smaller). You can create up to 50 indexes. The performance of the service varies and depends on the complexity of
the documents, the available indexes, and the effects of network latency. On average, a single replica (1 SU) should
be able to handle 15 queries per second (QPS), although we recommend performing benchmarking with your own
data to obtain a more precise measure of throughput. For more information, see Service limits in Azure Search.

You can store a limited set of data types in searchable documents, including strings, Booleans, numeric data, datetime data,
and some geographical data. For more details, see the page Supported data types (Azure Search) on the Microsoft website.

You have limited control over how Azure Search partitions data for each instance of the service. However, in a
global environment you might be able to improve performance and reduce latency and contention further by
partitioning the service itself using either of the following strategies:

Create an instance of Azure Search in each geographic region, and ensure that client applications are
directed towards the nearest available instance. This strategy requires that any updates to searchable
content are replicated in a timely manner across all instances of the service.

Create two tiers of Azure Search:

A local service in each region that contains the data that's most frequently accessed by users in that
region. Users can direct requests here for fast but limited results.
A global service that encompasses all the data. Users can direct requests here for slower but more
complete results.

This approach is most suitable when there is a significant regional variation in the data that's being searched.

Azure Redis Cache provides a shared caching service in the cloud that's based on the Redis key-value data store.
As its name implies, Azure Redis Cache is intended as a caching solution. Use it only for holding transient data and
not as a permanent data store. Applications that use Azure Redis Cache should be able to continue functioning if
the cache is unavailable. Azure Redis Cache supports primary/secondary replication to provide high availability,
but currently limits the maximum cache size to 53 GB. If you need more space than this, you must create additional
caches. For more information, see Azure Redis Cache.

Partitioning a Redis data store involves splitting the data across instances of the Redis service. Each instance
constitutes a single partition. Azure Redis Cache abstracts the Redis services behind a façade and does not expose
them directly. The simplest way to implement partitioning is to create multiple Azure Redis Cache instances and

https://docs.microsoft.com/azure/search/search-what-is-azure-search
https://docs.microsoft.com/azure/search/search-limits-quotas-capacity
https://msdn.microsoft.com/library/azure/dn798938.aspx
https://azure.microsoft.com/services/cache/

IMPORTANTIMPORTANT

spread the data across them.

You can associate each data item with an identifier (a partition key) that specifies which cache stores the data item.
The client application logic can then use this identifier to route requests to the appropriate partition. This scheme is
very simple, but if the partitioning scheme changes (for example, if additional Azure Redis Cache instances are
created), client applications might need to be reconfigured.

Native Redis (not Azure Redis Cache) supports server-side partitioning based on Redis clustering. In this approach,
you can divide the data evenly across servers by using a hashing mechanism. Each Redis server stores metadata
that describes the range of hash keys that the partition holds, and also contains information about which hash keys
are located in the partitions on other servers.

Client applications simply send requests to any of the participating Redis servers (probably the closest one). The
Redis server examines the client request. If it can be resolved locally, it performs the requested operation.
Otherwise it forwards the request on to the appropriate server.

This model is implemented by using Redis clustering, and is described in more detail on the Redis cluster tutorial
page on the Redis website. Redis clustering is transparent to client applications. Additional Redis servers can be
added to the cluster (and the data can be re-partitioned) without requiring that you reconfigure the clients.

Azure Redis Cache currently supports Redis clustering in premium tier only.

The page Partitioning: how to split data among multiple Redis instances on the Redis website provides more
information about implementing partitioning with Redis. The remainder of this section assumes that you are
implementing client-side or proxy-assisted partitioning.

Consider the following points when deciding how to partition data with Azure Redis Cache:

Azure Redis Cache is not intended to act as a permanent data store, so whatever partitioning scheme you
implement, your application code must be able to retrieve data from a location that's not the cache.

Data that is frequently accessed together should be kept in the same partition. Redis is a powerful key-value
store that provides several highly optimized mechanisms for structuring data. These mechanisms can be
one of the following:

Simple strings (binary data up to 512 MB in length)
Aggregate types such as lists (which can act as queues and stacks)
Sets (ordered and unordered)
Hashes (which can group related fields together, such as the items that represent the fields in an object)

The aggregate types enable you to associate many related values with the same key. A Redis key identifies a
list, set, or hash rather than the data items that it contains. These types are all available with Azure Redis
Cache and are described by the Data types page on the Redis website. For example, in part of an e-
commerce system that tracks the orders that are placed by customers, the details of each customer can be
stored in a Redis hash that is keyed by using the customer ID. Each hash can hold a collection of order IDs
for the customer. A separate Redis set can hold the orders, again structured as hashes, and keyed by using
the order ID. Figure 8 shows this structure. Note that Redis does not implement any form of referential
integrity, so it is the developer's responsibility to maintain the relationships between customers and orders.

https://redis.io/topics/cluster-tutorial
https://docs.microsoft.com/azure/azure-cache-for-redis/cache-how-to-premium-clustering
https://redis.io/topics/partitioning
https://redis.io/topics/data-types

NOTENOTE

Figure 8. Suggested structure in Redis storage for recording customer orders and their details.

In Redis, all keys are binary data values (like Redis strings) and can contain up to 512 MB of data. In theory, a key can contain
almost any information. However, we recommend adopting a consistent naming convention for keys that is descriptive of the
type of data and that identifies the entity, but is not excessively long. A common approach is to use keys of the form
"entity_type:ID". For example, you can use "customer:99" to indicate the key for a customer with the ID 99.

NOTENOTE

You can implement vertical partitioning by storing related information in different aggregations in the same
database. For example, in an e-commerce application, you can store commonly accessed information about
products in one Redis hash and less frequently used detailed information in another. Both hashes can use
the same product ID as part of the key. For example, you can use "product: nn" (where nn is the product ID)
for the product information and "product_details: nn" for the detailed data. This strategy can help reduce the
volume of data that most queries are likely to retrieve.

You can repartition a Redis data store, but keep in mind that it's a complex and time-consuming task. Redis
clustering can repartition data automatically, but this capability is not available with Azure Redis Cache.
Therefore, when you design your partitioning scheme, try to leave sufficient free space in each partition to
allow for expected data growth over time. However, remember that Azure Redis Cache is intended to cache
data temporarily, and that data held in the cache can have a limited lifetime specified as a time-to-live (TTL)
value. For relatively volatile data, the TTL can be short, but for static data the TTL can be a lot longer. Avoid
storing large amounts of long-lived data in the cache if the volume of this data is likely to fill the cache. You
can specify an eviction policy that causes Azure Redis Cache to remove data if space is at a premium.

When you use Azure Redis cache, you specify the maximum size of the cache (from 250 MB to 53 GB) by selecting
the appropriate pricing tier. However, after an Azure Redis Cache has been created, you cannot increase (or decrease)
its size.

Redis batches and transactions cannot span multiple connections, so all data that is affected by a batch or

Partitioning Azure Service Fabric

More informationMore information

Partitioning Azure Event Hubs

NOTENOTE

transaction should be held in the same database (shard).

A sequence of operations in a Redis transaction is not necessarily atomic. The commands that compose a transaction
are verified and queued before they run. If an error occurs during this phase, the entire queue is discarded. However,
after the transaction has been successfully submitted, the queued commands run in sequence. If any command fails,
only that command stops running. All previous and subsequent commands in the queue are performed. For more
information, go to the Transactions page on the Redis website.

Redis supports a limited number of atomic operations. The only operations of this type that support
multiple keys and values are MGET and MSET operations. MGET operations return a collection of values
for a specified list of keys, and MSET operations store a collection of values for a specified list of keys. If you
need to use these operations, the key-value pairs that are referenced by the MSET and MGET commands
must be stored within the same database.

Azure Service Fabric is a microservices platform that provides a runtime for distributed applications in the cloud.
Service Fabric supports .Net guest executables, stateful and stateless services, and containers. Stateful services
provide a reliable collection to persistently store data in a key-value collection within the Service Fabric cluster. For
more information about strategies for partitioning keys in a reliable collection, see guidelines and
recommendations for reliable collections in Azure Service Fabric.

Overview of Azure Service Fabric is an introduction to Azure Service Fabric.

Partition Service Fabric reliable services provides more information about reliable services in Azure Service
Fabric.

Azure Event Hubs is designed for data streaming at massive scale, and partitioning is built into the service to
enable horizontal scaling. Each consumer only reads a specific partition of the message stream.

The event publisher is only aware of its partition key, not the partition to which the events are published. This
decoupling of key and partition insulates the sender from needing to know too much about the downstream
processing. (It's also possible send events directly to a given partition, but generally that's not recommended.)

Consider long-term scale when you select the partition count. After an event hub is created, you can't change the
number of partitions.

For more information about using partitions in Event Hubs, see What is Event Hubs?.

For considerations about trade-offs between availability and consistency, see Availability and consistency in Event
Hubs.

https://redis.io/topics/transactions
https://docs.microsoft.com/azure/service-fabric/service-fabric-reliable-services-reliable-collections
https://docs.microsoft.com/azure/service-fabric/service-fabric-reliable-services-reliable-collections-guidelines
https://docs.microsoft.com/azure/service-fabric/service-fabric-overview
https://docs.microsoft.com/azure/service-fabric/service-fabric-concepts-partitioning
https://docs.microsoft.com/azure/event-hubs
https://docs.microsoft.com/azure/event-hubs/event-hubs-what-is-event-hubs
https://docs.microsoft.com/azure/event-hubs/event-hubs-availability-and-consistency

Monitoring and diagnostics
3/13/2019 • 69 minutes to read • Edit Online

Monitoring and diagnostics scenarios

NOTENOTE

Health monitoring

Requirements for health monitoringRequirements for health monitoring

Distributed applications and services running in the cloud are, by their nature, complex pieces of software that
comprise many moving parts. In a production environment, it's important to be able to track the way in which
users utilize your system, trace resource utilization, and generally monitor the health and performance of your
system. You can use this information as a diagnostic aid to detect and correct issues, and also to help spot
potential problems and prevent them from occurring.

You can use monitoring to gain an insight into how well a system is functioning. Monitoring is a crucial part of
maintaining quality-of-service targets. Common scenarios for collecting monitoring data include:

Ensuring that the system remains healthy.
Tracking the availability of the system and its component elements.
Maintaining performance to ensure that the throughput of the system does not degrade unexpectedly as the
volume of work increases.
Guaranteeing that the system meets any service-level agreements (SLAs) established with customers.
Protecting the privacy and security of the system, users, and their data.
Tracking the operations that are performed for auditing or regulatory purposes.
Monitoring the day-to-day usage of the system and spotting trends that might lead to problems if they're not
addressed.
Tracking issues that occur, from initial report through to analysis of possible causes, rectification, consequent
software updates, and deployment.
Tracing operations and debugging software releases.

This list is not intended to be comprehensive. This document focuses on these scenarios as the most common situations for
performing monitoring. There might be others that are less common or are specific to your environment.

The following sections describe these scenarios in more detail. The information for each scenario is discussed in
the following format:

1. A brief overview of the scenario
2. The typical requirements of this scenario
3. The raw instrumentation data that's required to support the scenario, and possible sources of this information
4. How this raw data can be analyzed and combined to generate meaningful diagnostic information

A system is healthy if it is running and capable of processing requests. The purpose of health monitoring is to
generate a snapshot of the current health of the system so that you can verify that all components of the system
are functioning as expected.

An operator should be alerted quickly (within a matter of seconds) if any part of the system is deemed to be

https://github.com/mspnp/architecture-center/blob/master/docs/best-practices/monitoring.md

Data sources, instrumentation, and data-collection requirementsData sources, instrumentation, and data-collection requirements

Analyzing health dataAnalyzing health data

Availability monitoring

unhealthy. The operator should be able to ascertain which parts of the system are functioning normally, and
which parts are experiencing problems. System health can be highlighted through a traffic-light system:

Red for unhealthy (the system has stopped)
Yellow for partially healthy (the system is running with reduced functionality)
Green for completely healthy

A comprehensive health-monitoring system enables an operator to drill down through the system to view the
health status of subsystems and components. For example, if the overall system is depicted as partially healthy,
the operator should be able to zoom in and determine which functionality is currently unavailable.

The raw data that's required to support health monitoring can be generated as a result of:

Tracing execution of user requests. This information can be used to determine which requests have succeeded,
which have failed, and how long each request takes.
Synthetic user monitoring. This process simulates the steps performed by a user and follows a predefined
series of steps. The results of each step should be captured.
Logging exceptions, faults, and warnings. This information can be captured as a result of trace statements
embedded into the application code, as well as retrieving information from the event logs of any services that
the system references.
Monitoring the health of any third-party services that the system uses. This monitoring might require
retrieving and parsing health data that these services supply. This information might take a variety of formats.
Endpoint monitoring. This mechanism is described in more detail in the "Availability monitoring" section.
Collecting ambient performance information, such as background CPU utilization or I/O (including network)
activity.

The primary focus of health monitoring is to quickly indicate whether the system is running. Hot analysis of the
immediate data can trigger an alert if a critical component is detected as unhealthy. (It fails to respond to a
consecutive series of pings, for example.) The operator can then take the appropriate corrective action.

A more advanced system might include a predictive element that performs a cold analysis over recent and
current workloads. A cold analysis can spot trends and determine whether the system is likely to remain healthy
or whether the system will need additional resources. This predictive element should be based on critical
performance metrics, such as:

The rate of requests directed at each service or subsystem.
The response times of these requests.
The volume of data flowing into and out of each service.

If the value of any metric exceeds a defined threshold, the system can raise an alert to enable an operator or
autoscaling (if available) to take the preventative actions necessary to maintain system health. These actions
might involve adding resources, restarting one or more services that are failing, or applying throttling to lower-
priority requests.

A truly healthy system requires that the components and subsystems that compose the system are available.
Availability monitoring is closely related to health monitoring. But whereas health monitoring provides an
immediate view of the current health of the system, availability monitoring is concerned with tracking the
availability of the system and its components to generate statistics about the uptime of the system.

In many systems, some components (such as a database) are configured with built-in redundancy to permit rapid
failover in the event of a serious fault or loss of connectivity. Ideally, users should not be aware that such a failure

Requirements for availability monitoringRequirements for availability monitoring

Data sources, instrumentation, and data-collection requirementsData sources, instrumentation, and data-collection requirements

Analyzing availability dataAnalyzing availability data

%Availability = ((Total Time – Total Downtime) / Total Time) * 100

has occurred. But from an availability monitoring perspective, it's necessary to gather as much information as
possible about such failures to determine the cause and take corrective actions to prevent them from recurring.

The data that's required to track availability might depend on a number of lower-level factors. Many of these
factors might be specific to the application, system, and environment. An effective monitoring system captures
the availability data that corresponds to these low-level factors and then aggregates them to give an overall
picture of the system. For example, in an e-commerce system, the business functionality that enables a customer
to place orders might depend on the repository where order details are stored and the payment system that
handles the monetary transactions for paying for these orders. The availability of the order-placement part of the
system is therefore a function of the availability of the repository and the payment subsystem.

An operator should also be able to view the historical availability of each system and subsystem, and use this
information to spot any trends that might cause one or more subsystems to periodically fail. (Do services start to
fail at a particular time of day that corresponds to peak processing hours?)

A monitoring solution should provide an immediate and historical view of the availability or unavailability of each
subsystem. It should also be capable of quickly alerting an operator when one or more services fail or when users
can't connect to services. This is a matter of not only monitoring each service, but also examining the actions that
each user performs if these actions fail when they attempt to communicate with a service. To some extent, a
degree of connectivity failure is normal and might be due to transient errors. But it might be useful to allow the
system to raise an alert for the number of connectivity failures to a specified subsystem that occur during a
specific period.

As with health monitoring, the raw data that's required to support availability monitoring can be generated as a
result of synthetic user monitoring and logging any exceptions, faults, and warnings that might occur. In addition,
availability data can be obtained from performing endpoint monitoring. The application can expose one or more
health endpoints, each testing access to a functional area within the system. The monitoring system can ping each
endpoint by following a defined schedule and collect the results (success or fail).

All timeouts, network connectivity failures, and connection retry attempts must be recorded. All data should be
time-stamped.

The instrumentation data must be aggregated and correlated to support the following types of analysis:

The immediate availability of the system and subsystems.
The availability failure rates of the system and subsystems. Ideally, an operator should be able to correlate
failures with specific activities: what was happening when the system failed?
A historical view of failure rates of the system or any subsystems across any specified period, and the load on
the system (number of user requests, for example) when a failure occurred.
The reasons for unavailability of the system or any subsystems. For example, the reasons might be service not
running, connectivity lost, connected but timing out, and connected but returning errors.

You can calculate the percentage availability of a service over a period of time by using the following formula:

This is useful for SLA purposes. (SLA monitoring is described in more detail later in this guidance.) The definition
of downtime depends on the service. For example, Visual Studio Team Services Build Service defines downtime
as the period (total accumulated minutes) during which Build Service is unavailable. A minute is considered
unavailable if all continuous HTTP requests to Build Service to perform customer-initiated operations throughout
the minute either result in an error code or do not return a response.

Performance monitoring

NOTENOTE

Requirements for performance monitoringRequirements for performance monitoring

As the system is placed under more and more stress (by increasing the volume of users), the size of the datasets
that these users access grows and the possibility of failure of one or more components becomes more likely.
Frequently, component failure is preceded by a decrease in performance. If you're able detect such a decrease,
you can take proactive steps to remedy the situation.

System performance depends on a number of factors. Each factor is typically measured through key performance
indicators (KPIs), such as the number of database transactions per second or the volume of network requests that
are successfully serviced in a specified time frame. Some of these KPIs might be available as specific performance
measures, whereas others might be derived from a combination of metrics.

Determining poor or good performance requires that you understand the level of performance at which the system should
be capable of running. This requires observing the system while it's functioning under a typical load and capturing the data
for each KPI over a period of time. This might involve running the system under a simulated load in a test environment and
gathering the appropriate data before deploying the system to a production environment.

You should also ensure that monitoring for performance purposes does not become a burden on the system. You might be
able to dynamically adjust the level of detail for the data that the performance monitoring process gathers.

To examine system performance, an operator typically needs to see information that includes:

The response rates for user requests.
The number of concurrent user requests.
The volume of network traffic.
The rates at which business transactions are being completed.
The average processing time for requests.

It can also be helpful to provide tools that enable an operator to help spot correlations, such as:

The number of concurrent users versus request latency times (how long it takes to start processing a request
after the user has sent it).
The number of concurrent users versus the average response time (how long it takes to complete a request
after it has started processing).
The volume of requests versus the number of processing errors.

Along with this high-level functional information, an operator should be able to obtain a detailed view of the
performance for each component in the system. This data is typically provided through low-level performance
counters that track information such as:

Memory utilization.
Number of threads.
CPU processing time.
Request queue length.
Disk or network I/O rates and errors.
Number of bytes written or read.
Middleware indicators, such as queue length.

All visualizations should allow an operator to specify a time period. The displayed data might be a snapshot of the
current situation and/or a historical view of the performance.

An operator should be able to raise an alert based on any performance measure for any specified value during

Data sources, instrumentation, and data-collection requirementsData sources, instrumentation, and data-collection requirements

Analyzing performance dataAnalyzing performance data

Security monitoring

Requirements for security monitoringRequirements for security monitoring

any specified time interval.

You can gather high-level performance data (throughput, number of concurrent users, number of business
transactions, error rates, and so on) by monitoring the progress of users' requests as they arrive and pass through
the system. This involves incorporating tracing statements at key points in the application code, together with
timing information. All faults, exceptions, and warnings should be captured with sufficient data for correlating
them with the requests that caused them. The Internet Information Services (IIS) log is another useful source.

If possible, you should also capture performance data for any external systems that the application uses. These
external systems might provide their own performance counters or other features for requesting performance
data. If this is not possible, record information such as the start time and end time of each request made to an
external system, together with the status (success, fail, or warning) of the operation. For example, you can use a
stopwatch approach to time requests: start a timer when the request starts and then stop the timer when the
request finishes.

Low-level performance data for individual components in a system might be available through features and
services such as Windows performance counters and Azure Diagnostics.

Much of the analysis work consists of aggregating performance data by user request type and/or the subsystem
or service to which each request is sent. An example of a user request is adding an item to a shopping cart or
performing the checkout process in an e-commerce system.

Another common requirement is summarizing performance data in selected percentiles. For example, an
operator might determine the response times for 99 percent of requests, 95 percent of requests, and 70 percent
of requests. There might be SLA targets or other goals set for each percentile. The ongoing results should be
reported in near real time to help detect immediate issues. The results should also be aggregated over the longer
time for statistical purposes.

In the case of latency issues affecting performance, an operator should be able to quickly identify the cause of the
bottleneck by examining the latency of each step that each request performs. The performance data must
therefore provide a means of correlating performance measures for each step to tie them to a specific request.

Depending on the visualization requirements, it might be useful to generate and store a data cube that contains
views of the raw data. This data cube can allow complex ad hoc querying and analysis of the performance
information.

All commercial systems that include sensitive data must implement a security structure. The complexity of the
security mechanism is usually a function of the sensitivity of the data. In a system that requires users to be
authenticated, you should record:

All sign-in attempts, whether they fail or succeed.
All operations performed by — and the details of all resources accessed by — an authenticated user.
When a user ends a session and signs out.

Monitoring might be able to help detect attacks on the system. For example, a large number of failed sign-in
attempts might indicate a brute-force attack. An unexpected surge in requests might be the result of a distributed
denial-of-service (DDoS) attack. You must be prepared to monitor all requests to all resources regardless of the
source of these requests. A system that has a sign-in vulnerability might accidentally expose resources to the
outside world without requiring a user to actually sign in.

The most critical aspects of security monitoring should enable an operator to quickly:

Data sources, instrumentation, and data-collection requirementsData sources, instrumentation, and data-collection requirements

Analyzing security dataAnalyzing security data

SLA monitoring

Detect attempted intrusions by an unauthenticated entity.
Identify attempts by entities to perform operations on data for which they have not been granted access.
Determine whether the system, or some part of the system, is under attack from outside or inside. (For
example, a malicious authenticated user might be attempting to bring the system down.)

To support these requirements, an operator should be notified:

If one account makes repeated failed sign-in attempts within a specified period.
If one authenticated account repeatedly tries to access a prohibited resource during a specified period.
If a large number of unauthenticated or unauthorized requests occur during a specified period.

The information that's provided to an operator should include the host address of the source for each request. If
security violations regularly arise from a particular range of addresses, these hosts might be blocked.

A key part in maintaining the security of a system is being able to quickly detect actions that deviate from the
usual pattern. Information such as the number of failed and/or successful sign-in requests can be displayed
visually to help detect whether there is a spike in activity at an unusual time. (An example of this activity is users
signing in at 3:00 AM and performing a large number of operations when their working day starts at 9:00 AM).
This information can also be used to help configure time-based autoscaling. For example, if an operator observes
that a large number of users regularly sign in at a particular time of day, the operator can arrange to start
additional authentication services to handle the volume of work, and then shut down these additional services
when the peak has passed.

Security is an all-encompassing aspect of most distributed systems. The pertinent data is likely to be generated at
multiple points throughout a system. You should consider adopting a Security Information and Event
Management (S IEM) approach to gather the security-related information that results from events raised by the
application, network equipment, servers, firewalls, antivirus software, and other intrusion-prevention elements.

Security monitoring can incorporate data from tools that are not part of your application. These tools can include
utilities that identify port-scanning activities by external agencies, or network filters that detect attempts to gain
unauthenticated access to your application and data.

In all cases, the gathered data must enable an administrator to determine the nature of any attack and take the
appropriate countermeasures.

A feature of security monitoring is the variety of sources from which the data arises. The different formats and
level of detail often require complex analysis of the captured data to tie it together into a coherent thread of
information. Apart from the simplest of cases (such as detecting a large number of failed sign-ins, or repeated
attempts to gain unauthorized access to critical resources), it might not be possible to perform any complex
automated processing of security data. Instead, it might be preferable to write this data, time-stamped but
otherwise in its original form, to a secure repository to allow for expert manual analysis.

Many commercial systems that support paying customers make guarantees about the performance of the system
in the form of SLAs. Essentially, SLAs state that the system can handle a defined volume of work within an
agreed time frame and without losing critical information. SLA monitoring is concerned with ensuring that the
system can meet measurable SLAs.

NOTENOTE

NOTENOTE

Requirements for SLA monitoringRequirements for SLA monitoring

NOTENOTE

SLA monitoring is closely related to performance monitoring. But whereas performance monitoring is concerned with
ensuring that the system functions optimally, SLA monitoring is governed by a contractual obligation that defines what
optimally actually means.

SLAs are often defined in terms of:

Overall system availability. For example, an organization might guarantee that the system will be available for
99.9 percent of the time. This equates to no more than 9 hours of downtime per year, or approximately 10
minutes a week.
Operational throughput. This aspect is often expressed as one or more high-water marks, such as
guaranteeing that the system can support up to 100,000 concurrent user requests or handle 10,000
concurrent business transactions.
Operational response time. The system might also make guarantees for the rate at which requests are
processed. An example is that 99 percent of all business transactions will finish within 2 seconds, and no single
transaction will take longer than 10 seconds.

Some contracts for commercial systems might also include SLAs for customer support. An example is that all help-desk
requests will elicit a response within 5 minutes, and that 99 percent of all problems will be fully addressed within 1 working
day. Effective issue tracking (described later in this section) is key to meeting SLAs such as these.

At the highest level, an operator should be able to determine at a glance whether the system is meeting the
agreed SLAs or not. And if not, the operator should be able to drill down and examine the underlying factors to
determine the reasons for substandard performance.

Typical high-level indicators that can be depicted visually include:

The percentage of service uptime.
The application throughput (measured in terms of successful transactions and/or operations per second).
The number of successful/failing application requests.
The number of application and system faults, exceptions, and warnings.

All of these indicators should be capable of being filtered by a specified period of time.

A cloud application will likely comprise a number of subsystems and components. An operator should be able to
select a high-level indicator and see how it's composed from the health of the underlying elements. For example,
if the uptime of the overall system falls below an acceptable value, an operator should be able to zoom in and
determine which elements are contributing to this failure.

System uptime needs to be defined carefully. In a system that uses redundancy to ensure maximum availability, individual
instances of elements might fail, but the system can remain functional. System uptime as presented by health monitoring
should indicate the aggregate uptime of each element and not necessarily whether the system has actually halted.
Additionally, failures might be isolated. So even if a specific system is unavailable, the remainder of the system might remain
available, although with decreased functionality. (In an e-commerce system, a failure in the system might prevent a
customer from placing orders, but the customer might still be able to browse the product catalog.)

For alerting purposes, the system should be able to raise an event if any of the high-level indicators exceed a

Data sources, instrumentation, and data-collection requirementsData sources, instrumentation, and data-collection requirements

Analyzing SLA dataAnalyzing SLA data

Auditing

Requirements for auditingRequirements for auditing

specified threshold. The lower-level details of the various factors that compose the high-level indicator should be
available as contextual data to the alerting system.

The raw data that's required to support SLA monitoring is similar to the raw data that's required for performance
monitoring, together with some aspects of health and availability monitoring. (See those sections for more
details.) You can capture this data by:

Performing endpoint monitoring.
Logging exceptions, faults, and warnings.
Tracing the execution of user requests.
Monitoring the availability of any third-party services that the system uses.
Using performance metrics and counters.

All data must be timed and time-stamped.

The instrumentation data must be aggregated to generate a picture of the overall performance of the system.
Aggregated data must also support drill-down to enable examination of the performance of the underlying
subsystems. For example, you should be able to:

Calculate the total number of user requests during a specified period and determine the success and failure
rate of these requests.
Combine the response times of user requests to generate an overall view of system response times.
Analyze the progress of user requests to break down the overall response time of a request into the response
times of the individual work items in that request.
Determine the overall availability of the system as a percentage of uptime for any specific period.
Analyze the percentage time availability of the individual components and services in the system. This might
involve parsing logs that third-party services have generated.

Many commercial systems are required to report real performance figures against agreed SLAs for a specified
period, typically a month. This information can be used to calculate credits or other forms of repayments for
customers if the SLAs are not met during that period. You can calculate availability for a service by using the
technique described in the section Analyzing availability data.

For internal purposes, an organization might also track the number and nature of incidents that caused services
to fail. Learning how to resolve these issues quickly, or eliminate them completely, will help to reduce downtime
and meet SLAs.

Depending on the nature of the application, there might be statutory or other legal regulations that specify
requirements for auditing users' operations and recording all data access. Auditing can provide evidence that
links customers to specific requests. Non-repudiation is an important factor in many e-business systems to help
maintain trust be between a customer and the organization that's responsible for the application or service.

An analyst must be able to trace the sequence of business operations that users are performing so that you can
reconstruct users' actions. This might be necessary simply as a matter of record, or as part of a forensic
investigation.

Audit information is highly sensitive. It will likely include data that identifies the users of the system, together with
the tasks that they're performing. For this reason, audit information will most likely take the form of reports that
are available only to trusted analysts rather than as an interactive system that supports drill-down of graphical

Data sources, instrumentation, and data-collection requirementsData sources, instrumentation, and data-collection requirements

Analyzing audit dataAnalyzing audit data

Usage monitoring

Requirements for usage monitoringRequirements for usage monitoring

Data sources, instrumentation, and data-collection requirementsData sources, instrumentation, and data-collection requirements

operations. An analyst should be able to generate a range of reports. For example, reports might list all users'
activities occurring during a specified time frame, detail the chronology of activity for a single user, or list the
sequence of operations performed against one or more resources.

The primary sources of information for auditing can include:

The security system that manages user authentication.
Trace logs that record user activity.
Security logs that track all identifiable and unidentifiable network requests.

The format of the audit data and the way in which it's stored might be driven by regulatory requirements. For
example, it might not be possible to clean the data in any way. (It must be recorded in its original format.) Access
to the repository where it's held must be protected to prevent tampering.

An analyst must be able to access the raw data in its entirety, in its original form. Aside from the requirement to
generate common audit reports, the tools for analyzing this data are likely to be specialized and kept external to
the system.

Usage monitoring tracks how the features and components of an application are used. An operator can use the
gathered data to:

Determine which features are heavily used and determine any potential hotspots in the system. High-
traffic elements might benefit from functional partitioning or even replication to spread the load more
evenly. An operator can also use this information to ascertain which features are infrequently used and are
possible candidates for retirement or replacement in a future version of the system.

Obtain information about the operational events of the system under normal use. For example, in an e-
commerce site, you can record the statistical information about the number of transactions and the volume
of customers that are responsible for them. This information can be used for capacity planning as the
number of customers grows.

Detect (possibly indirectly) user satisfaction with the performance or functionality of the system. For
example, if a large number of customers in an e-commerce system regularly abandon their shopping carts,
this might be due to a problem with the checkout functionality.

Generate billing information. A commercial application or multitenant service might charge customers for
the resources that they use.

Enforce quotas. If a user in a multitenant system exceeds their paid quota of processing time or resource
usage during a specified period, their access can be limited or processing can be throttled.

To examine system usage, an operator typically needs to see information that includes:

The number of requests that are processed by each subsystem and directed to each resource.
The work that each user is performing.
The volume of data storage that each user occupies.
The resources that each user is accessing.

An operator should also be able to generate graphs. For example, a graph might display the most resource-
hungry users, or the most frequently accessed resources or system features.

 Issue tracking

Requirements for issue trackingRequirements for issue tracking

Data sources, instrumentation, and data-collection requirementsData sources, instrumentation, and data-collection requirements

Analyzing issue-tracking dataAnalyzing issue-tracking data

Tracing operations and debugging software releases

Usage tracking can be performed at a relatively high level. It can note the start and end times of each request and
the nature of the request (read, write, and so on, depending on the resource in question). You can obtain this
information by:

Tracing user activity.
Capturing performance counters that measure the utilization for each resource.
Monitoring the resource consumption by each user.

For metering purposes, you also need to be able to identify which users are responsible for performing which
operations, and the resources that these operations utilize. The gathered information should be detailed enough
to enable accurate billing.

Customers and other users might report issues if unexpected events or behavior occurs in the system. Issue
tracking is concerned with managing these issues, associating them with efforts to resolve any underlying
problems in the system, and informing customers of possible resolutions.

Operators often perform issue tracking by using a separate system that enables them to record and report the
details of problems that users report. These details can include the tasks that the user was trying to perform,
symptoms of the problem, the sequence of events, and any error or warning messages that were issued.

The initial data source for issue-tracking data is the user who reported the issue in the first place. The user might
be able to provide additional data such as:

A crash dump (if the application includes a component that runs on the user's desktop).
A screen snapshot.
The date and time when the error occurred, together with any other environmental information such as the
user's location.

This information can be used to help the debugging effort and help construct a backlog for future releases of the
software.

Different users might report the same problem. The issue-tracking system should associate common reports.

The progress of the debugging effort should be recorded against each issue report. When the problem is
resolved, the customer can be informed of the solution.

If a user reports an issue that has a known solution in the issue-tracking system, the operator should be able to
inform the user of the solution immediately.

When a user reports an issue, the user is often only aware of the immediate effect that it has on their operations.
The user can only report the results of their own experience back to an operator who is responsible for
maintaining the system. These experiences are usually just a visible symptom of one or more fundamental
problems. In many cases, an analyst will need to dig through the chronology of the underlying operations to
establish the root cause of the problem. This process is called root cause analysis.

NOTENOTE

Requirements for tracing and debuggingRequirements for tracing and debugging

Data sources, instrumentation, and data-collection requirementsData sources, instrumentation, and data-collection requirements

The monitoring and diagnostics pipeline

Root cause analysis might uncover inefficiencies in the design of an application. In these situations, it might be possible to
rework the affected elements and deploy them as part of a subsequent release. This process requires careful control, and
the updated components should be monitored closely.

For tracing unexpected events and other problems, it's vital that the monitoring data provides enough
information to enable an analyst to trace back to the origins of these issues and reconstruct the sequence of
events that occurred. This information must be sufficient to enable an analyst to diagnose the root cause of any
problems. A developer can then make the necessary modifications to prevent them from recurring.

Troubleshooting can involve tracing all the methods (and their parameters) invoked as part of an operation to
build up a tree that depicts the logical flow through the system when a customer makes a specific request.
Exceptions and warnings that the system generates as a result of this flow need to be captured and logged.

To support debugging, the system can provide hooks that enable an operator to capture state information at
crucial points in the system. Or, the system can deliver detailed step-by-step information as selected operations
progress. Capturing data at this level of detail can impose an additional load on the system and should be a
temporary process. An operator uses this process mainly when a highly unusual series of events occurs and is
difficult to replicate, or when a new release of one or more elements into a system requires careful monitoring to
ensure that the elements function as expected.

Monitoring a large-scale distributed system poses a significant challenge. Each of the scenarios described in the
previous section should not necessarily be considered in isolation. There is likely to be a significant overlap in the
monitoring and diagnostic data that's required for each situation, although this data might need to be processed
and presented in different ways. For these reasons, you should take a holistic view of monitoring and diagnostics.

You can envisage the entire monitoring and diagnostics process as a pipeline that comprises the stages shown in
Figure 1.

Figure 1. The stages in the monitoring and diagnostics pipeline.

Figure 1 highlights how the data for monitoring and diagnostics can come from a variety of data sources. The
instrumentation and collection stages are concerned with identifying the sources from where the data needs to be
captured, determining which data to capture, how to capture it, and how to format this data so that it can be easily
examined. The analysis/diagnosis stage takes the raw data and uses it to generate meaningful information that an

Sources of monitoring and diagnostic data

NOTENOTE

operator can use to determine the state of the system. The operator can use this information to make decisions
about possible actions to take, and then feed the results back into the instrumentation and collection stages. The
visualization/alerting stage phase presents a consumable view of the system state. It can display information in
near real time by using a series of dashboards. And it can generate reports, graphs, and charts to provide a
historical view of the data that can help identify long-term trends. If information indicates that a KPI is likely to
exceed acceptable bounds, this stage can also trigger an alert to an operator. In some cases, an alert can also be
used to trigger an automated process that attempts to take corrective actions, such as autoscaling.

Note that these steps constitute a continuous-flow process where the stages are happening in parallel. Ideally, all
the phases should be dynamically configurable. At some points, especially when a system has been newly
deployed or is experiencing problems, it might be necessary to gather extended data on a more frequent basis. At
other times, it should be possible to revert to capturing a base level of essential information to verify that the
system is functioning properly.

Additionally, the entire monitoring process should be considered a live, ongoing solution that's subject to fine-
tuning and improvements as a result of feedback. For example, you might start with measuring many factors to
determine system health. Analysis over time might lead to a refinement as you discard measures that aren't
relevant, enabling you to more precisely focus on the data that you need while minimizing background noise.

The information that the monitoring process uses can come from several sources, as illustrated in Figure 1. At the
application level, information comes from trace logs incorporated into the code of the system. Developers should
follow a standard approach for tracking the flow of control through their code. For example, an entry to a method
can emit a trace message that specifies the name of the method, the current time, the value of each parameter,
and any other pertinent information. Recording the entry and exit times can also prove useful.

You should log all exceptions and warnings, and ensure that you retain a full trace of any nested exceptions and
warnings. Ideally, you should also capture information that identifies the user who is running the code, together
with activity correlation information (to track requests as they pass through the system). And you should log
attempts to access all resources such as message queues, databases, files, and other dependent services. This
information can be used for metering and auditing purposes.

Many applications use libraries and frameworks to perform common tasks such as accessing a data store or
communicating over a network. These frameworks might be configurable to provide their own trace messages
and raw diagnostic information, such as transaction rates and data transmission successes and failures.

Many modern frameworks automatically publish performance and trace events. Capturing this information is simply a
matter of providing a means to retrieve and store it where it can be processed and analyzed.

The operating system where the application is running can be a source of low-level system-wide information,
such as performance counters that indicate I/O rates, memory utilization, and CPU usage. Operating system
errors (such as the failure to open a file correctly) might also be reported.

You should also consider the underlying infrastructure and components on which your system runs. Virtual
machines, virtual networks, and storage services can all be sources of important infrastructure-level performance
counters and other diagnostic data.

If your application uses other external services, such as a web server or database management system, these
services might publish their own trace information, logs, and performance counters. Examples include SQL
Server Dynamic Management Views for tracking operations performed against a SQL Server database, and IIS
trace logs for recording requests made to a web server.

As the components of a system are modified and new versions are deployed, it's important to be able to attribute
issues, events, and metrics to each version. This information should be tied back to the release pipeline so that
problems with a specific version of a component can be tracked quickly and rectified.

Security issues might occur at any point in the system. For example, a user might attempt to sign in with an
invalid user ID or password. An authenticated user might try to obtain unauthorized access to a resource. Or a
user might provide an invalid or outdated key to access encrypted information. Security-related information for
successful and failing requests should always be logged.

The section Instrumenting an application contains more guidance on the information that you should capture. But
you can use a variety of strategies to gather this information:

IMPORTANTIMPORTANT

NOTENOTE

Application/system monitoring. This strategy uses internal sources within the application, application
frameworks, operating system, and infrastructure. The application code can generate its own monitoring
data at notable points during the lifecycle of a client request. The application can include tracing statements
that might be selectively enabled or disabled as circumstances dictate. It might also be possible to inject
diagnostics dynamically by using a diagnostics framework. These frameworks typically provide plug-ins
that can attach to various instrumentation points in your code and capture trace data at these points.

Additionally, your code and/or the underlying infrastructure might raise events at critical points.
Monitoring agents that are configured to listen for these events can record the event information.

Real user monitoring. This approach records the interactions between a user and the application and
observes the flow of each request and response. This information can have a two-fold purpose: it can be
used for metering usage by each user, and it can be used to determine whether users are receiving a
suitable quality of service (for example, fast response times, low latency, and minimal errors). You can use
the captured data to identify areas of concern where failures occur most often. You can also use the data to
identify elements where the system slows down, possibly due to hotspots in the application or some other
form of bottleneck. If you implement this approach carefully, it might be possible to reconstruct users'
flows through the application for debugging and testing purposes.

You should consider the data that's captured by monitoring real users to be highly sensitive because it might
include confidential material. If you save captured data, store it securely. If you want to use the data for performance
monitoring or debugging purposes, strip out all personally identifiable information first.

Synthetic user monitoring. In this approach, you write your own test client that simulates a user and
performs a configurable but typical series of operations. You can track the performance of the test client to
help determine the state of the system. You can also use multiple instances of the test client as part of a
load-testing operation to establish how the system responds under stress, and what sort of monitoring
output is generated under these conditions.

You can implement real and synthetic user monitoring by including code that traces and times the execution of
method calls and other critical parts of an application.

Profiling. This approach is primarily targeted at monitoring and improving application performance.
Rather than operating at the functional level of real and synthetic user monitoring, it captures lower-level
information as the application runs. You can implement profiling by using periodic sampling of the
execution state of an application (determining which piece of code that the application is running at a given
point in time). You can also use instrumentation that inserts probes into the code at important junctures
(such as the start and end of a method call) and records which methods were invoked, at what time, and

Instrumenting an application

NOTENOTE

Information for correlating dataInformation for correlating data

how long each call took. You can then analyze this data to determine which parts of the application might
cause performance problems.

Endpoint monitoring. This technique uses one or more diagnostic endpoints that the application exposes
specifically to enable monitoring. An endpoint provides a pathway into the application code and can return
information about the health of the system. Different endpoints can focus on various aspects of the
functionality. You can write your own diagnostics client that sends periodic requests to these endpoints and
assimilate the responses. For more information, see the Health Endpoint Monitoring pattern.

For maximum coverage, you should use a combination of these techniques.

Instrumentation is a critical part of the monitoring process. You can make meaningful decisions about the
performance and health of a system only if you first capture the data that enables you to make these decisions.
The information that you gather by using instrumentation should be sufficient to enable you to assess
performance, diagnose problems, and make decisions without requiring you to sign in to a remote production
server to perform tracing (and debugging) manually. Instrumentation data typically comprises metrics and
information that's written to trace logs.

The contents of a trace log can be the result of textual data that's written by the application or binary data that's
created as the result of a trace event (if the application is using Event Tracing for Windows--ETW). They can also
be generated from system logs that record events arising from parts of the infrastructure, such as a web server.
Textual log messages are often designed to be human-readable, but they should also be written in a format that
enables an automated system to parse them easily.

You should also categorize logs. Don't write all trace data to a single log, but use separate logs to record the trace
output from different operational aspects of the system. You can then quickly filter log messages by reading from
the appropriate log rather than having to process a single lengthy file. Never write information that has different
security requirements (such as audit information and debugging data) to the same log.

A log might be implemented as a file on the file system, or it might be held in some other format, such as a blob in blob
storage. Log information might also be held in more structured storage, such as rows in a table.

Metrics will generally be a measure or count of some aspect or resource in the system at a specific time, with one
or more associated tags or dimensions (sometimes called a sample). A single instance of a metric is usually not
useful in isolation. Instead, metrics have to be captured over time. The key issue to consider is which metrics you
should record and how frequently. Generating data for metrics too often can impose a significant additional load
on the system, whereas capturing metrics infrequently might cause you to miss the circumstances that lead to a
significant event. The considerations will vary from metric to metric. For example, CPU utilization on a server
might vary significantly from second to second, but high utilization becomes an issue only if it's long-lived over a
number of minutes.

You can easily monitor individual system-level performance counters, capture metrics for resources, and obtain
application trace information from various log files. But some forms of monitoring require the analysis and
diagnostics stage in the monitoring pipeline to correlate the data that's retrieved from several sources. This data
might take several forms in the raw data, and the analysis process must be provided with sufficient
instrumentation data to be able to map these different forms. For example, at the application framework level, a
task might be identified by a thread ID. Within an application, the same work might be associated with the user
ID for the user who is performing that task.

NOTENOTE

Information to include in the instrumentation dataInformation to include in the instrumentation data

Also, there's unlikely to be a 1:1 mapping between threads and user requests, because asynchronous operations
might reuse the same threads to perform operations on behalf of more than one user. To complicate matters
further, a single request might be handled by more than one thread as execution flows through the system. If
possible, associate each request with a unique activity ID that's propagated through the system as part of the
request context. (The technique for generating and including activity IDs in trace information depends on the
technology that's used to capture the trace data.)

All monitoring data should be time-stamped in the same way. For consistency, record all dates and times by using
Coordinated Universal Time. This will help you more easily trace sequences of events.

Computers operating in different time zones and networks might not be synchronized. Don't depend on using time stamps
alone for correlating instrumentation data that spans multiple machines.

Consider the following points when you're deciding which instrumentation data you need to collect:

Make sure that information captured by trace events is machine and human readable. Adopt well-defined
schemas for this information to facilitate automated processing of log data across systems, and to provide
consistency to operations and engineering staff reading the logs. Include environmental information, such
as the deployment environment, the machine on which the process is running, the details of the process,
and the call stack.

Enable profiling only when necessary because it can impose a significant overhead on the system. Profiling
by using instrumentation records an event (such as a method call) every time it occurs, whereas sampling
records only selected events. The selection can be time-based (once every n seconds), or frequency-based
(once every n requests). If events occur very frequently, profiling by instrumentation might cause too much
of a burden and itself affect overall performance. In this case, the sampling approach might be preferable.
However, if the frequency of events is low, sampling might miss them. In this case, instrumentation might
be the better approach.

Provide sufficient context to enable a developer or administrator to determine the source of each request.
This might include some form of activity ID that identifies a specific instance of a request. It might also
include information that can be used to correlate this activity with the computational work performed and
the resources used. Note that this work might cross process and machine boundaries. For metering, the
context should also include (either directly or indirectly via other correlated information) a reference to the
customer who caused the request to be made. This context provides valuable information about the
application state at the time that the monitoring data was captured.

Record all requests, and the locations or regions from which these requests are made. This information can
assist in determining whether there are any location-specific hotspots. This information can also be useful
in determining whether to repartition an application or the data that it uses.

Record and capture the details of exceptions carefully. Often, critical debug information is lost as a result of
poor exception handling. Capture the full details of exceptions that the application throws, including any
inner exceptions and other context information. Include the call stack if possible.

Be consistent in the data that the different elements of your application capture, because this can assist in
analyzing events and correlating them with user requests. Consider using a comprehensive and
configurable logging package to gather information, rather than depending on developers to adopt the
same approach as they implement different parts of the system. Gather data from key performance
counters, such as the volume of I/O being performed, network utilization, number of requests, memory
use, and CPU utilization. Some infrastructure services might provide their own specific performance
counters, such as the number of connections to a database, the rate at which transactions are being

Ensuring compatibility with telemetry systemsEnsuring compatibility with telemetry systems

Best practices for instrumenting applicationsBest practices for instrumenting applications

performed, and the number of transactions that succeed or fail. Applications might also define their own
specific performance counters.

Log all calls made to external services, such as database systems, web services, or other system-level
services that are part of the infrastructure. Record information about the time taken to perform each call,
and the success or failure of the call. If possible, capture information about all retry attempts and failures
for any transient errors that occur.

In many cases, the information that instrumentation produces is generated as a series of events and passed to a
separate telemetry system for processing and analysis. A telemetry system is typically independent of any specific
application or technology, but it expects information to follow a specific format that's usually defined by a schema.
The schema effectively specifies a contract that defines the data fields and types that the telemetry system can
ingest. The schema should be generalized to allow for data arriving from a range of platforms and devices.

A common schema should include fields that are common to all instrumentation events, such as the event name,
the event time, the IP address of the sender, and the details that are required for correlating with other events
(such as a user ID, a device ID, and an application ID). Remember that any number of devices might raise events,
so the schema should not depend on the device type. Additionally, various devices might raise events for the
same application; the application might support roaming or some other form of cross-device distribution.

The schema might also include domain fields that are relevant to a particular scenario that's common across
different applications. This might be information about exceptions, application start and end events, and success
and/or failure of web service API calls. All applications that use the same set of domain fields should emit the
same set of events, enabling a set of common reports and analytics to be built.

Finally, a schema might contain custom fields for capturing the details of application-specific events.

The following list summarizes best practices for instrumenting a distributed application running in the cloud.

Make logs easy to read and easy to parse. Use structured logging where possible. Be concise and
descriptive in log messages.

In all logs, identify the source and provide context and timing information as each log record is written.

Use the same time zone and format for all time stamps. This will help to correlate events for operations
that span hardware and services running in different geographic regions.

Categorize logs and write messages to the appropriate log file.

Do not disclose sensitive information about the system or personal information about users. Scrub this
information before it's logged, but ensure that the relevant details are retained. For example, remove the
ID and password from any database connection strings, but write the remaining information to the log so
that an analyst can determine that the system is accessing the correct database. Log all critical exceptions,
but enable the administrator to turn logging on and off for lower levels of exceptions and warnings. Also,
capture and log all retry logic information. This data can be useful in monitoring the transient health of the
system.

Trace out of process calls, such as requests to external web services or databases.

Don't mix log messages with different security requirements in the same log file. For example, don't write
debug and audit information to the same log.

With the exception of auditing events, make sure that all logging calls are fire-and-forget operations that
do not block the progress of business operations. Auditing events are exceptional because they are critical
to the business and can be classified as a fundamental part of business operations.

Collecting and storing data

Make sure that logging is extensible and does not have any direct dependencies on a concrete target. For
example, rather than writing information by using System.Diagnostics.Trace, define an abstract interface
(such as ILogger) that exposes logging methods and that can be implemented through any appropriate
means.

Make sure that all logging is fail-safe and never triggers any cascading errors. Logging must not throw any
exceptions.

Treat instrumentation as an ongoing iterative process and review logs regularly, not just when there is a
problem.

The collection stage of the monitoring process is concerned with retrieving the information that instrumentation
generates, formatting this data to make it easier for the analysis/diagnosis stage to consume, and saving the
transformed data in reliable storage. The instrumentation data that you gather from different parts of a
distributed system can be held in a variety of locations and with varying formats. For example, your application
code might generate trace log files and generate application event log data, whereas performance counters that
monitor key aspects of the infrastructure that your application uses can be captured through other technologies.
Any third-party components and services that your application uses might provide instrumentation information
in different formats, by using separate trace files, blob storage, or even a custom data store.

Data collection is often performed through a collection service that can run autonomously from the application
that generates the instrumentation data. Figure 2 illustrates an example of this architecture, highlighting the
instrumentation data-collection subsystem.

Figure 2. Collecting instrumentation data.

Note that this is a simplified view. The collection service is not necessarily a single process and might comprise
many constituent parts running on different machines, as described in the following sections. Additionally, if the
analysis of some telemetry data must be performed quickly (hot analysis, as described in the section Supporting
hot, warm, and cold analysis later in this document), local components that operate outside the collection service
might perform the analysis tasks immediately. Figure 2 depicts this situation for selected events. After analytical
processing, the results can be sent directly to the visualization and alerting subsystem. Data that's subjected to
warm or cold analysis is held in storage while it awaits processing.

Strategies for collecting instrumentation dataStrategies for collecting instrumentation data

Pulling and pushing instrumentation dataPulling and pushing instrumentation data

For Azure applications and services, Azure Diagnostics provides one possible solution for capturing data. Azure
Diagnostics gathers data from the following sources for each compute node, aggregates it, and then uploads it to
Azure Storage:

IIS logs
IIS Failed Request logs
Windows event logs
Performance counters
Crash dumps
Azure Diagnostics infrastructure logs
Custom error logs
.NET EventSource
Manifest-based ETW

For more information, see the article Azure: Telemetry Basics and Troubleshooting.

Considering the elastic nature of the cloud, and to avoid the necessity of manually retrieving telemetry data from
every node in the system, you should arrange for the data to be transferred to a central location and consolidated.
In a system that spans multiple datacenters, it might be useful to first collect, consolidate, and store data on a
region-by-region basis, and then aggregate the regional data into a single central system.

To optimize the use of bandwidth, you can elect to transfer less urgent data in chunks, as batches. However, the
data must not be delayed indefinitely, especially if it contains time-sensitive information.

The instrumentation data-collection subsystem can actively retrieve instrumentation data from the various logs
and other sources for each instance of the application (the pull model). Or, it can act as a passive receiver that
waits for the data to be sent from the components that constitute each instance of the application (the push
model).

One approach to implementing the pull model is to use monitoring agents that run locally with each instance of
the application. A monitoring agent is a separate process that periodically retrieves (pulls) telemetry data
collected at the local node and writes this information directly to centralized storage that all instances of the
application share. This is the mechanism that Azure Diagnostics implements. Each instance of an Azure web or
worker role can be configured to capture diagnostic and other trace information that's stored locally. The
monitoring agent that runs alongside each instance copies the specified data to Azure Storage. The article
Enabling Diagnostics in Azure Cloud Services and Virtual Machines provides more details on this process. Some
elements, such as IIS logs, crash dumps, and custom error logs, are written to blob storage. Data from the
Windows event log, ETW events, and performance counters is recorded in table storage. Figure 3 illustrates this
mechanism.

https://social.technet.microsoft.com/wiki/contents/articles/18146.windows-azure-telemetry-basics-and-troubleshooting.aspx
https://docs.microsoft.com/azure/cloud-services/cloud-services-dotnet-diagnostics

NOTENOTE

Figure 3. Using a monitoring agent to pull information and write to shared storage.

Using a monitoring agent is ideally suited to capturing instrumentation data that's naturally pulled from a data source. An
example is information from SQL Server Dynamic Management Views or the length of an Azure Service Bus queue.

It's feasible to use the approach just described to store telemetry data for a small-scale application running on a
limited number of nodes in a single location. However, a complex, highly scalable, global cloud application might
generate huge volumes of data from hundreds of web and worker roles, database shards, and other services. This
flood of data can easily overwhelm the I/O bandwidth available with a single, central location. Therefore, your
telemetry solution must be scalable to prevent it from acting as a bottleneck as the system expands. Ideally, your
solution should incorporate a degree of redundancy to reduce the risks of losing important monitoring
information (such as auditing or billing data) if part of the system fails.

To address these issues, you can implement queuing, as shown in Figure 4. In this architecture, the local
monitoring agent (if it can be configured appropriately) or custom data-collection service (if not) posts data to a
queue. A separate process running asynchronously (the storage writing service in Figure 4) takes the data in this
queue and writes it to shared storage. A message queue is suitable for this scenario because it provides "at least
once" semantics that help ensure that queued data will not be lost after it's posted. You can implement the storage
writing service by using a separate worker role.

 Consolidating instrumentation dataConsolidating instrumentation data

Figure 4. Using a queue to buffer instrumentation data.

The local data-collection service can add data to a queue immediately after it's received. The queue acts as a
buffer, and the storage writing service can retrieve and write the data at its own pace. By default, a queue operates
on a first-in, first-out basis. But you can prioritize messages to accelerate them through the queue if they contain
data that must be handled more quickly. For more information, see the Priority Queue pattern. Alternatively, you
can use different channels (such as Service Bus topics) to direct data to different destinations depending on the
form of analytical processing that's required.

For scalability, you can run multiple instances of the storage writing service. If there is a high volume of events,
you can use an event hub to dispatch the data to different compute resources for processing and storage.

The instrumentation data that the data-collection service retrieves from a single instance of an application gives a
localized view of the health and performance of that instance. To assess the overall health of the system, it's
necessary to consolidate some aspects of the data in the local views. You can perform this after the data has been
stored, but in some cases, you can also achieve it as the data is collected. Rather than being written directly to
shared storage, the instrumentation data can pass through a separate data consolidation service that combines
data and acts as a filter and cleanup process. For example, instrumentation data that includes the same correlation
information such as an activity ID can be amalgamated. (It's possible that a user starts performing a business
operation on one node and then gets transferred to another node in the event of node failure, or depending on
how load balancing is configured.) This process can also detect and remove any duplicated data (always a
possibility if the telemetry service uses message queues to push instrumentation data out to storage). Figure 5
illustrates an example of this structure.

Storing instrumentation dataStoring instrumentation data

Figure 5. Using a separate service to consolidate and clean up instrumentation data.

The previous discussions have depicted a rather simplistic view of the way in which instrumentation data is
stored. In reality, it can make sense to store the different types of information by using technologies that are most
appropriate to the way in which each type is likely to be used.

For example, Azure blob and table storage have some similarities in the way in which they're accessed. But they
have limitations in the operations that you can perform by using them, and the granularity of the data that they
hold is quite different. If you need to perform more analytical operations or require full-text search capabilities on
the data, it might be more appropriate to use data storage that provides capabilities that are optimized for specific
types of queries and data access. For example:

Performance counter data can be stored in a SQL database to enable ad hoc analysis.
Trace logs might be better stored in Azure Cosmos DB.
Security information can be written to HDFS.
Information that requires full-text search can be stored through Elasticsearch (which can also speed searches
by using rich indexing).

You can implement an additional service that periodically retrieves the data from shared storage, partitions and
filters the data according to its purpose, and then writes it to an appropriate set of data stores as shown in Figure
6. An alternative approach is to include this functionality in the consolidation and cleanup process and write the
data directly to these stores as it's retrieved rather than saving it in an intermediate shared storage area. Each
approach has its advantages and disadvantages. Implementing a separate partitioning service lessens the load on
the consolidation and cleanup service, and it enables at least some of the partitioned data to be regenerated if
necessary (depending on how much data is retained in shared storage). However, it consumes additional
resources. Also, there might be a delay between the receipt of instrumentation data from each application
instance and the conversion of this data into actionable information.

Log rotation and data retentionLog rotation and data retention

Down-samplingDown-sampling

Figure 6. Partitioning data according to analytical and storage requirements.

The same instrumentation data might be required for more than one purpose. For example, performance
counters can be used to provide a historical view of system performance over time. This information might be
combined with other usage data to generate customer billing information. In these situations, the same data
might be sent to more than one destination, such as a document database that can act as a long-term store for
holding billing information, and a multidimensional store for handling complex performance analytics.

You should also consider how urgently the data is required. Data that provides information for alerting must be
accessed quickly, so it should be held in fast data storage and indexed or structured to optimize the queries that
the alerting system performs. In some cases, it might be necessary for the telemetry service that gathers the data
on each node to format and save data locally so that a local instance of the alerting system can quickly notify you
of any issues. The same data can be dispatched to the storage writing service shown in the previous diagrams
and stored centrally if it's also required for other purposes.

Information that's used for more considered analysis, for reporting, and for spotting historical trends is less
urgent and can be stored in a manner that supports data mining and ad hoc queries. For more information, see
the section Supporting hot, warm, and cold analysis later in this document.

Instrumentation can generate considerable volumes of data. This data can be held in several places, starting with
the raw log files, trace files, and other information captured at each node to the consolidated, cleaned, and
partitioned view of this data held in shared storage. In some cases, after the data has been processed and
transferred, the original raw source data can be removed from each node. In other cases, it might be necessary or
simply useful to save the raw information. For example, data that's generated for debugging purposes might be
best left available in its raw form but can then be discarded quickly after any bugs have been rectified.

Performance data often has a longer life so that it can be used for spotting performance trends and for capacity
planning. The consolidated view of this data is usually kept online for a finite period to enable fast access. After
that, it can be archived or discarded. Data gathered for metering and billing customers might need to be saved
indefinitely. Additionally, regulatory requirements might dictate that information collected for auditing and
security purposes also needs to be archived and saved. This data is also sensitive and might need to be encrypted
or otherwise protected to prevent tampering. You should never record users' passwords or other information that
might be used to commit identity fraud. Such details should be scrubbed from the data before it's stored.

It's useful to store historical data so you can spot long-term trends. Rather than saving old data in its entirety, it
might be possible to down-sample the data to reduce its resolution and save storage costs. As an example, rather
than saving minute-by-minute performance indicators, you can consolidate data that's more than a month old to
form an hour-by-hour view.

Best practices for collecting and storing logging informationBest practices for collecting and storing logging information

Analyzing data and diagnosing issues

Supporting hot, warm, and cold analysisSupporting hot, warm, and cold analysis

The following list summarizes best practices for capturing and storing logging information:

The monitoring agent or data-collection service should run as an out-of-process service and should be
simple to deploy.

All output from the monitoring agent or data-collection service should be an agnostic format that's
independent of the machine, operating system, or network protocol. For example, emit information in a
self-describing format such as JSON, MessagePack, or Protobuf rather than ETL/ETW. Using a standard
format enables the system to construct processing pipelines; components that read, transform, and send
data in the agreed format can be easily integrated.

The monitoring and data-collection process must be fail-safe and must not trigger any cascading error
conditions.

In the event of a transient failure in sending information to a data sink, the monitoring agent or data-
collection service should be prepared to reorder telemetry data so that the newest information is sent first.
(The monitoring agent/data-collection service might elect to drop the older data, or save it locally and
transmit it later to catch up, at its own discretion.)

An important part of the monitoring and diagnostics process is analyzing the gathered data to obtain a picture of
the overall well-being of the system. You should have defined your own KPIs and performance metrics, and it's
important to understand how you can structure the data that has been gathered to meet your analysis
requirements. It's also important to understand how the data that's captured in different metrics and log files is
correlated, because this information can be key to tracking a sequence of events and help diagnose problems that
arise.

As described in the section Consolidating instrumentation data, the data for each part of the system is typically
captured locally, but it generally needs to be combined with data generated at other sites that participate in the
system. This information requires careful correlation to ensure that data is combined accurately. For example, the
usage data for an operation might span a node that hosts a website to which a user connects, a node that runs a
separate service accessed as part of this operation, and data storage held on another node. This information
needs to be tied together to provide an overall view of the resource and processing usage for the operation.
Some pre-processing and filtering of data might occur on the node on which the data is captured, whereas
aggregation and formatting are more likely to occur on a central node.

Analyzing and reformatting data for visualization, reporting, and alerting purposes can be a complex process that
consumes its own set of resources. Some forms of monitoring are time-critical and require immediate analysis of
data to be effective. This is known as hot analysis. Examples include the analyses that are required for alerting and
some aspects of security monitoring (such as detecting an attack on the system). Data that's required for these
purposes must be quickly available and structured for efficient processing. In some cases, it might be necessary to
move the analysis processing to the individual nodes where the data is held.

Other forms of analysis are less time-critical and might require some computation and aggregation after the raw
data has been received. This is called warm analysis. Performance analysis often falls into this category. In this
case, an isolated, single performance event is unlikely to be statistically significant. (It might be caused by a
sudden spike or glitch.) The data from a series of events should provide a more reliable picture of system
performance.

Warm analysis can also be used to help diagnose health issues. A health event is typically processed through hot
analysis and can raise an alert immediately. An operator should be able to drill into the reasons for the health
event by examining the data from the warm path. This data should contain information about the events leading

Correlating dataCorrelating data

Troubleshooting and diagnosing issuesTroubleshooting and diagnosing issues

up to the issue that caused the health event.

Some types of monitoring generate more long-term data. This analysis can be performed at a later date, possibly
according to a predefined schedule. In some cases, the analysis might need to perform complex filtering of large
volumes of data captured over a period of time. This is called cold analysis. The key requirement is that the data is
stored safely after it has been captured. For example, usage monitoring and auditing require an accurate picture
of the state of the system at regular points in time, but this state information does not have to be available for
processing immediately after it has been gathered.

An operator can also use cold analysis to provide the data for predictive health analysis. The operator can gather
historical information over a specified period and use it in conjunction with the current health data (retrieved
from the hot path) to spot trends that might soon cause health issues. In these cases, it might be necessary to
raise an alert so that corrective action can be taken.

The data that instrumentation captures can provide a snapshot of the system state, but the purpose of analysis is
to make this data actionable. For example:

What has caused an intense I/O loading at the system level at a specific time?
Is it the result of a large number of database operations?
Is this reflected in the database response times, the number of transactions per second, and application
response times at the same juncture?

If so, one remedial action that might reduce the load might be to shard the data over more servers. In addition,
exceptions can arise as a result of a fault in any level of the system. An exception in one level often triggers
another fault in the level above.

For these reasons, you need to be able to correlate the different types of monitoring data at each level to produce
an overall view of the state of the system and the applications that are running on it. You can then use this
information to make decisions about whether the system is functioning acceptably or not, and determine what
can be done to improve the quality of the system.

As described in the section Information for correlating data, you must ensure that the raw instrumentation data
includes sufficient context and activity ID information to support the required aggregations for correlating events.
Additionally, this data might be held in different formats, and it might be necessary to parse this information to
convert it into a standardized format for analysis.

Diagnosis requires the ability to determine the cause of faults or unexpected behavior, including performing root
cause analysis. The information that's required typically includes:

Detailed information from event logs and traces, either for the entire system or for a specified subsystem
during a specified time window.
Complete stack traces resulting from exceptions and faults of any specified level that occur within the system
or a specified subsystem during a specified period.
Crash dumps for any failed processes either anywhere in the system or for a specified subsystem during a
specified time window.
Activity logs recording the operations that are performed either by all users or for selected users during a
specified period.

Analyzing data for troubleshooting purposes often requires a deep technical understanding of the system
architecture and the various components that compose the solution. As a result, a large degree of manual
intervention is often required to interpret the data, establish the cause of problems, and recommend an
appropriate strategy to correct them. It might be appropriate simply to store a copy of this information in its
original format and make it available for cold analysis by an expert.

Visualizing data and raising alerts

Visualization by using dashboardsVisualization by using dashboards

NOTENOTE

Raising alertsRaising alerts

An important aspect of any monitoring system is the ability to present the data in such a way that an operator can
quickly spot any trends or problems. Also important is the ability to quickly inform an operator if a significant
event has occurred that might require attention.

Data presentation can take several forms, including visualization by using dashboards, alerting, and reporting.

The most common way to visualize data is to use dashboards that can display information as a series of charts,
graphs, or some other illustration. These items can be parameterized, and an analyst should be able to select the
important parameters (such as the time period) for any specific situation.

Dashboards can be organized hierarchically. Top-level dashboards can give an overall view of each aspect of the
system but enable an operator to drill down to the details. For example, a dashboard that depicts the overall disk
I/O for the system should allow an analyst to view the I/O rates for each individual disk to ascertain whether one
or more specific devices account for a disproportionate volume of traffic. Ideally, the dashboard should also
display related information, such as the source of each request (the user or activity) that's generating this I/O. This
information can then be used to determine whether (and how) to spread the load more evenly across devices, and
whether the system would perform better if more devices were added.

A dashboard might also use color-coding or some other visual cues to indicate values that appear anomalous or
that are outside an expected range. Using the previous example:

A disk with an I/O rate that's approaching its maximum capacity over an extended period (a hot disk) can be
highlighted in red.
A disk with an I/O rate that periodically runs at its maximum limit over short periods (a warm disk) can be
highlighted in yellow.
A disk that's exhibiting normal usage can be displayed in green.

Note that for a dashboard system to work effectively, it must have the raw data to work with. If you are building
your own dashboard system, or using a dashboard developed by another organization, you must understand
which instrumentation data you need to collect, at what levels of granularity, and how it should be formatted for
the dashboard to consume.

A good dashboard does not only display information, it also enables an analyst to pose ad hoc questions about
that information. Some systems provide management tools that an operator can use to perform these tasks and
explore the underlying data. Alternatively, depending on the repository that's used to hold this information, it
might be possible to query this data directly, or import it into tools such as Microsoft Excel for further analysis
and reporting.

You should restrict access to dashboards to authorized personnel, because this information might be commercially sensitive.
You should also protect the underlying data for dashboards to prevent users from changing it.

Alerting is the process of analyzing the monitoring and instrumentation data and generating a notification if a
significant event is detected.

Alerting helps ensure that the system remains healthy, responsive, and secure. It's an important part of any
system that makes performance, availability, and privacy guarantees to the users where the data might need to be
acted on immediately. An operator might need to be notified of the event that triggered the alert. Alerting can
also be used to invoke system functions such as autoscaling.

ReportingReporting

Related patterns and guidance

Alerting usually depends on the following instrumentation data:

Security events. If the event logs indicate that repeated authentication and/or authorization failures are
occurring, the system might be under attack and an operator should be informed.
Performance metrics. The system must quickly respond if a particular performance metric exceeds a
specified threshold.
Availability information. If a fault is detected, it might be necessary to quickly restart one or more
subsystems, or fail over to a backup resource. Repeated faults in a subsystem might indicate more serious
concerns.

Operators might receive alert information by using many delivery channels such as email, a pager device, or an
SMS text message. An alert might also include an indication of how critical a situation is. Many alerting systems
support subscriber groups, and all operators who are members of the same group can receive the same set of
alerts.

An alerting system should be customizable, and the appropriate values from the underlying instrumentation data
can be provided as parameters. This approach enables an operator to filter data and focus on those thresholds or
combinations of values that are of interest. Note that in some cases, the raw instrumentation data can be
provided to the alerting system. In other situations, it might be more appropriate to supply aggregated data. (For
example, an alert can be triggered if the CPU utilization for a node has exceeded 90 percent over the last 10
minutes). The details provided to the alerting system should also include any appropriate summary and context
information. This data can help reduce the possibility that false-positive events will trip an alert.

Reporting is used to generate an overall view of the system. It might incorporate historical data in addition to
current information. Reporting requirements themselves fall into two broad categories: operational reporting and
security reporting.

Operational reporting typically includes the following aspects:

Aggregating statistics that you can use to understand resource utilization of the overall system or specified
subsystems during a specified time window.
Identifying trends in resource usage for the overall system or specified subsystems during a specified period.
Monitoring the exceptions that have occurred throughout the system or in specified subsystems during a
specified period.
Determining the efficiency of the application in terms of the deployed resources, and understanding whether
the volume of resources (and their associated cost) can be reduced without affecting performance
unnecessarily.

Security reporting is concerned with tracking customers' use of the system. It can include:

Auditing user operations. This requires recording the individual requests that each user performs, together
with dates and times. The data should be structured to enable an administrator to quickly reconstruct the
sequence of operations that a user performs over a specified period.
Tracking resource use by user. This requires recording how each request for a user accesses the various
resources that compose the system, and for how long. An administrator must be able to use this data to
generate a utilization report by user over a specified period, possibly for billing purposes.

In many cases, batch processes can generate reports according to a defined schedule. (Latency is not normally an
issue.) But they should also be available for generation on an ad hoc basis if needed. As an example, if you are
storing data in a relational database such as Azure SQL Database, you can use a tool such as SQL Server
Reporting Services to extract and format data and present it as a set of reports.

More information

Autoscaling guidance describes how to decrease management overhead by reducing the need for an operator
to continually monitor the performance of a system and make decisions about adding or removing resources.
Health Endpoint Monitoring pattern describes how to implement functional checks within an application that
external tools can access through exposed endpoints at regular intervals.
Priority Queue pattern shows how to prioritize queued messages so that urgent requests are received and can
be processed before less urgent messages.

Monitor, diagnose, and troubleshoot Microsoft Azure Storage
Azure: Telemetry Basics and Troubleshooting
Enabling Diagnostics in Azure Cloud Services and Virtual Machines
Azure Redis Cache, Azure Cosmos DB, and HDInsight
How to use Service Bus queues
SQL Server business intelligence in Azure Virtual Machines
Receive alert notifications and Track service health
Application Insights

https://docs.microsoft.com/azure/storage/storage-monitoring-diagnosing-troubleshooting
https://social.technet.microsoft.com/wiki/contents/articles/18146.windows-azure-telemetry-basics-and-troubleshooting.aspx
https://docs.microsoft.com/azure/cloud-services/cloud-services-dotnet-diagnostics
https://azure.microsoft.com/services/cache/
https://azure.microsoft.com/services/cosmos-db/
https://azure.microsoft.com/services/hdinsight/
https://docs.microsoft.com/azure/service-bus-messaging/service-bus-dotnet-get-started-with-queues
https://docs.microsoft.com/azure/virtual-machines/windows/sqlclassic/virtual-machines-windows-classic-ps-sql-bi
https://docs.microsoft.com/azure/monitoring-and-diagnostics/insights-receive-alert-notifications
https://docs.microsoft.com/azure/monitoring-and-diagnostics/insights-service-health
https://docs.microsoft.com/azure/application-insights/app-insights-overview

Naming conventions for Azure resources
3/13/2019 • 9 minutes to read • Edit Online

Naming subscriptions

COMPANY DEPARTMENT
PRODUCT LINE OR
SERVICE ENVIRONMENT FULL NAME

Contoso SocialGaming AwesomeService Production Contoso
SocialGaming
AwesomeService
Production

Contoso SocialGaming AwesomeService Dev Contoso
SocialGaming
AwesomeService Dev

This article is a summary of the naming rules and restrictions for Azure resources and a baseline set of
recommendations for naming conventions. You can use these recommendations as a starting point for your own
conventions specific to your needs.

The choice of a name for any resource in Microsoft Azure is important because:

It is difficult to change a name later.
Names must meet the requirements of their specific resource type.

Consistent naming conventions make resources easier to locate. They can also indicate the role of a resource in a
solution.

The key to success with naming conventions is establishing and following them across your applications and
organizations.

When naming Azure subscriptions, verbose names make understanding the context and purpose of each
subscription clear. When working in an environment with many subscriptions, following a shared naming
convention can improve clarity.

A recommended pattern for naming subscriptions is:

<Company> <Department (optional)> <Product Line (optional)> <Environment>

Company would usually be the same for each subscription. However, some companies may have child
companies within the organizational structure. These companies may be managed by a central IT group. In
these cases, they could be differentiated by having both the parent company name (Contoso) and child
company name (Northwind).
Department is a name within the organization that contains a group of individuals. This item within the
namespace is optional.
Product line is a specific name for a product or function that is performed from within the department. This is
generally optional for internal-facing services and applications. However, it is highly recommended to use for
public-facing services that require easy separation and identification (such as for clear separation of billing
records).
Environment is the name that describes the deployment lifecycle of the applications or services, such as Dev,
QA, or Prod.

https://github.com/mspnp/architecture-center/blob/master/docs/best-practices/naming-conventions.md

Contoso IT InternalApps Production Contoso IT
InternalApps
Production

Contoso IT InternalApps Dev Contoso IT
InternalApps Dev

COMPANY DEPARTMENT
PRODUCT LINE OR
SERVICE ENVIRONMENT FULL NAME

Use affixes to avoid ambiguity

ASPECT EXAMPLE NOTES

Environment dev, prod, QA Identifies the environment for the
resource

Location uw (US West), ue (US East) Identifies the region into which the
resource is deployed

Instance 1, 2, ... For resources that have more than one
named instance such as VMs or NICs.

Product or Service service Identifies the product, application, or
service that the resource supports

Role sql, web, messaging Identifies the role of the associated
resource

Naming rules and restrictions

For more information on how to organize subscriptions for larger enterprises, see Azure enterprise scaffold -
prescriptive subscription governance.

When naming resources in Azure, it is recommended to use common prefixes or suffixes to identify the type and
context of the resource. While all the information about type, metadata, context, is available programmatically,
applying common affixes simplifies visual identification. When incorporating affixes into your naming convention,
it is important to clearly specify whether the affix is at the beginning of the name (prefix) or at the end (suffix).

For instance, here are two possible names for a service hosting a calculation engine:

SvcCalculationEngine (prefix)
CalculationEngineSvc (suffix)

Affixes can refer to different aspects that describe the particular resources. The following table shows some
examples typically used.

When developing a specific naming convention for your company or projects, it is important to choose a common
set of affixes and their position (suffix or prefix).

Each resource or service type in Azure enforces a set of naming restrictions and scope; any naming convention or
pattern must adhere to the requisite naming rules and scope. For example, while the name of a VM maps to a
DNS name (and is thus required to be unique across all of Azure), the name of a VNET is scoped to the Resource
Group that it is created within.

In general, avoid having any special characters (- or _) as the first or last character in any name. These

https://docs.microsoft.com/azure/architecture/cloud-adoption/appendix/azure-scaffold

GeneralGeneral

ENTITY SCOPE LENGTH CASING
VALID
CHARACTERS

SUGGESTED
PATTERN EXAMPLE

Resource
Group

Subscription 1-90 Case
insensitive

Alphanumeric,
underscore,
parentheses,
hyphen,
period (except
at end), and
Unicode
characters
that match
the regex
documented
here.

<service short
name>-
<environment>-
rg

profx-prod-
rg

Availability Set Resource
Group

1-80 Case
insensitive

Alphanumeric,
underscore,
and hyphen

<service-
short-
name>-
<context>-
as

profx-sql-
as

Tag Associated
Entity

512 (name),
256 (value)

Case
insensitive

Alphanumeric,
special
characters
except < , >

, % , & , \ ,
? , / . See

limitations
here.

"key" :
"value"

"department"
: "Central
IT"

ComputeCompute

ENTITY SCOPE LENGTH CASING
VALID
CHARACTERS

SUGGESTED
PATTERN EXAMPLE

Virtual
Machine

Resource
Group

1-15
(Windows), 1-
64 (Linux)

Case
insensitive

Alphanumeric
and hyphen

<name>-
<role>-
vm<number>

profx-sql-
vm1

Function App Global 1-60 Case
insensitive

Alphanumeric
and hyphen

<name>-func calcprofit-
func

NOTENOTE

StorageStorage

characters will cause most validation rules to fail.

Virtual machines in Azure have two distinct names: virtual machine name, and host name. When you create a VM in the
portal, the same name is used for both the host name, and the virtual machine resource name. The restrictions above are for
the host name. The actual resource name can have up to 64 characters.

https://docs.microsoft.com/rest/api/resources/resourcegroups/createorupdate
https://docs.microsoft.com/azure/azure-resource-manager/resource-group-using-tags

ENTITY SCOPE LENGTH CASING
VALID
CHARACTERS

SUGGESTED
PATTERN EXAMPLE

Storage
account name
(data)

Global 3-24 Lowercase Alphanumeric <globally
unique
name>
<number>

(use a
function to
calculate a
unique guid
for naming
storage
accounts)

profxdata001

Storage
account name
(disks)

Global 3-24 Lowercase Alphanumeric <vm name without
hyphens>st<number>

profxsql001st0

Container
name

Storage
account

3-63 Lowercase Alphanumeric
and hyphen

<context> logs

Blob name Container 1-1024 Case sensitive Any URL
characters

<variable
based on
blob usage>

<variable
based on
blob usage>

Queue name Storage
account

3-63 Lowercase Alphanumeric
and hyphen

<service
short
name>-
<context>-
<num>

awesomeservice-
messages-001

Table name Storage
account

3-63 Case
insensitive

Alphanumeric <service
short name>
<context>

awesomeservicelogs

File name Storage
account

3-63 Lowercase Alphanumeric <variable
based on
blob usage>

<variable
based on
blob usage>

Data Lake
Store

Global 3-24 Lowercase Alphanumeric <name>dls telemetrydls

NetworkingNetworking

ENTITY SCOPE LENGTH CASING
VALID
CHARACTERS

SUGGESTED
PATTERN EXAMPLE

Virtual
Network
(VNet)

Resource
Group

2-64 Case
insensitive

Alphanumeric,
hyphen,
underscore,
and period

<service
short
name>-vnet

profx-vnet

Subnet Parent VNet 2-80 Case
insensitive

Alphanumeric,
hyphen,
underscore,
and period

<descriptive
context>

web

Network
Interface

Resource
Group

1-80 Case
insensitive

Alphanumeric,
hyphen,
underscore,
and period

<vmname>-
nic<num>

profx-sql1-
vm1-nic1

Network
Security
Group

Resource
Group

1-80 Case
insensitive

Alphanumeric,
hyphen,
underscore,
and period

<service
short
name>-
<context>-
nsg

profx-app-
nsg

Network
Security
Group Rule

Resource
Group

1-80 Case
insensitive

Alphanumeric,
hyphen,
underscore,
and period

<descriptive
context>

sql-allow

Public IP
Address

Resource
Group

1-80 Case
insensitive

Alphanumeric,
hyphen,
underscore,
and period

<vm or
service
name>-pip

profx-sql1-
vm1-pip

Load Balancer Resource
Group

1-80 Case
insensitive

Alphanumeric,
hyphen,
underscore,
and period

<service or
role>-lb

profx-lb

Load Balanced
Rules Config

Load Balancer 1-80 Case
insensitive

Alphanumeric,
hyphen,
underscore,
and period

<descriptive
context>

http

Azure
Application
Gateway

Resource
Group

1-80 Case
insensitive

Alphanumeric,
hyphen,
underscore,
and period

<service or
role>-agw

profx-agw

Traffic
Manager
Profile

Resource
Group

1-63 Case
insensitive

Alphanumeric,
hyphen, and
period

<descriptive
context>

app1

ENTITY SCOPE LENGTH CASING
VALID
CHARACTERS

SUGGESTED
PATTERN EXAMPLE

ContainersContainers

ENTITY SCOPE LENGTH CASING
VALID
CHARACTERS

SUGGESTED
PATTERN EXAMPLE

Container
Registry

Global 5-50 Case
insensitive

Alphanumeric <service
short
name>registry

app1registry

Service BusService Bus

ENTITY SCOPE LENGTH CASING
VALID
CHARACTERS

SUGGESTED
PATTERN EXAMPLE

Service Bus
Namespace

Global 6-50 Case
insensitive

Alphanumeric,
hyphen, must
start with
leter; see here
for details.

<service
short
name>-bus

app1-bus

ENTITY SCOPE LENGTH CASING
VALID
CHARACTERS

SUGGESTED
PATTERN EXAMPLE

Organize resources with tags

TIPTIP

TIPTIP

TAG NAME KEY EXAMPLE COMMENT

Bill To / Internal Chargeback
ID

billTo IT-Chargeback-1234 An internal I/O or billing
code

Operator or Directly
Responsible Individual (DRI)

managedBy joe@contoso.com Alias or email address

Project Name projectName myproject Name of the project or
product line

Project Version projectVersion 3.4 Version of the project or
product line

The Azure Resource Manager supports tagging entities with arbitrary text strings to identify context and
streamline automation. For example, the tag "sqlVersion"="sql2014ee" could identify VMs running SQL Server
2014 Enterprise Edition. Tags should be used to augment and enhance context along side of the naming
conventions chosen.

One other advantage of tags is that tags span resource groups, allowing you to link and correlate entities across disparate
deployments.

Each resource or resource group can have a maximum of 15 tags. The tag name is limited to 512 characters, and
the tag value is limited to 256 characters.

For more information on resource tagging, refer to Using tags to organize your Azure resources.

Some of the common tagging use cases are:

Billing. Grouping resources and associating them with billing or charge back codes.
Service Context Identification. Identify groups of resources across Resource Groups for common
operations and grouping.
Access Control and Security Context. Administrative role identification based on portfolio, system, service,
app, instance, etc.

Tag early, tag often. Better to have a baseline tagging scheme in place and adjust over time rather than having to retrofit
after the fact.

An example of some common tagging approaches:

https://docs.microsoft.com/rest/api/servicebus/create-namespace
https://docs.microsoft.com/azure/azure-resource-manager/resource-group-using-tags/

Environment environment <Production, Staging,
QA >

Environmental identifier

Tier tier Front End, Back End,
Data

Tier or role/context
identification

Data Profile dataProfile Public, Confidential,
Restricted, Internal

Sensitivity of data stored in
the resource

TAG NAME KEY EXAMPLE COMMENT

Tips and tricks

Virtual machinesVirtual machines

Storage accounts and storage entitiesStorage accounts and storage entities

TIPTIP

Some types of resources may require additional care on naming and conventions.

Especially in larger topologies, carefully naming virtual machines streamlines identifying the role and purpose of
each machine, and enabling more predictable scripting.

There are two primary use cases for storage accounts: backing disks for VMs, and storing data in blobs, queues
and tables. Storage accounts used for VM disks should follow the naming convention of associating them with the
parent VM name (and with the potential need for multiple storage accounts for high-end VM SKUs, also apply a
number suffix).

Storage accounts - whether for data or disks - should follow a naming convention that allows for multiple storage accounts
to be leveraged (i.e. always using a numeric suffix).

It's possible to configure a custom domain name for accessing blob data in your Azure Storage account. The
default endpoint for the Blob service is https://<name>.blob.core.windows.net .

But if you map a custom domain (such as www.contoso.com) to the blob endpoint for your storage account, you can
also access blob data in your storage account by using that domain. For example, with a custom domain name,
https://mystorage.blob.core.windows.net/mycontainer/myblob could be accessed as
https://www.contoso.com/mycontainer/myblob .

For more information about configuring this feature, refer to Configure a custom domain name for your Blob
storage endpoint.

For more information on naming blobs, containers and tables, refer to the following list:

Naming and Referencing Containers, Blobs, and Metadata
Naming Queues and Metadata
Naming Tables

A blob name can contain any combination of characters, but reserved URL characters must be properly escaped.
Avoid blob names that end with a period (.), a forward slash (/), or a sequence or combination of the two. By
convention, the forward slash is the virtual directory separator. Do not use a backward slash (\) in a blob name.
The client APIs may allow it, but then fail to hash properly, and the signatures will not match.

It is not possible to modify the name of a storage account or container after it has been created. If you want to use
a new name, you must delete it and create a new one.

https://docs.microsoft.com/azure/storage/storage-custom-domain-name/
https://msdn.microsoft.com/library/dd135715.aspx
https://msdn.microsoft.com/library/dd179349.aspx
https://msdn.microsoft.com/library/azure/dd179338.aspx

TIPTIP
We recommend that you establish a naming convention for all storage accounts and types before embarking on the
development of a new service or application.

Transient fault handling
3/13/2019 • 19 minutes to read • Edit Online

Why do transient faults occur in the cloud?

Challenges

All applications that communicate with remote services and resources must be sensitive to transient faults. This is
especially the case for applications that run in the cloud, where the nature of the environment and connectivity
over the Internet means these types of faults are likely to be encountered more often. Transient faults include the
momentary loss of network connectivity to components and services, the temporary unavailability of a service, or
timeouts that arise when a service is busy. These faults are often self-correcting, and if the action is repeated after
a suitable delay it is likely succeed.

This document covers general guidance for transient fault handling. For information about handling transient
faults when using Microsoft Azure services, see Azure service-specific retry guidelines.

Transient faults can occur in any environment, on any platform or operating system, and in any kind of application.
In solutions that run on local, on-premises infrastructure, performance and availability of the application and its
components is typically maintained through expensive and often under-used hardware redundancy, and
components and resources are located close to each another. While this makes a failure less likely, it can still result
in transient faults - and even an outage through unforeseen events such as external power supply or network
issues, or other disaster scenarios.

Cloud hosting, including private cloud systems, can offer a higher overall availability by using shared resources,
redundancy, automatic failover, and dynamic resource allocation across a huge number of commodity compute
nodes. However, the nature of these environments can mean that transient faults are more likely to occur. There
are several reasons for this:

Many resources in a cloud environment are shared, and access to these resources is subject to throttling in
order to protect the resource. Some services will refuse connections when the load rises to a specific level,
or a maximum throughput rate is reached, in order to allow processing of existing requests and to maintain
performance of the service for all users. Throttling helps to maintain the quality of service for neighbors
and other tenants using the shared resource.

Cloud environments are built using vast numbers of commodity hardware units. They deliver performance
by dynamically distributing the load across multiple computing units and infrastructure components, and
deliver reliability by automatically recycling or replacing failed units. This dynamic nature means that
transient faults and temporary connection failures may occasionally occur.

There are often more hardware components, including network infrastructure such as routers and load
balancers, between the application and the resources and services it uses. This additional infrastructure can
occasionally introduce additional connection latency and transient connection faults.

Network conditions between the client and the server may be variable, especially when communication
crosses the Internet. Even in on-premises locations, very heavy traffic loads may slow communication and
cause intermittent connection failures.

Transient faults can have a huge effect on the perceived availability of an application, even if it has been thoroughly
tested under all foreseeable circumstances. To ensure that cloud-hosted applications operate reliably, they must be
able to respond to the following challenges:

https://github.com/mspnp/architecture-center/blob/master/docs/best-practices/transient-faults.md

General guidelines

The application must be able to detect faults when they occur, and determine if these faults are likely to be
transient, more long-lasting, or are terminal failures. Different resources are likely to return different
responses when a fault occurs, and these responses may also vary depending on the context of the
operation; for example, the response for an error when reading from storage may be different from
response for an error when writing to storage. Many resources and services have well-documented
transient failure contracts. However, where such information is not available, it may be difficult to discover
the nature of the fault and whether it is likely to be transient.

The application must be able to retry the operation if it determines that the fault is likely to be transient and
keep track of the number of times the operation was retried.

The application must use an appropriate strategy for the retries. This strategy specifies the number of times
it should retry, the delay between each attempt, and the actions to take after a failed attempt. The
appropriate number of attempts and the delay between each one are often difficult to determine, and vary
based on the type of resource as well as the current operating conditions of the resource and the
application itself.

The following guidelines will help you to design a suitable transient fault handing mechanism for your
applications:

Determine if there is a built-in retry mechanism:

Many services provide an SDK or client library that contains a transient fault handling mechanism.
The retry policy it uses is typically tailored to the nature and requirements of the target service.
Alternatively, REST interfaces for services may return information that is useful in determining
whether a retry is appropriate, and how long to wait before the next retry attempt.

Use the built-in retry mechanism where one is available unless you have specific and well-
understood requirements that mean a different retry behavior is more appropriate.

Determine if the operation is suitable for retrying:

You should only retry operations where the faults are transient (typically indicated by the nature of
the error), and if there is at least some likelihood that the operation will succeed when reattempted.
There is no point in reattempting operations that indicate an invalid operation such as a database
update to an item that does not exist, or requests to a service or resource that has suffered a fatal
error

In general, you should implement retries only where the full impact of this can be determined, and
the conditions are well understood and can be validated. If not, leave it to the calling code to
implement retries. Remember that the errors returned from resources and services outside your
control may evolve over time, and you may need to revisit your transient fault detection logic.

When you create services or components, consider implementing error codes and messages that will
help clients determine whether they should retry failed operations. In particular, indicate if the client
should retry the operation (perhaps by returning an isTransient value) and suggest a suitable delay
before the next retry attempt. If you build a web service, consider returning custom errors defined
within your service contracts. Even though generic clients may not be able to read these, they will be
useful when building custom clients.

Determine an appropriate retry count and interval:

It is vital to optimize the retry count and the interval to the type of use case. If you do not retry a
sufficient number of times, the application will be unable to complete the operation and is likely to
experience a failure. If you retry too many times, or with too short an interval between tries, the

application can potentially hold resources such as threads, connections, and memory for long
periods, which will adversely affect the health of the application.

The appropriate values for the time interval and the number of retry attempts depend on the type of
operation being attempted. For example, if the operation is part of a user interaction, the interval
should be short and only a few retries attempted to avoid making users wait for a response (which
holds open connections and can reduce availability for other users). If the operation is part of a long
running or critical workflow, where cancelling and restarting the process is expensive or time-
consuming, it is appropriate to wait longer between attempts and retry more times.

Determining the appropriate intervals between retries is the most difficult part of designing a
successful strategy. Typical strategies use the following types of retry interval:

Exponential back-off. The application waits a short time before the first retry, and then
exponentially increasing times between each subsequent retry. For example, it may retry the
operation after 3 seconds, 12 seconds, 30 seconds, and so on.

Incremental intervals. The application waits a short time before the first retry, and then
incrementally increasing times between each subsequent retry. For example, it may retry the
operation after 3 seconds, 7 seconds, 13 seconds, and so on.

Regular intervals. The application waits for the same period of time between each attempt.
For example, it may retry the operation every 3 seconds.

Immediate retry. Sometimes a transient fault is extremely short, perhaps caused by an event
such as a network packet collision or a spike in a hardware component. In this case, retrying
the operation immediately is appropriate because it may succeed if the fault has cleared in the
time it takes the application to assemble and send the next request. However, there should
never be more than one immediate retry attempt, and you should switch to alternative
strategies, such as such as exponential back-off or fallback actions, if the immediate retry fails.

Randomization. Any of the retry strategies listed above may include a randomization to
prevent multiple instances of the client sending subsequent retry attempts at the same time.
For example, one instance may retry the operation after 3 seconds, 11 seconds, 28 seconds,
and so on while another instance may retry the operation after 4 seconds, 12 seconds, 26
seconds, and so on. Randomization is a useful technique that may be combined with other
strategies.

As a general guideline, use an exponential back-off strategy for background operations, and
immediate or regular interval retry strategies for interactive operations. In both cases, you should
choose the delay and the retry count so that the maximum latency for all retry attempts is within the
required end-to-end latency requirement.

Take into account the combination of all the factors that contribute to the overall maximum timeout
for a retried operation. These factors include the time taken for a failed connection to produce a
response (typically set by a timeout value in the client) as well as the delay between retry attempts
and the maximum number of retries. The total of all these times can result in very large overall
operation times, especially when using an exponential delay strategy where the interval between
retries grows rapidly after each failure. If a process must meet a specific service level agreement
(SLA), the overall operation time, including all timeouts and delays, must be within that defined in
the SLA.

Over-aggressive retry strategies, which have too short intervals or too many retries, can have an
adverse effect on the target resource or service. This may prevent the resource or service from
recovering from its overloaded state, and it will continue to block or refuse requests. This results in a
vicious circle where more and more requests are sent to the resource or service, and consequently its

ability to recover is further reduced.

Take into account the timeout of the operations when choosing the retry intervals to avoid launching
a subsequent attempt immediately (for example, if the timeout period is similar to the retry interval).
Also consider if you need to keep the total possible period (the timeout plus the retry intervals) to
below a specific total time. Operations that have unusually short or very long timeouts may
influence how long to wait, and how often to retry the operation.

Use the type of the exception and any data it contains, or the error codes and messages returned
from the service, to optimize the interval and the number of retries. For example, some exceptions or
error codes (such as the HTTP code 503 Service Unavailable with a Retry-After header in the
response) may indicate how long the error might last, or that the service has failed and will not
respond to any subsequent attempt.

Avoid anti-patterns:

In the vast majority of cases, you should avoid implementations that include duplicated layers of
retry code. Avoid designs that include cascading retry mechanisms, or that implement retry at every
stage of an operation that involves a hierarchy of requests, unless you have specific requirements
that demand this. In these exceptional circumstances, use policies that prevent excessive numbers of
retries and delay periods, and make sure you understand the consequences. For example, if one
component makes a request to another, which then accesses the target service, and you implement
retry with a count of three on both calls there will be nine retry attempts in total against the service.
Many services and resources implement a built-in retry mechanism and you should investigate how
you can disable or modify this if you need to implement retries at a higher level.

Never implement an endless retry mechanism. This is likely to prevent the resource or service
recovering from overload situations, and cause throttling and refused connections to continue for a
longer period. Use a finite number or retries, or implement a pattern such as Circuit Breaker to allow
the service to recover.

Never perform an immediate retry more than once.

Avoid using a regular retry interval, especially when you have a large number of retry attempts,
when accessing services and resources in Azure. The optimum approach is this scenario is an
exponential back-off strategy with a circuit-breaking capability.

Prevent multiple instances of the same client, or multiple instances of different clients, from sending
retries at the same times. If this is likely to occur, introduce randomization into the retry intervals.

Test your retry strategy and implementation:

Ensure you fully test your retry strategy implementation under as wide a set of circumstances as
possible, especially when both the application and the target resources or services it uses are under
extreme load. To check behavior during testing, you can:

Inject transient and non-transient faults into the service. For example, send invalid requests or
add code that detects test requests and responds with different types of errors. For an
example using TestApi, see Fault Injection Testing with TestApi and Introduction to TestApi –
Part 5: Managed Code Fault Injection APIs.

Create a mock of the resource or service that returns a range of errors that the real service
may return. Ensure you cover all the types of error that your retry strategy is designed to
detect.

Force transient errors to occur by temporarily disabling or overloading the service if it is a
custom service that you created and deployed (you should not, of course, attempt to overload
any shared resources or shared services within Azure).

https://msdn.microsoft.com/magazine/ff898404.aspx
https://blogs.msdn.microsoft.com/ivo_manolov/2009/11/25/introduction-to-testapi-part-5-managed-code-fault-injection-apis/

For HTTP-based APIs, consider using the FiddlerCore library in your automated tests to
change the outcome of HTTP requests, either by adding extra roundtrip times or by changing
the response (such as the HTTP status code, headers, body, or other factors). This enables
deterministic testing of a subset of the failure conditions, whether transient faults or other
types of failure. For more information, see FiddlerCore. For examples of how to use the
library, particularly the HttpMangler class, examine the source code for the Azure Storage
SDK.

Perform high load factor and concurrent tests to ensure that the retry mechanism and
strategy works correctly under these conditions, and does not have an adverse effect on the
operation of the client or cause cross-contamination between requests.

Manage retry policy configurations:

A retry policy is a combination of all of the elements of your retry strategy. It defines the detection
mechanism that determines whether a fault is likely to be transient, the type of interval to use (such
as regular, exponential back-off, and randomization), the actual interval value(s), and the number of
times to retry.

Retries must be implemented in many places within even the simplest application, and in every layer
of more complex applications. Rather than hard-coding the elements of each policy at multiple
locations, consider using a central point for storing all the policies. For example, store the values such
as the interval and retry count in application configuration files, read them at runtime, and
programmatically build the retry policies. This makes it easier to manage the settings, and to modify
and fine tune the values in order to respond to changing requirements and scenarios. However,
design the system to store the values rather than rereading a configuration file every time, and
ensure suitable defaults are used if the values cannot be obtained from configuration.

In an Azure Cloud Services application, consider storing the values that are used to build the retry
policies at runtime in the service configuration file so that they can be changed without needing to
restart the application.

Take advantage of built-in or default retry strategies available in the client APIs you use, but only
where they are appropriate for your scenario. These strategies are typically general-purpose. In some
scenarios they may be all that is required, but in other scenarios they may not offer the full range of
options to suit your specific requirements. You must understand how the settings will affect your
application through testing to determine the most appropriate values.

Log and track transient and non-transient faults:

As part of your retry strategy, include exception handling and other instrumentation that logs when
retry attempts are made. While an occasional transient failure and retry are to be expected, and do
not indicate a problem, regular and increasing numbers of retries are often an indicator of an issue
that may cause a failure, or is currently degrading application performance and availability.

Log transient faults as Warning entries rather than Error entries so that monitoring systems do not
detect them as application errors that may trigger false alerts.

Consider storing a value in your log entries that indicates if the retries were caused by throttling in
the service, or by other types of faults such as connection failures, so that you can differentiate them
during analysis of the data. An increase in the number of throttling errors is often an indicator of a
design flaw in the application or the need to switch to a premium service that offers dedicated
hardware.

Consider measuring and logging the overall time taken for operations that include a retry
mechanism. This is a good indicator of the overall effect of transient faults on user response times,
process latency, and the efficiency of the application use cases. Also log the number of retries

https://www.telerik.com/fiddler/fiddlercore
https://github.com/Azure/azure-storage-net/tree/master/Test

occurred in order to understand the factors that contributed to the response time.

Consider implementing a telemetry and monitoring system that can raise alerts when the number
and rate of failures, the average number of retries, or the overall times taken for operations to
succeed, is increasing.

Manage operations that continually fail:

There will be circumstances where the operation continues to fail at every attempt, and it is vital to
consider how you will handle this situation:

Although a retry strategy will define the maximum number of times that an operation should
be retried, it does not prevent the application repeating the operation again, with the same
number of retries. For example, if an order processing service fails with a fatal error that puts
it out of action permanently, the retry strategy may detect a connection timeout and consider
it to be a transient fault. The code will retry the operation a specified number of times and
then give up. However, when another customer places an order, the operation will be
attempted again - even though it is sure to fail every time.

To prevent continual retries for operations that continually fail, consider implementing the
Circuit Breaker pattern. In this pattern, if the number of failures within a specified time
window exceeds the threshold, requests are returned to the caller immediately as errors,
without attempting to access the failed resource or service.

The application can periodically test the service, on an intermittent basis and with very long
intervals between requests, to detect when it becomes available. An appropriate interval will
depend on the scenario, such as the criticality of the operation and the nature of the service,
and might be anything between a few minutes and several hours. At the point where the test
succeeds, the application can resume normal operations and pass requests to the newly
recovered service.

In the meantime, it may be possible to fall back to another instance of the service (perhaps in
a different datacenter or application), use a similar service that offers compatible (perhaps
simpler) functionality, or perform some alternative operations in the hope that the service will
become available soon. For example, it may be appropriate to store requests for the service in
a queue or data store and replay them later. Otherwise you might be able to redirect the user
to an alternative instance of the application, degrade the performance of the application but
still offer acceptable functionality, or just return a message to the user indicating that the
application is not available at present.

Other considerations

When deciding on the values for the number of retries and the retry intervals for a policy, consider if
the operation on the service or resource is part of a long-running or multi-step operation. It may be
difficult or expensive to compensate all the other operational steps that have already succeeded
when one fails. In this case, a very long interval and a large number of retries may be acceptable as
long as it does not block other operations by holding or locking scarce resources.

Consider if retrying the same operation may cause inconsistencies in data. If some parts of a multi-
step process are repeated, and the operations are not idempotent, it may result in an inconsistency.
For example, an operation that increments a value, if repeated, will produce an invalid result.
Repeating an operation that sends a message to a queue may cause an inconsistency in the message
consumer if it cannot detect duplicate messages. To prevent this, ensure that you design each step as
an idempotent operation. For more information about idempotency, see Idempotency patterns.

Consider the scope of the operations that will be retried. For example, it may be easier to implement
retry code at a level that encompasses several operations, and retry them all if one fails. However,

https://blog.jonathanoliver.com/idempotency-patterns/

More information

doing this may result in idempotency issues or unnecessary rollback operations.

If you choose a retry scope that encompasses several operations, take into account the total latency
of all of them when determining the retry intervals, when monitoring the time taken, and before
raising alerts for failures.

Consider how your retry strategy may affect neighbors and other tenants in a shared application, or
when using shared resources and services. Aggressive retry policies can cause an increasing number
of transient faults to occur for these other users and for applications that share the resources and
services. Likewise, your application may be affected by the retry policies implemented by other users
of the resources and services. For mission-critical applications, you may decide to use premium
services that are not shared. This provides you with much more control over the load and
consequent throttling of these resources and services, which can help to justify the additional cost.

Azure service-specific retry guidelines
Circuit Breaker pattern
Compensating Transaction pattern
Idempotency patterns

https://blog.jonathanoliver.com/idempotency-patterns/

Retry guidance for specific services
3/13/2019 • 40 minutes to read • Edit Online

SERVICE RETRY CAPABILITIES
POLICY
CONFIGURATION SCOPE TELEMETRY FEATURES

Azure Active
Directory

Native in ADAL
library

Embeded into ADAL
library

Internal None

Cosmos DB Native in service Non-configurable Global TraceSource

Data Lake Store Native in client Non-configurable Individual operations None

Event Hubs Native in client Programmatic Client None

IoT Hub Native in client SDK Programmatic Client None

Redis Cache Native in client Programmatic Client TextWriter

Search Native in client Programmatic Client ETW or Custom

Service Bus Native in client Programmatic Namespace Manager,
Messaging Factory,
and Client

ETW

Service Fabric Native in client Programmatic Client None

SQL Database with
ADO.NET

Polly Declarative and
programmatic

Single statements or
blocks of code

Custom

SQL Database with
Entity Framework

Native in client Programmatic Global per
AppDomain

None

SQL Database with
Entity Framework
Core

Native in client Programmatic Global per
AppDomain

None

Storage Native in client Programmatic Client and individual
operations

TraceSource

Most Azure services and client SDKs include a retry mechanism. However, these differ because each service has
different characteristics and requirements, and so each retry mechanism is tuned to a specific service. This guide
summarizes the retry mechanism features for the majority of Azure services, and includes information to help you
use, adapt, or extend the retry mechanism for that service.

For general guidance on handling transient faults, and retrying connections and operations against services and
resources, see Retry guidance.

The following table summarizes the retry features for the Azure services described in this guidance.

https://github.com/mspnp/architecture-center/blob/master/docs/best-practices/retry-service-specific.md

NOTENOTE

Azure Active Directory

NOTENOTE

Retry mechanismRetry mechanism

Retry usage guidanceRetry usage guidance

CONTEX T

SAMPLE TARGET
E2E
MAX LATENCY RETRY STRATEGY SETTINGS VALUES HOW IT WORKS

Interactive, UI,
or foreground

2 sec FixedInterval Retry count
Retry interval
First fast retry

3
500 ms
true

Attempt 1 -
delay 0 sec
Attempt 2 -
delay 500 ms
Attempt 3 -
delay 500 ms

Background or
batch

60 sec ExponentialBacko
ff

Retry count
Min back-off
Max back-off
Delta back-off
First fast retry

5
0 sec
60 sec
2 sec
false

Attempt 1 -
delay 0 sec
Attempt 2 -
delay ~2 sec
Attempt 3 -
delay ~6 sec
Attempt 4 -
delay ~14 sec
Attempt 5 -
delay ~30 sec

For most of the Azure built-in retry mechanisms, there is currently no way apply a different retry policy for different types of
error or exception. You should configure a policy that provides the optimum average performance and availability. One way
to fine-tune the policy is to analyze log files to determine the type of transient faults that are occurring.

Azure Active Directory (Azure AD) is a comprehensive identity and access management cloud solution that
combines core directory services, advanced identity governance, security, and application access management.
Azure AD also offers developers an identity management platform to deliver access control to their applications,
based on centralized policy and rules.

For retry guidance on Managed Service Identity endpoints, see How to use an Azure VM Managed Service Identity (MSI) for
token acquisition.

There is a built-in retry mechanism for Azure Active Directory in the Active Directory Authentication Library
(ADAL). To avoid unexpected lockouts, we recommend that third party libraries and application code do not retry
failed connections, but allow ADAL to handle retries.

Consider the following guidelines when using Azure Active Directory:

When possible, use the ADAL library and the built-in support for retries.
If you are using the REST API for Azure Active Directory, retry the operation if the result code is 429 (Too
Many Requests) or an error in the 5xx range. Do not retry for any other errors.
An exponential back-off policy is recommended for use in batch scenarios with Azure Active Directory.

Consider starting with the following settings for retrying operations. These are general purpose settings, and you
should monitor the operations and fine tune the values to suit your own scenario.

https://docs.microsoft.com/azure/active-directory/managed-service-identity/how-to-use-vm-token#error-handling

More informationMore information

Cosmos DB

Retry mechanismRetry mechanism

Policy configurationPolicy configuration

SETTING DEFAULT VALUE DESCRIPTION

MaxRetryAttemptsOnThrottledRequest
s

9 The maximum number of retries if the
request fails because Cosmos DB
applied rate limiting on the client.

MaxRetryWaitTimeInSeconds 30 The maximum retry time in seconds.

ExampleExample

DocumentClient client = new DocumentClient(new Uri(endpoint), authKey); ;
var options = client.ConnectionPolicy.RetryOptions;
options.MaxRetryAttemptsOnThrottledRequests = 5;
options.MaxRetryWaitTimeInSeconds = 15;

TelemetryTelemetry

Azure Active Directory Authentication Libraries

Cosmos DB is a fully-managed multi-model database that supports schema-less JSON data. It offers
configurable and reliable performance, native JavaScript transactional processing, and is built for the cloud with
elastic scale.

The DocumentClient class automatically retries failed attempts. To set the number of retries and the maximum
wait time, configure ConnectionPolicy.RetryOptions. Exceptions that the client raises are either beyond the retry
policy or are not transient errors.

If Cosmos DB throttles the client, it returns an HTTP 429 error. Check the status code in the
DocumentClientException .

The following table shows the default settings for the RetryOptions class.

Retry attempts are logged as unstructured trace messages through a .NET TraceSource. You must configure a
TraceListener to capture the events and write them to a suitable destination log.

For example, if you add the following to your App.config file, traces will be generated in a text file in the same
location as the executable:

https://docs.microsoft.com/azure/active-directory/develop/active-directory-authentication-libraries
https://msdn.microsoft.com/library/azure/microsoft.azure.documents.client.connectionpolicy.retryoptions.aspx

<configuration>
 <system.diagnostics>
 <switches>
 <add name="SourceSwitch" value="Verbose"/>
 </switches>
 <sources>
 <source name="DocDBTrace" switchName="SourceSwitch" switchType="System.Diagnostics.SourceSwitch" >
 <listeners>
 <add name="MyTextListener" type="System.Diagnostics.TextWriterTraceListener"
traceOutputOptions="DateTime,ProcessId,ThreadId" initializeData="CosmosDBTrace.txt"></add>
 </listeners>
 </source>
 </sources>
 </system.diagnostics>
</configuration>

Event Hubs

Retry mechanismRetry mechanism

ExampleExample

EventHubClient client = EventHubClient.CreateFromConnectionString("[event_hub_connection_string]");
client.RetryPolicy = RetryPolicy.Default;

More informationMore information

IoT Hub

Retry mechanismRetry mechanism

Policy configurationPolicy configuration

More informationMore information

Azure Redis Cache

Azure Event Hubs is a hyper-scale telemetry ingestion service that collects, transforms, and stores millions of
events.

Retry behavior in the Azure Event Hubs Client Library is controlled by the RetryPolicy property on the
EventHubClient class. The default policy retries with exponential backoff when Azure Event Hub returns a

transient EventHubsException or an OperationCanceledException .

.NET Standard client library for Azure Event Hubs

Azure IoT Hub is a service for connecting, monitoring, and managing devices to develop Internet of Things (IoT)
applications.

The Azure IoT device SDK can detect errors in the network, protocol, or application. Based on the error type, the
SDK checks whether a retry needs to be performed. If the error is recoverable, the SDK begins to retry using the
configured retry policy.

The default retry policy is exponential back-off with random jitter, but it can be configured.

Policy configuration differs by language. For more details, see IoT Hub retry policy configuration.

IoT Hub retry policy
Troubleshoot IoT Hub device disconnection

Azure Redis Cache is a fast data access and low latency cache service based on the popular open source Redis

https://github.com/Azure/azure-event-hubs-dotnet
https://docs.microsoft.com/azure/iot-hub/iot-hub-reliability-features-in-sdks#retry-policy-apis
https://docs.microsoft.com/azure/iot-hub/iot-hub-reliability-features-in-sdks
https://docs.microsoft.com/azure/iot-hub/iot-hub-troubleshoot-connectivity

Retry mechanismRetry mechanism

Policy configurationPolicy configuration

var deltaBackOffInMilliseconds = TimeSpan.FromSeconds(5).Milliseconds;
var maxDeltaBackOffInMilliseconds = TimeSpan.FromSeconds(20).Milliseconds;
var options = new ConfigurationOptions
{
 EndPoints = {"localhost"},
 ConnectRetry = 3,
 ReconnectRetryPolicy = new ExponentialRetry(deltaBackOffInMilliseconds, maxDeltaBackOffInMilliseconds),
 ConnectTimeout = 2000
};
ConnectionMultiplexer redis = ConnectionMultiplexer.Connect(options, writer);

var options = "localhost,connectRetry=3,connectTimeout=2000";
ConnectionMultiplexer redis = ConnectionMultiplexer.Connect(options, writer);

var conn = ConnectionMultiplexer.Connect("redis0:6380,redis1:6380,connectRetry=3");

Cache. It is secure, managed by Microsoft, and is accessible from any application in Azure.

The guidance in this section is based on using the StackExchange.Redis client to access the cache. A list of other
suitable clients can be found on the Redis website, and these may have different retry mechanisms.

Note that the StackExchange.Redis client uses multiplexing through a single connection. The recommended usage
is to create an instance of the client at application startup and use this instance for all operations against the cache.
For this reason, the connection to the cache is made only once, and so all of the guidance in this section is related
to the retry policy for this initial connection — and not for each operation that accesses the cache.

The StackExchange.Redis client uses a connection manager class that is configured through a set of options,
including:

ConnectRetry. The number of times a failed connection to the cache will be retried.
ReconnectRetryPolicy. The retry strategy to use.
ConnectTimeout. The maximum waiting time in milliseconds.

Retry policies are configured programmatically by setting the options for the client before connecting to the cache.
This can be done by creating an instance of the ConfigurationOptions class, populating its properties, and
passing it to the Connect method.

The built-in classes support linear (constant) delay and exponential backoff with randomized retry intervals. You
can also create a custom retry policy by implementing the IReconnectRetryPolicy interface.

The following example configures a retry strategy using exponential backoff.

Alternatively, you can specify the options as a string, and pass this to the Connect method. Note that the
ReconnectRetryPolicy property cannot be set this way, only through code.

You can also specify options directly when you connect to the cache.

For more information, see Stack Exchange Redis Configuration in the StackExchange.Redis documentation.

The following table shows the default settings for the built-in retry policy.

https://redis.io/clients
https://stackexchange.github.io/StackExchange.Redis/Configuration

CONTEX T SETTING
DEFAULT VALUE
(V 1.2.2) MEANING

ConfigurationOptions ConnectRetry

ConnectTimeout

SyncTimeout

ReconnectRetryPolicy

3

Maximum 5000 ms plus
SyncTimeout
1000

LinearRetry 5000 ms

The number of times to
repeat connect attempts
during the initial connection
operation.
Timeout (ms) for connect
operations. Not a delay
between retry attempts.
Time (ms) to allow for
synchronous operations.

Retry every 5000 ms.

NOTENOTE

Retry usage guidanceRetry usage guidance

TelemetryTelemetry

var writer = new StringWriter();
ConnectionMultiplexer redis = ConnectionMultiplexer.Connect(options, writer);

localhost:6379,connectTimeout=2000,connectRetry=3
1 unique nodes specified
Requesting tie-break from localhost:6379 > __Booksleeve_TieBreak...
Allowing endpoints 00:00:02 to respond...
localhost:6379 faulted: SocketFailure on PING
localhost:6379 failed to nominate (Faulted)
> UnableToResolvePhysicalConnection on GET
No masters detected
localhost:6379: Standalone v2.0.0, master; keep-alive: 00:01:00; int: Connecting; sub: Connecting; not in use:
DidNotRespond
localhost:6379: int ops=0, qu=0, qs=0, qc=1, wr=0, sync=1, socks=2; sub ops=0, qu=0, qs=0, qc=0, wr=0, socks=2
Circular op-count snapshot; int: 0 (0.00 ops/s; spans 10s); sub: 0 (0.00 ops/s; spans 10s)
Sync timeouts: 0; fire and forget: 0; last heartbeat: -1s ago
resetting failing connections to retry...
retrying; attempts left: 2...
...

ExamplesExamples

For synchronous operations, SyncTimeout can add to the end-to-end latency, but setting the value too low can cause
excessive timeouts. See How to troubleshoot Azure Redis Cache. In general, avoid using synchronous operations, and use
asynchronous operations instead. For more information see Pipelines and Multiplexers.

Consider the following guidelines when using Azure Redis Cache:

The StackExchange Redis client manages its own retries, but only when establishing a connection to the cache
when the application first starts. You can configure the connection timeout, the number of retry attempts, and
the time between retries to establish this connection, but the retry policy does not apply to operations against
the cache.
Instead of using a large number of retry attempts, consider falling back by accessing the original data source
instead.

You can collect information about connections (but not other operations) using a TextWriter.

An example of the output this generates is shown below.

https://docs.microsoft.com/azure/redis-cache/cache-how-to-troubleshoot
https://github.com/StackExchange/StackExchange.Redis/blob/master/docs/PipelinesMultiplexers.md

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using StackExchange.Redis;

namespace RetryCodeSamples
{
 class CacheRedisCodeSamples
 {
 public async static Task Samples()
 {
 var writer = new StringWriter();
 {
 try
 {
 var retryTimeInMilliseconds = TimeSpan.FromSeconds(4).Milliseconds; // delay between
retries

 // Using object-based configuration.
 var options = new ConfigurationOptions
 {
 EndPoints = { "localhost" },
 ConnectRetry = 3,
 ReconnectRetryPolicy = new LinearRetry(retryTimeInMilliseconds)
 };
 ConnectionMultiplexer redis = ConnectionMultiplexer.Connect(options, writer);

 // Store a reference to the multiplexer for use in the application.
 }
 catch
 {
 Console.WriteLine(writer.ToString());
 throw;
 }
 }
 }
 }
}

The following code example configures a constant (linear) delay between retries when initializing the
StackExchange.Redis client. This example shows how to set the configuration using a ConfigurationOptions
instance.

The next example sets the configuration by specifying the options as a string. The connection timeout is the
maximum period of time to wait for a connection to the cache, not the delay between retry attempts. Note that the
ReconnectRetryPolicy property can only be set by code.

using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using StackExchange.Redis;

namespace RetryCodeSamples
{
 class CacheRedisCodeSamples
 {
 public async static Task Samples()
 {
 var writer = new StringWriter();
 {
 try
 {
 // Using string-based configuration.
 var options = "localhost,connectRetry=3,connectTimeout=2000";
 ConnectionMultiplexer redis = ConnectionMultiplexer.Connect(options, writer);

 // Store a reference to the multiplexer for use in the application.
 }
 catch
 {
 Console.WriteLine(writer.ToString());
 throw;
 }
 }
 }
 }
}

More informationMore information

Azure Search

Retry mechanismRetry mechanism

TelemetryTelemetry

Service Bus

Retry mechanismRetry mechanism

For more examples, see Configuration on the project website.

Redis website

Azure Search can be used to add powerful and sophisticated search capabilities to a website or application,
quickly and easily tune search results, and construct rich and fine-tuned ranking models.

Retry behavior in the Azure Search SDK is controlled by the SetRetryPolicy method on the SearchServiceClient
and SearchIndexClient classes. The default policy retries with exponential backoff when Azure Search returns a
5xx or 408 (Request Timeout) response.

Trace with ETW or by registering a custom trace provider. For more information, see the AutoRest documentation.

Service Bus is a cloud messaging platform that provides loosely coupled message exchange with improved scale
and resiliency for components of an application, whether hosted in the cloud or on-premises.

Service Bus implements retries using implementations of the RetryPolicy base class. All of the Service Bus clients
expose a RetryPolicy property that can be set to one of the implementations of the RetryPolicy base class. The
built-in implementations are:

https://github.com/StackExchange/StackExchange.Redis/blob/master/docs/Configuration.md
https://redis.io/
https://msdn.microsoft.com/library/microsoft.azure.search.searchserviceclient.aspx
https://msdn.microsoft.com/library/azure/microsoft.azure.search.searchindexclient.aspx
https://github.com/Azure/autorest/tree/master/docs
https://docs.microsoft.com/dotnet/api/microsoft.servicebus.retrypolicy

Policy configurationPolicy configuration

namespaceManager.Settings.RetryPolicy = new RetryExponential(minBackoff: TimeSpan.FromSeconds(0.1),
 maxBackoff: TimeSpan.FromSeconds(30),
 maxRetryCount: 3);

messagingFactory.RetryPolicy = new RetryExponential(minBackoff: TimeSpan.FromSeconds(0.1),
 maxBackoff: TimeSpan.FromSeconds(30),
 maxRetryCount: 3);

client.RetryPolicy = new RetryExponential(minBackoff: TimeSpan.FromSeconds(0.1),
 maxBackoff: TimeSpan.FromSeconds(30),
 maxRetryCount: 3);

SETTING DEFAULT VALUE MEANING

Policy Exponential Exponential back-off.

MinimalBackoff 0 Minimum back-off interval. This is
added to the retry interval computed
from deltaBackoff.

The RetryExponential class. This exposes properties that control the back-off interval, the retry count, and
the TerminationTimeBuffer property that is used to limit the total time for the operation to complete.

The NoRetry class. This is used when retries at the Service Bus API level are not required, such as when
retries are managed by another process as part of a batch or multiple step operation.

Service Bus actions can return a range of exceptions, as listed in Service Bus messaging exceptions. The list
provides information about which if these indicate that retrying the operation is appropriate. For example, a
ServerBusyException indicates that the client should wait for a period of time, then retry the operation. The
occurrence of a ServerBusyException also causes Service Bus to switch to a different mode, in which an extra
10-second delay is added to the computed retry delays. This mode is reset after a short period.

The exceptions returned from Service Bus expose the IsTransient property that indicates if the client should retry
the operation. The built-in RetryExponential policy relies on the IsTransient property in the
MessagingException class, which is the base class for all Service Bus exceptions. If you create custom
implementations of the RetryPolicy base class you could use a combination of the exception type and the
IsTransient property to provide more fine-grained control over retry actions. For example, you could detect a
QuotaExceededException and take action to drain the queue before retrying sending a message to it.

Retry policies are set programmatically, and can be set as a default policy for a NamespaceManager and for a
MessagingFactory, or individually for each messaging client. To set the default retry policy for a messaging
session you set the RetryPolicy of the NamespaceManager.

To set the default retry policy for all clients created from a messaging factory, you set the RetryPolicy of the
MessagingFactory.

To set the retry policy for a messaging client, or to override its default policy, you set its RetryPolicy property
using an instance of the required policy class:

The retry policy cannot be set at the individual operation level. It applies to all operations for the messaging client.
The following table shows the default settings for the built-in retry policy.

https://docs.microsoft.com/dotnet/api/microsoft.servicebus.retryexponential
https://docs.microsoft.com/dotnet/api/microsoft.servicebus.noretry
https://docs.microsoft.com/azure/service-bus-messaging/service-bus-messaging-exceptions

MaximumBackoff 30 seconds Maximum back-off interval.
MaximumBackoff is used if the
computed retry interval is greater than
MaxBackoff.

DeltaBackoff 3 seconds Back-off interval between retries.
Multiples of this timespan will be used
for subsequent retry attempts.

TimeBuffer 5 seconds The termination time buffer associated
with the retry. Retry attempts will be
abandoned if the remaining time is less
than TimeBuffer.

MaxRetryCount 10 The maximum number of retries.

ServerBusyBaseSleepTime 10 seconds If the last exception encountered was
ServerBusyException, this value will
be added to the computed retry
interval. This value cannot be changed.

SETTING DEFAULT VALUE MEANING

Retry usage guidanceRetry usage guidance

CONTEX T
EXAMPLE MAXIMUM
LATENCY RETRY POLICY SETTINGS HOW IT WORKS

Interactive, UI, or
foreground

2 seconds* Exponential MinimumBackoff = 0
MaximumBackoff =
30 sec.
DeltaBackoff = 300
msec.
TimeBuffer = 300
msec.
MaxRetryCount = 2

Attempt 1: Delay 0
sec.
Attempt 2: Delay
~300 msec.
Attempt 3: Delay
~900 msec.

Background or batch 30 seconds Exponential MinimumBackoff = 1
MaximumBackoff =
30 sec.
DeltaBackoff = 1.75
sec.
TimeBuffer = 5 sec.
MaxRetryCount = 3

Attempt 1: Delay ~1
sec.
Attempt 2: Delay ~3
sec.
Attempt 3: Delay ~6
msec.
Attempt 4: Delay ~13
msec.

Consider the following guidelines when using Service Bus:

When using the built-in RetryExponential implementation, do not implement a fallback operation as the
policy reacts to Server Busy exceptions and automatically switches to an appropriate retry mode.
Service Bus supports a feature called Paired Namespaces, which implements automatic failover to a backup
queue in a separate namespace if the queue in the primary namespace fails. Messages from the secondary
queue can be sent back to the primary queue when it recovers. This feature helps to address transient failures.
For more information, see Asynchronous Messaging Patterns and High Availability.

Consider starting with following settings for retrying operations. These are general purpose settings, and you
should monitor the operations and fine tune the values to suit your own scenario.

* Not including additional delay that is added if a Server Busy response is received.

https://docs.microsoft.com/azure/service-bus-messaging/service-bus-async-messaging

TelemetryTelemetry

Microsoft-ServiceBus-Client/RetryPolicyIteration
ThreadID="14,500"
FormattedMessage="[TrackingId:] RetryExponential: Operation Get:https://retry-
tests.servicebus.windows.net/TestQueue/?api-version=2014-05 at iteration 0 is retrying after 00:00:00.1000000
sleep because of Microsoft.ServiceBus.Messaging.MessagingCommunicationException: The remote name could not be
resolved: 'retry-tests.servicebus.windows.net'.TrackingId:6a26f99c-dc6d-422e-8565-f89fdd0d4fe3,
TimeStamp:9/5/2014 10:00:13 PM."
trackingId=""
policyType="RetryExponential"
operation="Get:https://retry-tests.servicebus.windows.net/TestQueue/?api-version=2014-05"
iteration="0"
iterationSleep="00:00:00.1000000"
lastExceptionType="Microsoft.ServiceBus.Messaging.MessagingCommunicationException"
exceptionMessage="The remote name could not be resolved: 'retry-
tests.servicebus.windows.net'.TrackingId:6a26f99c-dc6d-422e-8565-f89fdd0d4fe3,TimeStamp:9/5/2014 10:00:13 PM"

ExamplesExamples

using System;
using System.Threading.Tasks;
using Microsoft.ServiceBus;
using Microsoft.ServiceBus.Messaging;

namespace RetryCodeSamples
{
 class ServiceBusCodeSamples
 {
 private const string connectionString =
 @"Endpoint=sb://[my-namespace].servicebus.windows.net/;
 SharedAccessKeyName=RootManageSharedAccessKey;
 SharedAccessKey=C99..........Mk=";

 public async static Task Samples()
 {
 const string QueueName = "TestQueue";

 ServiceBusEnvironment.SystemConnectivity.Mode = ConnectivityMode.Http;

 var namespaceManager = NamespaceManager.CreateFromConnectionString(connectionString);

 // The namespace manager will have a default exponential policy with 10 retry attempts
 // and a 3 second delay delta.
 // Retry delays will be approximately 0 sec, 3 sec, 9 sec, 25 sec and the fixed 30 sec,
 // with an extra 10 sec added when receiving a ServiceBusyException.

 {
 // Set different values for the retry policy, used for all operations on the namespace
manager.
 namespaceManager.Settings.RetryPolicy =

Service Bus logs retries as ETW events using an EventSource. You must attach an EventListener to the event
source to capture the events and view them in Performance Viewer, or write them to a suitable destination log.
The retry events are of the following form:

The following code example shows how to set the retry policy for:

A namespace manager. The policy applies to all operations on that manager, and cannot be overridden for
individual operations.
A messaging factory. The policy applies to all clients created from that factory, and cannot be overridden when
creating individual clients.
An individual messaging client. After a client has been created, you can set the retry policy for that client. The
policy applies to all operations on that client.

 new RetryExponential(
 minBackoff: TimeSpan.FromSeconds(0),
 maxBackoff: TimeSpan.FromSeconds(30),
 maxRetryCount: 3);

 // Policies cannot be specified on a per-operation basis.
 if (!await namespaceManager.QueueExistsAsync(QueueName))
 {
 await namespaceManager.CreateQueueAsync(QueueName);
 }
 }

 var messagingFactory = MessagingFactory.Create(
 namespaceManager.Address, namespaceManager.Settings.TokenProvider);
 // The messaging factory will have a default exponential policy with 10 retry attempts
 // and a 3 second delay delta.
 // Retry delays will be approximately 0 sec, 3 sec, 9 sec, 25 sec and the fixed 30 sec,
 // with an extra 10 sec added when receiving a ServiceBusyException.

 {
 // Set different values for the retry policy, used for clients created from it.
 messagingFactory.RetryPolicy =
 new RetryExponential(
 minBackoff: TimeSpan.FromSeconds(1),
 maxBackoff: TimeSpan.FromSeconds(30),
 maxRetryCount: 3);

 // Policies cannot be specified on a per-operation basis.
 var session = await messagingFactory.AcceptMessageSessionAsync();
 }

 {
 var client = messagingFactory.CreateQueueClient(QueueName);
 // The client inherits the policy from the factory that created it.

 // Set different values for the retry policy on the client.
 client.RetryPolicy =
 new RetryExponential(
 minBackoff: TimeSpan.FromSeconds(0.1),
 maxBackoff: TimeSpan.FromSeconds(30),
 maxRetryCount: 3);

 // Policies cannot be specified on a per-operation basis.
 var session = await client.AcceptMessageSessionAsync();
 }
 }
 }
}

More informationMore information

Service Fabric

Asynchronous messaging patterns and high availability

Distributing reliable services in a Service Fabric cluster guards against most of the potential transient faults
discussed in this article. Some transient faults are still possible, however. For example, the naming service might
be in the middle of a routing change when it gets a request, causing it to throw an exception. If the same request
comes 100 milliseconds later, it will probably succeed.

Internally, Service Fabric manages this kind of transient fault. You can configure some settings by using the
OperationRetrySettings class while setting up your services. The following code shows an example. In most cases,

this should not be necessary, and the default settings will be fine.

https://docs.microsoft.com/azure/service-bus-messaging/service-bus-async-messaging

FabricTransportRemotingSettings transportSettings = new FabricTransportRemotingSettings
{
 OperationTimeout = TimeSpan.FromSeconds(30)
};

var retrySettings = new OperationRetrySettings(TimeSpan.FromSeconds(15), TimeSpan.FromSeconds(1), 5);

var clientFactory = new FabricTransportServiceRemotingClientFactory(transportSettings);

var serviceProxyFactory = new ServiceProxyFactory((c) => clientFactory, retrySettings);

var client = serviceProxyFactory.CreateServiceProxy<ISomeService>(
 new Uri("fabric:/SomeApp/SomeStatefulReliableService"),
 new ServicePartitionKey(0));

More informationMore information

SQL Database using ADO.NET

Retry mechanismRetry mechanism

Retry usage guidanceRetry usage guidance

Remote exception handling

SQL Database is a hosted SQL database available in a range of sizes and as both a standard (shared) and
premium (non-shared) service.

SQL Database has no built-in support for retries when accessed using ADO.NET. However, the return codes from
requests can be used to determine why a request failed. For more information about SQL Database throttling, see
Azure SQL Database resource limits. For a list of relevant error codes, see SQL error codes for SQL Database
client applications.

You can use the Polly library to implement retries for SQL Database. See Transient fault handling with Polly.

Consider the following guidelines when accessing SQL Database using ADO.NET:

Choose the appropriate service option (shared or premium). A shared instance may suffer longer than usual
connection delays and throttling due to the usage by other tenants of the shared server. If more predictable
performance and reliable low latency operations are required, consider choosing the premium option.
Ensure that you perform retries at the appropriate level or scope to avoid non-idempotent operations causing
inconsistency in the data. Ideally, all operations should be idempotent so that they can be repeated without
causing inconsistency. Where this is not the case, the retry should be performed at a level or scope that allows
all related changes to be undone if one operation fails; for example, from within a transactional scope. For
more information, see Cloud Service Fundamentals Data Access Layer – Transient Fault Handling.
A fixed interval strategy is not recommended for use with Azure SQL Database except for interactive scenarios
where there are only a few retries at very short intervals. Instead, consider using an exponential back-off
strategy for the majority of scenarios.
Choose a suitable value for the connection and command timeouts when defining connections. Too short a
timeout may result in premature failures of connections when the database is busy. Too long a timeout may
prevent the retry logic working correctly by waiting too long before detecting a failed connection. The value of
the timeout is a component of the end-to-end latency; it is effectively added to the retry delay specified in the
retry policy for every retry attempt.
Close the connection after a certain number of retries, even when using an exponential back off retry logic, and
retry the operation on a new connection. Retrying the same operation multiple times on the same connection
can be a factor that contributes to connection problems. For an example of this technique, see Cloud Service
Fundamentals Data Access Layer – Transient Fault Handling.
When connection pooling is in use (the default) there is a chance that the same connection will be chosen from

https://docs.microsoft.com/azure/service-fabric/service-fabric-reliable-services-communication-remoting#remoting-exception-handling
https://docs.microsoft.com/azure/sql-database/sql-database-resource-limits
https://docs.microsoft.com/azure/sql-database/sql-database-develop-error-messages
https://social.technet.microsoft.com/wiki/contents/articles/18665.cloud-service-fundamentals-data-access-layer-transient-fault-handling.aspx#Idempotent_Guarantee
https://social.technet.microsoft.com/wiki/contents/articles/18665.cloud-service-fundamentals-data-access-layer-transient-fault-handling.aspx

CONTEX T

SAMPLE TARGET
E2E
MAX LATENCY RETRY STRATEGY SETTINGS VALUES HOW IT WORKS

Interactive, UI,
or foreground

2 sec FixedInterval Retry count
Retry interval
First fast retry

3
500 ms
true

Attempt 1 -
delay 0 sec
Attempt 2 -
delay 500 ms
Attempt 3 -
delay 500 ms

Background
or batch

30 sec ExponentialBacko
ff

Retry count
Min back-off
Max back-off
Delta back-off
First fast retry

5
0 sec
60 sec
2 sec
false

Attempt 1 -
delay 0 sec
Attempt 2 -
delay ~2 sec
Attempt 3 -
delay ~6 sec
Attempt 4 -
delay ~14 sec
Attempt 5 -
delay ~30 sec

NOTENOTE

ExamplesExamples

the pool, even after closing and reopening a connection. If this is the case, a technique to resolve it is to call the
ClearPool method of the SqlConnection class to mark the connection as not reusable. However, you should
do this only after several connection attempts have failed, and only when encountering the specific class of
transient failures such as SQL timeouts (error code -2) related to faulty connections.
If the data access code uses transactions initiated as TransactionScope instances, the retry logic should
reopen the connection and initiate a new transaction scope. For this reason, the retryable code block should
encompass the entire scope of the transaction.

Consider starting with following settings for retrying operations. These are general purpose settings, and you
should monitor the operations and fine tune the values to suit your own scenario.

The end-to-end latency targets assume the default timeout for connections to the service. If you specify longer connection
timeouts, the end-to-end latency will be extended by this additional time for every retry attempt.

This section shows how you can use Polly to access Azure SQL Database using a set of retry policies configured
in the Policy class.

The following code shows an extension method on the SqlCommand class that calls ExecuteAsync with exponential
backoff.

public async static Task<SqlDataReader> ExecuteReaderWithRetryAsync(this SqlCommand command)
{
 GuardConnectionIsNotNull(command);

 var policy = Policy.Handle<Exception>().WaitAndRetryAsync(
 retryCount: 3, // Retry 3 times
 sleepDurationProvider: attempt => TimeSpan.FromMilliseconds(200 * Math.Pow(2, attempt - 1)), //
Exponential backoff based on an initial 200ms delay.
 onRetry: (exception, attempt) =>
 {
 // Capture some info for logging/telemetry.
 logger.LogWarn($"ExecuteReaderWithRetryAsync: Retry {attempt} due to {exception}.");
 });

 // Retry the following call according to the policy.
 await policy.ExecuteAsync<SqlDataReader>(async token =>
 {
 // This code is executed within the Policy

 if (conn.State != System.Data.ConnectionState.Open) await conn.OpenAsync(token);
 return await command.ExecuteReaderAsync(System.Data.CommandBehavior.Default, token);

 }, cancellationToken);
}

var sqlCommand = sqlConnection.CreateCommand();
sqlCommand.CommandText = "[some query]";

using (var reader = await sqlCommand.ExecuteReaderWithRetryAsync())
{
 // Do something with the values
}

More informationMore information

SQL Database using Entity Framework 6

Retry mechanismRetry mechanism

This asynchronous extension method can be used as follows.

Cloud Service Fundamentals Data Access Layer – Transient Fault Handling

For general guidance on getting the most from SQL Database, see Azure SQL Database performance and
elasticity guide.

SQL Database is a hosted SQL database available in a range of sizes and as both a standard (shared) and
premium (non-shared) service. Entity Framework is an object-relational mapper that enables .NET developers to
work with relational data using domain-specific objects. It eliminates the need for most of the data-access code
that developers usually need to write.

Retry support is provided when accessing SQL Database using Entity Framework 6.0 and higher through a
mechanism called Connection resiliency / retry logic. The main features of the retry mechanism are:

The primary abstraction is the IDbExecutionStrategy interface. This interface:
Defines synchronous and asynchronous Execute* methods.
Defines classes that can be used directly or can be configured on a database context as a default
strategy, mapped to provider name, or mapped to a provider name and server name. When configured
on a context, retries occur at the level of individual database operations, of which there might be several
for a given context operation.

https://social.technet.microsoft.com/wiki/contents/articles/18665.cloud-service-fundamentals-data-access-layer-transient-fault-handling.aspx
https://social.technet.microsoft.com/wiki/contents/articles/3507.windows-azure-sql-database-performance-and-elasticity-guide.aspx
https://docs.microsoft.com/ef/ef6/fundamentals/connection-resiliency/retry-logic

Policy configurationPolicy configuration

public class BloggingContextConfiguration : DbConfiguration
{
 public BlogConfiguration()
 {
 // Set up the execution strategy for SQL Database (exponential) with 5 retries and 4 sec delay
 this.SetExecutionStrategy(
 "System.Data.SqlClient", () => new SqlAzureExecutionStrategy(5, TimeSpan.FromSeconds(4)));
 }
}

DbConfiguration.SetConfiguration(new BloggingContextConfiguration());

[DbConfigurationType(typeof(BloggingContextConfiguration))]
public class BloggingContext : DbContext

It includes several built-in implementations of the IDbExecutionStrategy interface:

It implements an exponential back-off strategy that includes randomization.
The built-in retry classes are stateful and are not thread safe. However, they can be reused after the current
operation is completed.
If the specified retry count is exceeded, the results are wrapped in a new exception. It does not bubble up the
current exception.

Defines when to retry a failed connection, and how.

Default - no retrying.
Default for SQL Database (automatic) - no retrying, but inspects exceptions and wraps them with
suggestion to use the SQL Database strategy.
Default for SQL Database - exponential (inherited from base class) plus SQL Database detection logic.

Retry support is provided when accessing SQL Database using Entity Framework 6.0 and higher. Retry policies
are configured programmatically. The configuration cannot be changed on a per-operation basis.

When configuring a strategy on the context as the default, you specify a function that creates a new strategy on
demand. The following code shows how you can create a retry configuration class that extends the
DbConfiguration base class.

You can then specify this as the default retry strategy for all operations using the SetConfiguration method of
the DbConfiguration instance when the application starts. By default, EF will automatically discover and use the
configuration class.

You can specify the retry configuration class for a context by annotating the context class with a
DbConfigurationType attribute. However, if you have only one configuration class, EF will use it without the
need to annotate the context.

If you need to use different retry strategies for specific operations, or disable retries for specific operations, you
can create a configuration class that allows you to suspend or swap strategies by setting a flag in the
CallContext. The configuration class can use this flag to switch strategies, or disable the strategy you provide and
use a default strategy. For more information, see Suspend Execution Strategy (EF6 onwards).

Another technique for using specific retry strategies for individual operations is to create an instance of the
required strategy class and supply the desired settings through parameters. You then invoke its ExecuteAsync
method.

https://docs.microsoft.com/ef/ef6/fundamentals/connection-resiliency/retry-logic#workaround-suspend-execution-strategy

var executionStrategy = new SqlAzureExecutionStrategy(5, TimeSpan.FromSeconds(4));
var blogs = await executionStrategy.ExecuteAsync(
 async () =>
 {
 using (var db = new BloggingContext("Blogs"))
 {
 // Acquire some values asynchronously and return them
 }
 },
 new CancellationToken()
);

SETTING DEFAULT VALUE MEANING

Policy Exponential Exponential back-off.

MaxRetryCount 5 The maximum number of retries.

MaxDelay 30 seconds The maximum delay between retries.
This value does not affect how the
series of delays are computed. It only
defines an upper bound.

DefaultCoefficient 1 second The coefficient for the exponential back-
off computation. This value cannot be
changed.

DefaultRandomFactor 1.1 The multiplier used to add a random
delay for each entry. This value cannot
be changed.

DefaultExponentialBase 2 The multiplier used to calculate the next
delay. This value cannot be changed.

Retry usage guidanceRetry usage guidance

The simplest way to use a DbConfiguration class is to locate it in the same assembly as the DbContext class.
However, this is not appropriate when the same context is required in different scenarios, such as different
interactive and background retry strategies. If the different contexts execute in separate AppDomains, you can use
the built-in support for specifying configuration classes in the configuration file or set it explicitly using code. If the
different contexts must execute in the same AppDomain, a custom solution will be required.

For more information, see Code-Based Configuration (EF6 onwards).

The following table shows the default settings for the built-in retry policy when using EF6.

Consider the following guidelines when accessing SQL Database using EF6:

Choose the appropriate service option (shared or premium). A shared instance may suffer longer than
usual connection delays and throttling due to the usage by other tenants of the shared server. If predictable
performance and reliable low latency operations are required, consider choosing the premium option.

A fixed interval strategy is not recommended for use with Azure SQL Database. Instead, use an exponential
back-off strategy because the service may be overloaded, and longer delays allow more time for it to
recover.

Choose a suitable value for the connection and command timeouts when defining connections. Base the
timeout on both your business logic design and through testing. You may need to modify this value over

https://docs.microsoft.com/ef/ef6/fundamentals/configuring/code-based

CONTEX T

SAMPLE TARGET
E2E
MAX LATENCY RETRY POLICY SETTINGS VALUES HOW IT WORKS

Interactive, UI,
or foreground

2 seconds Exponential MaxRetryCount
MaxDelay

3
750 ms

Attempt 1 -
delay 0 sec
Attempt 2 -
delay 750 ms
Attempt 3 –
delay 750 ms

Background
or batch

30 seconds Exponential MaxRetryCount
MaxDelay

5
12 seconds

Attempt 1 -
delay 0 sec
Attempt 2 -
delay ~1 sec
Attempt 3 -
delay ~3 sec
Attempt 4 -
delay ~7 sec
Attempt 5 -
delay 12 sec

NOTENOTE

ExamplesExamples

time as the volumes of data or the business processes change. Too short a timeout may result in premature
failures of connections when the database is busy. Too long a timeout may prevent the retry logic working
correctly by waiting too long before detecting a failed connection. The value of the timeout is a component
of the end-to-end latency, although you cannot easily determine how many commands will execute when
saving the context. You can change the default timeout by setting the CommandTimeout property of the
DbContext instance.

Entity Framework supports retry configurations defined in configuration files. However, for maximum
flexibility on Azure you should consider creating the configuration programmatically within the application.
The specific parameters for the retry policies, such as the number of retries and the retry intervals, can be
stored in the service configuration file and used at runtime to create the appropriate policies. This allows
the settings to be changed without requiring the application to be restarted.

Consider starting with the following settings for retrying operations. You cannot specify the delay between retry
attempts (it is fixed and generated as an exponential sequence). You can specify only the maximum values, as
shown here; unless you create a custom retry strategy. These are general purpose settings, and you should
monitor the operations and fine tune the values to suit your own scenario.

The end-to-end latency targets assume the default timeout for connections to the service. If you specify longer connection
timeouts, the end-to-end latency will be extended by this additional time for every retry attempt.

The following code example defines a simple data access solution that uses Entity Framework. It sets a specific
retry strategy by defining an instance of a class named BlogConfiguration that extends DbConfiguration.

using System;
using System.Collections.Generic;
using System.Data.Entity;
using System.Data.Entity.SqlServer;
using System.Threading.Tasks;

namespace RetryCodeSamples
{
 public class BlogConfiguration : DbConfiguration
 {
 public BlogConfiguration()
 {
 // Set up the execution strategy for SQL Database (exponential) with 5 retries and 12 sec delay.
 // These values could be loaded from configuration rather than being hard-coded.
 this.SetExecutionStrategy(
 "System.Data.SqlClient", () => new SqlAzureExecutionStrategy(5,
TimeSpan.FromSeconds(12)));
 }
 }

 // Specify the configuration type if more than one has been defined.
 // [DbConfigurationType(typeof(BlogConfiguration))]
 public class BloggingContext : DbContext
 {
 // Definition of content goes here.
 }

 class EF6CodeSamples
 {
 public async static Task Samples()
 {
 // Execution strategy configured by DbConfiguration subclass, discovered automatically or
 // or explicitly indicated through configuration or with an attribute. Default is no retries.
 using (var db = new BloggingContext("Blogs"))
 {
 // Add, edit, delete blog items here, then:
 await db.SaveChangesAsync();
 }
 }
 }
}

More informationMore information

SQL Database using Entity Framework Core

Retry mechanismRetry mechanism

More examples of using the Entity Framework retry mechanism can be found in Connection Resiliency / Retry
Logic.

Azure SQL Database performance and elasticity guide

Entity Framework Core is an object-relational mapper that enables .NET Core developers to work with data using
domain-specific objects. It eliminates the need for most of the data-access code that developers usually need to
write. This version of Entity Framework was written from the ground up, and doesn't automatically inherit all the
features from EF6.x.

Retry support is provided when accessing SQL Database using Entity Framework Core through a mechanism
called connection resiliency. Connection resiliency was introduced in EF Core 1.1.0.

The primary abstraction is the IExecutionStrategy interface. The execution strategy for SQL Server, including
SQL Azure, is aware of the exception types that can be retried and has sensible defaults for maximum retries,
delay between retries, and so on.

https://docs.microsoft.com/ef/ef6/fundamentals/connection-resiliency/retry-logic
https://social.technet.microsoft.com/wiki/contents/articles/3507.windows-azure-sql-database-performance-and-elasticity-guide.aspx
https://docs.microsoft.com/ef/core/
https://docs.microsoft.com/ef/core/miscellaneous/connection-resiliency

ExamplesExamples

protected override void OnConfiguring(DbContextOptionsBuilder optionsBuilder)
{
 optionsBuilder
 .UseSqlServer(
 @"Server=
(localdb)\mssqllocaldb;Database=EFMiscellanous.ConnectionResiliency;Trusted_Connection=True;",
 options => options.EnableRetryOnFailure());
}

using (var db = new BloggingContext())
{
 var strategy = db.Database.CreateExecutionStrategy();

 strategy.Execute(() =>
 {
 using (var transaction = db.Database.BeginTransaction())
 {
 db.Blogs.Add(new Blog { Url = "https://blogs.msdn.com/dotnet" });
 db.SaveChanges();

 db.Blogs.Add(new Blog { Url = "https://blogs.msdn.com/visualstudio" });
 db.SaveChanges();

 transaction.Commit();
 }
 });
}

Azure Storage

Retry mechanismRetry mechanism

Policy configurationPolicy configuration

The following code enables automatic retries when configuring the DbContext object, which represents a session
with the database.

The following code shows how to execute a transaction with automatic retries, by using an execution strategy. The
transaction is defined in a delegate. If a transient failure occurs, the execution strategy will invoke the delegate
again.

Azure Storage services include table and blob storage, files, and storage queues.

Retries occur at the individual REST operation level and are an integral part of the client API implementation. The
client storage SDK uses classes that implement the IExtendedRetryPolicy Interface.

There are different implementations of the interface. Storage clients can choose from policies specifically designed
for accessing tables, blobs, and queues. Each implementation uses a different retry strategy that essentially
defines the retry interval and other details.

The built-in classes provide support for linear (constant delay) and exponential with randomization retry intervals.
There is also a no retry policy for use when another process is handling retries at a higher level. However, you can
implement your own retry classes if you have specific requirements not provided by the built-in classes.

Alternate retries switch between primary and secondary storage service location if you are using read access geo-
redundant storage (RA-GRS) and the result of the request is a retryable error. See Azure Storage Redundancy
Options for more information.

Retry policies are configured programmatically. A typical procedure is to create and populate a

https://docs.microsoft.com/dotnet/api/microsoft.windowsazure.storage.retrypolicies.iextendedretrypolicy
https://docs.microsoft.com/azure/storage/common/storage-redundancy

TableRequestOptions interactiveRequestOption = new TableRequestOptions()
{
 RetryPolicy = new LinearRetry(TimeSpan.FromMilliseconds(500), 3),
 // For Read-access geo-redundant storage, use PrimaryThenSecondary.
 // Otherwise set this to PrimaryOnly.
 LocationMode = LocationMode.PrimaryThenSecondary,
 // Maximum execution time based on the business use case.
 MaximumExecutionTime = TimeSpan.FromSeconds(2)
};

client.DefaultRequestOptions = interactiveRequestOption;
var stats = await client.GetServiceStatsAsync();

var stats = await client.GetServiceStatsAsync(interactiveRequestOption, operationContext: null);

// Set up notifications for an operation
var context = new OperationContext();
context.ClientRequestID = "some request id";
context.Retrying += (sender, args) =>
{
 /* Collect retry information */
};
context.RequestCompleted += (sender, args) =>
{
 /* Collect operation completion information */
};
var stats = await client.GetServiceStatsAsync(null, context);

SETTING DEFAULT VALUE MEANING

MaximumExecutionTime None Maximum execution time for the
request, including all potential retry
attempts. If it is not specified, then the
amount of time that a request is
permitted to take is unlimited. In other
words, the request might hang.

TableRequestOptions, BlobRequestOptions, FileRequestOptions, or QueueRequestOptions instance.

The request options instance can then be set on the client, and all operations with the client will use the specified
request options.

You can override the client request options by passing a populated instance of the request options class as a
parameter to operation methods.

You use an OperationContext instance to specify the code to execute when a retry occurs and when an
operation has completed. This code can collect information about the operation for use in logs and telemetry.

In addition to indicating whether a failure is suitable for retry, the extended retry policies return a RetryContext
object that indicates the number of retries, the results of the last request, whether the next retry will happen in the
primary or secondary location (see table below for details). The properties of the RetryContext object can be
used to decide if and when to attempt a retry. For more details, see IExtendedRetryPolicy.Evaluate Method.

The following tables show the default settings for the built-in retry policies.

Request options:

https://docs.microsoft.com/dotnet/api/microsoft.windowsazure.storage.retrypolicies.iextendedretrypolicy.evaluate

ServerTimeout None Server timeout interval for the request
(value is rounded to seconds). If not
specified, it will use the default value for
all requests to the server. Usually, the
best option is to omit this setting so
that the server default is used.

LocationMode None If the storage account is created with
the Read access geo-redundant storage
(RA-GRS) replication option, you can
use the location mode to indicate which
location should receive the request. For
example, if PrimaryThenSecondary is
specified, requests are always sent to
the primary location first. If a request
fails, it is sent to the secondary location.

RetryPolicy ExponentialPolicy See below for details of each option.

SETTING DEFAULT VALUE MEANING

SETTING DEFAULT VALUE MEANING

maxAttempt 3 Number of retry attempts.

deltaBackoff 4 seconds Back-off interval between retries.
Multiples of this timespan, including a
random element, will be used for
subsequent retry attempts.

MinBackoff 3 seconds Added to all retry intervals computed
from deltaBackoff. This value cannot be
changed.

MaxBackoff 120 seconds MaxBackoff is used if the computed
retry interval is greater than
MaxBackoff. This value cannot be
changed.

SETTING DEFAULT VALUE MEANING

maxAttempt 3 Number of retry attempts.

deltaBackoff 30 seconds Back-off interval between retries.

Retry usage guidanceRetry usage guidance

Exponential policy:

Linear policy:

Consider the following guidelines when accessing Azure storage services using the storage client API:

Use the built-in retry policies from the Microsoft.WindowsAzure.Storage.RetryPolicies namespace where
they are appropriate for your requirements. In most cases, these policies will be sufficient.

Use the ExponentialRetry policy in batch operations, background tasks, or non-interactive scenarios. In
these scenarios, you can typically allow more time for the service to recover — with a consequently

CONTEX T

SAMPLE TARGET
E2E
MAX LATENCY RETRY POLICY SETTINGS VALUES HOW IT WORKS

Interactive, UI,
or foreground

2 seconds Linear maxAttempt
deltaBackoff

3
500 ms

Attempt 1 -
delay 500 ms
Attempt 2 -
delay 500 ms
Attempt 3 -
delay 500 ms

Background
or batch

30 seconds Exponential maxAttempt
deltaBackoff

5
4 seconds

Attempt 1 -
delay ~3 sec
Attempt 2 -
delay ~7 sec
Attempt 3 -
delay ~15 sec

TelemetryTelemetry

ExamplesExamples

using System;
using System.Threading.Tasks;
using Microsoft.WindowsAzure.Storage;
using Microsoft.WindowsAzure.Storage.RetryPolicies;
using Microsoft.WindowsAzure.Storage.Table;

namespace RetryCodeSamples

increased chance of the operation eventually succeeding.

Consider specifying the MaximumExecutionTime property of the RequestOptions parameter to limit
the total execution time, but take into account the type and size of the operation when choosing a timeout
value.

If you need to implement a custom retry, avoid creating wrappers around the storage client classes.
Instead, use the capabilities to extend the existing policies through the IExtendedRetryPolicy interface.

If you are using read access geo-redundant storage (RA-GRS) you can use the LocationMode to specify
that retry attempts will access the secondary read-only copy of the store should the primary access fail.
However, when using this option you must ensure that your application can work successfully with data
that may be stale if the replication from the primary store has not yet completed.

Consider starting with following settings for retrying operations. These are general purpose settings, and you
should monitor the operations and fine tune the values to suit your own scenario.

Retry attempts are logged to a TraceSource. You must configure a TraceListener to capture the events and write
them to a suitable destination log. You can use the TextWriterTraceListener or XmlWriterTraceListener to
write the data to a log file, the EventLogTraceListener to write to the Windows Event Log, or the
EventProviderTraceListener to write trace data to the ETW subsystem. You can also configure auto-flushing of
the buffer, and the verbosity of events that will be logged (for example, Error, Warning, Informational, and
Verbose). For more information, see Client-side Logging with the .NET Storage Client Library.

Operations can receive an OperationContext instance, which exposes a Retrying event that can be used to
attach custom telemetry logic. For more information, see OperationContext.Retrying Event.

The following code example shows how to create two TableRequestOptions instances with different retry
settings; one for interactive requests and one for background requests. The example then sets these two retry
policies on the client so that they apply for all requests, and also sets the interactive strategy on a specific request
so that it overrides the default settings applied to the client.

https://docs.microsoft.com/rest/api/storageservices/Client-side-Logging-with-the-.NET-Storage-Client-Library
https://docs.microsoft.com/dotnet/api/microsoft.windowsazure.storage.operationcontext.retrying

namespace RetryCodeSamples
{
 class AzureStorageCodeSamples
 {
 private const string connectionString = "UseDevelopmentStorage=true";

 public async static Task Samples()
 {
 var storageAccount = CloudStorageAccount.Parse(connectionString);

 TableRequestOptions interactiveRequestOption = new TableRequestOptions()
 {
 RetryPolicy = new LinearRetry(TimeSpan.FromMilliseconds(500), 3),
 // For Read-access geo-redundant storage, use PrimaryThenSecondary.
 // Otherwise set this to PrimaryOnly.
 LocationMode = LocationMode.PrimaryThenSecondary,
 // Maximum execution time based on the business use case.
 MaximumExecutionTime = TimeSpan.FromSeconds(2)
 };

 TableRequestOptions backgroundRequestOption = new TableRequestOptions()
 {
 // Client has a default exponential retry policy with 4 sec delay and 3 retry attempts
 // Retry delays will be approximately 3 sec, 7 sec, and 15 sec
 MaximumExecutionTime = TimeSpan.FromSeconds(30),
 // PrimaryThenSecondary in case of Read-access geo-redundant storage, else set this to
PrimaryOnly
 LocationMode = LocationMode.PrimaryThenSecondary
 };

 var client = storageAccount.CreateCloudTableClient();
 // Client has a default exponential retry policy with 4 sec delay and 3 retry attempts
 // Retry delays will be approximately 3 sec, 7 sec, and 15 sec
 // ServerTimeout and MaximumExecutionTime are not set

 {
 // Set properties for the client (used on all requests unless overridden)
 // Different exponential policy parameters for background scenarios
 client.DefaultRequestOptions = backgroundRequestOption;
 // Linear policy for interactive scenarios
 client.DefaultRequestOptions = interactiveRequestOption;
 }

 {
 // set properties for a specific request
 var stats = await client.GetServiceStatsAsync(interactiveRequestOption, operationContext:
null);
 }

 {
 // Set up notifications for an operation
 var context = new OperationContext();
 context.ClientRequestID = "some request id";
 context.Retrying += (sender, args) =>
 {
 /* Collect retry information */
 };
 context.RequestCompleted += (sender, args) =>
 {
 /* Collect operation completion information */
 };
 var stats = await client.GetServiceStatsAsync(null, context);
 }
 }
 }
}

More informationMore information

General REST and retry guidelines

Retry strategiesRetry strategies

Azure Storage client Library retry policy recommendations

Storage Client Library 2.0 – Implementing retry policies

Consider the following when accessing Azure or third party services:

Use a systematic approach to managing retries, perhaps as reusable code, so that you can apply a
consistent methodology across all clients and all solutions.

Consider using a retry framework such as Polly to manage retries if the target service or client has no built-
in retry mechanism. This will help you implement a consistent retry behavior, and it may provide a suitable
default retry strategy for the target service. However, you may need to create custom retry code for
services that have non-standard behavior, that do not rely on exceptions to indicate transient failures, or if
you want to use a Retry-Response reply to manage retry behavior.

The transient detection logic will depend on the actual client API you use to invoke the REST calls. Some
clients, such as the newer HttpClient class, will not throw exceptions for completed requests with a non-
success HTTP status code.

The HTTP status code returned from the service can help to indicate whether the failure is transient. You
may need to examine the exceptions generated by a client or the retry framework to access the status code
or to determine the equivalent exception type. The following HTTP codes typically indicate that a retry is
appropriate:

408 Request Timeout
429 Too Many Requests
500 Internal Server Error
502 Bad Gateway
503 Service Unavailable
504 Gateway Timeout

If you base your retry logic on exceptions, the following typically indicate a transient failure where no
connection could be established:

WebExceptionStatus.ConnectionClosed
WebExceptionStatus.ConnectFailure
WebExceptionStatus.Timeout
WebExceptionStatus.RequestCanceled

In the case of a service unavailable status, the service might indicate the appropriate delay before retrying
in the Retry-After response header or a different custom header. Services might also send additional
information as custom headers, or embedded in the content of the response.

Do not retry for status codes representing client errors (errors in the 4xx range) except for a 408 Request
Timeout.

Thoroughly test your retry strategies and mechanisms under a range of conditions, such as different
network states and varying system loadings.

The following are the typical types of retry strategy intervals:

Exponential. A retry policy that performs a specified number of retries, using a randomized exponential
back off approach to determine the interval between retries. For example:

https://azure.microsoft.com/blog/2014/05/22/azure-storage-client-library-retry-policy-recommendations/
https://gauravmantri.com/2012/12/30/storage-client-library-2-0-implementing-retry-policies/
http://www.thepollyproject.org

 Transient fault handling with PollyTransient fault handling with Polly

More informationMore information

var random = new Random();

var delta = (int)((Math.Pow(2.0, currentRetryCount) - 1.0) *
 random.Next((int)(this.deltaBackoff.TotalMilliseconds * 0.8),
 (int)(this.deltaBackoff.TotalMilliseconds * 1.2)));
var interval = (int)Math.Min(checked(this.minBackoff.TotalMilliseconds + delta),
 this.maxBackoff.TotalMilliseconds);
retryInterval = TimeSpan.FromMilliseconds(interval);

retryInterval = TimeSpan.FromMilliseconds(this.initialInterval.TotalMilliseconds +
 (this.increment.TotalMilliseconds * currentRetryCount));

retryInterval = this.deltaBackoff;

Incremental. A retry strategy with a specified number of retry attempts and an incremental time interval
between retries. For example:

LinearRetry. A retry policy that performs a specified number of retries, using a specified fixed time interval
between retries. For example:

Polly is a library to programatically handle retries and circuit breaker strategies. The Polly project is a member of
the .NET Foundation. For services where the client does not natively support retries, Polly is a valid alternative
and avoids the need to write custom retry code, which can be hard to implement correctly. Polly also provides a
way to trace errors when they occur, so that you can log retries.

Connection resiliency
Data Points - EF Core 1.1

http://www.thepollyproject.org
https://dotnetfoundation.org/
https://docs.microsoft.com/ef/core/miscellaneous/connection-resiliency
https://msdn.microsoft.com/magazine/mt745093.aspx

Performance antipatterns for cloud applications
3/13/2019 • 2 minutes to read • Edit Online

ANTIPATTERN DESCRIPTION

Busy Database Offloading too much processing to a data store.

Busy Front End Moving resource-intensive tasks onto background threads.

Chatty I/O Continually sending many small network requests.

Extraneous Fetching Retrieving more data than is needed, resulting in unnecessary
I/O.

Improper Instantiation Repeatedly creating and destroying objects that are designed
to be shared and reused.

Monolithic Persistence Using the same data store for data with very different usage
patterns.

A performance antipattern is a common practice that is likely to cause scalability problems when an application is
under pressure.

Here is a common scenario: An application behaves well during performance testing. It's released to production,
and begins to handle real workloads. At that point, it starts to perform poorly — rejecting user requests, stalling, or
throwing exceptions. The development team is then faced with two questions:

Why didn't this behavior show up during testing?
How do we fix it?

The answer to the first question is straightforward. It's very difficult in a test environment to simulate real users,
their behavior patterns, and the volumes of work they might perform. The only completely sure way to understand
how a system behaves under load is to observe it in production. To be clear, we aren't suggesting that you should
skip performance testing. Performance tests are crucial for getting baseline performance metrics. But you must be
prepared to observe and correct performance issues when they arise in the live system.

The answer to the second question, how to fix the problem, is less straightforward. Any number of factors might
contribute, and sometimes the problem only manifests under certain circumstances. Instrumentation and logging
are key to finding the root cause, but you also have to know what to look for.

Based on our engagements with Microsoft Azure customers, we've identified some of the most common
performance issues that customers see in production. For each antipattern, we describe why the antipattern
typically occurs, symptoms of the antipattern, and techniques for resolving the problem. We also provide sample
code that illustrates both the antipattern and a suggested solution.

Some of these antipatterns may seem obvious when you read the descriptions, but they occur more often than you
might think. Sometimes an application inherits a design that worked on-premises, but doesn't scale in the cloud.
Or an application might start with a very clean design, but as new features are added, one or more of these
antipatterns creeps in. Regardless, this guide will help you to identify and fix these antipatterns.

Here is the list of the antipatterns that we've identified:

https://github.com/mspnp/architecture-center/blob/master/docs/antipatterns/index.md

No Caching Failing to cache data.

Synchronous I/O Blocking the calling thread while I/O completes.

ANTIPATTERN DESCRIPTION

Busy Database antipattern
3/13/2019 • 7 minutes to read • Edit Online

Problem description

Offloading processing to a database server can cause it to spend a significant proportion of time running code,
rather than responding to requests to store and retrieve data.

Many database systems can run code. Examples include stored procedures and triggers. Often, it's more efficient
to perform this processing close to the data, rather than transmitting the data to a client application for processing.
However, overusing these features can hurt performance, for several reasons:

The database server may spend too much time processing, rather than accepting new client requests and
fetching data.
A database is usually a shared resource, so it can become a bottleneck during periods of high use.
Runtime costs may be excessive if the data store is metered. That's particularly true of managed database
services. For example, Azure SQL Database charges for Database Transaction Units (DTUs).
Databases have finite capacity to scale up, and it's not trivial to scale a database horizontally. Therefore, it may
be better to move processing into a compute resource, such as a VM or App Service app, that can easily scale
out.

This antipattern typically occurs because:

The database is viewed as a service rather than a repository. An application might use the database server to
format data (for example, converting to XML), manipulate string data, or perform complex calculations.
Developers try to write queries whose results can be displayed directly to users. For example a query might
combine fields, or format dates, times, and currency according to locale.
Developers are trying to correct the Extraneous Fetching antipattern by pushing computations to the database.
Stored procedures are used to encapsulate business logic, perhaps because they are considered easier to
maintain and update.

The following example retrieves the 20 most valuable orders for a specified sales territory and formats the results
as XML. It uses Transact-SQL functions to parse the data and convert the results to XML. You can find the
complete sample here.

https://github.com/mspnp/architecture-center/blob/master/docs/antipatterns/busy-database/index.md
https://docs.microsoft.com/azure/sql-database/sql-database-service-tiers-dtu
https://github.com/mspnp/performance-optimization/tree/master/BusyDatabase

SELECT TOP 20
 soh.[SalesOrderNumber] AS '@OrderNumber',
 soh.[Status] AS '@Status',
 soh.[ShipDate] AS '@ShipDate',
 YEAR(soh.[OrderDate]) AS '@OrderDateYear',
 MONTH(soh.[OrderDate]) AS '@OrderDateMonth',
 soh.[DueDate] AS '@DueDate',
 FORMAT(ROUND(soh.[SubTotal],2),'C')
 AS '@SubTotal',
 FORMAT(ROUND(soh.[TaxAmt],2),'C')
 AS '@TaxAmt',
 FORMAT(ROUND(soh.[TotalDue],2),'C')
 AS '@TotalDue',
 CASE WHEN soh.[TotalDue] > 5000 THEN 'Y' ELSE 'N' END
 AS '@ReviewRequired',
 (
 SELECT
 c.[AccountNumber] AS '@AccountNumber',
 UPPER(LTRIM(RTRIM(REPLACE(
 CONCAT(p.[Title], ' ', p.[FirstName], ' ', p.[MiddleName], ' ', p.[LastName], ' ', p.[Suffix]),
 ' ', ' ')))) AS '@FullName'
 FROM [Sales].[Customer] c
 INNER JOIN [Person].[Person] p
 ON c.[PersonID] = p.[BusinessEntityID]
 WHERE c.[CustomerID] = soh.[CustomerID]
 FOR XML PATH ('Customer'), TYPE
),

 (
 SELECT
 sod.[OrderQty] AS '@Quantity',
 FORMAT(sod.[UnitPrice],'C')
 AS '@UnitPrice',
 FORMAT(ROUND(sod.[LineTotal],2),'C')
 AS '@LineTotal',
 sod.[ProductID] AS '@ProductId',
 CASE WHEN (sod.[ProductID] >= 710) AND (sod.[ProductID] <= 720) AND (sod.[OrderQty] >= 5) THEN 'Y' ELSE
'N' END
 AS '@InventoryCheckRequired'

 FROM [Sales].[SalesOrderDetail] sod
 WHERE sod.[SalesOrderID] = soh.[SalesOrderID]
 ORDER BY sod.[SalesOrderDetailID]
 FOR XML PATH ('LineItem'), TYPE, ROOT('OrderLineItems')
)

FROM [Sales].[SalesOrderHeader] soh
WHERE soh.[TerritoryId] = @TerritoryId
ORDER BY soh.[TotalDue] DESC
FOR XML PATH ('Order'), ROOT('Orders')

How to fix the problem

Clearly, this is complex query. As we'll see later, it turns out to use significant processing resources on the database
server.

Move processing from the database server into other application tiers. Ideally, you should limit the database to
performing data access operations, using only the capabilities that the database is optimized for, such as
aggregation in an RDBMS.

For example, the previous Transact-SQL code can be replaced with a statement that simply retrieves the data to be
processed.

SELECT
soh.[SalesOrderNumber] AS [OrderNumber],
soh.[Status] AS [Status],
soh.[OrderDate] AS [OrderDate],
soh.[DueDate] AS [DueDate],
soh.[ShipDate] AS [ShipDate],
soh.[SubTotal] AS [SubTotal],
soh.[TaxAmt] AS [TaxAmt],
soh.[TotalDue] AS [TotalDue],
c.[AccountNumber] AS [AccountNumber],
p.[Title] AS [CustomerTitle],
p.[FirstName] AS [CustomerFirstName],
p.[MiddleName] AS [CustomerMiddleName],
p.[LastName] AS [CustomerLastName],
p.[Suffix] AS [CustomerSuffix],
sod.[OrderQty] AS [Quantity],
sod.[UnitPrice] AS [UnitPrice],
sod.[LineTotal] AS [LineTotal],
sod.[ProductID] AS [ProductId]
FROM [Sales].[SalesOrderHeader] soh
INNER JOIN [Sales].[Customer] c ON soh.[CustomerID] = c.[CustomerID]
INNER JOIN [Person].[Person] p ON c.[PersonID] = p.[BusinessEntityID]
INNER JOIN [Sales].[SalesOrderDetail] sod ON soh.[SalesOrderID] = sod.[SalesOrderID]
WHERE soh.[TerritoryId] = @TerritoryId
AND soh.[SalesOrderId] IN (
 SELECT TOP 20 SalesOrderId
 FROM [Sales].[SalesOrderHeader] soh
 WHERE soh.[TerritoryId] = @TerritoryId
 ORDER BY soh.[TotalDue] DESC)
ORDER BY soh.[TotalDue] DESC, sod.[SalesOrderDetailID]

// Create a new SqlCommand to run the Transact-SQL query
using (var command = new SqlCommand(...))
{
 command.Parameters.AddWithValue("@TerritoryId", id);

 // Run the query and create the initial XML document
 using (var reader = await command.ExecuteReaderAsync())
 {
 var lastOrderNumber = string.Empty;
 var doc = new XDocument();
 var orders = new XElement("Orders");
 doc.Add(orders);

 XElement lineItems = null;
 // Fetch each row in turn, format the results as XML, and add them to the XML document
 while (await reader.ReadAsync())
 {
 var orderNumber = reader["OrderNumber"].ToString();
 if (orderNumber != lastOrderNumber)
 {
 lastOrderNumber = orderNumber;

 var order = new XElement("Order");
 orders.Add(order);
 var customer = new XElement("Customer");
 lineItems = new XElement("OrderLineItems");
 order.Add(customer, lineItems);

 var orderDate = (DateTime)reader["OrderDate"];
 var totalDue = (Decimal)reader["TotalDue"];
 var reviewRequired = totalDue > 5000 ? 'Y' : 'N';

 order.Add(

The application then uses the .NET Framework System.Xml.Linq APIs to format the results as XML.

 new XAttribute("OrderNumber", orderNumber),
 new XAttribute("Status", reader["Status"]),
 new XAttribute("ShipDate", reader["ShipDate"]),
 ... // More attributes, not shown.

 var fullName = string.Join(" ",
 reader["CustomerTitle"],
 reader["CustomerFirstName"],
 reader["CustomerMiddleName"],
 reader["CustomerLastName"],
 reader["CustomerSuffix"]
)
 .Replace(" ", " ") //remove double spaces
 .Trim()
 .ToUpper();

 customer.Add(
 new XAttribute("AccountNumber", reader["AccountNumber"]),
 new XAttribute("FullName", fullName));
 }

 var productId = (int)reader["ProductID"];
 var quantity = (short)reader["Quantity"];
 var inventoryCheckRequired = (productId >= 710 && productId <= 720 && quantity >= 5) ? 'Y' : 'N';

 lineItems.Add(
 new XElement("LineItem",
 new XAttribute("Quantity", quantity),
 new XAttribute("UnitPrice", ((Decimal)reader["UnitPrice"]).ToString("C")),
 new XAttribute("LineTotal", RoundAndFormat(reader["LineTotal"])),
 new XAttribute("ProductId", productId),
 new XAttribute("InventoryCheckRequired", inventoryCheckRequired)
));
 }
 // Match the exact formatting of the XML returned from SQL
 var xml = doc
 .ToString(SaveOptions.DisableFormatting)
 .Replace(" />", "/>");
 }
}

NOTENOTE

Considerations

How to detect the problem

This code is somewhat complex. For a new application, you might prefer to use a serialization library. However, the
assumption here is that the development team is refactoring an existing application, so the method needs to return the
exact same format as the original code.

Many database systems are highly optimized to perform certain types of data processing, such as
calculating aggregate values over large datasets. Don't move those types of processing out of the database.

Do not relocate processing if doing so causes the database to transfer far more data over the network. See
the Extraneous Fetching antipattern.

If you move processing to an application tier, that tier may need to scale out to handle the additional work.

Symptoms of a busy database include a disproportionate decline in throughput and response times in operations
that access the database.

Example diagnosis

Monitor the volume of database activityMonitor the volume of database activity

You can perform the following steps to help identify this problem:

1. Use performance monitoring to identify how much time the production system spends performing
database activity.

2. Examine the work performed by the database during these periods.

3. If you suspect that particular operations might cause too much database activity, perform load testing in a
controlled environment. Each test should run a mixture of the suspect operations with a variable user load.
Examine the telemetry from the load tests to observe how the database is used.

4. If the database activity reveals significant processing but little data traffic, review the source code to
determine whether the processing can better be performed elsewhere.

If the volume of database activity is low or response times are relatively fast, then a busy database is unlikely to be
a performance problem.

The following sections apply these steps to the sample application described earlier.

The following graph shows the results of running a load test against the sample application, using a step load of
up to 50 concurrent users. The volume of requests quickly reaches a limit and stays at that level, while the average
response time steadily increases. Note that a logarithmic scale is used for those two metrics.

The next graph shows CPU utilization and DTUs as a percentage of service quota. DTUs provides a measure of
how much processing the database performs. The graph shows that CPU and DTU utilization both quickly reached
100%.

Examine the work performed by the databaseExamine the work performed by the database

Implement the solution and verify the resultImplement the solution and verify the result

It could be that the tasks performed by the database are genuine data access operations, rather than processing, so
it is important to understand the SQL statements being run while the database is busy. Monitor the system to
capture the SQL traffic and correlate the SQL operations with application requests.

If the database operations are purely data access operations, without a lot of processing, then the problem might
be Extraneous Fetching.

The following graph shows a load test using the updated code. Throughput is significantly higher, over 400
requests per second versus 12 earlier. The average response time is also much lower, just above 0.1 seconds
compared to over 4 seconds.

Related resources

CPU and DTU utilization shows that the system took longer to reach saturation, despite the increased throughput.

Extraneous Fetching antipattern

Busy Front End antipattern
3/13/2019 • 8 minutes to read • Edit Online

Problem description

NOTENOTE

public class WorkInFrontEndController : ApiController
{
 [HttpPost]
 [Route("api/workinfrontend")]
 public HttpResponseMessage Post()
 {
 new Thread(() =>
 {
 //Simulate processing
 Thread.SpinWait(Int32.MaxValue / 100);
 }).Start();

 return Request.CreateResponse(HttpStatusCode.Accepted);
 }
}

public class UserProfileController : ApiController
{
 [HttpGet]
 [Route("api/userprofile/{id}")]
 public UserProfile Get(int id)
 {
 //Simulate processing
 return new UserProfile() { FirstName = "Alton", LastName = "Hudgens" };
 }
}

Performing asynchronous work on a large number of background threads can starve other concurrent foreground
tasks of resources, decreasing response times to unacceptable levels.

Resource-intensive tasks can increase the response times for user requests and cause high latency. One way to
improve response times is to offload a resource-intensive task to a separate thread. This approach lets the
application stay responsive while processing happens in the background. However, tasks that run on a background
thread still consume resources. If there are too many of them, they can starve the threads that are handling
requests.

The term resource can encompass many things, such as CPU utilization, memory occupancy, and network or disk I/O.

This problem typically occurs when an application is developed as monolithic piece of code, with all of the business
logic combined into a single tier shared with the presentation layer.

Here’s an example using ASP.NET that demonstrates the problem. You can find the complete sample here.

The Post method in the WorkInFrontEnd controller implements an HTTP POST operation. This operation
simulates a long-running, CPU-intensive task. The work is performed on a separate thread, in an attempt to
enable the POST operation to complete quickly.

The Get method in the UserProfile controller implements an HTTP GET operation. This method is much

https://github.com/mspnp/architecture-center/blob/master/docs/antipatterns/busy-front-end/index.md
https://github.com/mspnp/performance-optimization/tree/master/BusyFrontEnd

How to fix the problem

public class WorkInBackgroundController : ApiController
{
 private static readonly QueueClient QueueClient;
 private static readonly string QueueName;
 private static readonly ServiceBusQueueHandler ServiceBusQueueHandler;

 public WorkInBackgroundController()
 {
 var serviceBusConnectionString = ...;
 QueueName = ...;
 ServiceBusQueueHandler = new ServiceBusQueueHandler(serviceBusConnectionString);
 QueueClient = ServiceBusQueueHandler.GetQueueClientAsync(QueueName).Result;
 }

 [HttpPost]
 [Route("api/workinbackground")]
 public async Task<long> Post()
 {
 return await ServiceBusQueuehandler.AddWorkLoadToQueueAsync(QueueClient, QueueName, 0);
 }
}

less CPU intensive.

The primary concern is the resource requirements of the Post method. Although it puts the work onto a
background thread, the work can still consume considerable CPU resources. These resources are shared with other
operations being performed by other concurrent users. If a moderate number of users send this request at the
same time, overall performance is likely to suffer, slowing down all operations. Users might experience significant
latency in the Get method, for example.

Move processes that consume significant resources to a separate back end.

With this approach, the front end puts resource-intensive tasks onto a message queue. The back end picks up the
tasks for asynchronous processing. The queue also acts as a load leveler, buffering requests for the back end. If the
queue length becomes too long, you can configure autoscaling to scale out the back end.

Here is a revised version of the previous code. In this version, the Post method puts a message on a Service Bus
queue.

The back end pulls messages from the Service Bus queue and does the processing.

public async Task RunAsync(CancellationToken cancellationToken)
{
 this._queueClient.OnMessageAsync(
 // This lambda is invoked for each message received.
 async (receivedMessage) =>
 {
 try
 {
 // Simulate processing of message
 Thread.SpinWait(Int32.Maxvalue / 1000);

 await receivedMessage.CompleteAsync();
 }
 catch
 {
 receivedMessage.Abandon();
 }
 });
}

Considerations

How to detect the problem

Example diagnosis

Identify points of slowdownIdentify points of slowdown

This approach adds some additional complexity to the application. You must handle queuing and dequeuing
safely to avoid losing requests in the event of a failure.
The application takes a dependency on an additional service for the message queue.
The processing environment must be sufficiently scalable to handle the expected workload and meet the
required throughput targets.
While this approach should improve overall responsiveness, the tasks that are moved to the back end may take
longer to complete.

Symptoms of a busy front end include high latency when resource-intensive tasks are being performed. End users
are likely to report extended response times or failures caused by services timing out. These failures could also
return HTTP 500 (Internal Server) errors or HTTP 503 (Service Unavailable) errors. Examine the event logs for the
web server, which are likely to contain more detailed information about the causes and circumstances of the errors.

You can perform the following steps to help identify this problem:

1. Perform process monitoring of the production system, to identify points when response times slow down.
2. Examine the telemetry data captured at these points to determine the mix of operations being performed and

the resources being used.
3. Find any correlations between poor response times and the volumes and combinations of operations that were

happening at those times.
4. Load test each suspected operation to identify which operations are consuming resources and starving other

operations.
5. Review the source code for those operations to determine why they might cause excessive resource

consumption.

The following sections apply these steps to the sample application described earlier.

Instrument each method to track the duration and resources consumed by each request. Then monitor the
application in production. This can provide an overall view of how requests compete with each other. During

Examine telemetry data and find correlationsExamine telemetry data and find correlations

Perform load testingPerform load testing

periods of stress, slow-running resource-hungry requests will likely affect other operations, and this behavior can
be observed by monitoring the system and noting the drop off in performance.

The following image shows a monitoring dashboard. (We used [AppDynamics] for our tests.) Initially, the system
has light load. Then users start requesting the UserProfile GET method. The performance is reasonably good
until other users start issuing requests to the WorkInFrontEnd POST method. At that point, response times increase
dramatically (first arrow). Response times only improve after the volume of requests to the WorkInFrontEnd

controller diminishes (second arrow).

The next image shows some of the metrics gathered to monitor resource utilization during the same interval. At
first, few users are accessing the system. As more users connect, CPU utilization becomes very high (100%). Also
notice that the network I/O rate initially goes up as CPU usage rises. But once CPU usage peaks, network I/O
actually goes down. That's because the system can only handle a relatively small number of requests once the CPU
is at capacity. As users disconnect, the CPU load tails off.

At this point, it appears the Post method in the WorkInFrontEnd controller is a prime candidate for closer
examination. Further work in a controlled environment is needed to confirm the hypothesis.

Review the source codeReview the source code

The next step is to perform tests in a controlled environment. For example, run a series of load tests that include
and then omit each request in turn to see the effects.

The graph below shows the results of a load test performed against an identical deployment of the cloud service
used in the previous tests. The test used a constant load of 500 users performing the Get operation in the
UserProfile controller, along with a step load of users performing the Post operation in the WorkInFrontEnd

controller.

Initially, the step load is 0, so the only active users are performing the UserProfile requests. The system is able to
respond to approximately 500 requests per second. After 60 seconds, a load of 100 additional users starts sending
POST requests to the WorkInFrontEnd controller. Almost immediately, the workload sent to the UserProfile
controller drops to about 150 requests per second. This is due to the way the load-test runner functions. It waits for
a response before sending the next request, so the longer it takes to receive a response, the lower the request rate.

As more users send POST requests to the WorkInFrontEnd controller, the response rate of the UserProfile

controller continues to drop. But note that the volume of requests handled by the WorkInFrontEnd controller
remains relatively constant. The saturation of the system becomes apparent as the overall rate of both requests
tends towards a steady but low limit.

The final step is to look at the source code. The development team was aware that the Post method could take a
considerable amount of time, which is why the original implementation used a separate thread. That solved the
immediate problem, because the Post method did not block waiting for a long-running task to complete.

However, the work performed by this method still consumes CPU, memory, and other resources. Enabling this
process to run asynchronously might actually damage performance, as users can trigger a large number of these
operations simultaneously, in an uncontrolled manner. There is a limit to the number of threads that a server can
run. Past this limit, the application is likely to get an exception when it tries to start a new thread.

NOTENOTE

Implement the solution and verify the resultImplement the solution and verify the result

This doesn't mean you should avoid asynchronous operations. Performing an asynchronous await on a network call is a
recommended practice. (See the Synchronous I/O antipattern.) The problem here is that CPU-intensive work was spawned on
another thread.

The following image shows performance monitoring after the solution was implemented. The load was similar to
that shown earlier, but the response times for the UserProfile controller are now much faster. The volume of
requests increased over the same duration, from 2,759 to 23,565.

Note that the WorkInBackground controller also handled a much larger volume of requests. However, you can't
make a direct comparison in this case, because the work being performed in this controller is very different from
the original code. The new version simply queues a request, rather than performing a time consuming calculation.
The main point is that this method no longer drags down the entire system under load.

CPU and network utilization also show the improved performance. The CPU utilization never reached 100%, and
the volume of handled network requests was far greater than earlier, and did not tail off until the workload
dropped.

The following graph shows the results of a load test. The overall volume of requests serviced is greatly improved
compared to the the earlier tests.

Related guidance
Autoscaling best practices
Background jobs best practices
Queue-Based Load Leveling pattern
Web Queue Worker architecture style

https://docs.microsoft.com/azure/architecture/best-practices/auto-scaling
https://docs.microsoft.com/azure/architecture/best-practices/background-jobs
https://docs.microsoft.com/azure/architecture/patterns/queue-based-load-leveling
https://docs.microsoft.com/azure/architecture/guide/architecture-styles/web-queue-worker

Chatty I/O antipattern
3/13/2019 • 9 minutes to read • Edit Online

Problem description

Reading and writing individual records to a database as distinct requestsReading and writing individual records to a database as distinct requests

public async Task<IHttpActionResult> GetProductsInSubCategoryAsync(int subcategoryId)
{
 using (var context = GetContext())
 {
 // Get product subcategory.
 var productSubcategory = await context.ProductSubcategories
 .Where(psc => psc.ProductSubcategoryId == subcategoryId)
 .FirstOrDefaultAsync();

 // Find products in that category.
 productSubcategory.Product = await context.Products
 .Where(p => subcategoryId == p.ProductSubcategoryId)
 .ToListAsync();

 // Find price history for each product.
 foreach (var prod in productSubcategory.Product)
 {
 int productId = prod.ProductId;
 var productListPriceHistory = await context.ProductListPriceHistory
 .Where(pl => pl.ProductId == productId)
 .ToListAsync();
 prod.ProductListPriceHistory = productListPriceHistory;
 }
 return Ok(productSubcategory);
 }
}

Implementing a single logical operation as a series of HTTP requestsImplementing a single logical operation as a series of HTTP requests

The cumulative effect of a large number of I/O requests can have a significant impact on performance and
responsiveness.

Network calls and other I/O operations are inherently slow compared to compute tasks. Each I/O request typically
has significant overhead, and the cumulative effect of numerous I/O operations can slow down the system. Here
are some common causes of chatty I/O.

The following example reads from a database of products. There are three tables, Product , ProductSubcategory ,
and ProductPriceListHistory . The code retrieves all of the products in a subcategory, along with the pricing
information, by executing a series of queries:

1. Query the subcategory from the ProductSubcategory table.
2. Find all products in that subcategory by querying the Product table.
3. For each product, query the pricing data from the ProductPriceListHistory table.

The application uses Entity Framework to query the database. You can find the complete sample here.

This example shows the problem explicitly, but sometimes an O/RM can mask the problem, if it implicitly fetches
child records one at a time. This is known as the "N+1 problem".

This often happens when developers try to follow an object-oriented paradigm, and treat remote objects as if they

https://github.com/mspnp/architecture-center/blob/master/docs/antipatterns/chatty-io/index.md
https://docs.microsoft.com/ef/
https://github.com/mspnp/performance-optimization/tree/master/ChattyIO

public class UserController : ApiController
{
 [HttpGet]
 [Route("users/{id:int}/username")]
 public HttpResponseMessage GetUserName(int id)
 {
 ...
 }

 [HttpGet]
 [Route("users/{id:int}/gender")]
 public HttpResponseMessage GetGender(int id)
 {
 ...
 }

 [HttpGet]
 [Route("users/{id:int}/dateofbirth")]
 public HttpResponseMessage GetDateOfBirth(int id)
 {
 ...
 }
}

HttpResponseMessage response = await client.GetAsync("users/1/username");
response.EnsureSuccessStatusCode();
var userName = await response.Content.ReadAsStringAsync();

response = await client.GetAsync("users/1/gender");
response.EnsureSuccessStatusCode();
var gender = await response.Content.ReadAsStringAsync();

response = await client.GetAsync("users/1/dateofbirth");
response.EnsureSuccessStatusCode();
var dob = await response.Content.ReadAsStringAsync();

Reading and writing to a file on diskReading and writing to a file on disk

were local objects in memory. This can result in too many network round trips. For example, the following web
API exposes the individual properties of User objects through individual HTTP GET methods.

While there's nothing technically wrong with this approach, most clients will probably need to get several
properties for each User , resulting in client code like the following.

File I/O involves opening a file and moving to the appropriate point before reading or writing data. When the
operation is complete, the file might be closed to save operating system resources. An application that continually
reads and writes small amounts of information to a file will generate significant I/O overhead. Small write
requests can also lead to file fragmentation, slowing subsequent I/O operations still further.

The following example uses a FileStream to write a Customer object to a file. Creating the FileStream opens the
file, and disposing it closes the file. (The using statement automatically disposes the FileStream object.) If the
application calls this method repeatedly as new customers are added, the I/O overhead can accumulate quickly.

private async Task SaveCustomerToFileAsync(Customer cust)
{
 using (Stream fileStream = new FileStream(CustomersFileName, FileMode.Append))
 {
 BinaryFormatter formatter = new BinaryFormatter();
 byte [] data = null;
 using (MemoryStream memStream = new MemoryStream())
 {
 formatter.Serialize(memStream, cust);
 data = memStream.ToArray();
 }
 await fileStream.WriteAsync(data, 0, data.Length);
 }
}

How to fix the problem

public async Task<IHttpActionResult> GetProductCategoryDetailsAsync(int subCategoryId)
{
 using (var context = GetContext())
 {
 var subCategory = await context.ProductSubcategories
 .Where(psc => psc.ProductSubcategoryId == subCategoryId)
 .Include("Product.ProductListPriceHistory")
 .FirstOrDefaultAsync();

 if (subCategory == null)
 return NotFound();

 return Ok(subCategory);
 }
}

public class UserController : ApiController
{
 [HttpGet]
 [Route("users/{id:int}")]
 public HttpResponseMessage GetUser(int id)
 {
 ...
 }
}

// Client code
HttpResponseMessage response = await client.GetAsync("users/1");
response.EnsureSuccessStatusCode();
var user = await response.Content.ReadAsStringAsync();

Reduce the number of I/O requests by packaging the data into larger, fewer requests.

Fetch data from a database as a single query, instead of several smaller queries. Here's a revised version of the
code that retrieves product information.

Follow REST design principles for web APIs. Here's a revised version of the web API from the earlier example.
Instead of separate GET methods for each property, there is a single GET method that returns the User . This
results in a larger response body per request, but each client is likely to make fewer API calls.

For file I/O, consider buffering data in memory and then writing the buffered data to a file as a single operation.
This approach reduces the overhead from repeatedly opening and closing the file, and helps to reduce
fragmentation of the file on disk.

// Save a list of customer objects to a file
private async Task SaveCustomerListToFileAsync(List<Customer> customers)
{
 using (Stream fileStream = new FileStream(CustomersFileName, FileMode.Append))
 {
 BinaryFormatter formatter = new BinaryFormatter();
 foreach (var cust in customers)
 {
 byte[] data = null;
 using (MemoryStream memStream = new MemoryStream())
 {
 formatter.Serialize(memStream, cust);
 data = memStream.ToArray();
 }
 await fileStream.WriteAsync(data, 0, data.Length);
 }
 }
}

// In-memory buffer for customers.
List<Customer> customers = new List<Customers>();

// Create a new customer and add it to the buffer
var cust = new Customer(...);
customers.Add(cust);

// Add more customers to the list as they are created
...

// Save the contents of the list, writing all customers in a single operation
await SaveCustomerListToFileAsync(customers);

Considerations

How to detect the problem

The first two examples make fewer I/O calls, but each one retrieves more information. You must consider
the tradeoff between these two factors. The right answer will depend on the actual usage patterns. For
example, in the web API example, it might turn out that clients often need just the user name. In that case, it
might make sense to expose it as a separate API call. For more information, see the Extraneous Fetching
antipattern.

When reading data, do not make your I/O requests too large. An application should only retrieve the
information that it is likely to use.

Sometimes it helps to partition the information for an object into two chunks, frequently accessed data that
accounts for most requests, and less frequently accessed data that is used rarely. Often the most frequently
accessed data is a relatively small portion of the total data for an object, so returning just that portion can
save significant I/O overhead.

When writing data, avoid locking resources for longer than necessary, to reduce the chances of contention
during a lengthy operation. If a write operation spans multiple data stores, files, or services, then adopt an
eventually consistent approach. See Data Consistency guidance.

If you buffer data in memory before writing it, the data is vulnerable if the process crashes. If the data rate
typically has bursts or is relatively sparse, it may be safer to buffer the data in an external durable queue
such as Event Hubs.

Consider caching data that you retrieve from a service or a database. This can help to reduce the volume of
I/O by avoiding repeated requests for the same data. For more information, see Caching best practices.

https://msdn.microsoft.com/library/dn589800.aspx
https://azure.microsoft.com/services/event-hubs/

Example diagnosis

Load test the applicationLoad test the application

NOTENOTE

Monitor the applicationMonitor the application

Symptoms of chatty I/O include high latency and low throughput. End users are likely to report extended
response times or failures caused by services timing out, due to increased contention for I/O resources.

You can perform the following steps to help identify the causes of any problems:

1. Perform process monitoring of the production system to identify operations with poor response times.
2. Perform load testing of each operation identified in the previous step.
3. During the load tests, gather telemetry data about the data access requests made by each operation.
4. Gather detailed statistics for each request sent to a data store.
5. Profile the application in the test environment to establish where possible I/O bottlenecks might be occurring.

Look for any of these symptoms:

A large number of small I/O requests made to the same file.
A large number of small network requests made by an application instance to the same service.
A large number of small requests made by an application instance to the same data store.
Applications and services becoming I/O bound.

The following sections apply these steps to the example shown earlier that queries a database.

This graph shows the results of load testing. Median response time is measured in 10s of seconds per request. The
graph shows very high latency. With a load of 1000 users, a user might have to wait for nearly a minute to see the
results of a query.

The application was deployed as an Azure App Service web app, using Azure SQL Database. The load test used a simulated
step workload of up to 1000 concurrent users. The database was configured with a connection pool supporting up to 1000
concurrent connections, to reduce the chance that contention for connections would affect the results.

You can use an application performance monitoring (APM) package to capture and analyze the key metrics that

Gather detailed data access informationGather detailed data access information

might identify chatty I/O. Which metrics are important will depend on the I/O workload. For this example, the
interesting I/O requests were the database queries.

The following image shows results generated using New Relic APM. The average database response time peaked
at approximately 5.6 seconds per request during the maximum workload. The system was able to support an
average of 410 requests per minute throughout the test.

Digging deeper into the monitoring data shows the application executes three different SQL SELECT statements.
These correspond to the requests generated by Entity Framework to fetch data from the ProductListPriceHistory ,
Product , and ProductSubcategory tables. Furthermore, the query that retrieves data from the
ProductListPriceHistory table is by far the most frequently executed SELECT statement, by an order of

magnitude.

https://newrelic.com/application-monitoring

It turns out that the GetProductsInSubCategoryAsync method, shown earlier, performs 45 SELECT queries. Each
query causes the application to open a new SQL connection.

NOTENOTE

Implement the solution and verify the resultImplement the solution and verify the result

This image shows trace information for the slowest instance of the GetProductsInSubCategoryAsync operation in the load
test. In a production environment, it's useful to examine traces of the slowest instances, to see if there is a pattern that
suggests a problem. If you just look at the average values, you might overlook problems that will get dramatically worse
under load.

The next image shows the actual SQL statements that were issued. The query that fetches price information is run
for each individual product in the product subcategory. Using a join would considerably reduce the number of
database calls.

If you are using an O/RM, such as Entity Framework, tracing the SQL queries can provide insight into how the
O/RM translates programmatic calls into SQL statements, and indicate areas where data access might be
optimized.

Rewriting the call to Entity Framework produced the following results.

This load test was performed on the same deployment, using the same load profile. This time the graph shows
much lower latency. The average request time at 1000 users is between 5 and 6 seconds, down from nearly a
minute.

This time the system supported an average of 3,970 requests per minute, compared to 410 for the earlier test.

Tracing the SQL statement shows that all the data is fetched in a single SELECT statement. Although this query is
considerably more complex, it is performed only once per operation. And while complex joins can become
expensive, relational database systems are optimized for this type of query.

Related resources
API Design best practices
Caching best practices
Data Consistency Primer
Extraneous Fetching antipattern
No Caching antipattern

https://msdn.microsoft.com/library/dn589800.aspx

Extraneous Fetching antipattern
3/13/2019 • 10 minutes to read • Edit Online

Problem description

public async Task<IHttpActionResult> GetAllFieldsAsync()
{
 using (var context = new AdventureWorksContext())
 {
 // Execute the query. This happens at the database.
 var products = await context.Products.ToListAsync();

 // Project fields from the query results. This happens in application memory.
 var result = products.Select(p => new ProductInfo { Id = p.ProductId, Name = p.Name });
 return Ok(result);
 }
}

public async Task<IHttpActionResult> AggregateOnClientAsync()
{
 using (var context = new AdventureWorksContext())
 {
 // Fetch all order totals from the database.
 var orderAmounts = await context.SalesOrderHeaders.Select(soh => soh.TotalDue).ToListAsync();

 // Sum the order totals in memory.
 var total = orderAmounts.Sum();
 return Ok(total);
 }
}

Retrieving more data than needed for a business operation can result in unnecessary I/O overhead and reduce
responsiveness.

This antipattern can occur if the application tries to minimize I/O requests by retrieving all of the data that it
might need. This is often a result of overcompensating for the Chatty I/O antipattern. For example, an application
might fetch the details for every product in a database. But the user may need just a subset of the details (some
may not be relevant to customers), and probably doesn't need to see all of the products at once. Even if the user
is browsing the entire catalog, it would make sense to paginate the results — showing 20 at a time, for example.

Another source of this problem is following poor programming or design practices. For example, the following
code uses Entity Framework to fetch the complete details for every product. Then it filters the results to return
only a subset of the fields, discarding the rest. You can find the complete sample here.

In the next example, the application retrieves data to perform an aggregation that could be done by the database
instead. The application calculates total sales by getting every record for all orders sold, and then computing the
sum over those records. You can find the complete sample here.

The next example shows a subtle problem caused by the way Entity Framework uses L INQ to Entities.

https://github.com/mspnp/architecture-center/blob/master/docs/antipatterns/extraneous-fetching/index.md
https://github.com/mspnp/performance-optimization/tree/master/ExtraneousFetching
https://github.com/mspnp/performance-optimization/tree/master/ExtraneousFetching

var query = from p in context.Products.AsEnumerable()
 where p.SellStartDate < DateTime.Now.AddDays(-7) // AddDays cannot be mapped by LINQ to Entities
 select ...;

List<Product> products = query.ToList();

How to fix the problem

public async Task<IHttpActionResult> GetRequiredFieldsAsync()
{
 using (var context = new AdventureWorksContext())
 {
 // Project fields as part of the query itself
 var result = await context.Products
 .Select(p => new ProductInfo {Id = p.ProductId, Name = p.Name})
 .ToListAsync();
 return Ok(result);
 }
}

public async Task<IHttpActionResult> AggregateOnDatabaseAsync()
{
 using (var context = new AdventureWorksContext())
 {
 // Sum the order totals as part of the database query.
 var total = await context.SalesOrderHeaders.SumAsync(soh => soh.TotalDue);
 return Ok(total);
 }
}

The application is trying to find products with a SellStartDate more than a week old. In most cases, L INQ to
Entities would translate a where clause to a SQL statement that is executed by the database. In this case,
however, L INQ to Entities cannot map the AddDays method to SQL. Instead, every row from the Product table
is returned, and the results are filtered in memory.

The call to AsEnumerable is a hint that there is a problem. This method converts the results to an IEnumerable

interface. Although IEnumerable supports filtering, the filtering is done on the client side, not the database. By
default, L INQ to Entities uses IQueryable , which passes the responsibility for filtering to the data source.

Avoid fetching large volumes of data that may quickly become outdated or might be discarded, and only fetch
the data needed for the operation being performed.

Instead of getting every column from a table and then filtering them, select the columns that you need from the
database.

Similarly, perform aggregation in the database and not in application memory.

When using Entity Framework, ensure that L INQ queries are resolved using the IQueryable interface and not
IEnumerable . You may need to adjust the query to use only functions that can be mapped to the data source. The

earlier example can be refactored to remove the AddDays method from the query, allowing filtering to be done
by the database.

DateTime dateSince = DateTime.Now.AddDays(-7); // AddDays has been factored out.
var query = from p in context.Products
 where p.SellStartDate < dateSince // This criterion can be passed to the database by LINQ to
Entities
 select ...;

List<Product> products = query.ToList();

Considerations

How to detect the problem

In some cases, you can improve performance by partitioning data horizontally. If different operations
access different attributes of the data, horizontal partitioning may reduce contention. Often, most
operations are run against a small subset of the data, so spreading this load may improve performance.
See Data partitioning.

For operations that have to support unbounded queries, implement pagination and only fetch a limited
number of entities at a time. For example, if a customer is browsing a product catalog, you can show one
page of results at a time.

When possible, take advantage of features built into the data store. For example, SQL databases typically
provide aggregate functions.

If you're using a data store that doesn't support a particular function, such as aggregration, you could
store the calculated result elsewhere, updating the value as records are added or updated, so the
application doesn't have to recalculate the value each time it's needed.

If you see that requests are retrieving a large number of fields, examine the source code to determine
whether all of these fields are actually necessary. Sometimes these requests are the result of poorly
designed SELECT * query.

Similarly, requests that retrieve a large number of entities may be sign that the application is not filtering
data correctly. Verify that all of these entities are actually needed. Use database-side filtering if possible,
for example, by using WHERE clauses in SQL.

Offloading processing to the database is not always the best option. Only use this strategy when the
database is designed or optimized to do so. Most database systems are highly optimized for certain
functions, but are not designed to act as general-purpose application engines. For more information, see
the Busy Database antipattern.

Symptoms of extraneous fetching include high latency and low throughput. If the data is retrieved from a data
store, increased contention is also probable. End users are likely to report extended response times or failures
caused by services timing out. These failures could return HTTP 500 (Internal Server) errors or HTTP 503
(Service Unavailable) errors. Examine the event logs for the web server, which are likely to contain more detailed
information about the causes and circumstances of the errors.

The symptoms of this antipattern and some of the telemetry obtained might be very similar to those of the
Monolithic Persistence antipattern.

You can perform the following steps to help identify the cause:

1. Identify slow workloads or transactions by performing load-testing, process monitoring, or other methods of
capturing instrumentation data.

2. Observe any behavioral patterns exhibited by the system. Are there particular limits in terms of transactions
per second or volume of users?

Example diagnosis

Identify slow workloadsIdentify slow workloads

3. Correlate the instances of slow workloads with behavioral patterns.
4. Identify the data stores being used. For each data source, run lower level telemetry to observe the behavior of

operations.
5. Identify any slow-running queries that reference these data sources.
6. Perform a resource-specific analysis of the slow-running queries and ascertain how the data is used and

consumed.

Look for any of these symptoms:

Frequent, large I/O requests made to the same resource or data store.
Contention in a shared resource or data store.
An operation that frequently receives large volumes of data over the network.
Applications and services spending significant time waiting for I/O to complete.

The following sections apply these steps to the previous examples.

This graph shows performance results from a load test that simulated up to 400 concurrent users running the
GetAllFieldsAsync method shown earlier. Throughput diminishes slowly as the load increases. Average response

time goes up as the workload increases.

A load test for the AggregateOnClientAsync operation shows a similar pattern. The volume of requests is
reasonably stable. The average response time increases with the workload, although more slowly than the
previous graph.

Correlate slow workloads with behavioral patternsCorrelate slow workloads with behavioral patterns

Identify data sources in slow workloadsIdentify data sources in slow workloads

Any correlation between regular periods of high usage and slowing performance can indicate areas of concern.
Closely examine the performance profile of functionality that is suspected to be slow running, to determine
whether it matches the load testing performed earlier.

Load test the same functionality using step-based user loads, to find the point where performance drops
significantly or fails completely. If that point falls within the bounds of your expected real-world usage, examine
how the functionality is implemented.

A slow operation is not necessarily a problem, if it is not being performed when the system is under stress, is not
time critical, and does not negatively affect the performance of other important operations. For example,
generating monthly operational statistics might be a long-running operation, but it can probably be performed
as a batch process and run as a low priority job. On the other hand, customers querying the product catalog is a
critical business operation. Focus on the telemetry generated by these critical operations to see how the
performance varies during periods of high usage.

If you suspect that a service is performing poorly because of the way it retrieves data, investigate how the
application interacts with the repositories it uses. Monitor the live system to see which sources are accessed
during periods of poor performance.

For each data source, instrument the system to capture the following:

The frequency that each data store is accessed.
The volume of data entering and exiting the data store.
The timing of these operations, especially the latency of requests.
The nature and rate of any errors that occur while accessing each data store under typical load.

Compare this information against the volume of data being returned by the application to the client. Track the
ratio of the volume of data returned by the data store against the volume of data returned to the client. If there is
any large disparity, investigate to determine whether the application is fetching data that it doesn't need.

You may be able to capture this data by observing the live system and tracing the lifecycle of each user request,

or you can model a series of synthetic workloads and run them against a test system.

The following graphs show telemetry captured using New Relic APM during a load test of the
GetAllFieldsAsync method. Note the difference between the volumes of data received from the database and the

corresponding HTTP responses.

For each request, the database returned 80,503 bytes, but the response to the client only contained 19,855 bytes,
about 25% of the size of the database response. The size of the data returned to the client can vary depending on
the format. For this load test, the client requested JSON data. Separate testing using XML (not shown) had a
response size of 35,655 bytes, or 44% of the size of the database response.

The load test for the AggregateOnClientAsync method shows more extreme results. In this case, each test
performed a query that retrieved over 280Kb of data from the database, but the JSON response was a mere 14
bytes. The wide disparity is because the method calculates an aggregated result from a large volume of data.

https://newrelic.com/application-monitoring

Identify and analyze slow queriesIdentify and analyze slow queries
Look for database queries that consume the most resources and take the most time to execute. You can add
instrumentation to find the start and completion times for many database operations. Many data stores also
provide in-depth information on how queries are performed and optimized. For example, the Query
Performance pane in the Azure SQL Database management portal lets you select a query and view detailed
runtime performance information. Here is the query generated by the GetAllFieldsAsync operation:

Implement the solution and verify the result
After changing the GetRequiredFieldsAsync method to use a SELECT statement on the database side, load
testing showed the following results.

This load test used the same deployment and the same simulated workload of 400 concurrent users as before.
The graph shows much lower latency. Response time rises with load to approximately 1.3 seconds, compared to
4 seconds in the previous case. The throughput is also higher at 350 requests per second compared to 100
earlier. The volume of data retrieved from the database now closely matches the size of the HTTP response
messages.

Load testing using the AggregateOnDatabaseAsync method generates the following results:

The average response time is now minimal. This is an order of magnitude improvement in performance, caused
primarily by the large reduction in I/O from the database.

Here is the corresponding telemetry for the AggregateOnDatabaseAsync method. The amount of data retrieved
from the database was vastly reduced, from over 280Kb per transaction to 53 bytes. As a result, the maximum
sustained number of requests per minute was raised from around 2,000 to over 25,000.

Related resources
Busy Database antipattern
Chatty I/O antipattern
Data partitioning best practices

Improper Instantiation antipattern
3/13/2019 • 6 minutes to read • Edit Online

Problem description

public class NewHttpClientInstancePerRequestController : ApiController
{
 // This method creates a new instance of HttpClient and disposes it for every call to GetProductAsync.
 public async Task<Product> GetProductAsync(string id)
 {
 using (var httpClient = new HttpClient())
 {
 var hostName = HttpContext.Current.Request.Url.Host;
 var result = await httpClient.GetStringAsync(string.Format("http://{0}:8080/api/...", hostName));
 return new Product { Name = result };
 }
 }
}

It can hurt performance to continually create new instances of an object that is meant to be created once and then
shared.

Many libraries provide abstractions of external resources. Internally, these classes typically manage their own
connections to the resource, acting as brokers that clients can use to access the resource. Here are some examples
of broker classes that are relevant to Azure applications:

System.Net.Http.HttpClient . Communicates with a web service using HTTP.
Microsoft.ServiceBus.Messaging.QueueClient . Posts and receives messages to a Service Bus queue.
Microsoft.Azure.Documents.Client.DocumentClient . Connects to a Cosmos DB instance
StackExchange.Redis.ConnectionMultiplexer . Connects to Redis, including Azure Redis Cache.

These classes are intended to be instantiated once and reused throughout the lifetime of an application. However,
it's a common misunderstanding that these classes should be acquired only as necessary and released quickly. (The
ones listed here happen to be .NET libraries, but the pattern is not unique to .NET.) The following ASP.NET
example creates an instance of HttpClient to communicate with a remote service. You can find the complete
sample here.

In a web application, this technique is not scalable. A new HttpClient object is created for each user request.
Under heavy load, the web server may exhaust the number of available sockets, resulting in SocketException

errors.

This problem is not restricted to the HttpClient class. Other classes that wrap resources or are expensive to create
might cause similar issues. The following example creates an instances of the ExpensiveToCreateService class. Here
the issue is not necessarily socket exhaustion, but simply how long it takes to create each instance. Continually
creating and destroying instances of this class might adversely affect the scalability of the system.

https://github.com/mspnp/architecture-center/blob/master/docs/antipatterns/improper-instantiation/index.md
https://github.com/mspnp/performance-optimization/tree/master/ImproperInstantiation

public class NewServiceInstancePerRequestController : ApiController
{
 public async Task<Product> GetProductAsync(string id)
 {
 var expensiveToCreateService = new ExpensiveToCreateService();
 return await expensiveToCreateService.GetProductByIdAsync(id);
 }
}

public class ExpensiveToCreateService
{
 public ExpensiveToCreateService()
 {
 // Simulate delay due to setup and configuration of ExpensiveToCreateService
 Thread.SpinWait(Int32.MaxValue / 100);
 }
 ...
}

How to fix the problem

public class SingleHttpClientInstanceController : ApiController
{
 private static readonly HttpClient httpClient;

 static SingleHttpClientInstanceController()
 {
 httpClient = new HttpClient();
 }

 // This method uses the shared instance of HttpClient for every call to GetProductAsync.
 public async Task<Product> GetProductAsync(string id)
 {
 var hostName = HttpContext.Current.Request.Url.Host;
 var result = await httpClient.GetStringAsync(string.Format("http://{0}:8080/api/...", hostName));
 return new Product { Name = result };
 }
}

Considerations

If the class that wraps the external resource is shareable and thread-safe, create a shared singleton instance or a
pool of reusable instances of the class.

The following example uses a static HttpClient instance, thus sharing the connection across all requests.

The key element of this antipattern is repeatedly creating and destroying instances of a shareable object. If a
class is not shareable (not thread-safe), then this antipattern does not apply.

The type of shared resource might dictate whether you should use a singleton or create a pool. The
HttpClient class is designed to be shared rather than pooled. Other objects might support pooling,

enabling the system to spread the workload across multiple instances.

Objects that you share across multiple requests must be thread-safe. The HttpClient class is designed to be
used in this manner, but other classes might not support concurrent requests, so check the available
documentation.

Be careful about setting properties on shared objects, as this can lead to race conditions. For example,
setting DefaultRequestHeaders on the HttpClient class before each request can create a race condition. Set
such properties once (for example, during startup), and create separate instances if you need to configure

How to detect the problem

Example diagnosis

Identify points of slow down or failureIdentify points of slow down or failure

different settings.

Some resource types are scarce and should not be held onto. Database connections are an example.
Holding an open database connection that is not required may prevent other concurrent users from gaining
access to the database.

In the .NET Framework, many objects that establish connections to external resources are created by using
static factory methods of other classes that manage these connections. These objects are intended to be
saved and reused, rather than disposed and recreated. For example, in Azure Service Bus, the QueueClient

object is created through a MessagingFactory object. Internally, the MessagingFactory manages connections.
For more information, see Best Practices for performance improvements using Service Bus Messaging.

Symptoms of this problem include a drop in throughput or an increased error rate, along with one or more of the
following:

An increase in exceptions that indicate exhaustion of resources such as sockets, database connections, file
handles, and so on.
Increased memory use and garbage collection.
An increase in network, disk, or database activity.

You can perform the following steps to help identify this problem:

1. Performing process monitoring of the production system, to identify points when response times slow down or
the system fails due to lack of resources.

2. Examine the telemetry data captured at these points to determine which operations might be creating and
destroying resource-consuming objects.

3. Load test each suspected operation, in a controlled test environment rather than the production system.
4. Review the source code and examine the how broker objects are managed.

Look at stack traces for operations that are slow-running or that generate exceptions when the system is under
load. This information can help to identify how these operations are using resources. Exceptions can help to
determine whether errors are caused by shared resources being exhausted.

The following sections apply these steps to the sample application described earlier.

The following image shows results generated using New Relic APM, showing operations that have a poor
response time. In this case, the GetProductAsync method in the NewHttpClientInstancePerRequest controller is
worth investigating further. Notice that the error rate also increases when these operations are running.

https://docs.microsoft.com/azure/service-bus-messaging/service-bus-performance-improvements
https://newrelic.com/application-monitoring

Examine telemetry data and find correlationsExamine telemetry data and find correlations

Performing load testingPerforming load testing

The next image shows data captured using thread profiling, over the same period corresponding as the previous
image. The system spends a significant time opening socket connections, and even more time closing them and
handling socket exceptions.

Use load testing to simulate the typical operations that users might perform. This can help to identify which parts
of a system suffer from resource exhaustion under varying loads. Perform these tests in a controlled environment
rather than the production system. The following graph shows the throughput of requests handled by the
NewHttpClientInstancePerRequest controller as the user load increases to 100 concurrent users.

At first, the volume of requests handled per second increases as the workload increases. At about 30 users,
however, the volume of successful requests reaches a limit, and the system starts to generate exceptions. From
then on, the volume of exceptions gradually increases with the user load.

The load test reported these failures as HTTP 500 (Internal Server) errors. Reviewing the telemetry showed that
these errors were caused by the system running out of socket resources, as more and more HttpClient objects
were created.

The next graph shows a similar test for a controller that creates the custom ExpensiveToCreateService object.

Implement the solution and verify the resultImplement the solution and verify the result

This time, the controller does not generate any exceptions, but throughput still reaches a plateau, while the average
response time increases by a factor of 20. (The graph uses a logarithmic scale for response time and throughput.)
Telemetry showed that creating new instances of the ExpensiveToCreateService was the main cause of the problem.

After switching the GetProductAsync method to share a single HttpClient instance, a second load test showed
improved performance. No errors were reported, and the system was able to handle an increasing load of up to
500 requests per second. The average response time was cut in half, compared with the previous test.

For comparison, the following image shows the stack trace telemetry. This time, the system spends most of its time
performing real work, rather than opening and closing sockets.

The next graph shows a similar load test using a shared instance of the ExpensiveToCreateService object. Again, the
volume of handled requests increases in line with the user load, while the average response time remains low.

Monolithic Persistence antipattern
3/13/2019 • 6 minutes to read • Edit Online

Problem description

public class MonoController : ApiController
{
 private static readonly string ProductionDb = ...;

 public async Task<IHttpActionResult> PostAsync([FromBody]string value)
 {
 await DataAccess.InsertPurchaseOrderHeaderAsync(ProductionDb);
 await DataAccess.LogAsync(ProductionDb, LogTableName);
 return Ok();
 }
}

How to fix the problem

Putting all of an application's data into a single data store can hurt performance, either because it leads to resource
contention, or because the data store is not a good fit for some of the data.

Historically, applications have often used a single data store, regardless of the different types of data that the
application might need to store. Usually this was done to simplify the application design, or else to match the
existing skill set of the development team.

Modern cloud-based systems often have additional functional and nonfunctional requirements, and need to store
many heterogenous types of data, such as documents, images, cached data, queued messages, application logs,
and telemetry. Following the traditional approach and putting all of this information into the same data store can
hurt performance, for two main reasons:

Storing and retrieving large amounts of unrelated data in the same data store can cause contention, which in
turn leads to slow response times and connection failures.
Whichever data store is chosen, it might not be the best fit for all of the different types of data, or it might not
be optimized for the operations that the application performs.

The following example shows an ASP.NET Web API controller that adds a new record to a database and also
records the result to a log. The log is held in the same database as the business data. You can find the complete
sample here.

The rate at which log records are generated will probably affect the performance of the business operations. And if
another component, such as an application process monitor, regularly reads and processes the log data, that can
also affect the business operations.

Separate data according to its use. For each data set, select a data store that best matches how that data set will be
used. In the previous example, the application should be logging to a separate store from the database that holds
business data:

https://github.com/mspnp/architecture-center/blob/master/docs/antipatterns/monolithic-persistence/index.md
https://github.com/mspnp/performance-optimization/tree/master/MonolithicPersistence

public class PolyController : ApiController
{
 private static readonly string ProductionDb = ...;
 private static readonly string LogDb = ...;

 public async Task<IHttpActionResult> PostAsync([FromBody]string value)
 {
 await DataAccess.InsertPurchaseOrderHeaderAsync(ProductionDb);
 // Log to a different data store.
 await DataAccess.LogAsync(LogDb, LogTableName);
 return Ok();
 }
}

Considerations

How to detect the problem

Example diagnosis

Instrument and monitor the systemInstrument and monitor the system

Separate data by the way it is used and how it is accessed. For example, don't store log information and
business data in the same data store. These types of data have significantly different requirements and
patterns of access. Log records are inherently sequential, while business data is more likely to require
random access, and is often relational.

Consider the data access pattern for each type of data. For example, store formatted reports and documents
in a document database such as Cosmos DB, but use Azure Redis Cache to cache temporary data.

If you follow this guidance but still reach the limits of the database, you may need to scale up the database.
Also consider scaling horizontally and partitioning the load across database servers. However, partitioning
may require redesigning the application. For more information, see Data partitioning.

The system will likely slow down dramatically and eventually fail, as the system runs out of resources such as
database connections.

You can perform the following steps to help identify the cause.

1. Instrument the system to record the key performance statistics. Capture timing information for each operation,
as well as the points where the application reads and writes data.

2. If possible, monitor the system running for a few days in a production environment to get a real-world view of
how the system is used. If this is not possible, run scripted load tests with a realistic volume of virtual users
performing a typical series of operations.

3. Use the telemetry data to identify periods of poor performance.
4. Identify which data stores were accessed during those periods.
5. Identify data storage resources that might be experiencing contention.

The following sections apply these steps to the sample application described earlier.

The following graph shows the results of load testing the sample application described earlier. The test used a step
load of up to 1000 concurrent users.

https://azure.microsoft.com/services/cosmos-db/
https://docs.microsoft.com/azure/redis-cache/

Identify periods of poor performanceIdentify periods of poor performance

Identify which data stores are accessed during those periodsIdentify which data stores are accessed during those periods

As the load increases to 700 users, so does the throughput. But at that point, throughput levels off, and the system
appears to be running at its maximum capacity. The average response gradually increases with user load, showing
that the system can't keep up with demand.

If you are monitoring the production system, you might notice patterns. For example, response times might drop
off significantly at the same time each day. This could be caused by a regular workload or scheduled batch job, or
just because the system has more users at certain times. You should focus on the telemetry data for these events.

Look for correlations between increased response times and increased database activity or I/O to shared
resources. If there are correlations, it means the database might be a bottleneck.

The next graph shows the utilization of database throughput units (DTU) during the load test. (A DTU is a measure
of available capacity, and is a combination of CPU utilization, memory allocation, I/O rate.) Utilization of DTUs
quickly reached 100%. This is roughly the point where throughput peaked in the previous graph. Database
utilization remained very high until the test finished. There is a slight drop toward the end, which could be caused
by throttling, competition for database connections, or other factors.

Examine the telemetry for the data storesExamine the telemetry for the data stores

Identify resource contentionIdentify resource contention

Instrument the data stores to capture the low-level details of the activity. In the sample application, the data access
statistics showed a high volume of insert operations performed against both the PurchaseOrderHeader table and
the MonoLog table.

At this point, you can review the source code, focusing on the points where contended resources are accessed by
the application. Look for situations such as:

Data that is logically separate being written to the same store. Data such as logs, reports, and queued messages
should not be held in the same database as business information.
A mismatch between the choice of data store and the type of data, such as large blobs or XML documents in a
relational database.
Data with significantly different usage patterns that share the same store, such as high-write/low-read data
being stored with low-write/high-read data.

Implement the solution and verify the resultImplement the solution and verify the result
The application was changed to write logs to a separate data store. Here are the load test results:

The pattern of throughput is similar to the earlier graph, but the point at which performance peaks is
approximately 500 requests per second higher. The average response time is marginally lower. However, these
statistics don't tell the full story. Telemetry for the business database shows that DTU utilization peaks at around
75%, rather than 100%.

Similarly, the maximum DTU utilization of the log database only reaches about 70%. The databases are no longer
the limiting factor in the performance of the system.

Related resources
Choose the right data store
Criteria for choosing a data store
Data Access for Highly-Scalable Solutions: Using SQL, NoSQL, and Polyglot Persistence
Data partitioning

https://msdn.microsoft.com/library/dn271399.aspx

No Caching antipattern
3/13/2019 • 8 minutes to read • Edit Online

Problem description

public class PersonRepository : IPersonRepository
{
 public async Task<Person> GetAsync(int id)
 {
 using (var context = new AdventureWorksContext())
 {
 return await context.People
 .Where(p => p.Id == id)
 .FirstOrDefaultAsync()
 .ConfigureAwait(false);
 }
 }
}

How to fix the problem

In a cloud application that handles many concurrent requests, repeatedly fetching the same data can reduce
performance and scalability.

When data is not cached, it can cause a number of undesirable behaviors, including:

Repeatedly fetching the same information from a resource that is expensive to access, in terms of I/O overhead
or latency.
Repeatedly constructing the same objects or data structures for multiple requests.
Making excessive calls to a remote service that has a service quota and throttles clients past a certain limit.

In turn, these problems can lead to poor response times, increased contention in the data store, and poor
scalability.

The following example uses Entity Framework to connect to a database. Every client request results in a call to the
database, even if multiple requests are fetching exactly the same data. The cost of repeated requests, in terms of
I/O overhead and data access charges, can accumulate quickly.

You can find the complete sample here.

This antipattern typically occurs because:

Not using a cache is simpler to implement, and it works fine under low loads. Caching makes the code more
complicated.
The benefits and drawbacks of using a cache are not clearly understood.
There is concern about the overhead of maintaining the accuracy and freshness of cached data.
An application was migrated from an on-premises system, where network latency was not an issue, and the
system ran on expensive high-performance hardware, so caching wasn't considered in the original design.
Developers aren't aware that caching is a possibility in a given scenario. For example, developers may not think
of using ETags when implementing a web API.

The most popular caching strategy is the on-demand or cache-aside strategy.

https://github.com/mspnp/architecture-center/blob/master/docs/antipatterns/no-caching/index.md
https://github.com/mspnp/performance-optimization/tree/master/NoCaching

public class CachedPersonRepository : IPersonRepository
{
 private readonly PersonRepository _innerRepository;

 public CachedPersonRepository(PersonRepository innerRepository)
 {
 _innerRepository = innerRepository;
 }

 public async Task<Person> GetAsync(int id)
 {
 return await CacheService.GetAsync<Person>("p:" + id, () =>
_innerRepository.GetAsync(id)).ConfigureAwait(false);
 }
}

public class CacheService
{
 private static ConnectionMultiplexer _connection;

 public static async Task<T> GetAsync<T>(string key, Func<Task<T>> loadCache, double
expirationTimeInMinutes)
 {
 IDatabase cache = Connection.GetDatabase();
 T value = await GetAsync<T>(cache, key).ConfigureAwait(false);
 if (value == null)
 {
 // Value was not found in the cache. Call the lambda to get the value from the database.
 value = await loadCache().ConfigureAwait(false);
 if (value != null)
 {
 // Add the value to the cache.
 await SetAsync(cache, key, value, expirationTimeInMinutes).ConfigureAwait(false);
 }
 }
 return value;
 }
}

Considerations

On read, the application tries to read the data from the cache. If the data isn't in the cache, the application
retrieves it from the data source and adds it to the cache.
On write, the application writes the change directly to the data source and removes the old value from the
cache. It will be retrieved and added to the cache the next time it is required.

This approach is suitable for data that changes frequently. Here is the previous example updated to use the Cache-
Aside pattern.

Notice that the GetAsync method now calls the CacheService class, rather than calling the database directly. The
CacheService class first tries to get the item from Azure Redis Cache. If the value isn't found in Redis Cache, the
CacheService invokes a lambda function that was passed to it by the caller. The lambda function is responsible for

fetching the data from the database. This implementation decouples the repository from the particular caching
solution, and decouples the CacheService from the database.

If the cache is unavailable, perhaps because of a transient failure, don't return an error to the client. Instead,
fetch the data from the original data source. However, be aware that while the cache is being recovered, the
original data store could be swamped with requests, resulting in timeouts and failed connections. (After all,
this is one of the motivations for using a cache in the first place.) Use a technique such as the Circuit
Breaker pattern to avoid overwhelming the data source.

https://docs.microsoft.com/azure/architecture/patterns/cache-aside

How to detect the problem

Applications that cache nonstatic data should be designed to support eventual consistency.

For web APIs, you can support client-side caching by including a Cache-Control header in request and
response messages, and using ETags to identify versions of objects. For more information, see API
implementation.

You don't have to cache entire entities. If most of an entity is static but only a small piece changes frequently,
cache the static elements and retrieve the dynamic elements from the data source. This approach can help
to reduce the volume of I/O being performed against the data source.

In some cases, if volatile data is short-lived, it can be useful to cache it. For example, consider a device that
continually sends status updates. It might make sense to cache this information as it arrives, and not write it
to a persistent store at all.

To prevent data from becoming stale, many caching solutions support configurable expiration periods, so
that data is automatically removed from the cache after a specified interval. You may need to tune the
expiration time for your scenario. Data that is highly static can stay in the cache for longer periods than
volatile data that may become stale quickly.

If the caching solution doesn't provide built-in expiration, you may need to implement a background
process that occasionally sweeps the cache, to prevent it from growing without limits.

Besides caching data from an external data source, you can use caching to save the results of complex
computations. Before you do that, however, instrument the application to determine whether the application
is really CPU bound.

It might be useful to prime the cache when the application starts. Populate the cache with the data that is
most likely to be used.

Always include instrumentation that detects cache hits and cache misses. Use this information to tune
caching policies, such what data to cache, and how long to hold data in the cache before it expires.

If the lack of caching is a bottleneck, then adding caching may increase the volume of requests so much that
the web front end becomes overloaded. Clients may start to receive HTTP 503 (Service Unavailable) errors.
These are an indication that you should scale out the front end.

You can perform the following steps to help identify whether lack of caching is causing performance problems:

1. Review the application design. Take an inventory of all the data stores that the application uses. For each,
determine whether the application is using a cache. If possible, determine how frequently the data changes.
Good initial candidates for caching include data that changes slowly, and static reference data that is read
frequently.

2. Instrument the application and monitor the live system to find out how frequently the application retrieves
data or calculates information.

3. Profile the application in a test environment to capture low-level metrics about the overhead associated
with data access operations or other frequently performed calculations.

4. Perform load testing in a test environment to identify how the system responds under a normal workload
and under heavy load. Load testing should simulate the pattern of data access observed in the production
environment using realistic workloads.

5. Examine the data access statistics for the underlying data stores and review how often the same data
requests are repeated.

Example diagnosis

Instrument the application and monitor the live systemInstrument the application and monitor the live system

Load test the applicationLoad test the application

The following sections apply these steps to the sample application described earlier.

Instrument the application and monitor it to get information about the specific requests that users make while the
application is in production.

The following image shows monitoring data captured by New Relic during a load test. In this case, the only HTTP
GET operation performed is Person/GetAsync . But in a live production environment, knowing the relative
frequency that each request is performed can give you insight into which resources should be cached.

If you need a deeper analysis, you can use a profiler to capture low-level performance data in a test environment
(not the production system). Look at metrics such as I/O request rates, memory usage, and CPU utilization. These
metrics may show a large number of requests to a data store or service, or repeated processing that performs the
same calculation.

The following graph shows the results of load testing the sample application. The load test simulates a step load of
up to 800 users performing a typical series of operations.

https://newrelic.com/partner/azure

Examine data access statisticsExamine data access statistics

SELECT UseCounts, Text, Query_Plan
FROM sys.dm_exec_cached_plans
CROSS APPLY sys.dm_exec_sql_text(plan_handle)
CROSS APPLY sys.dm_exec_query_plan(plan_handle)

The number of successful tests performed each second reaches a plateau, and additional requests are slowed as a
result. The average test time steadily increases with the workload. The response time levels off once the user load
peaks.

Data access statistics and other information provided by a data store can give useful information, such as which
queries are repeated most frequently. For example, in Microsoft SQL Server, the sys.dm_exec_query_stats

management view has statistical information for recently executed queries. The text for each query is available in
the sys.dm_exec-query_plan view. You can use a tool such as SQL Server Management Studio to run the following
SQL query and determine how frequently queries are performed.

The UseCount column in the results indicates how frequently each query is run. The following image shows that
the third query was run more than 250,000 times, significantly more than any other query.

(@p__linq__0 int)SELECT TOP (2)
[Extent1].[BusinessEntityId] AS [BusinessEntityId],
[Extent1].[FirstName] AS [FirstName],
[Extent1].[LastName] AS [LastName]
FROM [Person].[Person] AS [Extent1]
WHERE [Extent1].[BusinessEntityId] = @p__linq__0

Implement the solution and verify the resultImplement the solution and verify the result

Here is the SQL query that is causing so many database requests:

This is the query that Entity Framework generates in GetByIdAsync method shown earlier.

After you incorporate a cache, repeat the load tests and compare the results to the earlier load tests without a
cache. Here are the load test results after adding a cache to the sample application.

Related resources

The volume of successful tests still reaches a plateau, but at a higher user load. The request rate at this load is
significantly higher than earlier. Average test time still increases with load, but the maximum response time is 0.05
ms, compared with 1ms earlier — a 20× improvement.

API implementation best practices
Cache-Aside pattern
Caching best practices
Circuit Breaker pattern

https://docs.microsoft.com/azure/architecture/patterns/cache-aside

Synchronous I/O antipattern
3/13/2019 • 6 minutes to read • Edit Online

Problem description

var blobClient = storageAccount.CreateCloudBlobClient();
var container = blobClient.GetContainerReference("uploadedfiles");

container.CreateIfNotExists();
var blockBlob = container.GetBlockBlobReference("myblob");

// Create or overwrite the "myblob" blob with contents from a local file.
using (var fileStream = File.OpenRead(HostingEnvironment.MapPath("~/FileToUpload.txt")))
{
 blockBlob.UploadFromStream(fileStream);
}

Blocking the calling thread while I/O completes can reduce performance and affect vertical scalability.

A synchronous I/O operation blocks the calling thread while the I/O completes. The calling thread enters a wait
state and is unable to perform useful work during this interval, wasting processing resources.

Common examples of I/O include:

Retrieving or persisting data to a database or any type of persistent storage.
Sending a request to a web service.
Posting a message or retrieving a message from a queue.
Writing to or reading from a local file.

This antipattern typically occurs because:

It appears to be the most intuitive way to perform an operation.
The application requires a response from a request.
The application uses a library that only provides synchronous methods for I/O.
An external library performs synchronous I/O operations internally. A single synchronous I/O call can block an
entire call chain.

The following code uploads a file to Azure blob storage. There are two places where the code blocks waiting for
synchronous I/O, the CreateIfNotExists method and the UploadFromStream method.

Here's an example of waiting for a response from an external service. The GetUserProfile method calls a remote
service that returns a UserProfile .

https://github.com/mspnp/architecture-center/blob/master/docs/antipatterns/synchronous-io/index.md

public interface IUserProfileService
{
 UserProfile GetUserProfile();
}

public class SyncController : ApiController
{
 private readonly IUserProfileService _userProfileService;

 public SyncController()
 {
 _userProfileService = new FakeUserProfileService();
 }

 // This is a synchronous method that calls the synchronous GetUserProfile method.
 public UserProfile GetUserProfile()
 {
 return _userProfileService.GetUserProfile();
 }
}

How to fix the problem

var blobClient = storageAccount.CreateCloudBlobClient();
var container = blobClient.GetContainerReference("uploadedfiles");

await container.CreateIfNotExistsAsync();

var blockBlob = container.GetBlockBlobReference("myblob");

// Create or overwrite the "myblob" blob with contents from a local file.
using (var fileStream = File.OpenRead(HostingEnvironment.MapPath("~/FileToUpload.txt")))
{
 await blockBlob.UploadFromStreamAsync(fileStream);
}

You can find the complete code for both of these examples here.

Replace synchronous I/O operations with asynchronous operations. This frees the current thread to continue
performing meaningful work rather than blocking, and helps improve the utilization of compute resources.
Performing I/O asynchronously is particularly efficient for handling an unexpected surge in requests from client
applications.

Many libraries provide both synchronous and asynchronous versions of methods. Whenever possible, use the
asynchronous versions. Here is the asynchronous version of the previous example that uploads a file to Azure blob
storage.

The await operator returns control to the calling environment while the asynchronous operation is performed.
The code after this statement acts as a continuation that runs when the asynchronous operation has completed.

A well designed service should also provide asynchronous operations. Here is an asynchronous version of the web
service that returns user profiles. The GetUserProfileAsync method depends on having an asynchronous version
of the User Profile service.

https://github.com/mspnp/performance-optimization/tree/master/SynchronousIO

public interface IUserProfileService
{
 Task<UserProfile> GetUserProfileAsync();
}

public class AsyncController : ApiController
{
 private readonly IUserProfileService _userProfileService;

 public AsyncController()
 {
 _userProfileService = new FakeUserProfileService();
 }

 // This is an synchronous method that calls the Task based GetUserProfileAsync method.
 public Task<UserProfile> GetUserProfileAsync()
 {
 return _userProfileService.GetUserProfileAsync();
 }
}

// Asynchronous wrapper around synchronous library method
private async Task<int> LibraryIOOperationAsync()
{
 return await Task.Run(() => LibraryIOOperation());
}

// Invoke the asynchronous wrapper using a task
await LibraryIOOperationAsync();

Considerations

How to detect the problem

For libraries that don't provide asynchronous versions of operations, it may be possible to create asynchronous
wrappers around selected synchronous methods. Follow this approach with caution. While it may improve
responsiveness on the thread that invokes the asynchronous wrapper, it actually consumes more resources. An
extra thread may be created, and there is overhead associated with synchronizing the work done by this thread.
Some tradeoffs are discussed in this blog post: Should I expose asynchronous wrappers for synchronous
methods?

Here is an example of an asynchronous wrapper around a synchronous method.

Now the calling code can await on the wrapper:

I/O operations that are expected to be very short lived and are unlikely to cause contention might be more
performant as synchronous operations. An example might be reading small files on an SSD drive. The
overhead of dispatching a task to another thread, and synchronizing with that thread when the task
completes, might outweigh the benefits of asynchronous I/O. However, these cases are relatively rare, and
most I/O operations should be done asynchronously.

Improving I/O performance may cause other parts of the system to become bottlenecks. For example,
unblocking threads might result in a higher volume of concurrent requests to shared resources, leading in
turn to resource starvation or throttling. If that becomes a problem, you might need to scale out the number
of web servers or partition data stores to reduce contention.

For users, the application may seem unresponsive or appear to hang periodically. The application might fail with

https://blogs.msdn.microsoft.com/pfxteam/2012/03/24/should-i-expose-asynchronous-wrappers-for-synchronous-methods/

Example diagnosis

Monitor web server performanceMonitor web server performance

Load test the applicationLoad test the application

timeout exceptions. These failures could also return HTTP 500 (Internal Server) errors. On the server, incoming
client requests might be blocked until a thread becomes available, resulting in excessive request queue lengths,
manifested as HTTP 503 (Service Unavailable) errors.

You can perform the following steps to help identify the problem:

1. Monitor the production system and determine whether blocked worker threads are constraining
throughput.

2. If requests are being blocked due to lack of threads, review the application to determine which operations
may be performing I/O synchronously.

3. Perform controlled load testing of each operation that is performing synchronous I/O, to find out whether
those operations are affecting system performance.

The following sections apply these steps to the sample application described earlier.

For Azure web applications and web roles, it's worth monitoring the performance of the IIS web server. In
particular, pay attention to the request queue length to establish whether requests are being blocked waiting for
available threads during periods of high activity. You can gather this information by enabling Azure diagnostics.
For more information, see:

Monitor Apps in Azure App Service
Create and use performance counters in an Azure application

Instrument the application to see how requests are handled once they have been accepted. Tracing the flow of a
request can help to identify whether it is performing slow-running calls and blocking the current thread. Thread
profiling can also highlight requests that are being blocked.

The following graph shows the performance of the synchronous GetUserProfile method shown earlier, under
varying loads of up to 4000 concurrent users. The application is an ASP.NET application running in an Azure
Cloud Service web role.

The synchronous operation is hard-coded to sleep for 2 seconds, to simulate synchronous I/O, so the minimum

https://docs.microsoft.com/azure/app-service-web/web-sites-monitor
https://docs.microsoft.com/azure/cloud-services/cloud-services-dotnet-diagnostics-performance-counters

Implement the solution and verify the resultImplement the solution and verify the result

response time is slightly over 2 seconds. When the load reaches approximately 2500 concurrent users, the average
response time reaches a plateau, although the volume of requests per second continues to increase. Note that the
scale for these two measures is logarithmic. The number of requests per second doubles between this point and
the end of the test.

In isolation, it's not necessarily clear from this test whether the synchronous I/O is a problem. Under heavier load,
the application may reach a tipping point where the web server can no longer process requests in a timely manner,
causing client applications to receive time-out exceptions.

Incoming requests are queued by the IIS web server and handed to a thread running in the ASP.NET thread pool.
Because each operation performs I/O synchronously, the thread is blocked until the operation completes. As the
workload increases, eventually all of the ASP.NET threads in the thread pool are allocated and blocked. At that
point, any further incoming requests must wait in the queue for an available thread. As the queue length grows,
requests start to time out.

The next graph shows the results from load testing the asynchronous version of the code.

Throughput is far higher. Over the same duration as the previous test, the system successfully handles a nearly
tenfold increase in throughput, as measured in requests per second. Moreover, the average response time is
relatively constant and remains approximately 25 times smaller than the previous test.

Azure for AWS Professionals
3/13/2019 • 15 minutes to read • Edit Online

Overview

Accounts and subscriptions

This article helps Amazon Web Services (AWS) experts understand the basics of Microsoft Azure accounts,
platform, and services. It also covers key similarities and differences between the AWS and Azure platforms.

You'll learn:

How accounts and resources are organized in Azure.
How available solutions are structured in Azure.
How the major Azure services differ from AWS services.

Azure and AWS built their capabilities independently over time so that each has important implementation and
design differences.

Like AWS, Microsoft Azure is built around a core set of compute, storage, database, and networking services. In
many cases, both platforms offer a basic equivalence between the products and services they offer. Both AWS and
Azure allow you to build highly available solutions based on Windows or Linux hosts. So, if you're used to
development using Linux and OSS technology, both platforms can do the job.

While the capabilities of both platforms are similar, the resources that provide those capabilities are often
organized differently. Exact one-to-one relationships between the services required to build a solution are not
always clear. There are also cases where a particular service might be offered on one platform, but not the other.
See charts of comparable Azure and AWS services .

Azure services can be purchased using several pricing options, depending on your organization's size and needs.
See the pricing overview page for details.

Azure subscriptions are a grouping of resources with an assigned owner responsible for billing and permissions
management. Unlike AWS, where any resources created under the AWS account are tied to that account,
subscriptions exist independently of their owner accounts, and can be reassigned to new owners as needed.

https://github.com/mspnp/architecture-center/blob/master/docs/aws-professional/index.md
https://azure.microsoft.com/pricing/
https://docs.microsoft.com/azure/virtual-machines/linux/infrastructure-example

See alsoSee also

Resource management

Resource groupsResource groups

Management interfacesManagement interfaces

Comparison of structure and ownership of AWS accounts and Azure subscriptions

Subscriptions are assigned three types of administrator accounts:

Account Administrator. The subscription owner and the account billed for the resources used in the
subscription. The account administrator can only be changed by transferring ownership of the subscription.

Service Administrator. This account has rights to create and manage resources in the subscription, but is
not responsible for billing. By default, the account administrator and service administrator are assigned to
the same account. The account administrator can assign a separate user to the service administrator account
for managing the technical and operational aspects of a subscription. There is only one service administrator
per subscription.

Co-administrator. There can be multiple co-administrator accounts assigned to a subscription. Co-
administrators cannot change the service administrator, but otherwise have full control over subscription
resources and users.

Below the subscription level user roles and individual permissions can also be assigned to specific resources,
similarly to how permissions are granted to IAM users and groups in AWS. In Azure all user accounts are
associated with either a Microsoft Account or Organizational Account (an account managed through an Azure
Active Directory).

Like AWS accounts, subscriptions have default service quotas and limits. For a full list of these limits, see Azure
subscription and service limits, quotas, and constraints. These limits can be increased up to the maximum by filing
a support request in the management portal.

How to add or change Azure administrator roles

How to download your Azure billing invoice and daily usage data

The term "resource" in Azure is used in the same way as in AWS, meaning any compute instance, storage object,
networking device, or other entity you can create or configure within the platform.

Azure resources are deployed and managed using one of two models: Azure Resource Manager, or the older Azure
classic deployment model. Any new resources are created using the Resource Manager model.

Both Azure and AWS have entities called "resource groups" that organize resources such as VMs, storage, and
virtual networking devices. However, Azure resource groups are not directly comparable to AWS resource groups.

While AWS allows a resource to be tagged into multiple resource groups, an Azure resource is always associated
with one resource group. A resource created in one resource group can be moved to another group, but can only
be in one resource group at a time. Resource groups are the fundamental grouping used by Azure Resource
Manager.

Resources can also be organized using tags. Tags are key-value pairs that allow you to group resources across your
subscription irrespective of resource group membership.

Azure offers several ways to manage your resources:

Web interface. Like the AWS Dashboard, the Azure portal provides a full web-based management interface
for Azure resources.

https://docs.microsoft.com/azure/azure-subscription-service-limits
https://blogs.msdn.microsoft.com/girishp/2015/09/20/increasing-core-quota-limits-in-azure/
https://docs.microsoft.com/azure/billing/billing-add-change-azure-subscription-administrator
https://docs.microsoft.com/azure/billing/billing-download-azure-invoice-daily-usage-date
https://docs.microsoft.com/azure/azure-resource-manager/resource-group-overview
https://docs.microsoft.com/azure/azure-resource-manager/resource-manager-deployment-model
https://docs.microsoft.com/azure/virtual-machines/windows/infrastructure-example
https://docs.microsoft.com/azure/azure-resource-manager/resource-group-using-tags
https://docs.microsoft.com/azure/azure-resource-manager/resource-group-portal

See alsoSee also

Regions and zones (high availability)

 AVAILABILITY SET AVAILABILITY ZONE PAIRED REGION

Scope of failure Rack Datacenter Region

Request routing Load Balancer Cross-zone Load Balancer Traffic Manager

Network latency Very low Low Mid to high

Virtual networking VNet VNet Cross-region VNet peering

Availability setsAvailability sets

REST API. The Azure Resource Manager REST API provides programmatic access to most of the features
available in the Azure portal.

Command Line. The Azure CLI 2.0 tool provides a command-line interface capable of creating and
managing Azure resources. Azure CLI is available for Windows, Linux, and Mac OS.

PowerShell. The Azure modules for PowerShell allow you to execute automated management tasks using a
script. PowerShell is available for Windows, Linux, and Mac OS.

Templates. Azure Resource Manager templates provide similar JSON template-based resource
management capabilities to the AWS CloudFormation service.

In each of these interfaces, the resource group is central to how Azure resources get created, deployed, or modified.
This is similar to the role a "stack" plays in grouping AWS resources during CloudFormation deployments.

The syntax and structure of these interfaces are different from their AWS equivalents, but they provide comparable
capabilities. In addition, many third party management tools used on AWS, like Hashicorp's Terraform and Netflix
Spinnaker, are also available on Azure.

Azure resource group guidelines

Failures can vary in the scope of their impact. Some hardware failures, such as a failed disk, may affect a single
host machine. A failed network switch could affect a whole server rack. Less common are failures that disrupt a
whole data center, such as loss of power in a data center. Rarely, an entire region could become unavailable.

One of the main ways to make an application resilient is through redundancy. But you need to plan for this
redundancy when you design the application. Also, the level of redundancy that you need depends on your
business requirements — not every application needs redundancy across regions to guard against a regional
outage. In general, there is a tradeoff between greater redundancy and reliability versus higher cost and complexity.

In AWS, a region is divided into two or more Availability Zones. An Availability Zone corresponds with a physically
isolated datacenter in the geographic region. Azure has a number of features to make an application redundant at
every level of failure, including availability sets, availability zones, and paired regions.

The following table summarizes each option.

To protect against localized hardware failures, such as a disk or network switch failing, deploy two or more VMs in
an availability set. An availability set consists of two or more fault domains that share a common power source and
network switch. VMs in an availability set are distributed across the fault domains, so if a hardware failure affects
one fault domain, network traffic can still be routed the VMs in the other fault domains. For more information

https://docs.microsoft.com/rest/api/
https://docs.microsoft.com/azure/azure-resource-manager/cli-azure-resource-manager
https://aka.ms/azurecli2
https://docs.microsoft.com/azure/azure-resource-manager/powershell-azure-resource-manager
https://github.com/PowerShell/PowerShell
https://docs.microsoft.com/azure/azure-resource-manager/resource-group-authoring-templates
https://www.terraform.io/docs/providers/azurerm/
https://www.spinnaker.io/
https://docs.microsoft.com/azure/azure-resource-manager/resource-group-overview#resource-groups

Availability zonesAvailability zones

Paired regionsPaired regions

See alsoSee also

about Availability Sets, see Manage the availability of Windows virtual machines in Azure.

When VM instances are added to availability sets, they are also assigned an update domain. An update domain is a
group of VMs that are set for planned maintenance events at the same time. Distributing VMs across multiple
update domains ensures that planned update and patching events affect only a subset of these VMs at any given
time.

Availability sets should be organized by the instance's role in your application to ensure one instance in each role is
operational. For example, in a three-tier web application, create separate availability sets for the front-end,
application, and data tiers.

An Availability Zone is a physically separate zone within an Azure region. Each Availability Zone has a distinct
power source, network, and cooling. Deploying VMs across availability zones helps to protect an application
against datacenter-wide failures.

To protect an application against a regional outage, you can deploy the application across multiple regions, using
Azure Traffic Manager to distribute internet traffic to the different regions. Each Azure region is paired with another
region. Together, these form a regional pair. With the exception of Brazil South, regional pairs are located within
the same geography in order to meet data residency requirements for tax and law enforcement jurisdiction
purposes.

Unlike Availability Zones, which are physically separate datacenters but may be in relatively nearby geographic
areas, paired regions are usually separated by at least 300 miles. This is intended to ensure larger scale disasters
only affect one of the regions in the pair. Neighboring pairs can be set to sync database and storage service data,
and are configured so that platform updates are rolled out to only one region in the pair at a time.

Azure geo-redundant storage is automatically backed up to the appropriate paired region. For all other resources,
creating a fully redundant solution using paired regions means creating a full copy of your solution in both regions.

Regions and availability for virtual machines in Azure

High availability for Azure applications

Disaster recovery for Azure applications

https://docs.microsoft.com/azure/virtual-machines/windows/manage-availability
https://azure.microsoft.com/documentation/articles/virtual-machines-linux-manage-availability/
https://docs.microsoft.com/azure/availability-zones/az-overview
https://docs.microsoft.com/azure/traffic-manager/
https://azure.microsoft.com/documentation/articles/best-practices-availability-paired-regions/
https://docs.microsoft.com/azure/storage/common/storage-redundancy-grs
https://docs.microsoft.com/azure/virtual-machines/linux/regions-and-availability
https://docs.microsoft.com/en-us/azure/architecture/resiliency/high-availability-azure-applications
https://docs.microsoft.com/en-us/azure/architecture/resiliency/disaster-recovery-azure-applications

Services

Compute servicesCompute services
EC2 Instances and Azure virtual machinesEC2 Instances and Azure virtual machines

EBS and Azure Storage for VM disksEBS and Azure Storage for VM disks

Lambda, Azure Functions, Azure Web-Jobs, and Azure Logic AppsLambda, Azure Functions, Azure Web-Jobs, and Azure Logic Apps

Autoscaling, Azure VM scaling, and Azure App Service AutoscaleAutoscaling, Azure VM scaling, and Azure App Service Autoscale

Container ServiceContainer Service

Other compute servicesOther compute services

See alsoSee also

Planned maintenance for Linux virtual machines in Azure

For a listing of how services map between platforms, see AWS to Azure services comparison.

Not all Azure products and services are available in all regions. Consult the Products by Region page for details.
You can find the uptime guarantees and downtime credit policies for each Azure product or service on the Service
Level Agreements page.

The following sections provide a brief explanation of how commonly used features and services differ between the
AWS and Azure platforms.

Although AWS instance types and Azure virtual machine sizes breakdown in a similar way, there are differences in
the RAM, CPU, and storage capabilities.

Amazon EC2 Instance Types

Sizes for virtual machines in Azure (Windows)

Sizes for virtual machines in Azure (Linux)

Similar to AWS' per second billing, Azure on-demand VMs are billed per second.

Durable data storage for Azure VMs is provided by data disks residing in blob storage. This is similar to how EC2
instances store disk volumes on Elastic Block Store (EBS). Azure temporary storage also provides VMs the same
low-latency temporary read-write storage as EC2 Instance Storage (also called ephemeral storage).

Higher performance disk IO is supported using Azure premium storage. This is similar to the Provisioned IOPS
storage options provided by AWS.

Azure Functions is the primary equivalent of AWS Lambda in providing serverless, on-demand code. However,
Lambda functionality also overlaps with other Azure services:

WebJobs allow you to create scheduled or continuously running background tasks.

Logic Apps provides communications, integration, and business rule management services.

Autoscaling in Azure is handled by two services:

VM scale sets allow you to deploy and manage an identical set of VMs. The number of instances can
autoscale based on performance needs.

App Service Autoscale provides the capability to autoscale Azure App Service solutions.

The Azure Kubernetes Service supports Docker containers managed through Kubernetes.

Azure offers several compute services that do not have direct equivalents in AWS:

Azure Batch allows you to manage compute-intensive work across a scalable collection of virtual machines.

Service Fabric is a platform for developing and hosting scalable microservice solutions.

https://docs.microsoft.com/azure/virtual-machines/linux/maintenance-and-updates
https://azure.microsoft.com/global-infrastructure/services/
https://azure.microsoft.com/support/legal/sla/
https://aws.amazon.com/ec2/instance-types/
https://docs.microsoft.com/azure/virtual-machines/windows/sizes
https://docs.microsoft.com/azure/virtual-machines/linux/sizes
https://docs.microsoft.com/azure/virtual-machines/linux/about-disks-and-vhds
https://blogs.msdn.microsoft.com/mast/2013/12/06/understanding-the-temporary-drive-on-windows-azure-virtual-machines/
https://docs.microsoft.com/azure/virtual-machines/windows/premium-storage
https://azure.microsoft.com/services/functions/
https://docs.microsoft.com/azure/app-service/web-sites-create-web-jobs
https://azure.microsoft.com/services/logic-apps/
https://docs.microsoft.com/azure/virtual-machine-scale-sets/overview
https://docs.microsoft.com/azure/app-service/web-sites-scale
https://docs.microsoft.com/azure/aks/intro-kubernetes
https://docs.microsoft.com/azure/batch/batch-technical-overview
https://docs.microsoft.com/azure/service-fabric/service-fabric-overview
https://docs.microsoft.com/azure/service-fabric/service-fabric-overview-microservices

StorageStorage
S3/EBS/EFS and Azure StorageS3/EBS/EFS and Azure Storage

Glacier and Azure StorageGlacier and Azure Storage

See alsoSee also

NetworkingNetworking
Elastic Load Balancing, Azure Load Balancer, and Azure Application GatewayElastic Load Balancing, Azure Load Balancer, and Azure Application Gateway

Create a Linux VM on Azure using the portal

Azure Reference Architecture: Running a Linux VM on Azure

Get started with Node.js web apps in Azure App Service

Azure Reference Architecture: Basic web application

Create your first Azure Function

In the AWS platform, cloud storage is primarily broken down into three services:

Simple Storage Service (S3). Basic object storage that akes data available through an Internet accessible
API.

Elastic Block Storage (EBS). Block level storage intended for access by a single VM.

Elastic File System (EFS). File storage meant for use as shared storage for up to thousands of EC2
instances.

In Azure Storage, subscription-bound storage accounts allow you to create and manage the following storage
services:

Blob storage stores any type of text or binary data, such as a document, media file, or application installer.
You can set Blob storage for private access or share contents publicly to the Internet. Blob storage serves the
same purpose as both AWS S3 and EBS.

Table storage stores structured datasets. Table storage is a NoSQL key-attribute data store that allows for
rapid development and fast access to large quantities of data. Similar to AWS' SimpleDB and DynamoDB
services.

Queue storage provides messaging for workflow processing and for communication between components
of cloud services.

File storage offers shared storage for legacy applications using the standard server message block (SMB)
protocol. File storage is used in a similar manner to EFS in the AWS platform.

Azure Archive Blob Storage is comparable to AWS Glacier storage service. It is intended for rarely accessed data
that is stored for at least 180 days and can tolerate several hours of retrieval latency.

For data that is infrequently accessed but must be available immediately when accessed, Azure Cool Blob Storage
tier provides cheaper storage than standard blob storage. This storage tier is comparable to AWS S3 - Infrequent
Access storage service.

Microsoft Azure Storage Performance and Scalability Checklist

Azure Storage security guide

Best practices for using content delivery networks (CDNs)

The Azure equivalents of the two Elastic Load Balancing services are:

Load Balancer - provides the same capabilities as the AWS Classic Load Balancer, allowing you to distribute
traffic for multiple VMs at the network level. It also provides failover capability.

https://docs.microsoft.com/azure/virtual-machines/linux/quick-create-portal
https://docs.microsoft.com/azure/architecture/reference-architectures/n-tier/linux-vm
https://docs.microsoft.com/azure/app-service/app-service-web-get-started-nodejs
https://docs.microsoft.com/azure/architecture/reference-architectures/app-service-web-app/basic-web-app
https://docs.microsoft.com/azure/azure-functions/functions-create-first-azure-function
https://docs.microsoft.com/azure/storage/common/storage-quickstart-create-account
https://docs.microsoft.com/azure/storage/common/storage-quickstart-create-account
https://docs.microsoft.com/azure/cosmos-db/table-storage-how-to-use-nodejs
https://docs.microsoft.com/azure/storage/queues/storage-nodejs-how-to-use-queues
https://docs.microsoft.com/azure/storage/files/storage-java-how-to-use-file-storage
https://docs.microsoft.com/azure/storage/blobs/storage-blob-storage-tiers#archive-access-tier
https://docs.microsoft.com/azure/storage/blobs/storage-blob-storage-tiers#cool-access-tier
https://docs.microsoft.com/azure/storage/common/storage-performance-checklist
https://docs.microsoft.com/azure/storage/common/storage-security-guide
https://docs.microsoft.com/azure/architecture/best-practices/cdn
https://azure.microsoft.com/documentation/articles/load-balancer-overview/

Route 53, Azure DNS, and Azure Traffic ManagerRoute 53, Azure DNS, and Azure Traffic Manager

Direct Connect and Azure ExpressRouteDirect Connect and Azure ExpressRoute

See alsoSee also

Database servicesDatabase services
RDS and Azure relational database servicesRDS and Azure relational database services

See alsoSee also

Security and identitySecurity and identity
Directory service and Azure Active DirectoryDirectory service and Azure Active Directory

Application Gateway - offers application-level rule-based routing comparable to the AWS Application Load
Balancer.

In AWS, Route 53 provides both DNS name management and DNS-level traffic routing and failover services. In
Azure this is handled through two services:

Azure DNS provides domain and DNS management.

Traffic Manager provides DNS level traffic routing, load balancing, and failover capabilities.

Azure provides similar site-to-site dedicated connections through its ExpressRoute service. ExpressRoute allows
you to connect your local network directly to Azure resources using a dedicated private network connection. Azure
also offers more conventional site-to-site VPN connections at a lower cost.

Create a virtual network using the Azure portal

Plan and design Azure Virtual Networks

Azure Network Security Best Practices

Azure provides several different relational database services that are the equivalent of AWS' Relational Database
Service (RDS).

SQL Database
Azure Database for MySQL
Azure Database for PostgreSQL

Other database engines such as SQL Server, Oracle, and MySQL can be deployed using Azure VM Instances.

Costs for AWS RDS are determined by the amount of hardware resources that your instance uses, like CPU, RAM,
storage, and network bandwidth. In the Azure database services, cost depends on your database size, concurrent
connections, and throughput levels.

Azure SQL Database Tutorials

Configure geo-replication for Azure SQL Database with the Azure portal

Introduction to Cosmos DB: A NoSQL JSON Database

How to use Azure Table storage from Node.js

Azure splits up directory services into the following offerings:

Azure Active Directory - cloud based directory and identity management service.

Azure Active Directory B2B - enables access to your corporate applications from partner-managed
identities.

Azure Active Directory B2C - service offering support for single sign-on and user management for
consumer facing applications.

Azure Active Directory Domain Services - hosted domain controller service, allowing Active Directory
compatible domain join and user management functionality.

https://azure.microsoft.com/documentation/articles/application-gateway-introduction/
https://azure.microsoft.com/documentation/services/dns/
https://docs.microsoft.com/azure/traffic-manager/
https://azure.microsoft.com/documentation/services/expressroute/
https://azure.microsoft.com/documentation/articles/vpn-gateway-howto-site-to-site-resource-manager-portal/
https://azure.microsoft.com/documentation/articles/virtual-networks-create-vnet-arm-pportal/
https://azure.microsoft.com/documentation/articles/virtual-network-vnet-plan-design-arm/
https://azure.microsoft.com/documentation/articles/azure-security-network-security-best-practices/
https://docs.microsoft.com/azure/sql-database/sql-database-technical-overview
https://docs.microsoft.com/azure/mysql/overview
https://docs.microsoft.com/azure/postgresql/overview
https://azure.microsoft.com/services/virtual-machines/sql-server/
https://azure.microsoft.com/campaigns/oracle/
https://azure.microsoft.com/documentation/articles/virtual-machines-windows-classic-mysql-2008r2/
https://azure.microsoft.com/documentation/articles/sql-database-explore-tutorials/
https://azure.microsoft.com/documentation/articles/sql-database-geo-replication-portal/
https://docs.microsoft.com/azure/cosmos-db/sql-api-introduction
https://azure.microsoft.com/documentation/articles/storage-nodejs-how-to-use-table-storage/
https://azure.microsoft.com/documentation/articles/active-directory-whatis/
https://azure.microsoft.com/documentation/articles/active-directory-b2b-collaboration-overview/
https://azure.microsoft.com/documentation/articles/active-directory-b2c-overview/
https://azure.microsoft.com/documentation/articles/active-directory-ds-overview/

Web application firewallWeb application firewall

See alsoSee also

Application and messaging servicesApplication and messaging services
Simple Email ServiceSimple Email Service

Simple Queueing ServiceSimple Queueing Service

Device FarmDevice Farm

See alsoSee also

Analytics and big dataAnalytics and big data

See alsoSee also

In addition to the Application Gateway Web Application Firewall, you can also use web application firewalls from
third-party vendors like Barracuda Networks.

Getting started with Microsoft Azure security

Azure Identity Management and access control security best practices

AWS provides the Simple Email Service (SES) for sending notification, transactional, or marketing emails. In Azure,
third-party solutions like SendGrid provide email services.

AWS Simple Queueing Service (SQS) provides a messaging system for connecting applications, services, and
devices within the AWS platform. Azure has two services that provide similar functionality:

Queue storage: a cloud messaging service that allows communication between application components
within the Azure platform.

Service Bus: a more robust messaging system for connecting applications, services, and devices. Using the
related Service Bus relay, Service Bus can also connect to remotely hosted applications and services.

The AWS Device Farm provides cross-device testing services. In Azure, Xamarin Test Cloud provides similar cross-
device front-end testing for mobile devices.

In addition to front-end testing, the Azure DevTest Labs provides back end testing resources for Linux and
Windows environments.

How to use Queue storage from Node.js

How to use Service Bus queues

The Cortana Intelligence Suite is Azure's package of products and services designed to capture, organize, analyze,
and visualize large amounts of data. The Cortana suite consists of the following services:

HDInsight - managed Apache distribution that includes Hadoop, Spark, Storm, or HBase.

Data Factory - provides data orchestration and data pipeline functionality.

SQL Data Warehouse - large-scale relational data storage.

Data Lake Store - large-scale storage optimized for big data analytics workloads.

Machine Learning - used to build and apply predictive analytics on data.

Stream Analytics - real-time data analysis.

Data Lake Analytics - large-scale analytics service optimized to work with Data Lake Store

PowerBI - used to power data visualization.

Cortana Intelligence Gallery

Understanding Microsoft big data solutions

https://docs.microsoft.com/azure/application-gateway/waf-overview
https://azure.microsoft.com/marketplace/partners/barracudanetworks/waf/
https://docs.microsoft.com/azure/security
https://docs.microsoft.com/azure/security/azure-security-identity-management-best-practices
https://sendgrid.com/partners/azure/
https://docs.microsoft.com/azure/storage/queues/storage-nodejs-how-to-use-queues
https://azure.microsoft.com/services/service-bus/
https://docs.microsoft.com/azure/service-bus-relay/relay-what-is-it
https://www.xamarin.com/test-cloud
https://azure.microsoft.com/services/devtest-lab/
https://docs.microsoft.com/azure/storage/queues/storage-nodejs-how-to-use-queues
https://docs.microsoft.com/azure/service-bus-messaging/service-bus-nodejs-how-to-use-queues
https://azure.microsoft.com/suites/cortana-intelligence-suite/
https://azure.microsoft.com/documentation/services/hdinsight/
https://azure.microsoft.com/documentation/services/data-factory/
https://azure.microsoft.com/documentation/services/sql-data-warehouse/
https://azure.microsoft.com/documentation/services/data-lake-store/
https://azure.microsoft.com/documentation/services/machine-learning/
https://azure.microsoft.com/documentation/services/stream-analytics/
https://azure.microsoft.com/documentation/articles/data-lake-analytics-overview/
https://powerbi.microsoft.com/
https://gallery.cortanaintelligence.com/
https://msdn.microsoft.com/library/dn749804.aspx

Internet of ThingsInternet of Things
See alsoSee also

Mobile servicesMobile services
NotificationsNotifications

See alsoSee also

Management and monitoringManagement and monitoring
See alsoSee also

Next steps

Azure Data Lake and Azure HDInsight Blog

Get started with Azure IoT Hub

Comparison of IoT Hub and Event Hubs

Notification Hubs do not support sending SMS or email messages, so third-party services are needed for those
delivery types.

Create an Android app

Authentication and Authorization in Azure Mobile Apps

Sending push notifications with Azure Notification Hubs

Monitoring and diagnostics guidance

Best practices for creating Azure Resource Manager templates

Azure Resource Manager Quickstart templates

Get started with Azure

Azure solution architectures

Azure Reference Architectures

https://blogs.msdn.microsoft.com/azuredatalake/
https://azure.microsoft.com/documentation/articles/iot-hub-csharp-csharp-getstarted/
https://azure.microsoft.com/documentation/articles/iot-hub-compare-event-hubs/
https://azure.microsoft.com/documentation/articles/app-service-mobile-android-get-started/
https://azure.microsoft.com/documentation/articles/app-service-mobile-auth/
https://azure.microsoft.com/documentation/articles/notification-hubs-android-push-notification-google-fcm-get-started/
https://azure.microsoft.com/documentation/articles/best-practices-monitoring/
https://azure.microsoft.com/documentation/articles/resource-manager-template-best-practices/
https://azure.microsoft.com/documentation/templates/
https://azure.microsoft.com/get-started/
https://azure.microsoft.com/solutions/architecture/
https://azure.microsoft.com/documentation/articles/guidance-architecture/

AWS to Azure services comparison
3/13/2019 • 16 minutes to read • Edit Online

Azure and AWS for multicloud solutions

Marketplace
AREA AWS SERVICE AZURE SERVICE DESCRIPTION

Marketplace AWS Marketplace Azure Marketplace Easy-to-deploy and
automatically configured
third-party applications,
including single virtual
machine or multiple virtual
machine solutions.

Compute
AREA AWS SERVICE AZURE SERVICE DESCRIPTION

Virtual servers Elastic Compute Cloud (EC2)
Instances

Azure Virtual Machines Virtual servers allow users to
deploy, manage, and
maintain OS and server
software. Instance types
provide combinations of
CPU/RAM. Users pay for
what they use with the
flexibility to change sizes.

 Amazon Lightsail Azure Marketplace Azure Marketplace includes
a selection of preconfigured
VM images for various
applications.

This article helps you understand how Microsoft Azure services compare to Amazon Web Services (AWS).
Whether you are planning a multicloud solution with Azure and AWS, or migrating to Azure, you can compare the
IT capabilities of Azure and AWS services in all categories.

In the following tables, there are multiple Azure services listed for some AWS services. The Azure services are
similar to one another, but depth and breadth of capabilities vary.

As the leading public cloud platforms, Azure and AWS each offer businesses a broad and deep set of capabilities
with global coverage. Yet many organizations choose to use both platforms together for greater choice and
flexibility, as well as to spread their risk and dependencies with a multicloud approach. Consulting companies and
software vendors might also build on and use both Azure and AWS, as these platforms represent most of the
cloud market demand.

For an overview of Azure for AWS users, see Introduction to Azure for AWS professionals.

https://github.com/mspnp/architecture-center/blob/master/docs/aws-professional/services.md
https://azure.microsoft.com/marketplace/
https://azure.microsoft.com/services/virtual-machines/
https://azuremarketplace.microsoft.com/marketplace/apps/category/compute

Container instances EC2 Container Service (ECS) Azure Container Service Azure Container Instances is
the fastest and simplest way
to run a container in Azure,
without having to provision
any virtual machines or
adopt a higher-level
orchestration service.

 EC2 Container Registry Azure Container Registry Allows customers to store
Docker formatted images.
Used to create all types of
container deployments on
Azure.

Microservices / container
orchestrators

Elastic Container Service for
Kubernetes (EKS)

Azure Kubernetes Service
(AKS)

Deploy orchestrated
containerized applications
with Kubernetes. Simplify
monitoring and cluster
management through auto
upgrades and a built-in
operations console.

 Service Fabric A compute service that
orchestrates and manages
the execution, lifetime, and
resilience of complex, inter-
related code components
that can be either stateless
or stateful.

 Service Fabric Mesh Fully managed service that
enables developers to
deploy microservices
applications without
managing virtual machines,
storage, or networking.

 Azure Container Service
(ACS)

Quickly deploy a production
ready Kubernetes, DC/OS, or
Docker Swarm cluster

Serverless Lambda Azure Functions

Azure Event Grid

Integrate systems and run
backend processes in
response to events or
schedules without
provisioning or managing
servers.

Backend process logic Web Jobs Provides an easy way to run
background processes in an
application context.

Batch computing AWS Batch Azure Batch Run large-scale parallel and
high-performance
computing applications
efficiently in the cloud.

AREA AWS SERVICE AZURE SERVICE DESCRIPTION

https://azure.microsoft.com/services/container-service/
https://azure.microsoft.com/services/container-registry/
https://azure.microsoft.com/services/kubernetes-service/
https://azure.microsoft.com/services/service-fabric/
https://docs.microsoft.com/azure/service-fabric-mesh/service-fabric-mesh-overview
https://docs.microsoft.com/azure/container-service/
https://azure.microsoft.com/services/functions/
https://azure.microsoft.com/services/event-grid/
https://docs.microsoft.com/azure/app-service-web/websites-webjobs-resources
https://azure.microsoft.com/services/batch/

Scalability AWS Auto Scaling Virtual Machine Scale Sets

Azure App Service Scale
Capability (PaaS)

Azure AutoScaling

Lets you automatically
change the number of
instances providing a
particular compute
workload. You set defined
metric and thresholds that
determine if the platform
adds or removes instances.

AREA AWS SERVICE AZURE SERVICE DESCRIPTION

Storage
AREA AWS SERVICE AZURE SERVICE DESCRIPTION

Object storage Simple Storage Services (S3) Azure Storage—Block Blob
(for content logs, files)
(Standard—Hot)

Object storage service, for
use cases including cloud
applications, content
distribution, backup,
archiving, disaster recovery,
and big data analytics.

Virtual Server disk
infrastructure

Elastic Block Store (EBS) Azure Storage Disk—Page
Blobs (for VHDs or other
random-write type data)

Azure Storage Disks—
Premium Storage

SSD storage optimized for
I/O intensive read/write
operations. For use as high
performance Azure virtual
machine storage.

Shared file storage Elastic File System Azure Files (file share
between VMs)

Provides a simple interface
to create and configure file
systems quickly, and share
common files. It’s shared file
storage without the need for
a supporting virtual
machine, and can be used
with traditional protocols
that access files over a
network.

Archiving — cool storage S3 Infrequent Access (IA) Azure Storage—Standard
Cool

Cool storage is a lower cost
tier for storing data that is
infrequently accessed and
long-lived.

Archiving — cold storage S3 Glacier Azure Storage-Standard
Archive

Archive storage has the
lowest storage cost and
higher data retrieval costs
compared to hot and cool
storage.

https://docs.microsoft.com/azure/virtual-machine-scale-sets/virtual-machine-scale-sets-overview
https://docs.microsoft.com/azure/app-service/web-sites-scale
https://docs.microsoft.com/azure/app-service/app-service-environment-auto-scale
https://docs.microsoft.com/rest/api/storageservices/fileservices/understanding-block-blobs--append-blobs--and-page-blobs#about-block-blobs
https://docs.microsoft.com/rest/api/storageservices/fileservices/understanding-block-blobs--append-blobs--and-page-blobs#about-page-blobs
https://azure.microsoft.com/services/storage/disks/
https://azure.microsoft.com/services/storage/files/
https://docs.microsoft.com/azure/storage/blobs/storage-blob-storage-tiers
https://docs.microsoft.com/azure/storage/blobs/storage-blob-storage-tiers

Backup AWS Backup Azure Backup Backup and archival
solutions allow files and
folders to be backed up and
recovered from the cloud,
and provide off-site
protection against data loss.
There are two components
of backup—the software
service that orchestrates
backup/retrieval and the
underlying backup storage
infrastructure.

Hybrid storage Storage Gateway StorSimple Integrates on-premises IT
environments with cloud
storage. Automates data
management and storage,
plus supports disaster
recovery.

Bulk data transfer AWS Import/Export Disk Import/Export A data transport solution
that uses secure disks and
appliances to transfer large
amounts of data. Also offers
data protection during
transit.

 AWS Import/Export
Snowball

AWS Snowball Edge

AWS Snowmobile

Azure Data Box Petabyte- to Exabyte-scale
data transport solution that
uses secure data storage
devices to transfer large
amounts of data into and
out of the AWS cloud, at
lower cost than Internet-
based transfers.

Disaster recovery None Site Recovery Automates protection and
replication of virtual
machines. Offers health
monitoring, recovery plans,
and recovery plan testing.

AREA AWS SERVICE AZURE SERVICE DESCRIPTION

Networking and content delivery
AREA AWS SERVICE AZURE SERVICE DESCRIPTION

Cloud virtual networking Virtual Private Cloud (VPC) Virtual Network Provides an isolated, private
environment in the cloud.
Users have control over their
virtual networking
environment, including
selection of their own IP
address range, creation of
subnets, and configuration
of route tables and network
gateways.

https://azure.microsoft.com/services/backup/
https://azure.microsoft.com/services/storsimple/
https://docs.microsoft.com/azure/storage/common/storage-import-export-service
https://azure.microsoft.com/services/storage/databox/
https://azure.microsoft.com/services/site-recovery/
https://azure.microsoft.com/services/virtual-network/

Cross-premises connectivity AWS VPN Gateway Azure VPN Gateway Azure VPN Gateways
connect Azure virtual
networks to other Azure
virtual networks, or
customer on-premises
networks (Site To Site). It
also allows end users to
connect to Azure services
through VPN tunneling
(Point To Site).

Domain name system
management

Route 53 Azure DNS Manage your DNS records
using the same credentials
and billing and support
contract as your other Azure
services

 Route 53 Traffic Manager A service that hosts domain
names, plus routes users to
Internet applications,
connects user requests to
datacenters, manages traffic
to apps, and improves app
availability with automatic
failover.

Content delivery network CloudFront Azure Content Delivery
Network

A global content delivery
network that delivers audio,
video, applications, images,
and other files.

Dedicated network Direct Connect ExpressRoute Establishes a dedicated,
private network connection
from a location to the cloud
provider (not over the
Internet).

Load balancing Classic Load Balancer

Network Load Balancer

Application Load Balancer

Load Balancer

Application Gateway

Automatically distributes
incoming application traffic
to add scale, handle failover,
and route to a collection of
resources.

AREA AWS SERVICE AZURE SERVICE DESCRIPTION

Database
AREA AWS SERVICE AZURE SERVICE DESCRIPTION

Relational database RDS SQL Database

Azure Database for MySQL

Azure Database for
PostgreSQL

Relational database-as-a-
service (DBaaS) where the
database resilience, scale,
and maintenance are
primarily handled by the
platform.

https://docs.microsoft.com/azure/vpn-gateway/vpn-gateway-about-vpngateways
https://azure.microsoft.com/services/dns/
https://azure.microsoft.com/services/traffic-manager/
https://azure.microsoft.com/services/cdn/
https://azure.microsoft.com/services/expressroute/
https://azure.microsoft.com/services/load-balancer/
https://azure.microsoft.com/services/application-gateway/
https://azure.microsoft.com/services/sql-database/
https://azure.microsoft.com/services/mysql/
https://azure.microsoft.com/services/postgresql/

NoSQL—document storage,
key/value storage

DynamoDB and SimpleDB Azure Cosmos DB A globally distributed, multi-
model database that natively
supports multiple data
models: key-value,
documents, graphs, and
columnar.

Caching ElastiCache Azure Redis Cache An in-memory–based,
distributed caching service
that provides a high-
performance store typically
used to offload
nontransactional work from
a database.

Database migration Database Migration Service Azure Database Migration
Service

Typically is focused on the
migration of database
schema and data from one
database format to a specific
database technology in the
cloud.

AREA AWS SERVICE AZURE SERVICE DESCRIPTION

Analytics and big data
AREA AWS SERVICE AZURE SERVICE DESCRIPTION

Elastic data warehouse Redshift SQL Data Warehouse A fully managed data
warehouse that analyzes
data using business
intelligence tools. It can
transact SQL queries across
relational and nonrelational
data.

Big data processing EMR Azure Databricks Apache Spark-based
analytics platform.

 HDInsight Managed Hadoop service.
Deploy and manage Hadoop
clusters in Azure.

Data orchestration Data Pipeline Data Factory Processes and moves data
between different compute
and storage services, as well
as on-premises data sources
at specified intervals. Users
can create, schedule,
orchestrate, and manage
data pipelines.

 AWS Glue Data Factory

Data Catalog

Cloud-based ETL/data
integration service that
orchestrates and automates
the movement and
transformation of data from
various sources.

https://azure.microsoft.com/services/cosmos-db/
https://azure.microsoft.com/services/cache/
https://azure.microsoft.com/campaigns/database-migration/
https://azure.microsoft.com/services/sql-data-warehouse/
https://azure.microsoft.com/services/databricks/
https://azure.microsoft.com/services/hdinsight/
https://azure.microsoft.com/services/data-factory/
https://azure.microsoft.com/services/data-factory/
https://azure.microsoft.com/services/data-catalog/

Analytics Kinesis Analytics Stream Analytics

Data Lake Analytics

Data Lake Store

Storage and analysis
platforms that create
insights from large
quantities of data, or data
that originates from many
sources.

Visualization QuickSight PowerBI Business intelligence tools
that build visualizations,
perform ad hoc analysis, and
develop business insights
from data.

 None Power BI Embedded Allows visualization and data
analysis tools to be
embedded in applications.

Search Elasticsearch Service Marketplace—Elasticsearch A scalable search server
based on Apache Lucene.

 CloudSearch Azure Search Delivers full-text search and
related search analytics and
capabilities.

Machine learning SageMaker Azure Machine Learning
Studio

Azure Machine Learning
Service

Produces an end-to-end
workflow to create, process,
refine, and publish predictive
models that can be used to
understand what might
happen from complex data
sets.

Data discovery None Data Catalog Provides the ability to better
register, enrich, discover,
understand, and consume
data sources.

 Amazon Athena Azure Data Lake Analytics Provides a serverless
interactive query service
that uses standard SQL for
analyzing databases.

AREA AWS SERVICE AZURE SERVICE DESCRIPTION

Intelligence
AREA AWS SERVICE AZURE SERVICE DESCRIPTION

Conversational user
interfaces virtual personal
assistant

Alexa Skills Kits Cortana Intelligence Suite —
Cortana Integration

Services cover intelligence
cognitive services, machine
learning, analytics,
information management,
big data and dashboards
and visualizations.

https://azure.microsoft.com/services/stream-analytics/
https://azure.microsoft.com/services/data-lake-analytics/
https://azure.microsoft.com/services/data-lake-store/
https://powerbi.microsoft.com/
https://azure.microsoft.com/services/power-bi-embedded/
https://azuremarketplace.microsoft.com/marketplace/apps?page=1&search=Elasticsearch
https://azure.microsoft.com/services/search/
https://azure.microsoft.com/services/machine-learning/
https://azure.microsoft.com/services/machine-learning-services/
https://azure.microsoft.com/services/data-catalog/
https://azure.microsoft.com/services/data-lake-analytics/
https://azure.microsoft.com/suites/cortana-intelligence-suite/

 Microsoft Bot Framework +
Azure Bot Service

Builds and connects
intelligent bots that interact
with your users using
text/SMS, Skype, Teams,
Slack, Office 365 mail,
Twitter, and other popular
services.

Speech recognition Amazon Lex Bing Speech API API capable of converting
speech to text,
understanding intent, and
converting text back to
speech for natural
responsiveness.

 Language Understanding
Intelligent Service (LUIS)

Allows your applications to
understand user commands
contextually.

 Speaker Recognition API Gives your app the ability to
recognize individual
speakers.

 Custom Recognition
Intelligent Service (CRIS)

Fine-tunes speech
recognition to eliminate
barriers such as speaking
style, background noise, and
vocabulary.

Text to Speech Amazon Polly Bing Speech API Enables both Speech to Text,
and Text into Speech
capabilities.

Visual recognition Amazon Rekognition Computer Vision API Distills actionable
information from images,
generates captions and
identifies objects in images.

 Face API Detects, identifies, analyzes,
organizes, and tags faces in
photos.

 Emotions API Recognizes emotions in
images.

 Video API Intelligent video processing
produces stable video
output, detects motion,
creates intelligent
thumbnails, detects and
tracks faces.

AREA AWS SERVICE AZURE SERVICE DESCRIPTION

Internet of things (IoT)

https://dev.botframework.com/
https://azure.microsoft.com/services/cognitive-services/speech/
https://azure.microsoft.com/services/cognitive-services/language-understanding-intelligent-service/
https://azure.microsoft.com/services/cognitive-services/speaker-recognition/
https://azure.microsoft.com/services/cognitive-services/custom-speech-service/
https://azure.microsoft.com/services/cognitive-services/speech/
https://azure.microsoft.com/services/cognitive-services/computer-vision/
https://azure.microsoft.com/services/cognitive-services/face/
https://azure.microsoft.com/services/cognitive-services/emotion/
https://www.microsoft.com/cognitive-services/video-api

AREA AWS SERVICE AZURE SERVICE DESCRIPTION

Internet of Things AWS IoT Other Services
(Kinesis, Machine Learning,
EMR, Data Pipeline, SNS,
QuickSight)

Azure IoT Suite (IoT Hub,
Machine Learning, Stream
Analytics, Notification Hubs,
PowerBI)

Provides a preconfigured
solution for monitoring,
maintaining, and deploying
common IoT scenarios.

 AWS IoT Azure IoT Hub A cloud gateway for
managing bidirectional
communication with billions
of IoT devices, securely and
at scale.

Edge compute for IoT AWS Greengrass Azure IoT Edge Managed service that
deploys cloud intelligence
directly on IoT devices to run
in on-premises scenarios.

Streaming data Kinesis Firehose

Kinesis Streams

Event Hubs Services that allow the mass
ingestion of small data
inputs, typically from devices
and sensors, to process and
route the data.

Management and monitoring
AREA AWS SERVICE AZURE SERVICE DESCRIPTION

Cloud advisor Trusted Advisor Azure Advisor Provides analysis of cloud
resource configuration and
security so subscribers can
ensure they’re making use of
best practices and optimum
configurations.

Deployment orchestration
(DevOps)

OpsWorks (Chef-based) Azure Automation Configures and operates
applications of all shapes
and sizes, and provides
templates to create and
manage a collection of
resources.

 CloudFormation Azure Resource Manager

VM extensions

Azure Automation

Provides a way for users to
automate the manual, long-
running, error-prone, and
frequently repeated IT tasks.

Management & monitoring
(DevOps)

CloudWatch Azure portal

Azure Monitor

A unified console that
simplifies building,
deploying, and managing
your cloud resources.

https://azure.microsoft.com/suites/iot-suite/
https://azure.microsoft.com/services/iot-hub/
https://azure.microsoft.com/services/iot-edge/
https://azure.microsoft.com/services/event-hubs/
https://azure.microsoft.com/services/advisor/
https://azure.microsoft.com/services/automation/
https://azure.microsoft.com/features/resource-manager/
https://docs.microsoft.com/azure/virtual-machines/extensions/features-windows?toc=%2Fazure%2Fvirtual-machines%2Fwindows%2Ftoc.json
https://azure.microsoft.com/services/automation/
https://azure.microsoft.com/features/azure-portal/
https://azure.microsoft.com/services/monitor/

 CloudWatch Azure Application Insights +
Azure Monitor

An extensible analytics
service that helps you
understand the performance
and usage of your live web
application. It's designed for
developers, to help you
continuously improve the
performance and usability of
your app.

 AWS X-Ray Azure Application Insights +
Azure Monitor

An extensible application
performance management
service for web developers
on multiple platforms. You
can use it to monitor your
live web application, detect
performance anomalies, and
diagnose issues with your
app.

 AWS Usage and Billing
Report

Azure Billing API Services to help generate,
monitor, forecast, and share
billing data for resource
usage by time, organization,
or product resources.

 AWS Management Console Azure portal A unified management
console that simplifies
building, deploying, and
operating your cloud
resources.

Administration AWS Application Discovery
Service

Azure Log Analytics in
Operations Management
Suite

Provides deeper insights into
your application and
workloads by collecting,
correlating and visualizing all
your machine data, such as
event logs, network logs,
performance data, and much
more, from both on-
premises and cloud assets.

 Amazon EC2 Systems
Manager

Microsoft Operations
Management Suite—
Automation and Control
functionalities

Enables continuous IT
services and compliance
through process automation
and configuration
management. You can
transform complex and
repetitive tasks with IT
automation.

 AWS Personal Health
Dashboard

Azure Resource Health Provides detailed
information about the health
of resources as well as
recommended actions for
maintaining resource health.

AREA AWS SERVICE AZURE SERVICE DESCRIPTION

https://azure.microsoft.com/services/application-insights/
https://azure.microsoft.com/services/application-insights/
https://docs.microsoft.com/azure/billing/billing-usage-rate-card-overview
https://azure.microsoft.com/features/azure-portal/
https://azure.microsoft.com/services/log-analytics
https://www.microsoft.com/cloud-platform/operations-management-suite
https://docs.microsoft.com/azure/resource-health/resource-health-overview

 Third Party Azure Storage Explorer Standalone app from
Microsoft that allows you to
easily work with Azure
Storage data on Windows,
Mac OS, and Linux.

AREA AWS SERVICE AZURE SERVICE DESCRIPTION

Mobile services
AREA AWS SERVICE AZURE SERVICE DESCRIPTION

Pro app development Mobile Hub Mobile Apps

Xamarin Apps

Provides backend mobile
services for rapid
development of mobile
solutions, identity
management, data
synchronization, and storage
and notifications across
devices.

 Mobile SDK Mobile Apps Provides the technology to
rapidly build cross-platform
and native apps for mobile
devices.

 Cognito Mobile Apps Provides authentication
capabilities for mobile
applications.

App testing AWS Device Farm Xamarin Test Cloud (front
end)

Provides services to support
testing mobile applications.

Analytics Mobile Analytics HockeyApp

Application Insights

Supports monitoring, and
feedback collection for the
debugging and analysis of a
mobile application service
quality.

Enterprise mobility
management

None Intune Provides mobile device
management, mobile
application management,
and PC management
capabilities from the cloud.

Security, identity, and access
AREA AWS SERVICE AZURE SERVICE DESCRIPTION

Authentication and
authorization

Identity and Access
Management (IAM)

Azure Active Directory

Azure Active Directory
Premium

Allows users to securely
control access to services
and resources while offering
data security and protection.
Create and manage users
and groups, and use
permissions to allow and
deny access to resources.

https://azure.microsoft.com/features/storage-explorer/
https://azure.microsoft.com/services/app-service/mobile/
https://azure.microsoft.com/features/xamarin/
https://azure.microsoft.com/services/app-service/mobile/
https://azure.microsoft.com/services/app-service/mobile/
https://www.xamarin.com/test-cloud
https://azure.microsoft.com/services/hockeyapp/
https://azure.microsoft.com/services/application-insights/
https://www.microsoft.com/cloud-platform/microsoft-intune
https://docs.microsoft.com/azure/role-based-access-control/role-assignments-portal
https://www.microsoft.com/cloud-platform/azure-active-directory

 AWS Organizations Azure Subscription and
Service Management +
Azure RBAC

Security policy and role
management for working
with multiple accounts.

 Multi-Factor Authentication Multi-Factor Authentication Helps safeguard access to
data and applications while
meeting user demand for a
simple sign-in process. It
delivers strong
authentication with a range
of verification options,
allowing users to choose the
method they prefer.

Information protection None Azure Information
Protection

Service to help control and
secure email, documents,
and sensitive data that you
share outside your company
walls.

Encryption Server-side encryption with
Amazon S3 Key
Management Service

Azure Storage Service
Encryption

Helps you protect and
safeguard your data and
meet your organizational
security and compliance
commitments.

 Key Management Service

CloudHSM

Key Vault Provides security solution
and works with other
services by providing a way
to manage, create, and
control encryption keys
stored in hardware security
modules (HSM).

Firewall Web Application Firewall Application Gateway Web
Application Firewall

A firewall that protects web
applications from common
web exploits. Users can
define customizable web
security rules.

Security Inspector Security Center An automated security
assessment service that
improves the security and
compliance of applications.
Automatically assess
applications for
vulnerabilities or deviations
from best practices.

 Certificate Manager App Service Certificates
available on the Portal

Service that allows
customers to create, manage
and consume certificates
seamlessly in the cloud.

AREA AWS SERVICE AZURE SERVICE DESCRIPTION

https://docs.microsoft.com/azure/azure-subscription-service-limits
https://azure.microsoft.com/services/multi-factor-authentication/
https://www.microsoft.com/cloud-platform/azure-information-protection
https://docs.microsoft.com/azure/storage/storage-service-encryption
https://azure.microsoft.com/services/key-vault/
https://docs.microsoft.com/azure/application-gateway/application-gateway-web-application-firewall-overview
https://azure.microsoft.com/services/security-center/
https://azure.microsoft.com/blog/internals-of-app-service-certificate/

 GuardDuty Azure AD, Operations
Management Suite (OMS),
Security Center

Azure offers built-in
advanced threat detection
functionality, which can be
configured and customized
to meet your requirements.

 AWS Macie Azure Advanced Threat
Protection

Azure SQL Database Threat
Detection

Detect and investigate
advanced attacks on-
premises and in the cloud.

Detects anomalous activities
indicating unusual and
potentially harmful attempts
to access or exploit
databases.

Directory services AWS Directory Service +
Windows Server Active
Directory on AWS

Azure Active Directory
Domain Services + Windows
Server Active Directory on
Azure IaaS

Comprehensive identity and
access management cloud
solution that provides a
robust set of capabilities to
manage users and groups. It
helps secure access to on-
premises and cloud
applications, including
Microsoft online services like
Office 365 and many non-
Microsoft SaaS applications.

 Cognito Azure Active Directory B2C A highly available, global,
identity management service
for consumer-facing
applications that scales to
hundreds of millions of
identities.

 AWS Directory Service Windows Server Active
Directory

Services for supporting
Microsoft Active Directory in
the cloud.

Compliance AWS Artifact Service Trust Platform Provides access to audit
reports, compliance guides,
and trust documents from
across cloud services.

Security AWS Shield Azure DDos Protection
Service

Provides cloud services with
protection from distributed
denial of services (DDoS)
attacks.

AREA AWS SERVICE AZURE SERVICE DESCRIPTION

Developer tools
AREA AWS SERVICE AZURE SERVICE DESCRIPTION

https://azure.microsoft.com/features/azure-advanced-threat-protection/
https://docs.microsoft.com/azure/sql-database/sql-database-threat-detection
https://azure.microsoft.com/services/active-directory/
https://azure.microsoft.com/services/active-directory-b2c/
https://azure.microsoft.com/services/active-directory-ds/
https://www.microsoft.com/en-us/TrustCenter/STP/default.aspx
https://docs.microsoft.com/azure/security/azure-ddos-best-practices

Media transcoding Elastic Transcoder Media Services Services that offer
broadcast-quality video
streaming services, including
various transcoding
technologies.

Email Simple Email Service (SES) Marketplace—Email Services for integrating email
functionality into
applications.

Messaging Simple Queue Service (SQS) Azure Queue Storage Provides a managed
message queueing service
for communicating between
decoupled application
components.

Messaging Simple Queue Service (SQS) Service Bus Queues, Topics,
Relays

Supports a set of cloud-
based, message-oriented
middleware technologies
including reliable message
queuing and durable
publish/subscribe
messaging.

Workflow Simple Workflow Service
(SWF)

Logic Apps Serverless technology for
connecting apps, data and
devices anywhere—on-
premises or in the cloud for
large ecosystems of SaaS
and cloud based connectors.

API management API Gateway API Management A turnkey solution for
publishing APIs to external
and internal consumers.

 Elastic Beanstalk Web Apps (App Service)

Cloud Services

API Apps (App Service)

Managed hosting platforms
providing easy to use
services for deploying and
scaling web applications and
services.

 CodeDeploy

CodeCommit

CodePipeline

Azure DevOps A cloud service for
collaborating on code
development.

 AWS Developer Tools Azure Developer Tools Collection of tools for
building, debugging,
deploying, diagnosing, and
managing multi-platform,
scalable apps and services.

AREA AWS SERVICE AZURE SERVICE DESCRIPTION

https://azure.microsoft.com/services/media-services/
https://azuremarketplace.microsoft.com/marketplace/apps?page=1&search=Email
https://azure.microsoft.com/services/storage/queues/
https://docs.microsoft.com/azure/service-bus-messaging/service-bus-queues-topics-subscriptions
https://azure.microsoft.com/services/logic-apps/
https://azure.microsoft.com/services/api-management/
https://azure.microsoft.com/services/app-service/web/
https://azure.microsoft.com/services/cloud-services/
https://azure.microsoft.com/services/app-service/api/
https://azure.microsoft.com/services/devops/
https://azure.microsoft.com/tools/

 Power Apps Technology to rapidly build
business solutions,
connecting to existing
services and data sources
such as Excel, SharePoint,
Dynamics 365, and more
using a visual designer.

App testing None Azure DevTest Labs
(backend)

Testing technology to build
out heterogeneous solutions
for testing cross-platform
functionality to your
dev/test environment.
Integrates to a full DevOps
Continuous
Integration/Deployment
with Visual Studio Online
service and 3rd parties such
as Jenkins, Chef, Puppet,
CloudTest Lite, Octopus
Deploy, and others.

App customer payment
service

Amazon Flexible Payment
Service and Amazon Dev
Pay

None Cloud service that provides
developers a payment
service for their cloud based
applications.

DevOps AWS CodeBuild Azure DevOps Fully managed build service
that supports continuous
integration and deployment.

Backend process logic AWS Step Functions Logic Apps Cloud technology to build
distributed applications
using out-of-the-box
connectors to reduce
integration challenges.
Connect apps, data and
devices on-premises or in
the cloud.

Programmatic access Command Line Interface Azure Command Line
Interface (CLI)

Azure PowerShell

Built on top of the native
REST API across all cloud
services, various
programming language-
specific wrappers provide
easier ways to create
solutions.

Predefined templates AWS Quick Start Azure Quickstart templates Community-led templates
for creating and deploying
virtual machine–based
solutions.

AREA AWS SERVICE AZURE SERVICE DESCRIPTION

Enterprise integration

https://powerapps.microsoft.com/
https://azure.microsoft.com/solutions/dev-test/
https://azure.microsoft.com/services/devops/
https://azure.microsoft.com/services/logic-apps/
https://docs.microsoft.com/cli/azure/install-azure-cli
https://docs.microsoft.com/powershell/azure/overview
https://azure.microsoft.com/resources/templates/

AREA AWS SERVICE AZURE SERVICE DESCRIPTION

Enterprise app integration None Logic Apps Provides out-of-the box
line-of-business application
integration for SAP, Oracle,
SQL Server, and Websphere
MQ. Connect apps, data,
and devices on-premises or
in the cloud with our large
ecosystem of SaaS and
cloud-based connectors,
including Salesforce, Office
365, Twitter, Dropbox,
Google Services, and more.

Enterprise application
services

None Dynamics 365 Dynamics 365 delivers the
full spectrum of CRM
through five individual apps
— Sales, Customer Service,
Field Service, Project Service
Automation, and Marketing
—that work seamlessly
together.

 Amazon WorkMail

Amazon WorkDocs

Office 365 Fully integrated Cloud
service providing
communications, email,
document management in
the cloud and available on a
wide variety of devices.

Content management in the
cloud

None SharePoint Online Provides a collaborative way
for individuals, teams, and
organizations to intelligently
discover, share, and
collaborate on content from
anywhere and on any device.

Commercial PaaS-IaaS-
DBaaS framework

None Azure Stack A hybrid cloud platform that
lets you deliver Azure
services from your
organization’s datacenter.

Gaming
AREA AWS SERVICE AZURE SERVICE DESCRIPTION

Scalable game servers GameLift PlayFab Managed services for
hosting dedicated game
servers.

Gaming services and
LiveOps

GameSparks PlayFab Services for things like
identity, authentication,
leaderboards, real-time
analytics, and more.

Automated 3D optimization None Simplygon Adapt 3D assets to run
smoothly on any platform.

https://azure.microsoft.com/services/logic-apps/
https://www.microsoft.com/dynamics365/home
https://products.office.com/
https://products.office.com/sharepoint
https://azure.microsoft.com/overview/azure-stack/
https://playfab.com/
https://playfab.com/
https://simplygon.com

 AI Scenarios

Example scenarios show how to solve specific business or technical challenges using Azure. Each scenario is based on a real
customer example and provides fast, easy-to-read guidance to accelerate your own implementation.

In each scenario you'll find an architecture diagram, data flows, and details about the technical components. You will also learn
about considerations when running the solution in production, cost factors for the solution, and other options for solving similar
problems. Many scenarios provide a way to easily deploy the solution in your own Azure subscription.

Jump to: AI scenarios | Application scenarios | Data scenarios | Infrastructure scenarios

New ScenariosNew Scenarios
Accelerate digital image-based modeling Movie recommendations on Azure Multitier web application built for HA & DR

Top ScenariosTop Scenarios
Building secure web apps with Windows VMs Data warehousing and analytics for sales and marketing Highly scalable and
secure WordPress websites

Submit your idea for a new scenarioSubmit your idea for a new scenario
Do you have a scenario that you'd like us to create?

Would you like to build one yourself?

Submit your idea here!

Conversational chatbot for hotel reservationsConversational chatbot for hotel reservations
Build a conversational chatbot for commerce applications with Azure Bot Service.

https://docs.microsoft.com/azure/architecture/example-scenario/infrastructure/image-modeling
https://docs.microsoft.com/azure/architecture/example-scenario/ai/movie-recommendations
https://docs.microsoft.com/azure/architecture/example-scenario/infrastructure/multi-tier-app-disaster-recovery
https://docs.microsoft.com/azure/architecture/example-scenario/infrastructure/regulated-multitier-app
https://docs.microsoft.com/azure/architecture/example-scenario/data/data-warehouse
https://docs.microsoft.com/azure/architecture/example-scenario/infrastructure/wordpress
https://azure-architecture.uservoice.com/forums/918625-architecture-guidance

 Application Scenarios

Image classification for insurance claimsImage classification for insurance claims

Movie recommendations on AzureMovie recommendations on Azure

Build image processing into your Azure applications.

Use machine learning to automate movie, product, and other recommendations using machine learning and an Azure Data
Science Virtual Machine (DSVM) to train a model on Azure.

Migrating a web app to an API-based architectureMigrating a web app to an API-based architecture

Decentralized trust between banksDecentralized trust between banks

Design a CI/CD pipeline using Azure DevOpsDesign a CI/CD pipeline using Azure DevOps

Use Azure API Management to modernize a legacy web application.

Establish a trusted environment for communication and information sharing without resorting to a centralized database.

Build and release a .NET app to Azure Web Apps using Azure DevOps.

CI/CD pipeline for container-based workloadsCI/CD pipeline for container-based workloads

E-commerce front endE-commerce front end

Intelligent product search engine for e-commerceIntelligent product search engine for e-commerce

Build a DevOps pipeline for a Node.js web app with Jenkins, Azure Container Registry, Azure Kubernetes Service, Cosmos
DB, and Grafana.

Host an e-commerce site on Azure.

Provide a world-class search experience in an e-commerce application.

A computer-aided engineering serviceA computer-aided engineering service

Dev/test environments for SAP workloadsDev/test environments for SAP workloads

Provide a software-as-a-service (SaaS) platform for computer-aided engineering (CAE) on Azure.

Build a dev/test environment for SAP workloads.

 Data Scenarios

Running SAP production workloads using an Oracle databaseRunning SAP production workloads using an Oracle database
Run an SAP production deployment in Azure using an Oracle database.

IoT and data analytics in the construction industryIoT and data analytics in the construction industry
Use IoT devices and data analytics to provide comprehensive management and operation of construction projects.

Data warehousing and analytics for sales and marketingData warehousing and analytics for sales and marketing

Scalable order processingScalable order processing

Real-time fraud detectionReal-time fraud detection

Hybrid ETL with existing on-premises SSIS and Azure Data FactoryHybrid ETL with existing on-premises SSIS and Azure Data Factory

Consolidate data from multiple sources and optimize data analytics.

Build a highly scalable order processing pipeline using Azure Cosmos DB.

Detect fraudulent activity in real-time using Azure Event Hubs and Stream Analytics.

 Infrastructure Scenarios

Ingestion and processing of real-time automotive IoT dataIngestion and processing of real-time automotive IoT data

Hybrid ETL with existing on-premises SQL Server Integration Services (SSIS) deployments and Azure Data Factory.

Ingest and process real-time vehicle data using IoT.

Running CFD simulationsRunning CFD simulations
Execute computational fluid dynamics (CFD) simulations on Azure.

Accelerate digital image-based modeling on AzureAccelerate digital image-based modeling on Azure

Linux virtual desktops with CitrixLinux virtual desktops with Citrix

Accelerate digital image-based modeling on Azure using Avere and Agisoft PhotoScan

Build a VDI environment for Linux Desktops using Citrix on Azure.

Multi-tier web application built for HA/DRMulti-tier web application built for HA/DR

Building secure web apps with Windows VMsBuilding secure web apps with Windows VMs

Using Service Fabric to decompose applicationsUsing Service Fabric to decompose applications

3D video rendering3D video rendering

Create a multitier web application built for high availability and disaster recovery on Azure using Azure virtual machines,
availability sets, availability zones, Azure Site Recovery, and Azure Traffic Manager.

Build a secure, multi-tier web application with Windows Server on Azure using scale sets, Application Gateway, and load
balancers.

Decompose a large monolithic application into microservices.

Run native HPC workloads in Azure using the Azure Batch service.

Highly scalable and secure WordPress websitesHighly scalable and secure WordPress websites
Build a highly scalable and secure WordPress website for media events.

Conversational chatbot for hotel reservations on
Azure
3/13/2019 • 6 minutes to read • Edit Online

Relevant use cases

Architecture

ComponentsComponents

This example scenario is applicable to businesses that need to integrate a conversational chatbot into applications.
In this scenario, a C# chatbot is used for a hotel chain that allows customers to check availability and book
accommodation through a web or mobile application.

Potential uses include providing a way for customers to view hotel availability and book rooms, review a restaurant
take-out menu and place a food order, or search for and order prints of photographs. Traditionally, businesses
would need to hire and train customer service agents to respond to these customer requests, and customers would
have to wait until a representative is available to provide assistance.

By using Azure services such as the Bot Service and Language Understanding or Speech API services, companies
can assist customers and process orders or reservations with automated, scalable bots.

Other relevant use cases include:

Viewing a restaurant take-out menu and ordering food
Checking hotel availability and reserving a room
Searching available photos and ordering prints

This scenario covers a conversational bot that functions as a concierge for a hotel. The data flows through the
scenario as follows:

1. The customer accesses the chatbot with a mobile or web app.
2. Using Azure Active Directory B2C (Business 2 Customer), the user is authenticated.
3. Interacting with the Bot Service, the user requests information about hotel availability.
4. Cognitive Services processes the natural language request to understand the customer communication.
5. After the user is happy with the results, the bot adds or updates the customer’s reservation in a SQL Database.
6. Application Insights gathers runtime telemetry throughout the process to help the DevOps team with bot

performance and usage.

https://github.com/mspnp/architecture-center/blob/master/docs/example-scenario/ai/commerce-chatbot.md

AlternativesAlternatives

Considerations
AvailabilityAvailability

ScalabilityScalability

SecuritySecurity

ResiliencyResiliency

Azure Active Directory is Microsoft’s multi-tenant cloud-based directory and identity management service.
Azure AD supports a B2C connector allowing you to identify individuals using external IDs such as Google,
Facebook, or a Microsoft Account.
App Service enables you to build and host web applications in the programming language of your choice
without managing infrastructure.
Bot Service provides tools to build, test, deploy, and manage intelligent bots.
Cognitive Services lets you use intelligent algorithms to see, hear, speak, understand, and interpret your user
needs through natural methods of communication.
SQL Database is a fully managed relational cloud database service that provides SQL Server engine
compatibility.
Application Insights is an extensible Application Performance Management (APM) service that lets you monitor
the performance of applications, such as your chatbot.

Microsoft Speech API can be used to change how customers interface with your bot.
QnA Maker can be used as to quickly add knowledge to your bot from semi-structured content like an FAQ.
Translator Text is a service that you might consider to easily add multi-lingual support to your bot.

This scenario uses Azure SQL Database for storing customer reservations. SQL Database includes zone redundant
databases, failover groups, and geo-replication. For more information, see Azure SQL Database availability
capabilities.

For other availability topics, see the availability checklist in the Azure Architecture Center.

This scenario uses Azure App Service. With App Service, you can automatically scale the number of instances that
run your bot. This functionality lets you keep up with customer demand for your web application and chatbot. For
more information on autoscale, see Autoscaling best practices in the Azure Architecture Center.

For other scalability topics, see the scalability checklist in the Azure Architecture Center.

This scenario uses Azure Active Directory B2C (Business 2 Consumer) to authenticate users. With AAD B2C, your
chatbot doesn't store any sensitive customer account information or credentials. For more information, see Azure
Active Directory B2C overview.

Information stored in Azure SQL Database is encrypted at rest with transparent data encryption (TDE). SQL
Database also offers Always Encrypted which encrypts data during querying and processing. For more
information on SQL Database security, see Azure SQL Database security and compliance.

For general guidance on designing secure solutions, see the Azure Security Documentation.

This scenario uses Azure SQL Database for storing customer reservations. SQL Database includes zone redundant
databases, failover groups, geo-replication, and automatic backups. These features allow your application to
continue running if there is a maintenance event or outage. For more information, see Azure SQL Database
availability capabilities.

To monitor the health of your application, this scenario uses Application Insights. With Application Insights, you
can generate alerts and respond to performance issues that would impact the customer experience and availability
of the chatbot. For more information, see What is Application Insights?

https://docs.microsoft.com/azure/active-directory/
https://docs.microsoft.com/azure/app-service/
https://docs.microsoft.com/azure/bot-service/
https://docs.microsoft.com/azure/cognitive-services/
https://docs.microsoft.com/azure/sql-database/
https://docs.microsoft.com/azure/application-insights/app-insights-overview
https://docs.microsoft.com/azure/cognitive-services/speech/home
https://docs.microsoft.com/azure/cognitive-services/QnAMaker/Overview/overview
https://docs.microsoft.com/azure/cognitive-services/translator/translator-info-overview
https://docs.microsoft.com/azure/sql-database/sql-database-technical-overview#availability-capabilities
https://docs.microsoft.com/azure/active-directory-b2c/active-directory-b2c-overview
https://docs.microsoft.com/azure/sql-database/sql-database-technical-overview#advanced-security-and-compliance
https://docs.microsoft.com/azure/security/
https://docs.microsoft.com/azure/sql-database/sql-database-technical-overview#availability-capabilities
https://docs.microsoft.com/azure/application-insights/app-insights-overview

Deploy the scenario

PrerequisitesPrerequisites

Walk-throughWalk-through

Deploy Web App chatbotDeploy Web App chatbot

Install the Azure CLI extension for the Bot Service
az extension add --name botservice --yes

Create a resource group
az group create --name myCommerceChatbot --location eastus

Create a Web App Chatbot that uses Application Insights
az bot create \
 --resource-group myCommerceChatbot \
 --name commerceChatbot \
 --location eastus \
 --kind webapp \
 --sku S1 \
 --insights eastus

Deploy chatbot C# application codeDeploy chatbot C# application code

For general guidance on designing resilient solutions, see Designing resilient applications for Azure.

This scenario is divided into three components for you to explore areas that you are most focused on:

Infrastructure components. Use an Azure Resource Manger template to deploy the core infrastructure
components of an App Service, Web App, Application Insights, Storage account, and SQL Server and database.
Web App Chatbot. Use the Azure CLI to deploy a bot with the Bot Service and Language Understanding and
Intelligent Services (LUIS) app.
Sample C# chatbot application. Use Visual Studio to review the sample hotel reservation C# application code
and deploy to a bot in Azure.

You must have an existing Azure account. If you don't have an Azure subscription, create a free account before you
begin.

To deploy the infrastructure components with a Resource Manager template, perform the following steps.

1. Click the Deploy to Azure button:

2. Wait for the template deployment to open in the Azure portal, then complete the following steps:
Choose to Create new resource group, then provide a name such as
myCommerceChatBotInfrastructure in the text box.
Select a region from the Location drop-down box.
Provide a username and secure password for the SQL Server administrator account.
Review the terms and conditions, then check I agree to the terms and conditions stated above.
Select the Purchase button.

It takes a few minutes for the deployment to complete.

To create the chatbot, use the Azure CLI. The following example installs the CLI extension for Bot Service, creates a
resource group, then deploys a bot that uses Application Insights. When prompted, authenticate your Microsoft
account and allow the bot to register itself with the Bot Service and Language Understanding and Intelligent
Services (LUIS) app.

A sample C# application is available on GitHub:

https://azure.microsoft.com/free/?WT.mc_id=A261C142F
https://portal.azure.com/#create/Microsoft.Template/uri/https%3A%2F%2Fraw.githubusercontent.com%2Fmspnp%2Fsolution-architectures%2Fmaster%2Fapps%2Fcommerce-chatbot.json

Pricing

Related resources

Commerce Bot C# sample

The sample application includes the Azure Active Directory authentication components and integration with the
Language Understanding and Intelligent Services (LUIS) component of Cognitive Services. The application
requires Visual Studio to build and deploy the scenario. Additional information on configuring AAD B2C and the
LUIS app can be found in the GitHub repo documentation.

To explore the cost of running this scenario, all of the services are pre-configured in the cost calculator. To see how
the pricing would change for your particular use case, change the appropriate variables to match your expected
traffic.

We have provided three sample cost profiles based on the number of messages you expect your chatbot to
process:

Small: this pricing example correlates to processing < 10,000 messages per month.
Medium: this pricing example correlates to processing < 500,000 messages per month.
Large: this pricing example correlates to processing < 10 million messages per month.

For a set of guided tutorials for the Azure Bot Service, see the tutorial section of the documentation.

https://github.com/Microsoft/AzureBotServices-scenarios/tree/master/CSharp/Commerce/src
https://azure.com/e/dce05b6184904c50b38e1a8654f726b6
https://azure.com/e/304d17106afc480dbc414f9726078a03
https://azure.com/e/8319dd5e5e3d4f118f9029e32a80e887
https://docs.microsoft.com/azure/bot-service/

Image classification for insurance claims on Azure
3/13/2019 • 4 minutes to read • Edit Online

Relevant use cases

Architecture

This scenario is relevant for businesses that need to process images.

Potential applications include classifying images for a fashion website, analyzing text and images for insurance
claims, or understanding telemetry data from game screenshots. Traditionally, companies would need to develop
expertise in machine learning models, train the models, and finally run the images through their custom process to
get the data out of the images.

By using Azure services such as the Computer Vision API and Azure Functions, companies can eliminate the need
to manage individual servers, while reducing costs and leveraging the expertise that Microsoft has already
developed around processing images with Cognitive Services. This example scenario specifically addresses an
image-processing use case. If you have different AI needs, consider the full suite of Cognitive Services.

Other relevant use cases include:

Classifying images on a fashion website.
Classifying telemetry data from screenshots of games.

This scenario covers the back-end components of a web or mobile application. Data flows through the scenario as
follows:

1. The API layer is built using Azure Functions. These APIs enable the application to upload images and retrieve
data from Cosmos DB.

2. When an image is uploaded via an API call, it's stored in Blob storage.
3. Adding new files to Blob storage triggers an Event Grid notification to be sent to an Azure Function.
4. Azure Functions sends a link to the newly uploaded file to the Computer Vision API to analyze.
5. Once the data has been returned from the Computer Vision API, Azure Functions makes an entry in Cosmos

https://github.com/mspnp/architecture-center/blob/master/docs/example-scenario/ai/intelligent-apps-image-processing.md
https://docs.microsoft.com/azure/#pivot=products&panel=ai

ComponentsComponents

Alternatives

Considerations
ScalabilityScalability

SecuritySecurity

ResiliencyResiliency

Pricing

DB to persist the results of the analysis along with the image metadata.

Computer Vision API is part of the Cognitive Services suite and is used to retrieve information about each
image.
Azure Functions provides the back-end API for the web application, as well as the event processing for
uploaded images.
Event Grid triggers an event when a new image is uploaded to blob storage. The image is then processed with
Azure functions.
Blob storage stores all of the image files that are uploaded into the web application, as well any static files that
the web application consumes.
Cosmos DB stores metadata about each image that is uploaded, including the results of the processing from
Computer Vision API.

Custom Vision Service. The Computer Vision API returns a set of taxonomy-based categories. If you need to
process information that isn't returned by the Computer Vision API, consider the Custom Vision Service, which
lets you build custom image classifiers.
Azure Search. If your use case involves querying the metadata to find images that meet specific criteria,
consider using Azure Search. Currently in preview, Cognitive search seamlessly integrates this workflow.

The majority of the components used in this example scenario are managed services that will automatically scale.
A couple notable exceptions: Azure Functions has a limit of a maximum of 200 instances. If you need to scale
beyond this limit, consider multiple regions or app plans.

Cosmos DB doesn’t autoscale in terms of provisioned request units (RUs). For guidance on estimating your
requirements see request units in our documentation. To fully take advantage of the scaling in Cosmos DB,
understand how partition keys work in CosmosDB.

NoSQL databases frequently trade consistency (in the sense of the CAP theorem) for availability, scalability, and
partitioning. In this example scenario, a key-value data model is used and transaction consistency is rarely needed
as most operations are by definition atomic. Additional guidance to Choose the right data store is available in the
Azure Architecture Center. If your implementation requires high consistency, you can choose your consistency
level in CosmosDB.

For general guidance on designing scalable solutions, see the scalability checklist in the Azure Architecture Center.

Managed identities for Azure resources are used to provide access to other resources internal to your account and
then assigned to your Azure Functions. Only allow access to the requisite resources in those identities to ensure
that nothing extra is exposed to your functions (and potentially to your customers).

For general guidance on designing secure solutions, see the Azure Security Documentation.

All of the components in this scenario are managed, so at a regional level they are all resilient automatically.

For general guidance on designing resilient solutions, see Designing resilient applications for Azure.

https://docs.microsoft.com/azure/cognitive-services/computer-vision/home
https://docs.microsoft.com/azure/azure-functions/functions-overview
https://docs.microsoft.com/azure/event-grid/overview
https://docs.microsoft.com/azure/storage/blobs/storage-blobs-introduction
https://docs.microsoft.com/azure/cosmos-db/introduction
https://docs.microsoft.com/azure/cognitive-services/custom-vision-service/home
https://docs.microsoft.com/azure/cognitive-services/computer-vision/home#the-86-category-concept
https://docs.microsoft.com/azure/search/search-what-is-azure-search
https://docs.microsoft.com/azure/search/cognitive-search-concept-intro
https://docs.microsoft.com/azure/cosmos-db/request-units
https://docs.microsoft.com/azure/cosmos-db/partition-data
https://docs.microsoft.com/azure/cosmos-db/consistency-levels
https://docs.microsoft.com/azure/architecture/checklist/scalability
https://docs.microsoft.com/azure/app-service/app-service-managed-service-identity
https://docs.microsoft.com/azure/security/
https://docs.microsoft.com/azure/architecture/resiliency/

Related resources

To explore the cost of running this scenario, all of the services are pre-configured in the cost calculator. To see how
the pricing would change for your particular use case, change the appropriate variables to match your expected
traffic.

We have provided three sample cost profiles based on amount of traffic (we assume all images are 100 kb in size):

Small: this pricing example correlates to processing < 5000 images a month.
Medium: this pricing example correlates to processing 500,000 images a month.
Large: this pricing example correlates to processing 50 million images a month.

For a guided learning path, see Build a serverless web app in Azure.

Before deploying this example scenario in a production environment, review recommended practices for
optimizing the performance and reliability of Azure Functions.

https://azure.com/e/f9b59d238b43423683db73f4a31dc380
https://azure.com/e/7c7fc474db344b87aae93bc29ae27108
https://azure.com/e/cbadbca30f8640d6a061f8457a74ba7d
https://docs.microsoft.com/azure/functions/tutorial-static-website-serverless-api-with-database
https://docs.microsoft.com/azure/azure-functions/functions-best-practices

Movie recommendations on Azure
3/13/2019 • 4 minutes to read • Edit Online

Relevant use cases

Architecture

This example scenario shows how a business can use machine learning to automate product recommendations for
their customers. An Azure Data Science Virtual Machine (DSVM) is used to train a model on Azure that
recommends movies to users based on ratings that have been given to movies.

Recommendations can be useful in various industries from retail to news to media. Potential applications include
providing product recommendations in a virtual store, providing news or post recommendations, or providing
music recommendations. Traditionally, businesses had to hire and train assistants to make personalized
recommendations to customers. Today, we can provide customized recommendations at scale by utilizing Azure to
train models to understand customer preferences.

Consider this scenario for the following use cases:

Movie recommendations on a website.
Consumer product recommendations in a mobile app.
News recommendations on streaming media.

This scenario covers the training and evaluating of the machine learning model using the Spark alternating least
squares (ALS) algorithm on a dataset of movie ratings. The steps for this scenario are as following:

1. The front-end website or app service collects historical data of user-movie interactions, which are
represented in a table of user, item, and numerical rating tuples.

2. The collected historical data is stored in a blob storage.

3. A DSVM is often used to experiment with or productize a Spark ALS recommender model. The ALS model
is trained using a training dataset, which is produced from the overall dataset by applying the appropriate
data splitting strategy. For example, the dataset can be split into sets randomly, chronologically, or stratified,
depending on the business requirement. Similar to other machine learning tasks, a recommender is
validated by using evaluation metrics (for example, precision@k, recall@k, MAP, nDCG@k).

https://github.com/mspnp/architecture-center/blob/master/docs/example-scenario/ai/movie-recommendations.md
https://spark.apache.org/docs/latest/ml-collaborative-filtering.html
https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)
https://en.wikipedia.org/wiki/Discounted_cumulative_gain

ComponentsComponents

AlternativesAlternatives

Considerations
AvailabilityAvailability

ScalabilityScalability

SecuritySecurity

4. Azure Machine Learning service is used for coordinating the experimentation, such as hyperparameter
sweeping and model management.

5. A trained model is preserved on Azure Cosmos DB, which can then be applied for recommending the top k
movies for a given user.

6. The model is then deployed onto a web or app service by using Azure Container Instances or Azure
Kubernetes Service.

For an in-depth guide to building and scaling a recommender service, see Build a real-time recommendation API
on Azure.

Data Science Virtual Machine (DSVM) is an Azure virtual machine with deep learning frameworks and tools
for machine learning and data science. The DSVM has a standalone Spark environment that can be used to
run ALS.

Azure Blob storage stores the dataset for movie recommendations.

Azure Machine Learning service is used to accelerate the building, managing, and deploying of machine
learning models.

Azure Cosmos DB enables globally distributed and multi-model database storage.

Azure Container Instances is used to deploy the trained models to web or app services, optionally using
Azure Kubernetes Service.

Azure Databricks is a managed Spark cluster where model training and evaluating is performed. You can set up a
managed Spark environment in minutes, and autoscale up and down to help reduce the resources and costs
associated with scaling clusters manually. Another resource-saving option is to configure inactive clusters to
terminate automatically.

Machine-learning-built apps are split into two resource components: resources for training, and resources for
serving. Resources required for training generally do not need high availability, as live production requests do not
directly hit these resources. Resources required for serving need to have high availability to serve customer
requests.

For training, the DSVM is available in multiple regions around the globe and meets the service level agreement
(SLA) for virtual machines. For serving, Azure Kubernetes Service provides a highly available infrastructure. Agent
nodes also follow the SLA for virtual machines.

If you have a large data size, you can scale your DSVM to shorten training time. You can scale a VM up or down by
changing the VM size. Choose a memory size large enough to fit your dataset in-memory and a higher vCPU
count in order to decrease the amount of time that training takes.

This scenario can use Azure Active Directory to authenticate users for access to the DSVM, which contains your
code, models, and (in-memory) data. Data is stored in Azure Storage prior to being loaded on a DSVM, where it is
automatically encrypted using Storage Service Encryption. Permissions can be managed via Azure Active Directory
authentication or role-based access control.

https://docs.microsoft.com/azure/architecture/reference-architectures/ai/real-time-recommendation
https://docs.microsoft.com/azure/machine-learning/data-science-virtual-machine/overview
https://docs.microsoft.com/azure/storage/blobs/storage-blobs-introduction
https://docs.microsoft.com/azure/machine-learning/service/
https://docs.microsoft.com/azure/cosmos-db/introduction
https://docs.microsoft.com/azure/container-instances/container-instances-overview
https://docs.microsoft.com/azure/aks/intro-kubernetes
https://docs.microsoft.com/azure/azure-databricks/what-is-azure-databricks
https://docs.azuredatabricks.net/user-guide/clusters/sizing.html#autoscaling
https://docs.azuredatabricks.net/user-guide/clusters/configure.html
https://azure.microsoft.com/en-us/global-infrastructure/services/?products=virtual-machines®ions=all
https://azure.microsoft.com/en-us/support/legal/sla/virtual-machines/v1_8/
https://docs.microsoft.com/azure/aks/container-service-quotas
https://azure.microsoft.com/en-us/support/legal/sla/kubernetes-service/v1_0/
https://docs.microsoft.com/azure/virtual-machines/virtual-machines-linux-change-vm-size
https://docs.microsoft.com/azure/machine-learning/data-science-virtual-machine/dsvm-common-identity
https://docs.microsoft.com/azure/storage/common/storage-service-encryption

Deploy this scenario

Related resources

Prerequisites: You must have an existing Azure account. If you don't have an Azure subscription, create a free
account before you begin.

All the code for this scenario is available in the Microsoft Recommenders repository.

Follow these steps to run the ALS quickstart notebook:

cd notebooks
git clone https://github.com/Microsoft/Recommenders

1. Create a DSVM from the Azure portal.

2. Clone the repo in the Notebooks folder:

3. Install the conda dependencies following the steps described in the SETUP.md file.

4. In a browser, go to your jupyterlab VM and navigate to
notebooks/00_quick_start/als_pyspark_movielens.ipynb .

5. Execute the notebook.

For an in-depth guide to building and scaling a recommender service, see Build a real-time recommendation API
on Azure. For tutorials and examples of recommendation systems, see Microsoft Recommenders repository.

https://azure.microsoft.com/free/?WT.mc_id=A261C142F
https://github.com/Microsoft/Recommenders
https://github.com/Microsoft/Recommenders/notebooks/00_quick_start/als_pyspark_movielens.ipynb
https://docs.microsoft.com/azure/machine-learning/data-science-virtual-machine/dsvm-ubuntu-intro
https://github.com/Microsoft/Recommenders/blob/master/SETUP.md%60
https://docs.microsoft.com/azure/architecture/reference-architectures/ai/real-time-recommendation
https://github.com/Microsoft/Recommenders

A computer-aided engineering service on Azure
3/13/2019 • 5 minutes to read • Edit Online

Relevant use cases

Architecture

This example scenario demonstrates delivery of a software-as-a-service (SaaS) platform built on the high-
performance computing (HPC) capabilities of Azure. This scenario is based on an engineering software solution.
However, the architecture is relevant to other industries requiring HPC resources such as image rendering,
complex modeling, and financial risk calculation.

This example demonstrates an engineering software provider that delivers computer-aided engineering (CAE)
applications to engineering firms and manufacturing enterprises. CAE solutions enable innovation, reduce
development times, and lower costs throughout the lifetime of a product's design. These solutions require
substantial compute resources and often process high data volumes. The high costs of an on-premises HPC
appliance or high-end workstations often put these technologies out of reach for small engineering firms,
entrepreneurs, and students.

The company wants to expand the market for its applications by building a SaaS platform backed by cloud-based
HPC technologies. Their customers should be able to pay for compute resources as needed and access massive
computing power that would be unaffordable otherwise.

The company's goals include:

Taking advantage of HPC capabilities in Azure to accelerate the product design and testing process.
Using the latest hardware innovations to run complex simulations, while minimizing the costs for simpler
simulations.
Enabling true-to-life visualization and rendering in a web browser, without requiring a high-end engineering
workstation.

Other relevant use cases include:

Genomics research
Weather simulation
Computational chemistry applications

https://github.com/mspnp/architecture-center/blob/master/docs/example-scenario/apps/hpc-saas.md

ComponentsComponents

AlternativesAlternatives

Users can access NV-series virtual machines (VMs) via a browser with an HTML5-based RDP connection using
the Apache Guacamole service. These VM instances provide powerful GPUs for rendering and collaborative
tasks. Users can edit their designs and view their results without needing access to high-end mobile computing
devices or laptops. The scheduler spins up additional VMs based on user-defined heuristics.
From a desktop CAD session, users can submit workloads for execution on available HPC cluster nodes. These
workloads perform tasks such as stress analysis or computational fluid dynamics calculations, eliminating the
need for dedicated on-premises compute clusters. These cluster nodes can be configured to autoscale based on
load or queue depth based on active user demand for compute resources.
Azure Kubernetes Service (AKS) is used to host the web resources available to end users.

H-series virtual machines are used to run compute-intensive simulations such as molecular modeling and
computational fluid dynamics. The solution also takes advantage of technologies like remote direct memory
access (RDMA) connectivity and InfiniBand networking.
NV-series virtual machines give engineers high-end workstation functionality from a standard web browser.
These virtual machines have NVIDIA Tesla M60 GPUs that support advanced rendering and can run single
precision workloads.
General purpose virtual machines running CentOS handle more traditional workloads such as web
applications.
Application Gateway load balances the requests coming into the web servers.
Azure Kubernetes Service (AKS) is used to run scalable workloads at a lower cost for simulations that don't
require the high end capabilities of HPC or GPU virtual machines.
Altair PBS Works Suite orchestrates the HPC workflow, ensuring that enough virtual machine instances are
available to handle the current load. It also deallocates virtual machines when demand is lower to reduce costs.
Blob storage stores files that support the scheduled jobs.

Azure CycleCloud simplifies creating, managing, operating, and optimizing HPC clusters. It offers advanced
policy and governance features. CycleCloud supports any job scheduler or software stack.
HPC Pack can create and manage an Azure HPC cluster for Windows Server-based workloads. HPC Pack isn't
an option for Linux-based workloads.
Azure Automation State Configuration provides an infrastructure-as-code approach to defining the virtual
machines and software to be deployed. Virtual machines can be deployed as part of a virtual machine scale set,

https://guacamole.apache.org/
https://docs.microsoft.com/azure/virtual-machines/linux/sizes-hpc
https://docs.microsoft.com/azure/virtual-machines/windows/sizes-gpu
https://docs.microsoft.com/azure/virtual-machines/linux/sizes-general
https://docs.microsoft.com/azure/application-gateway/overview
https://docs.microsoft.com/azure/aks/intro-kubernetes
https://www.pbsworks.com/PBSProduct.aspx?n=PBS-Works-Suite&c=Overview-and-Capabilities
https://docs.microsoft.com/azure/storage/blobs/storage-blobs-introduction
https://docs.microsoft.com/azure/cyclecloud/overview
https://docs.microsoft.com/azure/virtual-machines/windows/hpcpack-cluster-options
https://docs.microsoft.com/azure/automation/automation-dsc-overview

Considerations

Pricing

Next Steps

with autoscaling rules for compute nodes based on the number of jobs submitted to the job queue. When a
new virtual machine is needed, it is provisioned using the latest patched image from the Azure image gallery,
and then the required software is installed and configured via a PowerShell DSC configuration script.
Azure Functions

While using an infrastructure-as-code approach is a great way to manage virtual machine build definitions, it
can take a long time to provision a new virtual machine using a script. This solution found a good middle
ground by using the DSC script to periodically create a golden image, which can then be used to provision a
new virtual machine faster than completely building a VM on demand using DSC. Azure DevOps Services or
other CI/CD tooling can periodically refresh golden images using DSC scripts.
Balancing overall solution costs with fast availability of compute resources is a key consideration. Provisioning a
pool of N-series virtual machine instances and putting them in a deallocated state lowers the operating costs.
When an additional virtual machine is needed, reallocating an existing instance will involve powering up the
virtual machine on a different host, but the PCI bus detection time required by the OS to identify and install
drivers for the GPU is eliminated because a virtual machine that is deprovisioned and then reprovisioned will
retain the same PCI bus for the GPU upon restart.
The original architecture relied entirely on Azure virtual machines for running simulations. In order to reduce
costs for workloads that didn't require all the capabilities of a virtual machine, these workloads were
containerized and deployed to Azure Kubernetes Service (AKS).
The company's workforce had existing skills in open-source technologies. They can take advantage of these
skills by building on technologies like Linux and Kubernetes.

To help you explore the cost of running this scenario, many of the required services are pre-configured in a cost
calculator example. The costs of your solution are dependent on the number and scale of services needed to meet
your requirements.

The following considerations will drive a substantial portion of the costs for this solution:

Azure virtual machine costs increase linearly as additional instances are provisioned. Virtual machines that are
deallocated will only incur storage costs, and not compute costs. These deallocated machines can then be
reallocated when demand is high.
Azure Kubernetes Services costs are based on the VM type chosen to support the workload. The costs will
increase linearly based on the number of VMs in the cluster.

Read the Altair customer story. This example scenario is based on a version of their architecture.
Review other Big Compute solutions available in Azure.

https://docs.microsoft.com/azure/azure-functions/functions-overview
https://azure.com/e/3cb9ccdc893f41ffbcdb00c328178ccf
https://customers.microsoft.com/story/altair-manufacturing-azure
https://azure.microsoft.com/solutions/big-compute

Decentralized trust between banks on Azure
3/13/2019 • 5 minutes to read • Edit Online

Relevant use cases

Architecture

This example scenario is useful for banks or any other institutions that want to establish a trusted environment for
information sharing without resorting to a centralized database. For the purpose of this example, we will describe
the scenario in the context of maintaining credit score information between banks, but the architecture can be
applied to any scenario where a consortium of organizations want to share validated information with one another
without resorting to the use of a central system ran by one single party.

Traditionally, banks within a financial system rely on centralized sources such as credit bureaus for information on
an individual's credit score and history. A centralized approach presents a concentration of operational risk and
sometimes an unnecessary third party.

With DLTs (distributed ledger technology), a consortium of banks can establish a decentralized system that can be
more efficient, less susceptible to attack, and serve as a new platform where innovative structures can be
implemented to solve traditional challenges with privacy, speed, and cost.

This example will show you how Azure services such as virtual machine scale sets, Virtual Network, Key Vault,
Storage, Load Balancer, and Monitor can be quickly provisioned for the deployment of an efficient private
Ethereum PoA blockchain where member banks can establish their own nodes.

Other relevant use cases include:

Movement of allocated budgets between different business units of a multinational corporation
Cross-border payments
Trade finance scenarios
Loyalty systems involving different companies
Supply chain ecosystems

https://github.com/mspnp/architecture-center/blob/master/docs/example-scenario/apps/decentralized-trust.md

ComponentsComponents

AlternativesAlternatives

Considerations
AvailabilityAvailability

ScalabilityScalability

This scenario covers the back-end components that are necessary to create a scalable, secure, and monitored
private, enterprise blockchain network within a consortium of two or more members. Details of how these
components are provisioned (that is, within different subscriptions and resource groups) as well as the connectivity
requirements (that is, VPN or ExpressRoute) are left for your consideration based on your organization's policy
requirements. Here's how data flows:

1. Bank A creates/updates an individual's credit record by sending a transaction to the blockchain network via
JSON-RPC.

2. Data flows from Bank A's private application server to the Azure load balancer and subsequently to a validating
node VM on the virtual machine scale set.

3. The Ethereum PoA network creates a block at a preset time (2 seconds for this scenario).
4. The transaction is bundled into the created block and validated across the blockchain network.
5. Bank B can read the credit record created by bank A by communicating with its own node similarly via JSON-

RPC.

Virtual machines within virtual machine scale sets provides the on-demand compute facility to host the
validator processes for the blockchain
Key Vault is used as the secure storage facility for the private keys of each validator
Load Balancer spreads the RPC, peering, and Governance DApp requests
Storage hosting persistent network information and coordinating leasing
Operations Management Suite (a bundling of a few Azure services) provides insight into available nodes,
transactions per minute and consortium members

The Ethereum PoA approach is chosen for this example because it is a good entry point for a consortium of
organizations that want to create an environment where information can be exchanged and shared with one
another easily in a trusted, decentralized, and easy to understand way. The available Azure solution templates also
provide a fast and convenient way not just for a consortium leader to start an Ethereum PoA blockchain, but also
for member organizations in the consortium to spin up their own Azure resources within their own resource group
and subscription to join an existing network.

For other extended or different scenarios, concerns such as transaction privacy may arise. For example, in a
securities transfer scenario, members in a consortium may not want their transactions to be visible even to other
members. Other alternatives to Ethereum PoA exist that addresses these concerns in their own way:

Corda
Quorum
Hyperledger

Azure Monitor is used to continuously monitor the blockchain network for issues to ensure availability. A link to a
custom monitoring dashboard based on Azure Monitor will be sent to you upon successful deployment of the
blockchain solution template used in this scenario. The dashboard shows nodes that are reporting heartbeats in
the past 30 minutes as well as other useful statistics.

For other availability topics, see the availability checklist in the Azure Architecture Center.

A popular concern for blockchain is the number of transactions that a blockchain can include within a preset
amount of time. This scenario uses Proof-of-Authority where such scalability can be better managed than Proof-

https://docs.microsoft.com/azure/monitoring-and-diagnostics/monitoring-overview-azure-monitor
https://docs.microsoft.com/azure/architecture/checklist/availability

SecuritySecurity

ResiliencyResiliency

Pricing

Next Steps

Related resources

of-Work. In Proof-of-Authority–based networks, consensus participants are known and managed, making it more
suitable for private blockchain for a consortium of organization that knows one another. Parameters such as
average block time, transactions per minute and compute resource consumption can be easily monitored via the
custom dashboard. Resources can then be adjusted accordingly based on scale requirements.

For general guidance on designing scalable solutions, see the scalability checklist in the Azure Architecture Center.

Azure Key Vault is used to easily store and manage the private keys of validators. The default deployment in this
example creates a blockchain network that is accessible via the internet. For production scenario where a private
network is desired, members can be connected to each other via VNet-to-VNet VPN gateway connections. The
steps for configuring a VPN are included in the related resources section below.

For general guidance on designing secure solutions, see the Azure Security Documentation.

The Ethereum PoA blockchain can itself provide some degree of resilience as the validator nodes can be deployed
in different regions. Azure has options for deployments in over 54 regions worldwide. A blockchain such as the
one in this scenario provides unique and refreshing possibilities of cooperation to increase resilience. The resilience
of the network is not just provided for by a single centralized party but all members of the consortium. A proof-of-
authority–based blockchain allows network resilience to be even more planned and deliberate.

For general guidance on designing resilient solutions, see Designing resilient applications for Azure.

To explore the cost of running this scenario, all of the services are pre-configured in the cost calculator. To see how
the pricing would change for your particular use case, change the appropriate variables to match your expected
performance and availability requirements.

We have provided three sample cost profiles based on the number of scale set VM instances that run your
applications (the instances can reside in different regions).

Small: this pricing example correlates to 2 VMs per month with monitoring turned off
Medium: this pricing example correlates to 7 VMs per month with monitoring turned on
Large: this pricing example correlates to 15 VMs per month with monitoring turned on

The above pricing is for one consortium member to start or join a blockchain network. Typically in a consortium
where there are multiple companies or organizations involved, each member will get their own Azure subscription.

To see an example of this scenario, deploy the Ethereum PoA blockchain demo application on Azure. Then review
the README of the scenario source code.

For more information on using the Ethereum Proof-of-Authority solution template for Azure, review this usage
guide.

https://docs.microsoft.com/azure/architecture/checklist/scalability
https://azure.microsoft.com/services/key-vault/
https://docs.microsoft.com/azure/security/
https://azure.com/e/4e429d721eb54adc9a1558fae3e67990
https://azure.com/e/bb42cd77437744be8ed7064403bfe2ef
https://azure.com/e/e205b443de3e4adfadf4e09ffee30c56
https://portal.azure.com/?pub_source=email&pub_status=success#create/microsoft-azure-blockchain.azure-blockchain-ethereumethereum-poa-consortium
https://github.com/vitoc/creditscoreblockchain
https://docs.microsoft.com/azure/blockchain-workbench/ethereum-poa-deployment

CI/CD pipeline for container-based workloads
3/13/2019 • 7 minutes to read • Edit Online

Relevant use cases

Architecture

This example scenario is applicable to businesses that want to modernize application development by using
containers and DevOps workflows. In this scenario, a Node.js web app is built and deployed by Jenkins into an
Azure Container Registry and Azure Kubernetes Service. For a globally distributed database tier, Azure Cosmos DB
is used. To monitor and troubleshoot application performance, Azure Monitor integrates with a Grafana instance
and dashboard.

Example application scenarios include providing an automated development environment, validating new code
commits, and pushing new deployments into staging or production environments. Traditionally, businesses had to
manually build and compile applications and updates, and maintain a large, monolithic code base. With a modern
approach to application development that uses continuous integration (CI) and continuous deployment (CD), you
can more quickly build, test, and deploy services. This modern approach lets you release applications and updates
to your customers faster, and respond to changing business demands in a more agile manner.

By using Azure services such as Azure Kubernetes Service, Container Registry, and Cosmos DB, companies can
use the latest in application development techniques and tools to simplify the process of implementing high
availability.

Other relevant use cases include:

Modernizing application development practices to a microservice, container-based approach.
Speeding up application development and deployment lifecycles.
Automating deployments to test or acceptance environments for validation.

This scenario covers a DevOps pipeline for a Node.js web application and database back end. The data flows
through the scenario as follows:

1. A developer makes changes to the Node.js web application source code.
2. The code change is committed to a source control repository, such as GitHub.
3. To start the continuous integration (CI) process, a GitHub webhook triggers a Jenkins project build.
4. The Jenkins build job uses a dynamic build agent in Azure Kubernetes Service to perform a container build

https://github.com/mspnp/architecture-center/blob/master/docs/example-scenario/apps/devops-with-aks.md

ComponentsComponents

AlternativesAlternatives

Considerations
AvailabilityAvailability

ScalabilityScalability

process.
5. A container image is created from the code in source control, and is then pushed to an Azure Container

Registry.
6. Through continuous deployment (CD), Jenkins deploys this updated container image to the Kubernetes cluster.
7. The Node.js web application uses Cosmos DB as its back end. Both Cosmos DB and Azure Kubernetes Service

report metrics to Azure Monitor.
8. A Grafana instance provides visual dashboards of the application performance based on the data from Azure

Monitor.

Jenkins is an open-source automation server that can integrate with Azure services to enable continuous
integration (CI) and continuous deployment (CD). In this scenario, Jenkins orchestrates the creation of new
container images based on commits to source control, pushes those images to Azure Container Registry, then
updates application instances in Azure Kubernetes Service.
Azure Linux Virtual Machines is the IaaS platform used to run the Jenkins and Grafana instances.
Azure Container Registry stores and manages container images that are used by the Azure Kubernetes Service
cluster. Images are securely stored, and can be replicated to other regions by the Azure platform to speed up
deployment times.
Azure Kubernetes Service is a managed Kubernetes platform that lets you deploy and manage containerized
applications without container orchestration expertise. As a hosted Kubernetes service, Azure handles critical
tasks like health monitoring and maintenance for you.
Azure Cosmos DB is a globally distributed, multi-model database that allows you to choose from various
database and consistency models to suit your needs. With Cosmos DB, your data can be globally replicated, and
there is no cluster management or replication components to deploy and configure.
Azure Monitor helps you track performance, maintain security, and identify trends. Metrics obtained by Monitor
can be used by other resources and tools, such as Grafana.
Grafana is an open-source solution to query, visualize, alert, and understand metrics. A data source plugin for
Azure Monitor allows Grafana to create visual dashboards to monitor the performance of your applications
running in Azure Kubernetes Service and using Cosmos DB.

Azure Pipelines help you implement a continuous integration (CI), test, and deployment (CD) pipeline for any
app.
Kubernetes can be run directly on Azure VMs instead of via a managed service if you would like more control
over the cluster.
Service Fabric is another alternate container orchestrator that can replace AKS.

To monitor your application performance and report on issues, this scenario combines Azure Monitor with
Grafana for visual dashboards. These tools let you monitor and troubleshoot performance issues that may require
code updates, which can all then be deployed with the CI/CD pipeline.

As part of the Azure Kubernetes Service cluster, a load balancer distributes application traffic to one or more
containers (pods) that run your application. This approach to running containerized applications in Kubernetes
provides a highly available infrastructure for your customers.

For other availability topics, see the availability checklist available in the Azure Architecture Center.

Azure Kubernetes Service lets you scale the number of cluster nodes to meet the demands of your applications. As

https://jenkins.io/
https://docs.microsoft.com/azure/virtual-machines/linux/overview
https://docs.microsoft.com/azure/container-registry/container-registry-intro
https://docs.microsoft.com/azure/aks/intro-kubernetes
https://docs.microsoft.com/azure/cosmos-db/introduction
https://docs.microsoft.com/azure/monitoring-and-diagnostics/monitoring-overview
https://grafana.com/
https://docs.microsoft.com/azure/devops/pipelines
https://kubernetes.io/
https://docs.microsoft.com/azure/service-fabric/

SecuritySecurity

ResiliencyResiliency

Deploy the scenario
PrerequisitesPrerequisites

Walk-throughWalk-through

your application increases, you can scale out the number of Kubernetes nodes that run your service.

Application data is stored in Azure Cosmos DB, a globally distributed, multi-model database that can scale globally.
Cosmos DB abstracts the need to scale your infrastructure as with traditional database components, and you can
choose to replicate your Cosmos DB globally to meet the demands of your customers.

For other scalability topics, see the scalability checklist available in the Azure Architecture Center.

To minimize the attack footprint, this scenario does not expose the Jenkins VM instance over HTTP. For any
management tasks that require you to interact with Jenkins, you create a secure remote connection using an SSH
tunnel from your local machine. Only SSH public key authentication is allowed for the Jenkins and Grafana VM
instances. Password-based logins are disabled. For more information, see Run a Jenkins server on Azure.

For separation of credentials and permissions, this scenario uses a dedicated Azure Active Directory (AD) service
principal. The credentials for this service principal are stored as a secure credential object in Jenkins so that they
are not directly exposed and visible within scripts or the build pipeline.

For general guidance on designing secure solutions, see the Azure Security Documentation.

This scenario uses Azure Kubernetes Service for your application. Built into Kubernetes are resiliency components
that monitor and restart the containers (pods) if there is an issue. Combined with running multiple Kubernetes
nodes, your application can tolerate a pod or node being unavailable.

For general guidance on designing resilient solutions, see Designing resilient applications for Azure.

az ad sp create-for-rbac --name myDevOpsScenario

You must have an existing Azure account. If you don't have an Azure subscription, create a free account
before you begin.

You need an SSH public key pair. For steps on how to create a public key pair, see Create and use an SSH
key pair for Linux VMs.

You need an Azure Active Directory (AD) service principal for the authentication of service and resources. If
needed, you can create a service principal with az ad sp create-for-rbac

Make a note of the appId and password in the output from this command. You provide these values to the
template when you deploy the scenario.

To deploy this scenario with an Azure Resource Manager template, perform the following steps.

1. Click the Deploy to Azure button:

2. Wait for the template deployment to open in the Azure portal, then complete the following steps:
Choose to Create new resource group, then provide a name such as myAKSDevOpsScenario in the text
box.
Select a region from the Location drop-down box.
Enter your service principal app ID and password from the az ad sp create-for-rbac command.
Provide a username and secure password for the Jenkins instance and Grafana console.

https://docs.microsoft.com/azure/security/
https://azure.microsoft.com/free/?WT.mc_id=A261C142F
https://docs.microsoft.com/azure/virtual-machines/linux/mac-create-ssh-keys
https://docs.microsoft.com/cli/azure/ad/sp#az-ad-sp-create
https://portal.azure.com/#create/Microsoft.Template/uri/https%3A%2F%2Fraw.githubusercontent.com%2Fmspnp%2Fsolution-architectures%2Fmaster%2Fapps%2Fdevops-with-aks%2Fazuredeploy.json

Pricing

Related resources

Provide an SSH key to secure logins to the Linux VMs.
Review the terms and conditions, then check I agree to the terms and conditions stated above.
Select the Purchase button.

It can take 15-20 minutes for the deployment to complete.

To explore the cost of running this scenario, all of the services are pre-configured in the cost calculator. To see how
the pricing would change for your particular use case, change the appropriate variables to match your expected
traffic.

We have provided three sample cost profiles based on the number of container images to store and Kubernetes
nodes to run your applications.

Small: this pricing example correlates to 1000 container builds per month.
Medium: this pricing example correlates to 100,000 container builds per month.
Large: this pricing example correlates to 1,000,000 container builds per month.

This scenario used Azure Container Registry and Azure Kubernetes Service to store and run a container-based
application. Azure Container Instances can also be used to run container-based applications, without having to
provision any orchestration components. For more information, see Azure Container Instances overview.

https://azure.com/e/841f0a75b1ea4802ba1ac8f7918a71e7
https://azure.com/e/eea0e6d79b4e45618a96d33383ec77ba
https://azure.com/e/3faab662c54c473da55a1e93a27e0e64
https://docs.microsoft.com/azure/container-instances/container-instances-overview

Design a CI/CD pipeline using Azure DevOps
3/13/2019 • 5 minutes to read • Edit Online

Relevant use cases

Architecture

ComponentsComponents

AlternativesAlternatives

This scenario provides architecture and design guidance for building a continuous integration (CI) and continuous
deployment (CD) pipeline. In this example, the CI/CD pipeline deploys a two-tier .NET web application to the
Azure App Service.

Migrating to modern CI/CD processes provides many benefits for application builds, deployments, testing, and
monitoring. By utilizing Azure DevOps along with other services such as App Service, organizations can focus on
the development of their apps rather than the management of the supporting infrastructure.

Consider Azure DevOps and CI/CD processes for:

Accelerating application development and development life cycles
Building quality and consistency into an automated build and release process
Increasing application stability and uptime

The data flows through the scenario as follows:

1. A developer changes application source code.
2. Application code including the web.config file is committed to the source code repository in Azure Repos.
3. Continuous integration triggers application build and unit tests using Azure Test Plans.
4. Continuous deployment within Azure Pipelines triggers an automated deployment of application artifacts with

environment-specific configuration values.
5. The artifacts are deployed to Azure App Service.
6. Azure Application Insights collects and analyzes health, performance, and usage data.
7. Developers monitor and mange health, performance, and usage information.
8. Backlog information is used to prioritize new features and bug fixes using Azure Boards.

Azure DevOps is a service for managing your development life cycle end-to-end — from planning and
project management, to code management, and continuing to build and release.

Azure Web Apps is a PaaS service for hosting web applications, REST APIs, and mobile back ends. While
this article focuses on .NET, there are several additional development platform options supported.

Application Insights is a first-party, extensible Application Performance Management (APM) service for web
developers on multiple platforms.

While this article focuses on Azure DevOps, Azure DevOps Server (previously known as Team Foundation Server)
could be used as an on-premises substitute. Alternatively, you could also use a set of technologies for an open-
source development pipeline using Jenkins.

From an infrastructure-as-code perspective, Resource Manager templates were used as part of the Azure DevOps

https://github.com/mspnp/architecture-center/blob/master/docs/example-scenario/apps/devops-dotnet-webapp.md
https://docs.microsoft.com/vsts/?view=vsts#pivot=services
https://docs.microsoft.com/azure/app-service/app-service-web-overview
https://docs.microsoft.com/azure/application-insights/app-insights-overview
https://visualstudio.microsoft.com/tfs/
https://docs.microsoft.com/azure/jenkins/
https://docs.microsoft.com/azure/azure-resource-manager/resource-group-overview#template-deployment

Management and Security Considerations

Deploy the scenario
PrerequisitesPrerequisites

Walk-throughWalk-through

project, but you could consider other management technologies such as Terraform or Chef. If you prefer an
infrastructure-as-a-service (IaaS)-based deployment and require configuration management, you could consider
either Azure Automation State Configuration, Ansible, or Chef.

You could consider these alternatives to hosting in Azure Web Apps:

Azure Virtual Machines handles workloads that require a high degree of control, or depend on OS
components and services that are not possible with Web Apps (for example, the Windows GAC, or COM).

Service Fabric is a good option if the workload architecture is focused around distributed components that
benefit from being deployed and run across a cluster with a high degree of control. Service Fabric can also
be used to host containers.

Azure Functions provides an effective serverless approach if the workload architecture is centered around
fine grained distributed components, requiring minimal dependencies, where individual components are
only required to run on demand (not continuously) and orchestration of components is not required.

This decision tree for Azure compute services may help when choosing the right path to take for a migration.

Consider leveraging one of the tokenization tasks available in the VSTS marketplace.

Azure Key Vault tasks can download secrets from an Azure Key Vault into your release. You can then use
those secrets as variables in your release definition, which avoids storing them in source control.

Use release variables in your release definitions to drive configuration changes of your environments.
Release variables can be scoped to an entire release or a given environment. When using variables for
secret information, ensure that you select the padlock icon.

Deployment gates should be used in your release pipeline. This lets you leverage monitoring data in
association with external systems (for example, incident management or additional bespoke systems) to
determine whether a release should be promoted.

Where manual intervention in a release pipeline is required, use the approvals functionality.

Consider using Application Insights and additional monitoring tools as early as possible in your release
pipeline. Many organizations only begin monitoring in their production environment. By monitoring your
other environments, you can identify bugs earlier in the development process and avoid issues in your
production environment.

You must have an existing Azure account. If you don't have an Azure subscription, create a free account
before you begin.

You must sign up for an Azure DevOps organization. For more information, see Quickstart: Create your
organization.

The Azure DevOps project will deploy an App Service Plan, App Service, and an App Insights resource for you, as
well as configure the Azure DevOps project for you.

Once you've deployed the Azure DevOps project and the build is completed, review the associated code changes,
work items, and test results. You will notice that no test results are displayed, because the code does not contain
any tests to run.

https://docs.microsoft.com/azure/terraform/
https://docs.microsoft.com/azure/chef/
https://docs.microsoft.com/azure/automation/automation-dsc-overview
https://docs.microsoft.com/azure/ansible/
https://docs.microsoft.com/azure/chef/
https://docs.microsoft.com/azure/app-service/choose-web-site-cloud-service-vm
https://docs.microsoft.com/azure/service-fabric/
https://docs.microsoft.com/azure/azure-functions/
https://docs.microsoft.com/azure/architecture/guide/technology-choices/compute-decision-tree
https://marketplace.visualstudio.com/search?term=token&target=VSTS&category=All categories&sortBy=Relevance
https://docs.microsoft.com/vsts/pipelines/tasks/deploy/azure-key-vault?view=vsts
https://docs.microsoft.com/vsts/pipelines/release/variables?view=vsts&tabs=batch
https://docs.microsoft.com/vsts/pipelines/release/approvals/gates?view=vsts
https://docs.microsoft.com/vsts/pipelines/release/approvals/approvals?view=vsts
https://docs.microsoft.com/azure/application-insights/app-insights-overview
https://azure.microsoft.com/free/?WT.mc_id=A261C142F
https://docs.microsoft.com/azure/devops/organizations/accounts/create-organization-msa-or-work-student?view=vsts
https://docs.microsoft.com/azure/devops-project/azure-devops-project-github

Pricing

Related resources

The project creates a release pipeline and continuous deployment trigger, deploying our application into the Dev
environment. As part of a continuous deployment process, you may see releases that span multiple environments.
A release can span both infrastructure (using techniques such as infrastructure-as-code), and can also deploy the
application packages required along with any post-configuration tasks.

Azure DevOps costs depend on the number of users in your organization that require access, along with other
factors like the number of concurrent build/releases required and number of test users. For more information, see
Azure DevOps pricing.

This pricing calculator provides an estimate for running Azure DevOps with 20 users.

Azure DevOps is billed on a per-user per-month basis. There may be additional charges dependent upon
concurrent pipelines needed, in addition to any additional test users or user basic licenses.

Review the following resources to learn more about CI/CD and Azure DevOps:

What is DevOps?
DevOps at Microsoft - How we work with Azure DevOps
Step-by-step Tutorials: DevOps with Azure DevOps
DevOps Checklist
Create a CI/CD pipeline for .NET with the Azure DevOps project

https://azure.microsoft.com/pricing/details/visual-studio-team-services/
https://azure.com/e/498aa024454445a8a352e75724f900b1
https://docs.microsoft.com/azure/devops/what-is-devops
https://docs.microsoft.com/azure/devops/devops-at-microsoft/
https://almvm.azurewebsites.net/labs/vsts/
https://docs.microsoft.com/azure/architecture/checklist/dev-ops
https://docs.microsoft.com/azure/devops-project/azure-devops-project-aspnet-core

Dev/test environments for SAP workloads on Azure
3/13/2019 • 3 minutes to read • Edit Online

Relevant use cases

Architecture

This example shows how to establish a dev/test environment for SAP NetWeaver in a Windows or Linux
environment on Azure. The database used is AnyDB, the SAP term for any supported DBMS (that isn't SAP
HANA). Because this architecture is designed for non-production environments, it's deployed with just a single
virtual machine (VM) and it's size can be changed to accommodate your organization's needs.

For production use cases review the SAP reference architectures available below:

SAP NetWeaver for AnyDB
SAP S/4HANA
SAP on Azure large instances

Other relevant use cases include:

Non-critical SAP non-productive workloads (sandbox, development, test, quality assurance)
Non-critical SAP business workloads

This scenario demonstrates provisioning a single SAP system database and SAP application server on a single
virtual machine. The data flows through the scenario as follows:

1. Customers use the SAP user interface or other client tools (Excel, a web browser, or other web application) to
access the Azure-based SAP system.

2. Connectivity is provided through the use of an established ExpressRoute. The ExpressRoute connection is
terminated in Azure at the ExpressRoute gateway. Network traffic routes through the ExpressRoute gateway to
the gateway subnet, and from the gateway subnet to the application-tier spoke subnet (see the hub-spoke
network topology) and via a Network Security Gateway to the SAP application virtual machine.

https://github.com/mspnp/architecture-center/blob/master/docs/example-scenario/apps/sap-dev-test.md
https://docs.microsoft.com/azure/architecture/reference-architectures/sap/sap-netweaver
https://docs.microsoft.com/azure/architecture/reference-architectures/sap/sap-s4hana
https://docs.microsoft.com/azure/architecture/reference-architectures/sap/hana-large-instances
https://docs.microsoft.com/azure/architecture/reference-architectures/hybrid-networking/hub-spoke

ComponentsComponents

Considerations
AvailabilityAvailability

ScalabilityScalability

SecuritySecurity

ResiliencyResiliency

Pricing

SIZE SAPS VM TYPE STORAGE
AZURE PRICING
CALCULATOR

Small 8000 D8s_v3 2xP20, 1xP10 Small

Medium 16000 D16s_v3 3xP20, 1xP10 Medium

Large 32000 E32s_v3 3xP20, 1xP10 Large

Extra Large 64000 M64s 4xP20, 1xP10 Extra Large

NOTENOTE

3. The identity management servers provide authentication services.
4. The jump box provides local management capabilities.

Virtual Networks are the basis of network communication within Azure.
Virtual Machine Azure Virtual Machines provides on-demand, high-scale, secure, virtualized infrastructure
using Windows or Linux Server.
ExpressRoute lets you extend your on-premises networks into the Microsoft cloud over a private connection
facilitated by a connectivity provider.
Network Security Group lets you limit network traffic to resources in a virtual network. A network security
group contains a list of security rules that allow or deny inbound or outbound network traffic based on source
or destination IP address, port, and protocol.
Resource Groups act as logical containers for Azure resources.

Microsoft offers a service level agreement (SLA) for single VM instances. For more information on Microsoft
Azure Service Level Agreement for Virtual Machines SLA For Virtual Machines

For general guidance on designing scalable solutions, see the scalability checklist in the Azure Architecture Center.

For general guidance on designing secure solutions, see the Azure Security Documentation.

For general guidance on designing resilient solutions, see Designing resilient applications for Azure.

To help you explore the cost of running this scenario, all of the services are pre-configured in the cost calculator
examples below. To see how the pricing would change for your particular use case, change the appropriate
variables to match your expected traffic.

We have provided four sample cost profiles based on amount of traffic you expect to receive:

This pricing is a guide that only indicates the VMs and storage costs. It excludes networking, backup storage, and data
ingress/egress charges.

https://docs.microsoft.com/azure/virtual-network/virtual-networks-overview
https://docs.microsoft.com/azure/virtual-machines/windows/overview
https://docs.microsoft.com/azure/expressroute/expressroute-introduction
https://docs.microsoft.com/azure/virtual-network/security-overview
https://docs.microsoft.com/azure/azure-resource-manager/resource-group-overview#resource-groups
https://azure.microsoft.com/support/legal/sla/virtual-machines
https://docs.microsoft.com/azure/architecture/checklist/scalability
https://docs.microsoft.com/azure/security/
https://docs.microsoft.com/azure/architecture/resiliency/
https://azure.com/e/9d26b9612da9466bb7a800eab56e71d1
https://azure.com/e/465bd07047d148baab032b2f461550cd
https://azure.com/e/ada2e849d68b41c3839cc976000c6931
https://azure.com/e/975fb58a965c4fbbb54c5c9179c61cef

Deployment

NOTENOTE

Small: A small system consists of VM type D8s_v3 with 8x vCPUs, 32 GB RAM and 200 GB temp storage,
additionally two 512 GB and one 128 GB premium storage disks.
Medium: A medium system consists of VM type D16s_v3 with 16x vCPUs, 64 GB RAM and 400 GB temp
storage, additionally three 512 GB and one 128 GB premium storage disks.
Large: A large system consists of VM type E32s_v3 with 32x vCPUs, 256 GB RAM and 512 GB temp storage,
additionally three 512GB and one 128GB premium storage disks.
Extra Large: An extra large system consists of a VM type M64s with 64x vCPUs, 1024 GB RAM and 2000 GB
temp storage, additionally four 512 GB and one 128 GB premium storage disks.

Click here to deploy the underlying infrastructure for this scenario.

SAP and Oracle are not installed during this deployment. You will need to deploy these components separately.

https://azure.com/e/9d26b9612da9466bb7a800eab56e71d1
https://azure.com/e/465bd07047d148baab032b2f461550cd
https://azure.com/e/ada2e849d68b41c3839cc976000c6931
https://azure.com/e/975fb58a965c4fbbb54c5c9179c61cef
https://portal.azure.com/#create/Microsoft.Template/uri/https%3A%2F%2Fraw.githubusercontent.com%2Fmspnp%2Fsolution-architectures%2Fmaster%2Fapps%2Fsap-2tier%2Fazuredeploy.json

Running SAP production workloads using an Oracle
Database on Azure
3/13/2019 • 5 minutes to read • Edit Online

Relevant use cases

Architecture

SAP systems are used to run mission-critical business applications. Any outage disrupts key processes and can
cause increased expenses or lost revenue. Avoiding these outcomes requires an SAP infrastructure that is highly
available and resilient when failures occur.

Building a highly available SAP environment requires eliminating single points of failures in your system
architecture and processes. Single points of failure can be caused by site failures, errors in system components, or
even human error.

This example scenario demonstrates an SAP deployment on Windows or Linux virtual machines (VMs) on Azure,
along with a High Availability (HA) Oracle database. For your SAP deployment, you can use VMs of different sizes
based on your requirements.

Other relevant use cases include:

Mission-critical workloads running on SAP.
Non-critical SAP workloads.
Test environments for SAP that simulate a high-availability environment.

This example includes a high availability configuration for an Oracle database, SAP central services, and multiple

https://github.com/mspnp/architecture-center/blob/master/docs/example-scenario/apps/sap-production.md

ComponentsComponents

AlternativesAlternatives

Considerations

Pricing

SAP application servers running on different virtual machines. The Azure network uses a hub-and-spoke topology
for security purposes. The data flows through the solution as follows:

1. Users access the SAP system via the SAP user interface, a web browser, or other client tools like Microsoft
Excel. An ExpressRoute connection provides access from the organization's on-premises network to resources
running in Azure.

2. The ExpressRoute terminates in Azure at the ExpressRoute virtual network (VNet) gateway. Network traffic is
routed to a gateway subnet through the ExpressRoute gateway created in the hub VNet.

3. The hub VNet is peered to a spoke VNet. The application tier subnet hosts the virtual machines running SAP in
an availability set.

4. The identity management servers provide authentication services for the solution.
5. The jump box is used by system administrators to securely manage resources deployed in Azure.

Virtual Networks are used in this scenario to create a virtual hub-and-spoke topology in Azure.

Virtual Machines provide the compute resources for each tier of the solution. Each cluster of virtual
machines is configured as an availability set.

ExpressRoute extends your on-premises network into the Microsoft cloud through a private connection
established by a connectivity provider.

Network Security Groups (NSG) limit network access to the resources in a virtual network. An NSG
contains a list of security rules that allow or deny network traffic based on source or destination IP address,
port, and protocol.

Resource Groups act as logical containers for Azure resources.

SAP provides flexible options for different combinations of operating system, database management system, and
VM types in an Azure environment. For more information, see SAP note 1928533, "SAP Applications on Azure:
Supported Products and Azure VM Types".

Recommended practices are defined for building highly available SAP environments in Azure. For more
information, see High-availability architecture and scenarios for SAP NetWeaver. Also see High availability
of SAP applications on Azure VMs.

Oracle databases also have recommended practices for Azure. For more information, see Designing and
implementing an Oracle database in Azure.

Oracle Data Guard is used to eliminate single points of failure for mission-critical Oracle databases. For
more information, see Implementing Oracle Data Guard on a Linux virtual machine in Azure.

Microsoft Azure offers infrastructure services that can be used to deploy SAP products with an Oracle
database. For more information, see Deploying an Oracle DBMS on Azure for an SAP workload.

To help you explore the cost of running this scenario, all of the services are pre-configured in the cost calculator
examples below. To see how the pricing would change for your particular use case, change the appropriate
variables to match your expected traffic.

We have provided four sample cost profiles based on amount of traffic you expect to receive:

https://docs.microsoft.com/azure/architecture/reference-architectures/hybrid-networking/hub-spoke
https://docs.microsoft.com/azure/virtual-network/virtual-networks-overview
https://docs.microsoft.com/azure/virtual-machines/windows/overview
https://docs.microsoft.com/azure/virtual-machines/windows/regions-and-availability#availability-sets
https://docs.microsoft.com/azure/expressroute/expressroute-introduction
https://docs.microsoft.com/azure/virtual-network/security-overview
https://docs.microsoft.com/azure/azure-resource-manager/resource-group-overview#resource-groups
https://launchpad.support.sap.com/#/notes/1928533
https://docs.microsoft.com/azure/virtual-machines/workloads/sap/sap-high-availability-architecture-scenarios
https://docs.microsoft.com/azure/virtual-machines/workloads/sap/high-availability-guide
https://docs.microsoft.com/azure/virtual-machines/workloads/oracle/oracle-design
https://docs.microsoft.com/azure/virtual-machines/workloads/oracle/configure-oracle-dataguard
https://docs.microsoft.com/azure/virtual-machines/workloads/sap/dbms_guide_oracle

SIZE SAPS
DB VM
TYPE

DB
STORAGE (A)SCS VM

(A)SCS
STORAGE

APP VM
TYPE

APP
STORAGE

AZURE
PRICING
CALCULAT
OR

Small 30000 DS13_v2 4xP20,
1xP20

DS11_v2 1x P10 DS13_v2 1x P10 Small

Medium 70000 DS14_v2 6xP20,
1xP20

DS11_v2 1x P10 4x
DS13_v2

1x P10 Medium

Large 180000 E32s_v3 5xP30,
1xP20

DS11_v2 1x P10 6x
DS14_v2

1x P10 Large

Extra
Large

250000 M64s 6xP30,
1xP30

DS11_v2 1x P10 10x
DS14_v2

1x P10 Extra
Large

NOTENOTE

Deployment

This pricing is a guide and only indicates the VMs and storage costs. It excludes networking, backup storage, and data
ingress/egress charges.

Small: A small system consists of VM type DS13_v2 for the database server with 8x vCPUs, 56-GB RAM,
and 112-GB temp storage, additionally five 512-GB premium storage disks. An SAP Central Instance server
using a DS11_v2 VM types with 2x vCPUs 14-GB RAM and 28-GB temp storage. A single VM type
DS13_v2 for the SAP application server with 8x vCPUs, 56-GB RAM, and 400-GB temp storage,
additionally one 128-GB premium storage disk.

Medium: A medium system consists of VM type DS14_v2 for the database server with 16x vCPUs, 112 GB
RAM, and 800-GB temp storage, additionally seven 512-GB premium storage disks. An SAP Central
Instance server using a DS11_v2 VM types with 2x vCPUs 14-GB RAM and 28-GB temp storage. Four VM
type DS13_v2 for the SAP application server with 8x vCPUs, 56-GB RAM, and 400-GB temp storage,
additionally one 128-GB premium storage disk.

Large: A large system consists of VM type E32s_v3 for the database server with 32x vCPUs, 256-GB RAM
and 800-GB temp storage, additionally three 512 GB and one 128-GB premium storage disks. An SAP
Central Instance server using a DS11_v2 VM types with 2x vCPUs 14-GB RAM and 28-GB temp storage.
Six VM type DS14_v2 for the SAP application servers with 16x vCPUs, 112 GB RAM, and 224 GB temp
storage, additionally six 128-GB premium storage disk.

Extra Large: An extra large system consists of the M64s VM type for the database server with 64x vCPUs,
1024 GB RAM, and 2000 GB temp storage, additionally seven 1024-GB premium storage disks. An SAP
Central Instance server using a DS11_v2 VM types with 2x vCPUs 14-GB RAM and 28-GB temp storage.
10 VM type DS14_v2 for the SAP application servers with 16x vCPUs, 112 GB RAM, and 224 GB temp
storage, additionally ten 128-GB premium storage disk.

Use the following link to deploy the underlying infrastructure for this scenario.

https://azure.com/e/45880ba0bfdf47d497851a7cf2650c7c
https://azure.com/e/9a523f79591347ca9a48c3aaa1406f8a
https://azure.com/e/f70fccf571e948c4b37d4fecc07cbf42
https://azure.com/e/58c636922cf94faf9650f583ff35e97b
https://azure.com/e/45880ba0bfdf47d497851a7cf2650c7c
https://azure.com/e/9a523f79591347ca9a48c3aaa1406f8a
https://azure.com/e/f70fccf571e948c4b37d4fecc07cbf42
https://azure.com/e/58c636922cf94faf9650f583ff35e97b
https://portal.azure.com/#create/Microsoft.Template/uri/https%3A%2F%2Fraw.githubusercontent.com%2Fmspnp%2Fsolution-architectures%2Fmaster%2Fapps%2Fsap-3tier-distributed-ora%2Fazuredeploy.json

NOTENOTE

Related resources

SAP and Oracle are not installed during this deployment. You will need to deploy these components separately.

For other information about running SAP production workloads in Azure, review the following reference
architectures:

SAP NetWeaver for AnyDB
SAP S/4HANA
SAP HANA large instances

https://docs.microsoft.com/azure/architecture/reference-architectures/sap/sap-netweaver
https://docs.microsoft.com/azure/architecture/reference-architectures/sap/sap-s4hana
https://docs.microsoft.com/azure/architecture/reference-architectures/sap/hana-large-instances

An e-commerce front end on Azure
3/13/2019 • 6 minutes to read • Edit Online

Relevant use cases

Architecture

This example scenario walks you through an implementation of an e-commerce front end using Azure platform as
a service (PaaS) tools. Many e-commerce websites face seasonality and traffic variability over time. When demand
for your products or services takes off, whether predictably or unpredictably, using PaaS tools will allow you to
handle more customers and more transactions automatically. Additionally, this scenario takes advantage of cloud
economics by paying only for the capacity you use.

This document will help you will learn about various Azure PaaS components and considerations used to bring
together to deploy a sample e-commerce application, Relecloud Concerts, an online concert ticketing platform.

Other relevant use cases include:

Building an application that needs elastic scale to handle bursts of users at different times.
Building an application that is designed to operate at high availability in different Azure regions around the
world.

This scenario covers purchasing tickets from an e-commerce site, the data flows through the scenario as follows:

1. Azure Traffic Manager routes a user's request to the e-commerce site hosted in Azure App Service.
2. Azure CDN serves static images and content to the user.
3. User signs in to the application through an Azure Active Directory B2C tenant.
4. User searches for concerts using Azure Search.
5. Web site pulls concert details from Azure SQL Database.
6. Web site refers to purchased ticket images in Blob Storage.

https://github.com/mspnp/architecture-center/blob/master/docs/example-scenario/apps/ecommerce-scenario.md

ComponentsComponents

AlternativesAlternatives

Considerations

7. Database query results are cached in Azure Redis Cache for better performance.
8. User submits ticket orders and concert reviews, which are placed in the queue.
9. Azure Functions processes order payment and concert reviews.

10. Cognitive services provide an analysis of the concert review to determine the sentiment (positive or negative).
11. Application Insights provides performance metrics for monitoring the health of the web application.

Azure CDN delivers static, cached content from locations close to users to reduce latency.
Azure Traffic Manager controls the distribution of user traffic for service endpoints in different Azure regions.
App Services - Web Apps hosts web applications allowing autoscale and high availability without having to
manage infrastructure.
Azure Active Directory - B2C is an identity management service that enables customization and control over
how customers sign up, sign in, and manage their profiles in an application.
Storage Queues stores large numbers of queue messages that can be accessed by an application.
Functions are serverless compute options that allow applications to run on-demand without having to manage
infrastructure.
Cognitive Services - Sentiment Analysis uses machine learning APIs and enables developers to easily add
intelligent features – such as emotion and video detection; facial, speech, and vision recognition; and speech and
language understanding – into applications.
Azure Search is a search-as-a-service cloud solution that provides a rich search experience over private,
heterogenous content in web, mobile, and enterprise applications.
Storage Blobs are optimized to store large amounts of unstructured data, such as text or binary data.
Redis Cache improves the performance and scalability of systems that rely heavily on back-end data stores by
temporarily copying frequently accessed data to fast storage located close to the application.
SQL Database is a general-purpose relational database managed service in Microsoft Azure that supports
structures such as relational data, JSON, spatial, and XML.
Application Insights is designed to help you continuously improve performance and usability by automatically
detecting performance anomalies through built-in analytics tools to help understand what users do with an app.

Many other technologies are available for building a customer facing application focused on e-commerce at scale.
These cover both the front end of the application as well as the data tier.

Other options for the web tier and functions include:

Service Fabric - A platform focused around building distributed components that benefit from being deployed
and run across a cluster with a high degree of control. Service Fabric can also be used to host containers.
Azure Kubernetes Service - A platform for building and deploying container-based solutions that can be used
as one implementation of a microservices architecture. This allows for agility of different components of the
application to be able to scale independently on demand.
Azure Container Instances - A way of quickly deploying and running containers with a short lifecycle.
Containers here are deployed to run a quick processing job such as processing a message or performing a
calculation and then deprovisioned as soon as they are complete.
Service Bus could be used in place of a Storage Queue.

Other options for the data tier include:

Cosmos DB: Microsoft's globally distributed, multi-model database. This service provides a platform to run
other data models such as Mongo DB, Cassandra, Graph data, or simple table storage.

https://docs.microsoft.com/azure/cdn/cdn-overview
https://docs.microsoft.com/azure/traffic-manager/traffic-manager-overview
https://docs.microsoft.com/azure/app-service/app-service-web-overview
https://docs.microsoft.com/azure/active-directory-b2c/active-directory-b2c-overview
https://docs.microsoft.com/azure/storage/queues/storage-queues-introduction
https://docs.microsoft.com/azure/azure-functions/functions-overview
https://docs.microsoft.com/azure/cognitive-services/welcome
https://docs.microsoft.com/azure/search/search-what-is-azure-search
https://docs.microsoft.com/azure/storage/blobs/storage-blobs-introduction
https://docs.microsoft.com/azure/redis-cache/cache-overview
https://docs.microsoft.com/azure/sql-database/sql-database-technical-overview
https://docs.microsoft.com/azure/application-insights/app-insights-overview
https://docs.microsoft.com/azure/service-fabric/
https://docs.microsoft.com/azure/aks/
https://docs.microsoft.com/azure/container-instances/
https://docs.microsoft.com/azure/service-bus-messaging/
https://docs.microsoft.com/azure/cosmos-db/introduction

AvailabilityAvailability

ScalabilityScalability

SecuritySecurity

ResiliencyResiliency

Deploy the scenario

Pricing

Consider leveraging the typical design patterns for availability when building your cloud application.
Review the availability considerations in the appropriate App Service web application reference architecture
For additional considerations concerning availability, see the availability checklist in the Azure Architecture
Center.

When building a cloud application be aware of the typical design patterns for scalability.
Review the scalability considerations in the appropriate App Service web application reference architecture
For other scalability topics, see the scalability checklist available in the Azure Architecture Center.

Consider leveraging the typical design patterns for security where appropriate.
Review the security considerations in the appropriate App Service web application reference architecture.
Consider following a secure development lifecycle process to help developers build more secure software and
address security compliance requirements while reducing development cost.
Review the blueprint architecture for Azure PCI DSS compliance.

Consider leveraging the circuit breaker pattern to provide graceful error handling should one part of the
application not be available.
Review the typical design patterns for resiliency and consider implementing these where appropriate.
You can find a number of recommended practices for App Service in the Azure Architecture Center.
Consider using active geo-replication for the data tier and geo-redundant storage for images and queues.
For a deeper discussion on resiliency, see the relevant article in the Azure Architecture Center.

To deploy this scenario, you can follow this step-by-step tutorial demonstrating how to manually deploy each
component. This tutorial also provides a .NET sample application that runs a simple ticket purchasing application.
Additionally, there is a Resource Manager template to automate the deployment of most of the Azure resources.

Explore the cost of running this scenario, all of the services are pre-configured in the cost calculator. To see how the
pricing would change for your particular use case change the appropriate variables to match your expected traffic.

We have provided three sample cost profiles based on amount of traffic you expect to get:

Small: This pricing example represents the components necessary to build the out for a minimum production
level instance. Here we are assuming a small number of users, numbering only in a few thousand per month.
The app is using a single instance of a standard web app that will be enough to enable autoscaling. Each of the
other components are scaled to a basic tier that will allow for a minimum amount of cost but still ensure that
there is SLA support and enough capacity to handle a production level workload.
Medium: This pricing example represents the components indicative of a moderate size deployment. Here we
estimate approximately 100,000 users using the system over the course of a month. The expected traffic is
handled in a single app service instance with a moderate standard tier. Additionally, moderate tiers of cognitive
and search services are added to the calculator.
Large: This pricing example represents an application meant for high scale, at the order of millions of users per
month moving terabytes of data. At this level of usage high performance, premium tier web apps deployed in
multiple regions fronted by traffic manager is required. Data consists of the following: storage, databases, and
CDN, are configured for terabytes of data.

https://docs.microsoft.com/azure/architecture/patterns/category/availability
https://docs.microsoft.com/azure/architecture/checklist/availability
https://docs.microsoft.com/azure/architecture/patterns/category/performance-scalability
https://docs.microsoft.com/azure/architecture/checklist/scalability
https://docs.microsoft.com/azure/architecture/patterns/category/security
https://www.microsoft.com/SDL/process/design.aspx
https://docs.microsoft.com/azure/security/blueprints/payment-processing-blueprint
https://docs.microsoft.com/azure/architecture/patterns/circuit-breaker
https://docs.microsoft.com/azure/architecture/patterns/category/resiliency
https://docs.microsoft.com/azure/architecture/checklist/resiliency-per-service#app-service
https://docs.microsoft.com/azure/sql-database/sql-database-geo-replication-overview
https://docs.microsoft.com/azure/storage/common/storage-redundancy-grs
https://docs.microsoft.com/azure/architecture/checklist/resiliency
https://github.com/Azure/fta-customerfacingapps/tree/master/ecommerce/articles
https://azure.com/e/90fbb6a661a04888a57322985f9b34ac
https://azure.com/e/38d5d387e3234537b6859660db1c9973
https://azure.com/e/f07f99b6c3134803a14c9b43fcba3e2f

Related resources
Reference Architecture for Multi-Region Web Application
eShop on Containers Reference Example

https://docs.microsoft.com/azure/architecture/reference-architectures/app-service-web-app/multi-region
https://github.com/dotnet-architecture/eShopOnContainers

Migrating a legacy web application to an API-based
architecture on Azure
3/13/2019 • 4 minutes to read • Edit Online

Architecture

Components and SecurityComponents and Security

An e-commerce company in the travel industry is modernizing their legacy browser-based software stack. While
their existing stack is mostly monolithic, some SOAP-based HTTP services exist from a recent project. They are
considering the creation of additional revenue streams to monetize some of the internal intellectual property that's
been developed.

Goals for the project include addressing technical debt, improving ongoing maintenance, and accelerating feature
development with fewer regression bugs. The project will use an iterative process to avoid risk, with some steps
performed in parallel:

The development team will modernize the application back end, which is composed of relational databases
hosted on VMs.
The in-house development team will write new business functionality that will be exposed over new HTTP APIs.
A contract development team will build a new browser-based UI, which will be hosted in Azure.

New application features will be delivered in stages. These features will gradually replace the existing browser-
based client-server UI functionality (hosted on-premises) that powers their e-commerce business today.

The management team does not want to modernize unnecessarily. They also want to maintain control of scope and
costs. To do this, they have decided to preserve their existing SOAP HTTP services. They also intend to minimize
changes to the existing UI. Azure API Management (APIM) can be utilized to address many of the project's
requirements and constraints.

The new UI will be hosted as a platform as a service (PaaS) application on Azure, and will depend on both existing
and new HTTP APIs. These APIs will ship with a better-designed set of interfaces enabling better performance,
easier integration, and future extensibility.

https://github.com/mspnp/architecture-center/blob/master/docs/example-scenario/apps/apim-api-scenario.md
https://en.wikipedia.org/wiki/SOAP
https://docs.microsoft.com/azure/api-management/api-management-key-concepts

AlternativesAlternatives

NOTENOTE

Availability and scalabilityAvailability and scalability

1. The existing on-premises web application will continue to directly consume the existing on-premises web
services.

2. Calls from the existing web app to the existing HTTP services will remain unchanged. These calls are internal to
the corporate network.

3. Inbound calls are made from Azure to the existing internal services:

4. The new API:

5. The new browser-based web application will depend on the Azure API Management instance for both the
existing HTTP API and the new API.

The security team allows traffic from the APIM instance to pass through the corporate firewall to the
existing on-premises services using secure transport (HTTPS/SSL).
The operations team will allow inbound calls to the services only from the APIM instance. This
requirement is met by white-listing the IP address of the APIM instance within the corporate network
perimeter.
A new module is configured into the on-premises HTTP services request pipeline (to act upon only
those connections originating externally), which will validate a certificate which APIM will provide.

Is surfaced only through the APIM instance, which will provide the API facade. The new API won't be
accessed directly.
Is developed and published as an Azure PaaS Web API App.
Is white-listed (via Web App settings) to accept only the APIM VIP.
Is hosted in Azure Web Apps with Secure Transport/SSL turned on.
Has authorization enabled, provided by the Azure App Service using Azure Active Directory and OAuth
2.

The APIM instance will be configured to map the legacy HTTP services to a new API contract. By doing this, the
new Web UI is unaware of the integration with a set of legacy services/APIs and new APIs. In the future, the
project team will gradually port functionality to the new APIs and retire the original services. These changes will be
handled within APIM configuration, leaving the front-end UI unaffected and avoiding redevelopment work.

If the organization was planning to move their infrastructure entirely to Azure, including the VMs hosting the
legacy applications, then APIM would still be a great option since it can act as a facade for any addressable
HTTP endpoint.
If the customer had decided to keep the existing endpoints private and not expose them publicly, their API
Management instance could be linked to an Azure Virtual Network (VNet):

The API Management instance can be kept private by deploying the API Management instance in Internal
mode. The deployment could then be used with an Azure Application Gateway to enable public access for some
APIs while others remain internal. For more information, see Connecting APIM in internal mode to a VNET.

In an Azure lift and shift scenario linked to their deployed Azure Virtual Network, the customer could
directly address the back-end service through private IP addresses.
In the on-premises scenario, the API Management instance could reach back to the internal service
privately via an Azure VPN gateway and site-to-site IPSec VPN connection or ExpressRoute making this
a hybrid Azure and on-premises scenario.

For general information on connecting API Management to a VNET, see here.

Azure API Management can be scaled out by choosing a pricing tier and then adding units.
Scaling also happen automatically with auto scaling.

https://docs.microsoft.com/azure/api-management/api-management-howto-manage-protocols-ciphers
https://docs.microsoft.com/azure/api-management/api-management-faq#is-the-api-management-gateway-ip-address-constant-can-i-use-it-in-firewall-rules
https://docs.microsoft.com/azure/api-management/api-management-howto-mutual-certificates
https://docs.microsoft.com/azure/app-service/
https://docs.microsoft.com/azure/app-service/app-service-ip-restrictions
https://docs.microsoft.com/azure/api-management/api-management-faq#is-the-api-management-gateway-ip-address-constant-can-i-use-it-in-firewall-rules
https://docs.microsoft.com/azure/app-service/app-service-authentication-overview#identity-providers
https://docs.microsoft.com/azure/virtual-network/virtual-networks-overview
https://azure.microsoft.com/resources/azure-virtual-datacenter-lift-and-shift-guide/
https://docs.microsoft.com/azure/vpn-gateway/vpn-gateway-howto-site-to-site-resource-manager-portal
https://docs.microsoft.com/azure/expressroute/expressroute-introduction
https://docs.microsoft.com/azure/architecture/reference-architectures/hybrid-networking/
https://docs.microsoft.com/azure/application-gateway/application-gateway-introduction
https://docs.microsoft.com/azure/api-management/api-management-howto-integrate-internal-vnet-appgateway
https://docs.microsoft.com/azure/api-management/api-management-using-with-vnet
https://docs.microsoft.com/azure/api-management/upgrade-and-scale
https://docs.microsoft.com/azure/api-management/api-management-howto-autoscale

Deploy the scenario

Pricing

NOTENOTE

Related resources

Deploying across multiple regions will enable fail over options and can be done in the Premium tier.
Consider Integrating with Azure Application Insights, which also surfaces metrics through Azure Monitor for
monitoring.

To get started, create an Azure API Management instance in the portal.

Alternatively, you can choose from an existing Azure Resource Manager quickstart template that aligns to your
specific use case.

API Management is offered in four tiers: developer, basic, standard, and premium. You can find detailed guidance
on the difference in these tiers at the Azure API Management pricing guidance here.

Customers can scale API Management by adding and removing units. Each unit has capacity that depends on its
tier.

The Developer tier can be used for evaluation of the API Management features. The Developer tier should not be used for
production.

To view projected costs and customize to your deployment needs, you can modify the number of scale units and
App Service instances in the Azure Pricing Calculator.

Review the extensive Azure API Management documentation and reference articles.

https://docs.microsoft.com/azure/api-management/api-management-howto-deploy-multi-region
https://azure.microsoft.com/pricing/details/api-management/
https://docs.microsoft.com/azure/api-management/api-management-howto-app-insights
https://docs.microsoft.com/azure/monitoring-and-diagnostics/monitoring-overview
https://docs.microsoft.com/azure/api-management/get-started-create-service-instance
https://azure.microsoft.com/resources/templates/?term=API+Management&pageNumber=1
https://azure.microsoft.com/pricing/details/api-management/
https://azure.com/e/0e916a861fac464db61342d378cc0bd6
https://docs.microsoft.com/azure/api-management/api-management-key-concepts

Intelligent product search engine for e-commerce
3/13/2019 • 6 minutes to read • Edit Online

Relevant use cases

Architecture

This example scenario shows how using a dedicated search service can dramatically increase the relevance of
search results for your e-commerce customers.

Search is the primary mechanism through which customers find and ultimately purchase products, making it
essential that search results are relevant to the intent of the search query, and that the end-to-end search
experience matches that of search giants by providing near-instant results, linguistic analysis, geo-location
matching, filtering, faceting, autocomplete, hit highlighting, etc.

Imagine a typical e-commerce web application with product data stored in a relational database like SQL Server or
Azure SQL Database. Search queries are often handled inside the database using LIKE queries or Full-Text Search
features. By using Azure Search instead, you free up your operational database from the query processing and you
can easily start taking advantage of those hard-to-implement features that provide your customers with the best
possible search experience. Also, because Azure Search is a platform as a service (PaaS) component, you don't
have to worry about managing infrastructure or becoming a search expert.

Other relevant use cases include:

Finding real estate listings or stores near the user's physical location.
Searching for articles in a news site or looking for sports results, with a higher preference for more recent
information.
Searching through large repositories for document-centric organizations like policy makers and notaries.

Ultimately, any application that has some form of search functionality can benefit from a dedicated search service.

This scenario covers an e-commerce solution where customers can search through a product catalog.

1. Customers navigate to the e-commerce web application from any device.
2. The product catalog is maintained in an Azure SQL Database for transactional processing.
3. Azure Search uses a search indexer to automatically keep its search index up-to-date through integrated

change tracking.
4. Customer's search queries are offloaded to the Azure Search service, which processes the query and returns

the most relevant results.
5. As an alternative to a web-based search experience, customers can also use a conversational bot in social

https://github.com/mspnp/architecture-center/blob/master/docs/example-scenario/apps/ecommerce-search.md
https://docs.microsoft.com/sql/relational-databases/search/query-with-full-text-search
https://docs.microsoft.com/azure/search/search-what-is-azure-search

ComponentsComponents

AlternativesAlternatives

Considerations
ScalabilityScalability

AvailabilityAvailability

media or straight from digital assistants to search for products and incrementally refine their search query and
results.

6. Optionally, the Cognitive Search feature can be used to apply artificial intelligence for even smarter
processing.

App Services - Web Apps hosts web applications allowing autoscale and high availability without having to
manage infrastructure.
SQL Database is a general-purpose relational database-managed service in Microsoft Azure that supports
structures such as relational data, JSON, spatial, and XML.
Azure Search is a search-as-a-service cloud solution that provides a rich search experience over private,
heterogenous content in web, mobile, and enterprise applications.
Bot Service provides tools to build, test, deploy, and manage intelligent bots.
Cognitive Services lets you use intelligent algorithms to see, hear, speak, understand, and interpret your user
needs through natural methods of communication.

You could use in-database search capabilities, for example, through SQL Server full-text search, but then your
transactional store also processes queries (increasing the need for processing power) and the search capabilities
inside the database are more limited.
You could host the open-source Apache Lucene (on which Azure Search is built upon) on Azure Virtual
Machines, but then you are back to managing Infrastructure-as-a-Service (IaaS) and don't benefit from the
many features that Azure Search provides on top of Lucene.
You could also consider deploying Elastic Search from the Azure Marketplace, which is an alternative and
capable search product from a third-party vendor, but also in this case you are running an IaaS workload.

Other options for the data tier include:

Cosmos DB - Microsoft's globally distributed, multi-model database. Costmos DB provides a platform to run
other data models such as Mongo DB, Cassandra, Graph data, or simple table storage. Azure Search also
supports indexing the data from Cosmos DB directly.

The pricing tier of the Azure Search service doesn't determine the available features but is used mainly for capacity
planning as it defines the maximum storage you get and how many partitions and replicas you can provision.
Partitions allow you to index more documents and get higher write throughputs, whereas replicas provide more
Queries-Per-Second (QPS) and High Availability.

You can dynamically change the number of partitions and replicas but it's not possible to change the pricing tier, so
you should carefully consider the right tier for your target workload. If you need to change the tier anyway, you will
need to provision a new service side by side and reload your indexes there, at which point you can point your
applications at the new service.

Azure Search provides a 99.9% availability SLA for reads (that is, querying) if you have at least two replicas, and
for updates (that is, updating the search indexes) if you have at least three replicas. Therefore you should provision
at least two replicas if you want your customers to be able to search reliably, and 3 if actual changes to the index
should also be considered high availability operations.

If there is a need to make breaking changes to the index without downtime (for example, changing data types,
deleting or renaming fields), the index will need to be rebuilt. Similar to changing service tier, this means creating a

https://docs.microsoft.com/azure/app-service/app-service-web-overview
https://docs.microsoft.com/azure/sql-database/sql-database-technical-overview
https://docs.microsoft.com/azure/search/search-what-is-azure-search
https://docs.microsoft.com/azure/bot-service/
https://docs.microsoft.com/azure/cognitive-services/
https://lucene.apache.org/
https://azuremarketplace.microsoft.com/marketplace/apps/elastic.elasticsearch
https://docs.microsoft.com/azure/cosmos-db/introduction
https://docs.microsoft.com/azure/search/search-sku-tier
https://docs.microsoft.com/azure/search/search-capacity-planning
https://go.microsoft.com/fwlink/?LinkId=716855

SecuritySecurity

Search RelevanceSearch Relevance

Deploy the scenario

Pricing

Related resources

new index, repopulating it with the data, and then updating your applications to point at the new index.

Azure Search is compliant with many security and data privacy standards, which makes it possible to be used in
most industries.

For securing access to the service, Azure Search uses two types of keys: admin keys, which allow you to perform
any task against the service, and query keys, which can only be used for read-only operations like querying.
Typically, the application that performs the search does not update the index, so it should only be configured with a
query key and not an admin key (especially if the search is performed from an end-user device like script running
in a web browser).

How successful your e-commerce application is depends largely on the relevance of the search results to your
customers. Carefully tuning your search service to provide optimal results based on user research, or relying on
built-in features such as search traffic analysis to understand your customer's search patterns allows you to make
decisions based on data.

Typical ways to tune your search service include:

Using scoring profiles to influence the relevance of search results, for example, based on which field matched
the query, how recent the data is, the geographical distance to the user, ...
Using Microsoft provided language analyzers that use an advanced Natural Language Processing (NLP) stack
to better interpret queries
Using custom analyzers to ensure your products are found correctly, especially if you want to search on non-
language based information like a product's make and model.

To deploy a more complete e-commerce version of this scenario, you can follow this step-by-step tutorial that
provides a .NET sample application that runs a simple ticket purchasing application. It also includes Azure Search
and uses many of the features discussed. Additionally, there is a Resource Manager template to automate the
deployment of most of the Azure resources.

To explore the cost of running this scenario, all the services mentioned above are pre-configured in the cost
calculator. To see how the pricing would change for your particular use case change the appropriate variables to
match your expected usage.

We have provided three sample cost profiles based on amount of traffic you expect to get:

Small: In this profile, we're using a single Standard S1 Web App to host the website, the free tier of the Azure
Bot service, a single Basic Azure Search service, and a Standard S2 SQL Database.
Medium: Here we are scaling up the Web App to two instances of the Standard S3 tier, upgrading the Search
Service to a Standard S1 tier, and using a Standard S6 SQL Database.
Large: In the largest profile, we use four instances of a Premium P2V2 Web App, upgrade the Azure Bot service
to the Standard S1 tier (with 1.000.000 messages in Premium channels), use 2 units of the Standard S3 Azure
Search service, and a Premium P6 SQL Database.

To learn more about Azure Search, visit the documentation center, check out the samples, or see a full fledged
demo site in action.

https://docs.microsoft.com/azure/search/search-security-overview
https://docs.microsoft.com/azure/search/search-traffic-analytics
https://docs.microsoft.com/rest/api/searchservice/add-scoring-profiles-to-a-search-index
https://docs.microsoft.com/rest/api/searchservice/language-support
https://docs.microsoft.com/rest/api/searchservice/custom-analyzers-in-azure-search
https://github.com/Azure/fta-customerfacingapps/tree/master/ecommerce/articles
https://azure.com/e/db2672a55b6b4d768ef0060a8d9759bd
https://azure.com/e/a5ad0706c9e74add811e83ef83766a1c
https://azure.com/e/57f95a898daa487795bd305599973ee6
https://docs.microsoft.com/azure/search/search-what-is-azure-search
https://azure.microsoft.com/resources/samples/?service=search&sort=0
https://azjobsdemo.azurewebsites.net/

Hybrid ETL with existing on-premises SSIS and Azure
Data Factory
3/13/2019 • 5 minutes to read • Edit Online

Potential use cases

Architecture

Organizations that migrate their SQL Server databases to the cloud can realize tremendous cost savings,
performance gains, added flexibility, and greater scalability. However, reworking existing extract, transform, and
load (ETL) processes built with SQL Server Integration Services (SSIS) can be a migration roadblock. In other
cases, the data load process requires complex logic and/or specific data tool components that are not yet
supported by Azure Data Factory v2. Commonly used SSIS capabilities include Fuzzy Lookup and Fuzzy Grouping
transformations, Change Data Capture (CDC), Slowly Changing Dimensions (SCD), and Data Quality Services
(DQS).

To facilitate a lift-and-shift migration of an existing SQL database, a hybrid ETL approach may be the most suitable
option. A hybrid approach uses Data Factory as the primary orchestration engine, but continues to leverage
existing SSIS packages to clean data and work with on-premises resources. This approach uses the Data Factory
SQL Server Integrated Runtime (IR) to enable a lift-and-shift of existing databases into the cloud, while using
existing code and SSIS packages.

This example scenario is relevant to organizations that are moving databases to the cloud and are considering
using Data Factory as their primary cloud-based ETL engine while incorporating existing SSIS packages into their
new cloud data workflow. Many organizations have significant invested in developing SSIS ETL packages for
specific data tasks. Rewriting these packages can be daunting. Also, many existing code packages have
dependencies on local resources, preventing migration to the cloud.

Data Factory lets customers take advantage of their existing ETL packages while limiting further investment in on-
premises ETL development. This example discusses potential use cases for leveraging existing SSIS packages as
part of a new cloud data workflow using Azure Data Factory v2.

Traditionally, SSIS has been the ETL tool of choice for many SQL Server data professionals for data
transformation and loading. Sometimes, specific SSIS features or third-party plugging components have been
used to accelerate the development effort. Replacement or redevelopment of these packages may not be an option,
which prevents customers from migrating their databases to the cloud. Customers are looking for low impact
approaches to migrating their existing databases to the cloud and taking advantage of their existing SSIS
packages.

Several potential on-premises use cases are listed below:

Loading network router logs to a database for analysis.
Preparing human resources employment data for analytical reporting.
Loading product and sales data into a data warehouse for sales forecasting.
Automating loading of operational data stores or data warehouses for finance and accounting.

https://github.com/mspnp/architecture-center/blob/master/docs/example-scenario/data/hybrid-etl-with-adf.md

ComponentsComponents

AlternativesAlternatives

Considerations

1. Data is sourced from Blob storage into Data Factory.
2. The Data Factory pipeline invokes a stored procedure to execute an SSIS job hosted on-premises via the

Integrated Runtime.
3. The data cleansing jobs are executed to prepare the data for downstream consumption.
4. Once the data cleansing task completes successfully, a copy task is executed to load the clean data into Azure.
5. The clean data is then loaded into tables in the SQL Data Warehouse.

Blob storage is used to store files and as a source for Data Factory to retrieve data.
SQL Server Integration Services contains the on-premises ETL packages used to execute task-specific
workloads.
Azure Data Factory is the cloud orchestration engine that takes data from multiple sources and combines,
orchestrates, and loads the data into a data warehouse.
SQL Data Warehouse centralizes data in the cloud for easy access using standard ANSI SQL queries.

Data Factory could invoke data cleansing procedures implemented using other technologies, such as a Databricks
notebook, Python script, or SSIS instance running in a virtual machine. Installing paid or licensed custom
components for the Azure-SSIS integration runtime may be a viable alternative to the hybrid approach.

The Integrated Runtime (IR) supports two models: self-hosted IR or Azure-hosted IR. You first must decide
between these two options. Self-hosting is more cost effective but has more overhead for maintenance and
management. For more information, see Self-hosted IR. If you need help determining which IR to use, see
Determining which IR to use.

For the Azure-hosted approach, you should decide how much power is required to process your data. The Azure-
hosted configuration allows you to select the VM size as part of the configuration steps. To learn more about
selecting VM sizes, see VM performance considerations.

The decision is much easier when you already have existing SSIS packages that have on-premises dependencies
such as data sources or files that are not accessible from Azure. In this scenario, your only option is the self-hosted
IR. This approach provides the most flexibility to leverage the cloud as the orchestration engine, without having to
rewrite existing packages.

Ultimately, the intent is to move the processed data into the cloud for further refinement or combining with other
data stored in the cloud. As part of the design process, keep track of the number of activities used in the Data
Factory pipelines. For more information, see Pipelines and activities in Azure Data Factory.

https://docs.microsoft.com/azure/storage/blobs/
https://docs.microsoft.com/sql/integration-services/sql-server-integration-services
https://docs.microsoft.com/azure/data-factory/introduction
https://docs.microsoft.com/azure/sql-data-warehouse/sql-data-warehouse-overview-what-is
https://docs.microsoft.com/azure/data-factory/how-to-develop-azure-ssis-ir-licensed-components
https://docs.microsoft.com/azure/data-factory/concepts-integration-runtime#self-hosted-integration-runtime
https://docs.microsoft.com/azure/data-factory/concepts-integration-runtime#determining-which-ir-to-use
https://docs.microsoft.com/azure/cloud-services/cloud-services-sizes-specs#performance-considerations
https://docs.microsoft.com/azure/data-factory/concepts-pipelines-activities

Pricing

Next Steps

Data Factory is a cost-effective way to orchestrate data movement in the cloud. The cost is based on the several
factors.

Number of pipeline executions
Number of entities/activities used within the pipeline
Number of monitoring operations
Number of Integration Runs (Azure-hosted IR or self-hosted IR)

Data Factory uses consumption-based billing. Therefore, cost is only incurred during pipeline executions and
monitoring. The execution of a basic pipeline would cost as little as 50 cents and the monitoring as little as 25
cents. The Azure cost calculator can be used to create a more accurate estimate based on your specific workload.

When running a hybrid ETL workload, you must factor in the cost of the virtual machine used to host your SSIS
packages. This cost is based on the size of the VM ranging from a D1v2 (1 core, 3.5 GB RAM, 50 GB Disk) to
E64V3 (64 cores, 432 GB RAM, 1600 GB disk). If you need further guidance on selection the appropriate VM size,
see VM performance considerations.

Learn more about Azure Data Factory.
Get started with Azure Data Factory by following the Step-by-step tutorial.
Provision the Azure-SSIS Integration Runtime in Azure Data Factory.

https://azure.microsoft.com/pricing/calculator/
https://docs.microsoft.com/azure/cloud-services/cloud-services-sizes-specs#performance-considerations
https://azure.microsoft.com/services/data-factory/
https://docs.microsoft.com/azure/data-factory/#step-by-step-tutorials
https://docs.microsoft.com/azure/data-factory/tutorial-deploy-ssis-packages-azure

IoT and data analytics in the construction industry
3/13/2019 • 5 minutes to read • Edit Online

Relevant use cases

Architecture

This example scenario is relevant to organizations building solutions that integrate data from many IoT devices
into a comprehensive data analysis architecture to improve and automate decision making. Potential applications
include construction, mining, manufacturing, or other industry solutions involving large volumes of data from
many IoT-based data inputs.

In this scenario, a construction equipment manufacturer builds vehicles, meters, and drones that use IoT and GPS
technologies to emit telemetry data. The company wants to modernize their data architecture to better monitor
operating conditions and equipment health. Replacing the company's legacy solution using on-premises
infrastructure would be both time and labor intensive, and would not be able to scale sufficiently to handle the
anticipated data volume.

The company wants to build a cloud-based "smart construction" solution. It should gather a comprehensive set of
data for a construction site and automate the operation and maintenance of the various elements of the site. The
company's goals include:

Integrating and analyzing all construction site equipment and data to minimize equipment downtime and
reduce theft.
Remotely and automatically controlling construction equipment to mitigate the effects of a labor shortage,
ultimately requiring fewer workers and enabling lower-skilled workers to succeed.
Minimizing the operating costs and labor requirements for the supporting infrastructure, while increasing
productivity and safety.
Easily scaling the infrastructure to support increases in telemetry data.
Complying with all relevant legal requirements by provisioning resources in-country without compromising
system availability.
Using open-source software to maximize the investment in workers' current skills.

Using managed Azure services such as IoT Hub and HDInsight will allow the customer to rapidly build and deploy
a comprehensive solution with a lower operating cost. If you have additional data analytics needs, you should
review the list of available fully managed data analytics services in Azure.

Other relevant use cases include:

Construction, mining, or equipment manufacturing scenarios
Large-scale collection of device data for storage and analysis
Ingestion and analysis of large datasets

https://github.com/mspnp/architecture-center/blob/master/docs/example-scenario/data/big-data-with-iot.md
https://azure.microsoft.com/product-categories/analytics/

ComponentsComponents

The data flows through the solution as follows:

1. Construction equipment collects sensor data and sends the construction results data at regular intervals to load
balanced web services hosted on a cluster of Azure virtual machines.

2. The custom web services ingest the construction results data and store it in an Apache Cassandra cluster also
running on Azure virtual machines.

3. Another dataset is gathered by IoT sensors on various construction equipment and sent to IoT Hub.
4. Raw data collected is sent directly from IoT Hub to Azure blob storage and is immediately available for viewing

and analysis.
5. Data collected via IoT Hub is processed in near real time by an Azure Stream Analytics job and stored in an

Azure SQL database.
6. The Smart Construction Cloud web application is available to analysts and end users to view and analyze

sensor data and imagery.
7. Batch jobs are initiated on demand by users of the web application. The batch job runs in Apache Spark on

HDInsight and analyzes new data stored in the Cassandra cluster.

IoT Hub acts as a central message hub for secure bi-directional communication with per-device identity
between the cloud platform and the construction equipment and other site elements. IoT Hub can rapidly
collect data for each device for ingestion into the data analytics pipeline.
Azure Stream Analytics is an event-processing engine that can analyze high volumes of data streaming from
devices and other data sources. It also supports extracting information from data streams to identify patterns
and relationships. In this scenario, Stream Analytics ingests and analyzes data from IoT devices and stores the
results in Azure SQL Database.
Azure SQL Database contains the results of analyzed data from IoT devices and meters, which can be viewed
by analysts and users via an Azure-based Web application.
Blob storage stores image data gathered from the IoT hub devices. The image data can be viewed via the web
application.
Traffic Manager controls the distribution of user traffic for service endpoints in different Azure regions.
Load Balancer distributes data submissions from construction equipment devices across the VM-based web
services to provide high availability.
Azure Virtual Machines host the web services that receive and ingest the construction results data into the
Apache Cassandra database.
Apache Cassandra is a distributed NoSQL database used to store construction data for later processing by
Apache Spark.
Web Apps hosts the end-user web application, which can be used to query and view source data and images.

https://docs.microsoft.com/azure/iot-hub/about-iot-hub
https://docs.microsoft.com/azure/stream-analytics/stream-analytics-introduction
https://docs.microsoft.com/azure/sql-database/sql-database-technical-overview
https://docs.microsoft.com/azure/storage/blobs/storage-blobs-introduction
https://docs.microsoft.com/azure/traffic-manager/traffic-manager-overview
https://docs.microsoft.com/azure/load-balancer/load-balancer-overview
https://docs.microsoft.com/azure/virtual-machines
https://cassandra.apache.org
https://docs.microsoft.com/azure/app-service/app-service-web-overview

AlternativesAlternatives

Considerations

Pricing

Related resources

Users can also initiate batch jobs in Apache Spark via the application.
Apache Spark on HDInsight supports in-memory processing to boost the performance of big-data analytic
applications. In this scenario, Spark is used to run complex algorithms over the data stored in Apache
Cassandra.

Cosmos DB is an alternative NoSQL database technology. Cosmos DB provides multi-master support at global
scale with multiple well-defined consistency levels to meet various customer requirements. It also supports the
Cassandra API.
Azure Databricks is an Apache Spark-based analytics platform optimized for Azure. It is integrated with Azure
to provide one-click setup, streamlined workflows, and an interactive collaborative workspace.
Data Lake Storage is an alternative to Blob storage. For this scenario, Data Lake Storage was not available in
the targeted region.
Web Apps could also be used to host the web services for ingesting construction results data.
Many technology options are available for real-time message ingestion, data storage, stream processing,
storage of analytical data, and analytics and reporting. For an overview of these options, their capabilities, and
key selection criteria, see Big data architectures: Real-time processing in the Azure Data Architecture Guide.

The broad availability of Azure regions is an important factor for this scenario. Having more than one region in a
single country can provide disaster recovery while also enabling compliance with contractual obligations and law
enforcement requirements. Azure's high-speed communication between regions is also an important factor in this
scenario.

Azure support for open-source technologies allowed the customer to take advantage of their existing workforce
skills. The customer can also accelerate the adoption of new technologies with lower costs and operating
workloads compared to an on-premises solution.

The following considerations will drive a substantial portion of the costs for this solution.

Azure virtual machine costs will increase linearly as additional instances are provisioned. Virtual machines that
are deallocated will only incur storage costs, and not compute costs. These deallocated machines can then be
reallocated when demand is high.
IoT Hub costs are driven by the number of IoT units provisioned as well as the service tier chosen, which
determines the number of messages per day per unit allowed.
Stream Analytics is priced by the number of streaming units required to process the data into the service.

To see an implementation of a similar architecture, read the Komatsu customer story.

Guidance for big data architectures is available in the Azure Data Architecture Guide.

https://docs.microsoft.com/azure/hdinsight/spark/apache-spark-overview
https://docs.microsoft.com/azure/cosmos-db/introduction
https://docs.microsoft.com/azure/cosmos-db/multi-region-writers
https://docs.microsoft.com/azure/cosmos-db/consistency-levels
https://docs.microsoft.com/azure/cosmos-db/cassandra-introduction
https://docs.microsoft.com/azure/azure-databricks/what-is-azure-databricks
https://docs.microsoft.com/azure/storage/data-lake-storage
https://docs.microsoft.com/azure/app-service
https://docs.microsoft.com/azure/architecture/data-guide/technology-choices/real-time-ingestion
https://docs.microsoft.com/azure/architecture/data-guide
https://azure.microsoft.com/pricing/details/iot-hub
https://azure.microsoft.com/pricing/details/stream-analytics
https://customers.microsoft.com/story/komatsu-manufacturing-azure-iot-hub-japan
https://docs.microsoft.com/azure/architecture/data-guide

Data warehousing and analytics for sales and
marketing
3/13/2019 • 5 minutes to read • Edit Online

Relevant use cases

Architecture

This example scenario demonstrates a data pipeline that integrates large amounts of data from multiple sources
into a unified analytics platform in Azure. This specific scenario is based on a sales and marketing solution, but the
design patterns are relevant for many industries requiring advanced analytics of large datasets such as e-
commerce, retail, and healthcare.

This example demonstrates a sales and marketing company that creates incentive programs. These programs
reward customers, suppliers, salespeople, and employees. Data is fundamental to these programs, and the
company wants to improve the insights gained through data analytics using Azure.

The company needs a modern approach to analysis data, so that decisions are made using the right data at the
right time. The company's goals include:

Combining different kinds of data sources into a cloud-scale platform.
Transforming source data into a common taxonomy and structure, to make the data consistent and easily
compared.
Loading data using a highly parallelized approach that can support thousands of incentive programs, without
the high costs of deploying and maintaining on-premises infrastructure.
Greatly reducing the time needed to gather and transform data, so you can focus on analyzing the data.

This approach can also be used to:

Establish a data warehouse to be a single source of truth for your data.
Integrate relational data sources with other unstructured datasets.
Use semantic modeling and powerful visualization tools for simpler data analysis.

The data flows through the solution as follows:

1. For each data source, any updates are exported periodically into a staging area in Azure Blob storage.
2. Data Factory incrementally loads the data from Blob storage into staging tables in SQL Data Warehouse. The

data is cleansed and transformed during this process. Polybase can parallelize the process for large datasets.

https://github.com/mspnp/architecture-center/blob/master/docs/example-scenario/data/data-warehouse.md

ComponentsComponents

AlternativesAlternatives

3. After loading a new batch of data into the warehouse, a previously created Analysis Services tabular model is
refreshed. This semantic model simplifies the analysis of business data and relationships.

4. Business analysts use Microsoft Power BI to analyze warehoused data via the Analysis Services semantic
model.

The company has data sources on many different platforms:

SQL Server on-premises
Oracle on-premises
Azure SQL Database
Azure table storage
Cosmos DB

Data is loaded from these different data sources using several Azure components:

Blob storage is used to stage source data before it's loaded into SQL Data Warehouse.
Data Factory orchestrates the transformation of staged data into a common structure in SQL Data Warehouse.
Data Factory uses Polybase when loading data into SQL Data Warehouse to maximize throughput.
SQL Data Warehouse is a distributed system for storing and analyzing large datasets. Its use of massive parallel
processing (MPP) makes it suitable for running high-performance analytics. SQL Data Warehouse can use
PolyBase to rapidly load data from Blob storage.
Analysis Services provides a semantic model for your data. It can also increase system performance when
analyzing your data.
Power BI is a suite of business analytics tools to analyze data and share insights. Power BI can query a semantic
model stored in Analysis Services, or it can query SQL Data Warehouse directly.
Azure Active Directory (Azure AD) authenticates users who connect to the Analysis Services server through
Power BI. Data Factory can also use Azure AD to authenticate to SQL Data Warehouse via a service principal or
Managed identity for Azure resources.

The example pipeline includes several different kinds of data sources. This architecture can handle a wide
variety of relational and non-relational data sources.

Data Factory orchestrates the workflows for your data pipeline. If you want to load data only one time or on
demand, you could use tools like SQL Server bulk copy (bcp) and AzCopy to copy data into Blob storage.
You can then load the data directly into SQL Data Warehouse using Polybase.

If you have very large datasets, consider using Data Lake Storage, which provides limitless storage for
analytics data.

An on-premises SQL Server Parallel Data Warehouse appliance can also be used for big data processing.
However, operating costs are often much lower with a managed cloud-based solution like SQL Data
Warehouse.

SQL Data Warehouse is not a good fit for OLTP workloads or data sets smaller than 250GB. For those cases
you should use Azure SQL Database or SQL Server.

For comparisons of other alternatives, see:

Choosing a data pipeline orchestration technology in Azure
Choosing a batch processing technology in Azure
Choosing an analytical data store in Azure
Choosing a data analytics technology in Azure

https://docs.microsoft.com/azure/storage/blobs/storage-blobs-introduction
https://docs.microsoft.com/azure/data-factory
https://docs.microsoft.com/azure/data-factory/connector-azure-sql-data-warehouse#use-polybase-to-load-data-into-azure-sql-data-warehouse
https://docs.microsoft.com/azure/sql-data-warehouse/sql-data-warehouse-overview-what-is
https://docs.microsoft.com/sql/relational-databases/polybase/polybase-guide
https://docs.microsoft.com/azure/analysis-services
https://docs.microsoft.com/power-bi
https://docs.microsoft.com/azure/active-directory
https://docs.microsoft.com/azure/active-directory/managed-identities-azure-resources/overview
https://docs.microsoft.com/azure/storage/data-lake-storage/introduction
https://docs.microsoft.com/sql/analytics-platform-system
https://docs.microsoft.com/azure/architecture/data-guide/technology-choices/pipeline-orchestration-data-movement
https://docs.microsoft.com/azure/architecture/data-guide/technology-choices/batch-processing
https://docs.microsoft.com/azure/architecture/data-guide/technology-choices/analytical-data-stores
https://docs.microsoft.com/azure/architecture/data-guide/technology-choices/analysis-visualizations-reporting

Considerations

Pricing

Next Steps

The technologies in this architecture were chosen because they met the company's requirements for scalability and
availability, while helping them control costs.

The massively parallel processing architecture of SQL Data Warehouse provides scalability and high
performance.
SQL Data Warehouse has guaranteed SLAs and recommended practices for achieving high availability.
When analysis activity is low, the company can scale SQL Data Warehouse on demand, reducing or even
pausing compute to lower costs.
Azure Analysis Services can be scaled out to reduce response times during high query workloads. You can also
separate processing from the query pool, so that client queries aren't slowed down by processing operations.
Azure Analysis Services also has guaranteed SLAs and recommended practices for achieving high availability.
The SQL Data Warehouse security model provides connection security, authentication and authorization via
Azure AD or SQL Server authentication, and encryption. Azure Analysis Services uses Azure AD for identity
management and user authentication.

Review a pricing sample for a data warehousing scenario via the Azure pricing calculator. Adjust the values to see
how your requirements affect your costs.

SQL Data Warehouse allows you to scale your compute and storage levels independently. Compute resources
are charged per hour, and you can scale or pause these resources on demand. Storage resources are billed per
terabyte, so your costs will increase as you ingest more data.
Data Factory costs are based on the number of read/write operations, monitoring operations, and orchestration
activities performed in a workload. Your Data Factory costs will increase with each additional data stream and
the amount of data processed by each one.
Analysis Services is available in developer, basic, and standard tiers. Instances are priced based on query
processing units (QPUs) and available memory. To keep your costs lower, minimize the number of queries you
run, how much data they process, and how often they run.
Power BI has different product options for different requirements. Power BI Embedded provides an Azure-
based option for embedding Power BI functionality inside your applications. A Power BI Embedded instance is
included in the pricing sample above.

Review the Azure reference architecture for automated enterprise BI, which includes instructions for deploying
an instance of this architecture in Azure.
Read the Maritz Motivation Solutions customer story. That story describes a similar approach to managing
customer data.
Find comprehensive architectural guidance on data pipelines, data warehousing, online analytical processing
(OLAP), and big data in the Azure Data Architecture Guide.

https://docs.microsoft.com/azure/sql-data-warehouse/massively-parallel-processing-mpp-architecture
https://azure.microsoft.com/support/legal/sla/sql-data-warehouse
https://docs.microsoft.com/azure/sql-data-warehouse/sql-data-warehouse-best-practices
https://docs.microsoft.com/azure/sql-data-warehouse/sql-data-warehouse-manage-compute-overview
https://docs.microsoft.com/azure/analysis-services/analysis-services-scale-out
https://azure.microsoft.com/support/legal/sla/analysis-services
https://docs.microsoft.com/azure/analysis-services/analysis-services-bcdr
https://docs.microsoft.com/azure/sql-data-warehouse/sql-data-warehouse-overview-manage-security
https://docs.microsoft.com/azure/sql-data-warehouse/sql-data-warehouse-authentication
https://docs.microsoft.com/azure/analysis-services/analysis-services-manage-users
https://azure.com/e/b798fb70c53e4dd19fdeacea4db78276
https://azure.microsoft.com/pricing/details/sql-data-warehouse/gen2
https://azure.microsoft.com/pricing/details/data-factory
https://azure.microsoft.com/pricing/details/analysis-services
https://powerbi.microsoft.com/pricing
https://azure.microsoft.com/pricing/details/power-bi-embedded
https://docs.microsoft.com/azure/architecture/reference-architectures/data/enterprise-bi-adf
https://customers.microsoft.com/story/maritz
https://docs.microsoft.com/azure/architecture/data-guide

Ingestion and processing of real-time automotive IoT
data
3/13/2019 • 7 minutes to read • Edit Online

Relevant use cases

Architecture

This example scenario builds a real time data ingestion and processing pipeline to ingest and process messages
from IoT devices (in general sensors) into a big data analytic platform in Azure. Vehicle telematics ingestion and
processing platforms are the key to create connected car solutions. This specific scenario is motivated by the car
telematics ingestion and processing systems. However, the design patterns are relevant for many industries using
sensors to manage and monitor complex systems in industries such as smart buildings, communications,
manufacturing, retail, and healthcare.

This example demonstrates a real time data ingestion and processing pipeline for messages from IoT devices
installed in vehicles. Thousands and millions of messages (or events) are generated by the IoT devices and sensors.
By capturing and analyzing these messages, we can decipher valuable insights and take appropriate actions. For
example, with cars equipped telematics devices, if we can capture the device (IoT) messages in real time, we would
be able to monitor the live location of vehicles, plan optimized routes, provide assistance to drivers, and support
telematics-related industries such as auto insurance.

For this example demonstration, imagine a car manufacturing company that wants to create a real time system to
ingest and process messages from telematics devices. The company's goals include:

Ingest and store data in real time from vehicles sensors and devices.
Analyze the messages to understand vehicle location, and other information emitted through different types of
sensors (such as engine-related sensors and environment-related sensors).
Store the data after analysis for other downstream processing to provide actionable insights (For example, in
accident scenarios, insurance agencies may be interested to know what happened during an accident etc.)

Other relevant use cases include:

Vehicle maintenance reminders and alerting.
Location-based services for the vehicle passengers (that is, SOS).
Autonomous (self-driving) vehicles.

In a typical big data processing pipeline implementation, the data flows from left to right. In this real time big data
processing pipeline, the data flows through the solution as follows:

1. Events generated from the IoT data sources are sent to the stream ingestion layer through Azure HDInsight
Kafka as a stream of messages. HDInsight Kafka stores streams of data in topics for a configurable of time.

https://github.com/mspnp/architecture-center/blob/master/docs/example-scenario/data/realtime-analytics-vehicle-iot.md

ComponentsComponents

Alternatives

Considerations

2. Kafka consumer, Azure Databricks, picks up the message in real time from the Kafka topic, to process the data
based on the business logic and can then send to Serving layer for storage.

3. Downstream storage services, like Azure Cosmos DB, Azure SQL Data warehouse, or Azure SQL DB, will then
be a data source for presentation and action layer.

4. Business analysts can use Microsoft Power BI to analyze warehoused data. Other applications can be built upon
the serving layer as well. For example, we can expose APIs based on the service layer data for third party uses.

IoT device-generated events (data or messages) are ingested, processed, and then stored for further analysis,
presentation, and action, using the following Azure components:

Apache Kafka on HDInsight is in the ingestion layer. The data is written into the Kafka topic using a Kafka
producer API.
Azure Databricks is located in the transformation and analytics layer. Databricks notebooks implement a Kafka
consumer API to read the data from the Kafka topic.
Azure Cosmos DB, Azure SQL Database, and Azure SQL Data Warehouse are in the Serving storage layer,
where Azure Databricks can write the data via data connectors.
Azure SQL Data Warehouse is a distributed system for storing and analyzing large datasets. Its use of massive
parallel processing (MPP) makes it suitable for running high-performance analytics.
Power BI is a suite of business analytics tools to analyze data and share insights. Power BI can query a semantic
model stored in Analysis Services, or it can query SQL Data Warehouse directly.
Azure Active Directory (Azure AD) authenticates users, when connecting to Azure Databricks. If we would build
a cube in Analysis Services based on the model based on Azure SQL Data Warehouse data, we could use AAD
to connect to the Analysis Services server through Power BI. Data Factory can also use Azure AD to
authenticate to SQL Data Warehouse via a service principal or Managed Service Identity (MSI).
Azure App Services, in particular API App can be used to expose data to third parties, based on the data stored
in the Serving Layer.

A more generalized big data pipeline could be implemented using other Azure components.

In the stream ingestion layer, we could use IoT Hub or Event Hub, instead of HDInsight Kafka to ingest data.
In the transformation and analytics layer, we could use HDInsight Storm, HDInsight Spark, or Azure Stream
Analytics.
Analysis Services provides a semantic model for your data. It can also increase system performance when
analyzing your data. You can build the model based on Azure DW data.

The technologies in this architecture were chosen based on the scale needed to process events, the SLA of the

https://docs.microsoft.com/azure/hdinsight/kafka/apache-kafka-introduction
https://docs.microsoft.com/services/databricks
https://docs.microsoft.com/services/cosmos-db
https://docs.microsoft.com/azure/sql-database/sql-database-technical-overview
https://docs.microsoft.com/azure/sql-data-warehouse/sql-data-warehouse-overview-what-is
https://docs.microsoft.com/power-bi
https://docs.microsoft.com/azure/active-directory
https://azure.microsoft.com/services/databricks
https://docs.microsoft.com/azure/analysis-services
https://docs.microsoft.com/azure/app-service/app-service-web-overview
https://docs.microsoft.com/services/app-service/api
https://azure.microsoft.com/services/iot-hub
https://azure.microsoft.com/services/event-hubs
https://docs.microsoft.com/azure/hdinsight/kafka/apache-kafka-introduction
https://docs.microsoft.com/azure/hdinsight/storm/apache-storm-overview
https://docs.microsoft.com/azure/hdinsight/spark/apache-spark-overview
https://azure.microsoft.com/services/stream-analytics
https://docs.microsoft.com/azure/analysis-services

Pricing

services, the cost management and ease of management of the components.

Managed HDInsight Kafka comes with a 99.9% SLA is integrated with Azure Managed Disks
Azure Databricks is optimized from the ground up for performance and cost-efficiency in the cloud. The
Databricks Runtime adds several key capabilities to Apache Spark workloads that can increase performance
and reduce costs by as much as 10-100x when running on Azure, including:
Azure Databricks integrates deeply with Azure databases and stores: Azure SQL Data Warehouse, Azure
Cosmos DB, Azure Data Lake Storage, and Azure Blob Storage

Azure Cosmos DB is Microsoft’s globally distributed, multi-model database. Azure Cosmos DB was built from
the ground up with global distribution and horizontal scale at its core. It offers turnkey global distribution
across any number of Azure regions by transparently scaling and replicating your data wherever your users are.
You can elastically scale throughput and storage worldwide, and pay only for the throughput and storage you
need.
The massively parallel processing architecture of SQL Data Warehouse provides scalability and high
performance.
Azure SQL Data Warehouse has guaranteed SLAs and recommended practices for achieving high availability.
When analysis activity is low, the company can scale Azure SQL Data Warehouse on demand, reducing or even
pausing compute to lower costs.
The Azure SQL Data Warehouse security model provides connection security, authentication, and authorization
via Azure AD or SQL Server authentication, and encryption.

Autoscaling and autotermination for Spark clusters to automatically minimize costs.
Performance optimizations including caching, indexing, and advanced query optimization, which can
improve performance by as much as 10-100x over traditional Apache Spark deployments in cloud or on-
premises environments.
Integration with Azure Active Directory enables you to run complete Azure-based solutions using Azure
Databricks.
Role-based access in Azure Databricks enables fine-grained user permissions for notebooks, clusters,
jobs, and data.
Comes with Enterprise-grade SLAs.

Review Azure Databricks pricing, Azure HDInsight pricing, pricing sample for a data warehousing scenario via the
Azure pricing calculator. Adjust the values to see how your requirements affect your costs.

Azure HDInsight is a fully-managed cloud service that makes it easy, fast, and cost-effective to process massive
amounts of data
Azure Databricks offers two distinct workloads on several VM Instances tailored for your data analytics
workflow — the Data Engineering workload makes it easy for data engineers to build and execute jobs, and the
Data Analytics workload makes it easy for data scientists to explore, visualize, manipulate, and share data and
insights interactively.
Azure Cosmos DB guarantees single-digit-millisecond latencies at the 99th percentile anywhere in the world,
offers multiple well-defined consistency models to fine-tune performance, and guarantees high availability with
multi-homing capabilities — all backed by industry leading comprehensive service level agreements (SLAs).
Azure SQL Data Warehouse allows you to scale your compute and storage levels independently. Compute
resources are charged per hour, and you can scale or pause these resources on demand. Storage resources are
billed per terabyte, so your costs will increase as you ingest more data.
Analysis Services is available in developer, basic, and standard tiers. Instances are priced based on query
processing units (QPUs) and available memory. To keep your costs lower, minimize the number of queries you
run, how much data they process, and how often they run.
Power BI has different product options for different requirements. Power BI Embedded provides an Azure-

https://docs.microsoft.com/azure/hdinsight/kafka/apache-kafka-introduction
https://docs.microsoft.com/azure/azure-databricks/what-is-azure-databricks
https://docs.microsoft.com/azure/sql-data-warehouse
https://azure.microsoft.com/services/cosmos-db
https://azure.microsoft.com/services/storage/data-lake-storage
https://azure.microsoft.com/services/storage/blobs
https://azure.microsoft.com/pricing/details/databricks
https://azure.microsoft.com/pricing/details/hdinsight
https://azure.com/e/b798fb70c53e4dd19fdeacea4db78276
https://docs.microsoft.com/azure/hdinsight
https://azure.microsoft.com/services/databricks
https://azure.microsoft.com/pricing/details/databricks/#instances
https://azure.microsoft.com/services/cosmos-db
https://docs.microsoft.com/azure/cosmos-db/consistency-levels
https://azure.microsoft.com/support/legal/sla/cosmos-db
https://azure.microsoft.com/pricing/details/sql-data-warehouse/gen2
https://azure.microsoft.com/pricing/details/analysis-services
https://powerbi.microsoft.com/pricing
https://azure.microsoft.com/pricing/details/power-bi-embedded

Next Steps

based option for embedding Power BI functionality inside your applications. A Power BI Embedded instance is
included in the pricing sample above.

Review the Real-time analytics reference architecture that includes big data pipeline flow.
Review the Advanced analytics on big data reference architecture to get a peek on how different azure
components can help build a big data pipeline.
Read the Real time processing Azure documentation to get a quick view of how different Azure components
help in processing streams of data in real time.
Find comprehensive architectural guidance on data pipelines, data warehousing, online analytical processing
(OLAP), and big data in the Azure Data Architecture Guide.

https://azure.microsoft.com/solutions/architecture/real-time-analytics
https://azure.microsoft.com/solutions/architecture/advanced-analytics-on-big-data
https://docs.microsoft.com/azure/architecture/data-guide/big-data/real-time-processing
https://docs.microsoft.com/azure/architecture/data-guide

Real-time fraud detection on Azure
3/13/2019 • 4 minutes to read • Edit Online

Relevant use cases

Architecture

ComponentsComponents

This example scenario is relevant to organizations that need to analyze data in real time to detect fraudulent
transactions or other anomalous activity.

Potential applications include identifying fraudulent credit card activity or mobile phone calls. Traditional online
analytical systems might take hours to transform and analyze the data to identify anomalous activity.

By using fully managed Azure services such as Event Hubs and Stream Analytics, companies can eliminate the
need to manage individual servers, while reducing costs and leveraging Microsoft's expertise in cloud-scale data
ingestion and real-time analytics. This scenario specifically addresses the detection of fraudulent activity. If you
have other needs for data analytics, you should review the list of available Azure Analytics services.

This sample represents one part of a broader data processing architecture and strategy. Other options for this
aspect of an overall architecture are discussed later in this article.

Other relevant use cases include:

Detecting fraudulent mobile-phone calls in telecommunications scenarios.
Identifying fraudulent credit card transactions for banking institutions.
Identifying fraudulent purchases in retail or e-commerce scenarios.

This scenario covers the back-end components of a real-time analytics pipeline. Data flows through the scenario as
follows:

1. Mobile phone call metadata is sent from the source system to an Azure Event Hubs instance.
2. A Stream Analytics job is started, which receives data via the event hub source.
3. The Stream Analytics job runs a predefined query to transform the input stream and analyze it based on a

fraudulent-transaction algorithm. This query uses a tumbling window to segment the stream into distinct
temporal units.

4. The Stream Analytics job writes the transformed stream representing detected fraudulent calls to an output sink
in Azure Blob storage.

Azure Event Hubs is a real-time streaming platform and event ingestion service, capable of receiving and
processing millions of events per second. Event Hubs can process and store events, data, or telemetry produced
by distributed software and devices. In this scenario, Event Hubs receives all phone call metadata to be analyzed
for fraudulent activity.
Azure Stream Analytics is an event-processing engine that can analyze high volumes of data streaming from
devices and other data sources. It also supports extracting information from data streams to identify patterns

https://github.com/mspnp/architecture-center/blob/master/docs/example-scenario/data/fraud-detection.md
https://azure.microsoft.com/product-categories/analytics/
https://docs.microsoft.com/azure/event-hubs/event-hubs-what-is-event-hubs
https://docs.microsoft.com/azure/stream-analytics/stream-analytics-introduction

Considerations
AlternativesAlternatives

AvailabilityAvailability

ScalabilityScalability

SecuritySecurity

ResiliencyResiliency

Deploy the scenario

Pricing

and relationships. These patterns can trigger other downstream actions. In this scenario, Stream Analytics
transforms the input stream from Event Hubs to identify fraudulent calls.
Blob storage is used in this scenario to store the results of the Stream Analytics job.

Many technology choices are available for real-time message ingestion, data storage, stream processing, storage of
analytical data, and analytics and reporting. For an overview of these options, their capabilities, and key selection
criteria, see Big data architectures: Real-time processing in the Azure Data Architecture Guide.

Additionally, more complex algorithms for fraud detection can be produced by various machine learning services
in Azure. For an overview of these options, see Technology choices for machine learning in the Azure Data
Architecture Guide.

Azure Monitor provides unified user interfaces for monitoring across various Azure services. For more
information, see Monitoring in Microsoft Azure. Event Hubs and Stream Analytics are both integrated with Azure
Monitor.

For other availability considerations, see the availability checklist in the Azure Architecture Center.

The components of this scenario are designed for hyper-scale ingestion and massively parallel real-time analytics.
Azure Event Hubs is highly scalable, capable of receiving and processing millions of events per second with low
latency. Event Hubs can automatically scale up the number of throughput units to meet usage needs. Azure Stream
Analytics is capable of analyzing high volumes of streaming data from many sources. You can scale up Stream
Analytics by increasing the number of streaming units allocated to execute your streaming job.

For general guidance on designing scalable solutions, see the scalability checklist in the Azure Architecture Center.

Azure Event Hubs secures data through an authentication and security model based on a combination of Shared
Access Signature (SAS) tokens and event publishers. An event publisher defines a virtual endpoint for an event
hub. The publisher can only be used to send messages to an event hub. It is not possible to receive messages from
a publisher.

For general guidance on designing secure solutions, see the Azure Security Documentation.

For general guidance on designing resilient solutions, see Designing resilient applications for Azure.

To deploy this scenario, you can follow this step-by-step tutorial demonstrating how to manually deploy each
component of the scenario. This tutorial also provides a .NET client application to generate sample phone call
metadata and send that data to an event hub instance.

To explore the cost of running this scenario, all of the services are pre-configured in the cost calculator. To see how
the pricing would change for your particular use case, change the appropriate variables to match your expected
data volume.

We have provided three sample cost profiles based on amount of traffic you expect to get:

https://docs.microsoft.com/azure/storage/blobs/storage-blobs-introduction
https://docs.microsoft.com/azure/architecture/data-guide/technology-choices/real-time-ingestion
https://docs.microsoft.com/azure/architecture/data-guide/technology-choices/data-science-and-machine-learning
https://docs.microsoft.com/azure/monitoring-and-diagnostics/monitoring-overview
https://docs.microsoft.com/azure/architecture/checklist/availability
https://docs.microsoft.com/azure/event-hubs/event-hubs-auto-inflate
https://docs.microsoft.com/azure/stream-analytics/stream-analytics-streaming-unit-consumption
https://docs.microsoft.com/azure/architecture/checklist/scalability
https://docs.microsoft.com/azure/event-hubs/event-hubs-authentication-and-security-model-overview
https://docs.microsoft.com/azure/security/
https://docs.microsoft.com/azure/stream-analytics/stream-analytics-real-time-fraud-detection

Related resources

Small: process one million events through one standard streaming unit per month.
Medium: process 100M events through five standard streaming units per month.
Large: process 999 million events through 20 standard streaming units per month.

More complex fraud detection scenarios can benefit from a machine learning model. For scenarios built using
Machine Learning Server, see Fraud detection using Machine Learning Server. For other solution templates using
Machine Learning Server, see Data science scenarios and solution templates. For an example solution using Azure
Data Lake Analytics, see Using Azure Data Lake and R for Fraud Detection.

https://azure.com/e/74149ec312c049ccba79bfb3cfa67606
https://azure.com/e/4fc94f7376de484d8ae67a6958cae60a
https://azure.com/e/7da8804396f9428a984578700003ba42
https://microsoft.github.io/r-server-fraud-detection/
https://docs.microsoft.com/machine-learning-server/r/sample-solutions
https://blogs.technet.microsoft.com/machinelearning/2017/06/28/using-azure-data-lake-and-r-for-fraud-detection/

Scalable order processing on Azure
3/13/2019 • 6 minutes to read • Edit Online

Relevant use cases

Architecture

This example scenario is relevant to organizations that need a highly scalable and resilient architecture for online
order processing. Potential applications include e-commerce and retail point-of-sale, order fulfillment, and
inventory reservation and tracking.

This scenario takes an event sourcing approach, using a functional programming model implemented via
microservices. Each microservice is treated as a stream processor, and all business logic is implemented via
microservices. This approach enables high availability and resiliency, geo-replication, and fast performance.

Using managed Azure services such as Cosmos DB and HDInsight can help reduce costs by leveraging
Microsoft's expertise in globally distributed cloud-scale data storage and retrieval. This scenario specifically
addresses an e-commerce or retail scenario; if you have other needs for data services, you should review the list of
available fully managed intelligent database services in Azure.

Other relevant use cases include:

E-commerce or retail point-of-sale back-end systems.
Inventory management systems.
Order fulfillment systems.
Other integration scenarios relevant to an order processing pipeline.

This architecture details key components of an order processing pipeline. The data flows through the scenario as
follows:

1. Event messages enter the system via customer-facing applications (synchronously over HTTP) and various
back-end systems (asynchronously via Apache Kafka). These messages are passed into a command processing
pipeline.

2. Each event message is ingested and mapped to one of a defined set of commands by a command processor
microservice. The command processor retrieves any current state relevant to executing the command from an
event stream snapshot database. The command is then executed, and the output of the command is emitted as

https://github.com/mspnp/architecture-center/blob/master/docs/example-scenario/data/ecommerce-order-processing.md
https://azure.microsoft.com/product-categories/databases/

ComponentsComponents

Considerations

AvailabilityAvailability

ScalabilityScalability

SecuritySecurity

a new event.
3. Each event emitted as the output of a command is committed to an event stream database using Cosmos DB.
4. For each database insert or update committed to the event stream database, an event is raised by the Cosmos

DB Change Feed. Downstream systems can subscribe to any event topics that are relevant to that system.
5. All events from the Cosmos DB Change Feed are also sent to a snapshot event stream microservice, which

calculates any state changes caused by events that have occurred. The new state is then committed to the event
stream snapshot database stored in Cosmos DB. The snapshot database provides a globally distributed, low
latency data source for the current state of all data elements. The event stream database provides a complete
record of all event messages that have passed through the architecture, which enables robust testing,
troubleshooting, and disaster recovery scenarios.

Cosmos DB is Microsoft's globally distributed, multi-model database that enables your solutions to elastically
and independently scale throughput and storage across any number of geographic regions. It offers
throughput, latency, availability, and consistency guarantees with comprehensive service level agreements
(SLAs). This scenario uses Cosmos DB for event stream storage and snapshot storage, and leverages Cosmos
DB's Change Feed features to provide data consistency and fault recovery.
Apache Kafka on HDInsight is a managed service implementation of Apache Kafka, an open-source distributed
streaming platform for building real-time streaming data pipelines and applications. Kafka also provides
message broker functionality similar to a message queue, for publishing and subscribing to named data
streams. This scenario uses Kafka to process incoming as well as downstream events in the order processing
pipeline.

Many technology options are available for real-time message ingestion, data storage, stream processing, storage
of analytical data, and analytics and reporting. For an overview of these options, their capabilities, and key
selection criteria, see Big data architectures: Real-time processing in the Azure Data Architecture Guide.

Microservices have become a popular architectural style for building cloud applications that are resilient, highly
scalable, independently deployable, and able to evolve quickly. Microservices require a different approach to
designing and building applications. Tools such as Docker, Kubernetes, Azure Service Fabric, and Nomad enable
the development of microservices-based architectures. For guidance on building and running a microservices-
based architecture, see Designing microservices on Azure in the Azure Architecture Center.

This scenario's event sourcing approach allows system components to be loosely coupled and deployed
independently of one another. Cosmos DB offers high availability and helps organization manage the tradeoffs
associated with consistency, availability, and performance, all with corresponding guarantees. Apache Kafka on
HDInsight is also designed for high availability.

Azure Monitor provides unified user interfaces for monitoring across various Azure services. For more
information, see Monitoring in Microsoft Azure. Event Hubs and Stream Analytics are both integrated with Azure
Monitor.

For other availability considerations, see the availability checklist.

Kafka on HDInsight allows configuration of storage and scalability for Kafka clusters. Cosmos DB provides fast,
predictable performance and scales seamlessly as your application grows. The event sourcing microservices-based
architecture of this scenario also makes it easier to scale your system and expand its functionality.

For other scalability considerations, see the scalability checklist available in the Azure Architecture Center.

https://docs.microsoft.com/azure/cosmos-db/introduction
https://docs.microsoft.com/azure/cosmos-db/change-feed
https://docs.microsoft.com/azure/hdinsight/kafka/apache-kafka-introduction
https://docs.microsoft.com/azure/architecture/data-guide/technology-choices/real-time-ingestion
https://docs.microsoft.com/azure/architecture/data-guide
https://docs.microsoft.com/azure/architecture/microservices
https://docs.microsoft.com/azure/cosmos-db/regional-failover
https://docs.microsoft.com/azure/cosmos-db/distribute-data-globally#AvailabilityGuarantees
https://docs.microsoft.com/azure/hdinsight/kafka/apache-kafka-high-availability
https://docs.microsoft.com/azure/monitoring-and-diagnostics/monitoring-overview
https://docs.microsoft.com/azure/architecture/checklist/availability
https://docs.microsoft.com/azure/hdinsight/kafka/apache-kafka-scalability
https://docs.microsoft.com/azure/cosmos-db/partition-data
https://docs.microsoft.com/azure/architecture/checklist/scalability

ResiliencyResiliency

Pricing

Related resources

The Cosmos DB security model authenticates users and provides access to its data and resources. For more
information, see Cosmos DB database security.

For general guidance on designing secure solutions, see the Azure Security Documentation.

The event sourcing architecture and associated technologies in this example scenario make this scenario highly
resilient when failures occur. For general guidance on designing resilient solutions, see Designing resilient
applications for Azure.

To examine the cost of running this scenario, all of the services are pre-configured in the cost calculator. To see how
pricing would change for your particular scenario, change the appropriate variables to match your expected data
volume. For this scenario, the example pricing includes only Cosmos DB and a Kafka cluster for processing events
raised from the Cosmos DB Change Feed. Event processors and microservices for originating systems and other
downstream systems are not included, and their cost is highly dependent on the quantity and scale of these
services as well as the technologies chosen for implementing them.

The currency of Azure Cosmos DB is the request unit (RU). With request units, you don't need to reserve
read/write capacities or provision CPU, memory, and IOPS. Azure Cosmos DB supports various APIs that have
different operations, ranging from simple reads and writes to complex graph queries. Because not all requests are
equal, requests are assigned a normalized quantity of request units based on the amount of computation required
to serve the request. The number of request units required by your solution is dependent on data element size and
the number of database read and write operations per second. For more information, see Request units in Azure
Cosmos DB. These estimated prices are based on Cosmos DB running in two Azure regions.

We have provided three sample cost profiles based on amount of activity you expect:

Small: this pricing example correlates to 5 RUs reserved with a 1 TB data store in Cosmos DB and a small (D3
v2) Kafka cluster.
Medium: this pricing example correlates to 50 RUs reserved with a 10 TB data store in Cosmos DB and a
midsized (D4 v2) Kafka cluster.
Large: this pricing example correlates to 500 RUs reserved with a 30 TB data store in Cosmos DB and a large
(D5 v2) Kafka cluster.

This example scenario is based on a more extensive version of this architecture built by Jet.com for its end-to-end
order processing pipeline. For more information, see the jet.com technical customer profile and jet.com's
presentation at Build 2018.

Other related resources include:

Designing Data-Intensive Applications by Martin Kleppmann (O'Reilly Media, 2017).
Domain Modeling Made Functional: Tackle Software Complexity with Domain-Driven Design and F# by Scott
Wlaschin (Pragmatic Programmers LLC, 2018).
Other Cosmos DB use cases
Real time processing architecture in the Azure Data Architecture Guide.

https://docs.microsoft.com/azure/cosmos-db/secure-access-to-data
https://docs.microsoft.com/azure/cosmos-db/database-security
https://docs.microsoft.com/azure/security/
https://docs.microsoft.com/azure/architecture/patterns/category/resiliency/
https://docs.microsoft.com/azure/cosmos-db/request-units
https://azure.com/e/3d43949ffbb945a88cc0a126dc3a0e6e
https://azure.com/e/1f1e7bf2a6ad4f7799581211f4369b9b
https://azure.com/e/75207172ece94cf6b5fb354a2252b333
https://jet.com
https://customers.microsoft.com/story/jet-com-powers-innovative-e-commerce-engine-on-azure-in-less-than-12-months
https://channel9.msdn.com/events/Build/2018/BRK3602
https://dataintensive.net
https://pragprog.com/book/swdddf/domain-modeling-made-functional
https://docs.microsoft.com/azure/cosmos-db/use-cases
https://docs.microsoft.com/azure/architecture/data-guide/big-data/real-time-processing
https://docs.microsoft.com/azure/architecture/data-guide

Running computational fluid dynamics (CFD)
simulations on Azure
3/13/2019 • 5 minutes to read • Edit Online

Relevant use cases

Architecture

Computational Fluid Dynamics (CFD) simulations require significant compute time along with specialized
hardware. As cluster usage increases, simulation times and overall grid use grow, leading to issues with spare
capacity and long queue times. Adding physical hardware can be expensive, and may not align to the usage peaks
and valleys that a business goes through. By taking advantage of Azure, many of these challenges can be
overcome with no capital expenditure.

Azure provides the hardware you need to run your CFD jobs on both GPU and CPU virtual machines. RDMA
(Remote Direct Memory Access) enabled VM sizes have FDR InfiniBand-based networking which allows for low
latency MPI (Message Passing Interface) communication. Combined with the Avere vFXT, which provides an
enterprise-scale clustered file system, customers can ensure maximum throughput for read operations in Azure.

To simplify the creation, management, and optimization of HPC clusters, Azure CycleCloud can be used to
provision clusters and orchestrate data in both hybrid and cloud scenarios. By monitoring the pending jobs,
CycleCloud will automatically launch on-demand compute, where you only pay for what you use, connected to the
workload scheduler of your choice.

Other relevant industries for CFD applications include:

Aeronautics
Automotive
Building HVAC
Oil and gas
Life sciences

https://github.com/mspnp/architecture-center/blob/master/docs/example-scenario/infrastructure/hpc-cfd.md

ComponentsComponents

AlternativesAlternatives

This diagram shows a high-level overview of a typical hybrid design providing job monitoring of the on-demand
nodes in Azure:

1. Connect to the Azure CycleCloud server to configure the cluster.
2. Configure and create the cluster head node, using RDMA enabled machines for MPI.
3. Add and configure the on-premises head node.
4. If there are insufficient resources, Azure CycleCloud will scale up (or down) compute resources in Azure. A

predetermined limit can be defined to prevent over allocation.
5. Tasks allocated to the execute nodes.
6. Data cached in Azure from on-premises NFS server.
7. Data read in from the Avere vFXT for Azure cache.
8. Job and task information relayed to the Azure CycleCloud server.

Azure CycleCloud a tool for creating, managing, operating, and optimizing HPC and Big Compute clusters in
Azure.
Avere vFXT on Azure is used to provide an enterprise-scale clustered file system built for the cloud.
Azure Virtual Machines (VMs) are used to create a static set of compute instances.
Virtual Machine Scale Sets (virtual machine scale set) provide a group of identical VMs capable of being scaled
up or down by Azure CycleCloud.
Azure Storage accounts are used for synchronization and data retention.
Virtual Networks enable many types of Azure resources, such as Azure Virtual Machines (VMs), to securely
communicate with each other, the internet, and on-premises networks.

Customers can also use Azure CycleCloud to create a grid entirely in Azure. In this setup, the Azure CycleCloud
server is run within your Azure subscription.

For a modern application approach where management of a workload scheduler is not needed, Azure Batch can
help. Azure Batch can run large-scale parallel and high-performance computing (HPC) applications efficiently in
the cloud. Azure Batch allows you to define the Azure compute resources to execute your applications in parallel or
at scale without manually configuring or managing infrastructure. Azure Batch schedules compute-intensive tasks
and dynamically adds and removes compute resources based on your requirements.

https://docs.microsoft.com/azure/cyclecloud/
https://github.com/Azure/Avere/blob/master/README.md
https://docs.microsoft.com/azure/virtual-machines/
https://docs.microsoft.com/azure/virtual-machine-scale-sets/overview
https://docs.microsoft.com/azure/storage/common/storage-introduction
https://docs.microsoft.com/azure/virtual-network/virtual-networks-overview
https://docs.microsoft.com/azure/batch/

Scalability, and SecurityScalability, and Security

Deploy the scenario
PrerequisitesPrerequisites

Pricing

Next Steps

Scaling the execute nodes on Azure CycleCloud can be accomplished either manually or using autoscaling. For
more information, see CycleCloud Autoscaling.

For general guidance on designing secure solutions, see the Azure security documentation.

Follow these steps before deploying the Resource Manager template:

1. Create a service principal for retrieving the appId, displayName, name, password, and tenant.

2. Generate an SSH key pair to sign in securely to the CycleCloud server.

3. Log into the CycleCloud server to configure and create a new cluster.

4. Create a cluster.

The Avere Cache is an optional solution that can drastically increase read throughput for the application job data.
Avere vFXT for Azure solves the problem of running these enterprise HPC applications in the cloud while
leveraging data stored on-premises or in Azure Blob storage.

For organizations that are planning for a hybrid infrastructure with both on-premises storage and cloud
computing, HPC applications can “burst” into Azure using data stored in NAS devices and spin up virtual CPUs as
needed. The data set is never moved completely into the cloud. The requested bytes are temporarily cached using
an Avere cluster during processing.

To set up and configure an Avere vFXT installation, follow the Avere Setup and Configuration guide.

The cost of running an HPC implementation using CycleCloud server will vary depending on a number of factors.
For example, CycleCloud is charged by the amount of compute time that is used, with the Master and CycleCloud
server typically being constantly allocated and running. The cost of running the Execute nodes will depend on how
long these are up and running as well as what size is used. The normal Azure charges for storage and networking
also apply.

This scenario shows how CFD applications can be run in Azure, so the machines will require RDMA functionality,
which is only available on specific VM sizes. The following are examples of costs that could be incurred for a scale
set that is allocated continuously for eight hours per day for one month, with data egress of 1 TB. It also includes
pricing for the Azure CycleCloud server and the Avere vFXT for Azure install:

Region: North Europe
Azure CycleCloud Server: 1 x Standard D3 (4 x CPUs, 14 GB Memory, Standard HDD 32 GB)
Azure CycleCloud Master Server: 1 x Standard D12 v (4 x CPUs, 28 GB Memory, Standard HDD 32 GB)
Azure CycleCloud Node Array: 10 x Standard H16r (16 x CPUs, 112 GB Memory)
Avere vFXT on Azure Cluster: 3 x D16s v3 (200 GB OS, Premium SSD 1-TB data disk)
Data Egress: 1 TB

Review this price estimate for the hardware listed above.

https://docs.microsoft.com/azure/cyclecloud/autoscale
https://docs.microsoft.com/azure/security/
https://docs.microsoft.com/azure/cyclecloud/quickstart-install-cyclecloud#service-principal
https://docs.microsoft.com/azure/cyclecloud/quickstart-install-cyclecloud#ssh-keypair
https://portal.azure.com/#create/Microsoft.Template/uri/https%3A%2F%2Fraw.githubusercontent.com%2FCycleCloudCommunity%2Fcyclecloud_arm%2Fmaster%2Fazuredeploy.json
https://docs.microsoft.com/azure/cyclecloud/quickstart-install-cyclecloud#log-into-the-cyclecloud-application-server
https://docs.microsoft.com/azure/cyclecloud/quickstart-create-and-run-cluster
https://github.com/Azure/Avere/blob/master/README.md
https://azure.com/e/53030a04a2ab47a289156e2377a4247a

Related resources

Once you've deployed the sample, learn more about Azure CycleCloud.

RDMA Capable Machine Instances
Customizing an RDMA Instance VM

https://docs.microsoft.com/azure/cyclecloud/
https://docs.microsoft.com/azure/virtual-machines/windows/sizes-hpc#rdma-capable-instances
https://docs.microsoft.com/azure/virtual-machines/linux/classic/rdma-cluster#customize-the-vm

Linux Virtual Desktops with Citrix
3/13/2019 • 6 minutes to read • Edit Online

Relevant use cases

Architecture

This example scenario is applicable to any industry that needs a Virtual Desktop Infrastructure (VDI) for Linux
Desktops. VDI refers to the process of running a user desktop inside a virtual machine that lives on a server in the
datacenter. The customer in this scenario chose to use a Citrix-based solution for their VDI needs.

Organizations often have heterogeneous environments with multiple devices and operating systems being used by
employees. It can be challenging to provide consistent access to applications while maintaining a secure
environment. A VDI solution for Linux desktops will allow your organization to provide access irrespective of the
device or OS used by the end user.

Some benefits of this scenario include the following:

Return on investment will be higher with shared Linux virtual desktops by giving more users access to the same
infrastructure. By consolidating resources on a centralized VDI environment, the end user devices don't need to
be as powerful.
Performance will be consistent regardless of the end user device.
Users can access Linux applications from any device (including non-Linux devices).
Sensitive data can be secured in the Azure data center for all distributed employees.

Consider this scenario for the following use case:

Providing secure access to mission-critical, specialized Linux VDI desktops from Linux or non-Linux devices

This example scenario demonstrates allowing the corporate network to access the Linux Virtual Desktops:

An ExpressRoute is established between the on-premises environment and Azure, for fast and reliable
connectivity to the cloud.
Citrix XenDeskop solution deployed for VDI.
The CitrixVDA run on Ubuntu (or another supported distro).

https://github.com/mspnp/architecture-center/blob/master/docs/example-scenario/infrastructure/linux-vdi-citrix.md
file:///T:/oehk/example-scenario/infrastructure/media/azure-citrix-sample-diagram.png#lightbox

NOTENOTE

ComponentsComponents

Azure Network Security Groups will apply the correct network ACLs.
Citrix ADC (NetScaler) will publish and load balance all the Citrix services.
Active Directory Domain Services will be used to domain join the Citrix servers. VDA servers will not be
domain joined.
Azure Hybrid File Sync will enable shared storage across the solution. For example, it can be used in
remote/home solutions.

For this scenario, the following SKUs are used:

Citrix ADC (NetScaler): 2 x D4sv3 with NetScaler 12.0 VPX Standard Edition 200 MBPS PAYG image
Citrix License Server: 1 x D2s v3
Citrix VDA: 4 x D8s v3
Citrix Storefront: 2 x D2s v3
Citrix Delivery Controller: 2 x D2s v3
Domain Controllers: 2 x D2sv3
Azure File Servers: 2 x D2sv3

All the licenses (other than NetScaler) are bring-your-own-license (BYOL)

Azure Virtual Network allows resources such as VMs to securely communicate with each other, the internet,
and on-premises networks. Virtual networks provide isolation and segmentation, filter and route traffic, and
allow connection between locations. One virtual network will be used for all resources in this scenario.
Azure network security groups contain a list of security rules that allow or deny inbound or outbound network
traffic based on source or destination IP address, port, and protocol. The virtual networks in this scenario are
secured with network security group rules that restrict the flow of traffic between the application components.
Azure load balancer distributes inbound traffic according to rules and health probes. A load balancer provides
low latency and high throughput, and scales up to millions of flows for all TCP and UDP applications. An
internal load balancer is used in this scenario to distribute traffic on the Citrix NetScaler.
Azure Hybrid File Sync will be used for all shared storage. The storage will replicate to two file servers using
Hybrid File Sync.
Azure SQL Database is a relational database-as-a-service (DBaaS) based on the latest stable version of
Microsoft SQL Server Database Engine. It will be used for hosting Citrix databases.
ExpressRoute lets you extend your on-premises networks into the Microsoft cloud over a private connection
facilitated by a connectivity provider.
[Active Directory Domain Services is used for Directory Services and user authentication
Azure Availabilty Sets will ensure that the VMs you deploy on Azure are distributed across multiple isolated
hardware nodes in a cluster. Doing this ensures that if a hardware or software failure within Azure happens,
only a subset of your VMs are affected and that your overall solution remains available and operational.
Citrix ADC (NetScaler) is an application delivery controller that performs application-specific traffic analysis to
intelligently distribute, optimize, and secure Layer 4-Layer 7 (L4–L7) network traffic for web applications.
Citrix Storefront is an enterprise app store that improves security and simplifies deployments, delivering a
modern, unmatched near-native user experience across Citrix Receiver on any platform. StoreFront makes it
easy to manage multi-site and multi-version Citrix Virtual Apps and Desktops environments.
Citrix License Server will manage the licenses for Citrix products.
Citrix XenDesktops VDA enables connections to applications and desktops. The VDA is installed on the machine
that runs the applications or virtual desktops for the user. It enables the machines to register with Delivery
Controllers and manage the High Definition eXperience (HDX) connection to a user device.

https://azuremarketplace.microsoft.com/pt-br/marketplace/apps/citrix.netscalervpx-120?tab=PlansAndPrice
https://docs.microsoft.com/azure/virtual-network/virtual-networks-overview
https://docs.microsoft.com/azure/virtual-network/security-overview
https://docs.microsoft.com/azure/application-gateway/overview
https://github.com/MicrosoftDocs/azure-docs/edit/master/articles/storage/files/storage-sync-files-planning.md
https://docs.microsoft.com/azure/sql-database/sql-database-technical-overview
https://docs.microsoft.com/azure/expressroute/expressroute-introduction
https://docs.microsoft.com/azure/virtual-machines/windows/tutorial-availability-sets
https://www.citrix.com/products/citrix-adc
https://www.citrix.com/products/citrix-virtual-apps-and-desktops/citrix-storefront.html
https://www.citrix.com/buy/licensing/overview.html
https://docs.citrix.com/en-us/citrix-virtual-apps-desktops-service

AlternativesAlternatives

Considerations

Availability, Scalability, and SecurityAvailability, Scalability, and Security

Deployment

Pricing

Next Steps

Citrix Delivery Controller is the server-side component responsible for managing user access, plus brokering
and optimizing connections. Controllers also provide the Machine Creation Services that create desktop and
server images.

There are multiple partners with VDI solutions that supported in Azure such as VMware, Workspot, and others.
This specific sample architecture is based on a deployed project that used Citrix.
Citrix provides a cloud service that abstracts part of this architecture. It could be an alternative for this solution.
For more information, see Citrix Cloud.

Check the Citrix Linux Requirements.
Latency can have impact on the overall solution. For a production environment, test accordingly.
Depending on the scenario, the solution may need VMs with GPUs for VDA. For this solution, it is assumed that
GPU is not a requirement.

This example is designed for high availability for all roles other than the licensing server. Because the
environment continues to function during a 30-day grace period if the license server is offline, no additional
redundancy is required on that server.
All servers providing similar roles should be deployed in Availability Sets.
This example scenario does not include Disaster Recovery capabilities. Azure Site Recovery could be a good
add-on to this design.
Consider deploying the VM instances in this scenario across Availability Zones. Each availability zone is made
up of one or more datacenters equipped with independent power, cooling, and networking. Each enabled region
has a minimum of three availability zones. This distribution of VM instances across zones provides high
availability to the application tiers. For more information, see what are Availability Zones in Azure?. You can also
deploy VPN and ExpressRoute gateways in Azure Availability Zones.
For a production deployment management solution should be implemented such as backup, monitoring and
update management.
This example should work for about 250 concurrent (about 50-60 per VDA server) users with a mixed usage.
But that will greatly depended on the type of applications being used. For production use, rigorous load testing
should be performed.

For deployment information, see the official Citrix documentation.

The Citrix XenDesktop licenses are not included in Azure service charges.
The Citrix NetScaler license is included in a pay-as-you-go model.
Using reserved instances will greatly reduce the compute cost for the solution.
The ExpressRoute cost is not included.

Check Citrix documentation for planning and deployment here.
To deploy Citrix ADC (NetScaler) in Azure, review the Resource Manager templates provided by Citrix here.

https://docs.citrix.com/en-us/xenapp-and-xendesktop/7-15-ltsr/manage-deployment/delivery-controllers
https://www.citrix.com/products/citrix-cloud
https://docs.citrix.com/en-us/linux-virtual-delivery-agent/current-release/system-requirements
https://docs.microsoft.com/azure/virtual-machines/windows/manage-availability#configure-multiple-virtual-machines-in-an-availability-set-for-redundancy
https://docs.microsoft.com/azure/site-recovery/site-recovery-overview
https://docs.microsoft.com/azure/availability-zones/az-overview
https://docs.microsoft.com/azure/availability-zones/az-overview
https://docs.microsoft.com/azure/vpn-gateway/about-zone-redundant-vnet-gateways
https://docs.microsoft.com/azure/backup/backup-introduction-to-azure-backup
https://docs.microsoft.com/azure/monitoring-and-diagnostics/monitoring-overview
https://docs.microsoft.com/azure/automation/automation-update-management
https://docs.citrix.com/en-us/citrix-virtual-apps-desktops/install-configure.html
https://docs.citrix.com/en-us/citrix-virtual-apps-desktops/install-configure
https://github.com/citrix/netscaler-azure-templates

Using Service Fabric to decompose monolithic
applications
3/13/2019 • 6 minutes to read • Edit Online

Relevant use cases

Architecture

In this example scenario, we walk through an approach using Service Fabric as a platform for decomposing an
unwieldy monolithic application. Here we consider an iterative approach to decomposing an IIS/ASP.NET web site
into an application composed of multiple, manageable microservices.

Moving from a monolithic architecture to a microservice architecture provides the following benefits:

You can change one small, understandable unit of code and deploy only that unit.
Each code unit requires just a few minutes or less to deploy.
If there is an error in that small unit, only that unit stops working, not the whole application.
Small units of code can be distributed easily and discretely among multiple development teams.
New developers can quickly and easily grasp the discrete functionality of each unit.

A large IIS application on a server farm is used in this example, but the concepts of iterative decomposition and
hosting can be used for any type of large application. While this solution uses Windows, Service Fabric can also
run on Linux. It can be run on-premises, in Azure, or on VM nodes in the cloud provider of your choice.

This scenario is relevant to organizations with large monolithic Web applications that are experiencing:

Errors in small code changes that break the entire website.
Releases taking multiple days due to the need to release update the entire website.
Long ramp-up times when onboarding new developers or teams due to the complex code base, requiring a
single individual to know more than is feasible.

Using Service Fabric as the hosting platform, we can convert a large IIS web site into a collection of microservices
as shown below:

In the picture above, we decomposed all the parts of a large IIS application into:

A routing or gateway service that accepts incoming browser requests, parses them to determine what service
should handle them, and forwards the request to that service.
Four ASP.NET Core applications that were formally virtual directories under the single IIS site running as
ASP.NET applications. The applications were separated into their own independent microservices. The effect is

https://github.com/mspnp/architecture-center/blob/master/docs/example-scenario/infrastructure/service-fabric-microservices.md
https://docs.microsoft.com/azure/service-fabric/service-fabric-overview

Considerations

that they can be changed, versioned, and upgraded separately. In this example, we rewrote each application
using .Net Core and ASP.NET Core. These were written as Reliable Services so they can natively access the full
Service Fabric platform capabilities and benefits (communication services, health reports, notifications, etc.).
A Windows service called Indexing Service, placed in a Windows container so that it no longer makes direct
changes to registry of the underlying server, but can run self-contained and be deployed with all its
dependencies as a single unit.
An Archive service, which is just an executable that runs according to a schedule and performs some tasks for
the sites. It is hosted directly as a stand-alone executable because we determined it does what it needs to do
without modification and it is not worth the investment to change.

The first challenge is to begin to identify smaller bits of code that can be factored out from the monolith into
microservices that the monolith can call. Iteratively over time, the monolith is broken up into a collection of these
microservices that developers can easily understand, change, and quickly deploy at low risk.

Service Fabric was chosen because it is capable of supporting running all the microservices in their various forms.
For example you may have a mix of stand-alone executables, new small web sites, new small APIs, and
containerized services, etc. Service Fabric can combine all these service types onto a single cluster.

To get to this final, decomposed application, we used an iterative approach. We started with a large IIS/ASP.NET
web site on a server farm. A single node of the server farm is pictured below. It contains the original web site with
several virtual directories, an additional Windows Service the site calls, and an executable that does some periodic
site archive maintenance.

On the first development iteration, the IIS site and its virtual directories placed in a Windows Container. Doing this
allows the site to remain operational, but not tightly bound to the underlying server node OS. The container is run
and orchestrated by the underlying Service Fabric node, but the node does not have to have any state that the site
is dependent on (registry entries, files, etc.). All of those items are in the container. We have also placed the
Indexing service in a Windows Container for the same reasons. The containers can be deployed, versioned, and
scaled independently. Finally, we hosted the Archive Service a simple stand-alone executable file since it is a self-
contained .exe with no special requirements.

The picture below shows how our large web site is now partially decomposed into independent units and ready to
be decomposed more as time allows.

Further development focuses on separating the single large Default Web site container pictured above. Each of the
virtual directory ASP.NET apps is removed from the container one at a time and ported to ASP.NET Core reliable
services.

https://docs.microsoft.com/azure/service-fabric/service-fabric-reliable-services-introduction
https://docs.microsoft.com/azure/service-fabric/service-fabric-containers-overview
https://docs.microsoft.com/azure/service-fabric/service-fabric-guest-executables-introduction
https://docs.microsoft.com/azure/service-fabric/service-fabric-reliable-services-introduction

Availability, Scalability, and SecurityAvailability, Scalability, and Security

Pricing

Next Steps

Related resources

Once each of the virtual directories has been factored out, the Default Web site is written as an ASP.NET Core
reliable service, which accepts incoming browser requests and routes them to the correct ASP.NET application.

Service Fabric is capable of supporting various forms of microservices while keeping calls between them on the
same cluster fast and simple. Service Fabric is a fault tolerant, self-healing cluster that can run containers,
executables, and even has a native API for writing microservices directly to it (the 'Reliable Services' referred to
above). The platform facilitates rolling upgrades and versioning of each microservice. You can tell the platform to
run more or fewer of any given microservice distributed across the Service Fabric cluster in order to scale in or out
only the microservices you need.

Service Fabric is a cluster built on an infrastructure of virtual (or physical) nodes, which have networking, storage,
and an operating system. As such, it has a set of administrative, maintenance, and monitoring tasks.

You'll also want to consider governance and control of the cluster. Just as you would not want people arbitrarily
deploying databases to your production database server, neither would you want people deploying applications to
the Service Fabric cluster without some oversight.

Service Fabric is capable of hosting many different application scenarios, take some time to see which ones apply
to your scenario.

For a Service Fabric cluster hosted in Azure, the largest part of the cost is the number and size of the nodes in your
cluster. Azure allows quick and simple creation of a cluster composed of the underlying node size you specify, but
the compute charges are based on the node size multiplied by the number of nodes.

Other less costly components of cost are the storage charges for each node's virtual disks and network IO egress
charges from Azure (for example network traffic out of Azure to a user's browser).

To get an idea of cost, we have created an example using some default values for cluster size, networking, and
storage: Take a look at the pricing calculator. Feel free to update the values in this default calculator to those
relevant to your situation.

Take some time to familiarize yourself with the platform by going through the documentation and reviewing the
many different application scenarios for Service Fabric. The documentation will tell you what a cluster consists of,
what it can run on, software architecture, and maintenance for it.

To see a demonstration of Service Fabric for an existing .NET application, deploy the Service Fabric quickstart.

From the standpoint of your current application, begin to think about its different functions. Choose one of them
and think through how you can separate only that function from the whole. Take it one discrete, understandable,
piece at a time.

Building Microservices on Azure
Service Fabric Overview
Service Fabric Programming Model
Service Fabric Availability
Scaling Service Fabric
Hosting Containers in Service Fabric
Hosting Stand-Alone Executables in Service Fabric

https://docs.microsoft.com/azure/service-fabric/service-fabric-choose-framework
https://docs.microsoft.com/azure/service-fabric/service-fabric-availability-services
https://docs.microsoft.com/azure/service-fabric/service-fabric-concepts-scalability
https://docs.microsoft.com/azure/service-fabric/service-fabric-application-scenarios
https://azure.com/e/52dea096e5844d5495a7b22a9b2ccdde
https://docs.microsoft.com/azure/service-fabric/service-fabric-overview
https://docs.microsoft.com/azure/service-fabric/service-fabric-application-scenarios
https://docs.microsoft.com/azure/service-fabric/service-fabric-quickstart-dotnet
https://docs.microsoft.com/azure/architecture/microservices
https://docs.microsoft.com/azure/service-fabric/service-fabric-overview
https://docs.microsoft.com/azure/service-fabric/service-fabric-choose-framework
https://docs.microsoft.com/azure/service-fabric/service-fabric-availability-services
https://docs.microsoft.com/azure/service-fabric/service-fabric-concepts-scalability
https://docs.microsoft.com/azure/service-fabric/service-fabric-containers-overview
https://docs.microsoft.com/azure/service-fabric/service-fabric-guest-executables-introduction

Service Fabric Native Reliable Services
Service Fabric Application Scenarios

https://docs.microsoft.com/azure/service-fabric/service-fabric-reliable-services-introduction
https://docs.microsoft.com/azure/service-fabric/service-fabric-application-scenarios

Highly scalable and secure WordPress website
3/13/2019 • 5 minutes to read • Edit Online

Relevant use cases

Architecture

This example scenario is applicable to companies that need a highly scalable and secure installation of WordPress.
This scenario is based on a deployment that was used for a large convention and was successfully able to scale to
meet the spike traffic that sessions drove to the site.

Other relevant use cases include:

Media events that cause traffic surges.
Blogs that use WordPress as their content management system.
Business or e-commerce websites that use WordPress.
Web sites built using other content management systems.

This scenario covers a scalable and secure installation of WordPress that uses Ubuntu web servers and MariaDB.
There are two distinct data flows in this scenario the first is users access the website:

1. Users access the front-end website through a CDN.
2. The CDN uses an Azure load balancer as the origin, and pulls any data that isn't cached from there.
3. The Azure load balancer distributes requests to the virtual machine scale sets of web servers.
4. The WordPress application pulls any dynamic information out of the Maria DB clusters, all static content is

hosted in Azure Files.
5. SSL keys are stored Azure Key Vault.

The second workflow is how authors contribute new content:

1. Authors connect securely to the public VPN gateway.
2. VPN authentication information is stored in Azure Active Directory.

https://github.com/mspnp/architecture-center/blob/master/docs/example-scenario/infrastructure/wordpress.md
file:///T:/oehk/example-scenario/infrastructure/media/secure-scalable-wordpress.png#lightbox

ComponentsComponents

AlternativesAlternatives

Considerations
AvailabilityAvailability

ScalabilityScalability

3. A connection is then established to the Admin jump boxes.
4. From the admin jump box, the author is then able to connect to the Azure load balancer for the authoring

cluster.
5. The Azure load balancer distributes traffic to the virtual machine scale sets of web servers that have write

access to the Maria DB cluster.
6. New static content is uploaded to Azure files and dynamic content is written into the Maria DB cluster.
7. These changes are then replicated to the alternate region via rsync or master/slave replication.

Azure Content Delivery Network (CDN) is a distributed network of servers that efficiently delivers web content
to users. CDNs minimize latency by storing cached content on edge servers in point-of-presence locations near
to end users.
Virtual networks allow resources such as VMs to securely communicate with each other, the Internet, and on-
premises networks. Virtual networks provide isolation and segmentation, filter and route traffic, and allow
connection between locations. The two networks are connected via Vnet peering.
Network security groups contain a list of security rules that allow or deny inbound or outbound network traffic
based on source or destination IP address, port, and protocol. The virtual networks in this scenario are secured
with network security group rules that restrict the flow of traffic between the application components.
Load balancers distribute inbound traffic according to rules and health probes. A load balancer provides low
latency and high throughput, and scales up to millions of flows for all TCP and UDP applications. A load
balancer is used in this scenario to distribute traffic from the content deliver network to the front-end web
servers.
Virtual machine scale sets let you create and manage a group of identical load-balanced VMs. The number of
VM instances can automatically increase or decrease in response to demand or a defined schedule. Two
separate virtual machine scale sets are used in this scenario - one for the front-end web-servers serving
content, and one for the front-end webservers used to author new content.
Azure Files provides a fully-managed file share in the cloud that hosts all of the WordPress content in this
scenario, so that all of the VMs have access to the data.
Azure Key Vault is used to store and tightly control access to passwords, certificates, and keys.
Azure Active Directory (Azure AD) is a multi-tenant, cloud-based directory and identity management service. In
this scenario, Azure AD provides authentication services for the website and the VPN tunnels.

SQL Server for Linux can replace the MariaDB data store.
Azure database for MySQL can replace the MariaDB data store if you prefer a fully managed solution.

The VM instances in this scenario are deployed across multiple regions, with the data replicated between the two
via RSYNC for the WordPress content and master slave replication for the MariaDB clusters.

For other availability topics, see the availability checklist in the Azure Architecture Center.

This scenario uses virtual machine scale sets for the two front-end web server clusters in each region. With scale
sets, the number of VM instances that run the front-end application tier can automatically scale in response to
customer demand, or based on a defined schedule. For more information, see Overview of autoscale with virtual
machine scale sets.

The back end is a MariaDB cluster in an availability set. For more information, see the MariaDB cluster tutorial.

https://docs.microsoft.com/azure/cdn/cdn-overview
https://docs.microsoft.com/azure/virtual-network/virtual-networks-overview
https://docs.microsoft.com/azure/virtual-network/security-overview
https://docs.microsoft.com/azure/load-balancer/load-balancer-overview
https://docs.microsoft.com/azure/virtual-machine-scale-sets/overview
https://docs.microsoft.com/azure/storage/files/storage-files-introduction
https://docs.microsoft.com/azure/key-vault/key-vault-overview
https://docs.microsoft.com/azure/active-directory/fundamentals/active-directory-whatis
https://docs.microsoft.com/azure/virtual-machines/linux/sql/sql-server-linux-virtual-machines-overview
https://docs.microsoft.com/azure/mysql/overview
https://docs.microsoft.com/azure/virtual-machine-scale-sets/virtual-machine-scale-sets-autoscale-overview
https://docs.microsoft.com/azure/virtual-machines/linux/classic/mariadb-mysql-cluster

SecuritySecurity

ResiliencyResiliency

Pricing

For other scalability topics, see the scalability checklist in the Azure Architecture Center.

All the virtual network traffic into the front-end application tier and protected by network security groups. Rules
limit the flow of traffic so that only the front-end application tier VM instances can access the back-end database
tier. No outbound Internet traffic is allowed from the database tier. To reduce the attack footprint, no direct remote
management ports are open. For more information, see Azure network security groups.

For general guidance on designing secure scenarios, see the Azure Security Documentation.

In combination with the use of multiple regions, data replication and virtual machine scale sets, this scenario uses
Azure load balancers. These networking components distribute traffic to the connected VM instances, and include
health probes that ensure traffic is only distributed to healthy VMs. All of these networking components are
fronted via a CDN. This makes the networking resources and application resilient to issues that would otherwise
disrupt traffic and impact end-user access.

For general guidance on designing resilient scenarios, see Designing resilient applications for Azure.

To explore the cost of running this scenario, all of the services are pre-configured in the cost calculator. To see how
the pricing would change for your particular use case, change the appropriate variables to match your expected
traffic.

We have provided a pre-configured cost profile based on the architecture diagram provided above. To configure
the pricing calculator for your use case, there are a couple main things to consider :

How much traffic are you expecting in terms of GB/month? The amount of traffic will have the biggest impact
on your cost, as it will impact the number of VMs that are required to surface the data in the virtual machine
scale set. Additionally, it will directly correlate with the amount of data that is surfaced via the CDN.
How much new data are you going to be writing to your website? New data written to your website correlates
with how much data is mirrored across the regions.
How much of your content is dynamic? How much is static? The variance around dynamic and static content
influences how much data has to be retrieved from the database tier versus how much will be cached in the
CDN.

https://docs.microsoft.com/azure/architecture/checklist/scalability
https://docs.microsoft.com/azure/virtual-network/security-overview
https://docs.microsoft.com/azure/security/
https://docs.microsoft.com/azure/architecture/resiliency/
https://azure.com/e/a8c4809dab444c1ca4870c489fbb196b

Multitier web application built for high availability
and disaster recovery on Azure
3/13/2019 • 5 minutes to read • Edit Online

Relevant use cases

Architecture

This example scenario is applicable to any industry that needs to deploy resilient multitier applications built for
high availability and disaster recovery. In this scenario, the application consists of three layers.

Web tier: The top layer including the user interface. This layer parses user interactions and passes the actions to
next layer for processing.
Business tier: Processes the user interactions and makes logical decisions about the next steps. This layer
connects the web tier and the data tier.
Data tier: Stores the application data. Either a database, object storage, or file storage is typically used.

Common application scenarios include any mission-critical application running on Windows or Linux. This can be
an off-the-shelf application such as SAP and SharePoint or a custom line-of-business application.

Other relevant use cases include:

Deploying highly resilient applications such as SAP and SharePoint
Designing a business continuity and disaster recovery plan for line-of-business applications
Configure disaster recovery and perform related drills for compliance purposes

This scenario demonstrates a multitier application that uses ASP.NET and Microsoft SQL Server. In Azure regions
that support availability zones, you can deploy your virtual machines (VMs) in a source region across availability
zones and replicate the VMs to the target region used for disaster recovery. In Azure regions that don't support
availability zones, you can deploy your VMs within an availability set and replicate the VMs to the target region.

https://github.com/mspnp/architecture-center/blob/master/docs/example-scenario/infrastructure/multi-tier-app-disaster-recovery.md
https://docs.microsoft.com/azure/availability-zones/az-overview#regions-that-support-availability-zones

Distribute the VMs in each tier across two availability zones in regions that support zones. In other regions,
deploy the VMs in each tier within one availability set.
The database tier can be configured to use Always On availability groups. With this SQL Server configuration,
one primary database within a cluster is configured with up to eight secondary databases. If an issue occurs
with the primary database, the cluster fails over to one of the secondary databases, allowing the application to
remain available. For more information, see Overview of Always On availability groups for SQL Server.
For disaster recovery scenarios, you can configure SQL Always On asynchronous native replication to the
target region used for disaster recovery. You can also configure Azure Site Recovery replication to the target
region if the data change rate is within supported limits of Azure Site Recovery.
Users access the front-end ASP.NET web tier via the traffic manager endpoint.
The traffic manager redirects traffic to the primary public IP endpoint in the primary source region.
The public IP redirects the call to one of the web tier VM instances through a public load balancer. All web tier
VM instances are in one subnet.
From the web tier VM, each call is routed to one of the VM instances in the business tier through an internal
load balancer for processing. All business tier VMs are in a separate subnet.
The operation is processed in the business tier and the ASP.NET application connects to Microsoft SQL Server
cluster in a back-end tier via an Azure internal load balancer. These back-end SQL Server instances are in a
separate subnet.
The traffic manager's secondary endpoint is configured as the public IP in the target region used for disaster
recovery.

https://docs.microsoft.com/sql/database-engine/availability-groups/windows/overview-of-always-on-availability-groups-sql-server

ComponentsComponents

AlternativesAlternatives

Other considerations
ScalabilityScalability

SecuritySecurity

Pricing

In the event of a primary region disruption, you invoke Azure Site Recovery failover and the application
becomes active in the target region.
The traffic manager endpoint automatically redirects the client traffic to the public IP in the target region.

Availability sets ensure that the VMs you deploy on Azure are distributed across multiple isolated hardware
nodes in a cluster. If a hardware or software failure occurs within Azure, only a subset of your VMs are affected
and your entire solution remains available and operational.
Availability zones protect your applications and data from datacenter failures. Availability zones are separate
physical locations within an Azure region. Each zone consists of one or more datacenters equipped with
independent power, cooling, and networking.
Azure Site Recovery (ASR) allows you to replicate VMs to another Azure region for business continuity and
disaster recovery needs. You can conduct periodic disaster recovery drills to ensure you meet the compliance
needs. The VM will be replicated with the specified settings to the selected region so that you can recover your
applications in the event of outages in the source region.
Azure Traffic Manager is a DNS-based traffic load balancer that distributes traffic optimally to services across
global Azure regions while providing high availability and responsiveness.
Azure Load Balancer distributes inbound traffic according to defined rules and health probes. A load balancer
provides low latency and high throughput, scaling up to millions of flows for all TCP and UDP applications. A
public load balancer is used in this scenario to distribute incoming client traffic to the web tier. An internal load
balancer is used in this scenario to distribute traffic from the business tier to the back-end SQL Server cluster.

Windows can be replaced by other operating systems because nothing in the infrastructure is dependent on the
operating system.
SQL Server for Linux can replace the back-end data store.
The database can be replaced by any standard database application available.

You can add or remove VMs in each tier based on your scaling requirements. Because this scenario uses load
balancers, you can add more VMs to a tier without affecting application uptime.

For other scalability topics, see the scalability checklist in the Azure Architecture Center.

All the virtual network traffic into the front-end application tier is protected by network security groups. Rules limit
the flow of traffic so that only the front-end application tier VM instances can access the back-end database tier. No
outbound internet traffic is allowed from the business tier or database tier. To reduce the attack footprint, no direct
remote management ports are open. For more information, see Azure network security groups.

For general guidance on designing secure scenarios, see the Azure Security Documentation.

Configuring disaster recovery for Azure VMs using Azure Site Recovery will incur the following charges on an
ongoing basis.

Azure Site Recovery licensing cost per VM.
Network egress costs to replicate data changes from the source VM disks to another Azure region. Azure Site
Recovery uses built-in compression to reduce the data transfer requirements by approximately 50%.
Storage costs on the recovery site. This is typically the same as the source region storage plus any additional

https://docs.microsoft.com/azure/virtual-machines/windows/manage-availability/
https://docs.microsoft.com/azure/availability-zones/az-overview
https://docs.microsoft.com/azure/site-recovery/azure-to-azure-quickstart/
https://docs.microsoft.com/azure/traffic-manager/
https://docs.microsoft.com/azure/load-balancer/load-balancer-overview
https://docs.microsoft.com/sql/linux/sql-server-linux-overview?view=sql-server-linux-2017
https://docs.microsoft.com/azure/architecture/checklist/scalability
https://docs.microsoft.com/azure/virtual-network/security-overview
https://docs.microsoft.com/azure/security/

storage needed to maintain the recovery points as snapshots for recovery.

We have provided a sample cost calculator for configuring disaster recovery for a three-tier application using six
virtual machines. All of the services are pre-configured in the cost calculator. To see how the pricing would change
for your particular use case, change the appropriate variables to estimate the cost.

https://azure.com/e/6835332265044d6d931d68c917979e6d/

Building secure web applications with Windows
virtual machines on Azure
3/13/2019 • 7 minutes to read • Edit Online

Relevant use cases

Architecture

ComponentsComponents

This scenario provides architecture and design guidance for running secure, multi-tier web applications on
Microsoft Azure. In this example, an ASP.NET application securely connects to a protected back-end Microsoft
SQL Server cluster using virtual machines.

Traditionally, organizations had to maintain legacy on-premises applications and services to provide a secure
infrastructure. By deploying these Windows Server applications securely in Azure, organizations can modernize
their deployments and reduce their on-premises operating costs and management overhead.

A few examples of where this scenario may apply:

Modernizing application deployments in a secure cloud environment.
Reducing the management overhead of legacy on-premises applications and services.
Improving patient healthcare and experience with new application platforms.

This scenario shows a front-end web application connecting to a back-end database, both running on Windows
Server 2016. The data flows through the scenario as follows:

1. Users access the front-end ASP.NET application through an Azure Application Gateway.
2. The Application Gateway distributes traffic to VM instances within an Azure virtual machine scale set.
3. The application connects to Microsoft SQL Server cluster in a back-end tier via an Azure load balancer. These

back-end SQL Server instances are in a separate Azure virtual network, secured by network security group
rules that limit traffic flow.

4. The load balancer distributes SQL Server traffic to VM instances in another virtual machine scale set.
5. Azure Blob Storage acts as a cloud witness for the SQL Server cluster in the back-end tier. The connection from

within the VNet is enabled with a VNet Service Endpoint for Azure Storage.

Azure Application Gateway is a layer 7 web traffic load balancer that is application-aware and can distribute
traffic based on specific routing rules. App Gateway can also handle SSL offloading for improved web server

https://github.com/mspnp/architecture-center/blob/master/docs/example-scenario/infrastructure/regulated-multitier-app.md
https://docs.microsoft.com/windows-server/failover-clustering/deploy-cloud-witness
https://docs.microsoft.com/azure/application-gateway/overview

AlternativesAlternatives

Considerations
AvailabilityAvailability

ScalabilityScalability

performance.
Azure Virtual Network allows resources such as VMs to securely communicate with each other, the Internet,
and on-premises networks. Virtual networks provide isolation and segmentation, filter and route traffic, and
allow connection between locations. Two virtual networks combined with the appropriate NSGs are used in this
scenario to provide a demilitarized zone (DMZ) and isolation of the application components. Virtual network
peering connects the two networks together.
Azure virtual machine scale set lets you create and manager a group of identical, load balanced, VMs. The
number of VM instances can automatically increase or decrease in response to demand or a defined schedule.
Two separate virtual machine scale sets are used in this scenario - one for the front-end ASP.NET application
instances, and one for the back-end SQL Server cluster VM instances. PowerShell desired state configuration
(DSC) or the Azure custom script extension can be used to provision the VM instances with the required
software and configuration settings.
Azure network security groups contain a list of security rules that allow or deny inbound or outbound network
traffic based on source or destination IP address, port, and protocol. The virtual networks in this scenario are
secured with network security group rules that restrict the flow of traffic between the application components.
Azure load balancer distributes inbound traffic according to rules and health probes. A load balancer provides
low latency and high throughput, and scales up to millions of flows for all TCP and UDP applications. An
internal load balancer is used in this scenario to distribute traffic from the front-end application tier to the back-
end SQL Server cluster.
Azure Blob Storage acts a Cloud Witness location for the SQL Server cluster. This witness is used for cluster
operations and decisions that require an additional vote to decide quorum. Using Cloud Witness removes the
need for an additional VM to act as a traditional File Share Witness.

Linux and Windows can be used interchangeably since the infrastructure isn't dependent on the operating
system.

SQL Server for Linux can replace the back-end data store.

Cosmos DB is another alternative for the data store.

The VM instances in this scenario are deployed across Availability Zones. Each zone is made up of one or more
datacenters equipped with independent power, cooling, and networking. Each enabled region has a minimum of
three availability zones. This distribution of VM instances across zones provides high availability to the application
tiers.

The database tier can be configured to use Always On availability groups. With this SQL Server configuration, one
primary database within a cluster is configured with up to eight secondary databases. If an issue occurs with the
primary database, the cluster fails over to one of the secondary databases, which allows the application to continue
to be available. For more information, see Overview of Always On availability groups for SQL Server.

For more availability guidance, see the availability checklist in the Azure Architecture Center.

This scenario uses virtual machine scale sets for the front-end and back-end components. With scale sets, the
number of VM instances that run the front-end application tier can automatically scale in response to customer
demand, or based on a defined schedule. For more information, see Overview of autoscale with virtual machine
scale sets.

For other scalability topics, see the scalability checklist in the Azure Architecture Center.

https://docs.microsoft.com/azure/virtual-network/virtual-networks-overview
https://docs.microsoft.com/azure/virtual-network/virtual-networks-dmz-nsg
https://docs.microsoft.com/azure/virtual-machine-scale-sets/overview
https://docs.microsoft.com/azure/virtual-network/security-overview
https://docs.microsoft.com/azure/load-balancer/load-balancer-overview
https://docs.microsoft.com/windows-server/failover-clustering/deploy-cloud-witness
https://docs.microsoft.com/sql/linux/sql-server-linux-overview?view=sql-server-linux-2017
https://docs.microsoft.com/azure/cosmos-db/introduction
https://docs.microsoft.com/azure/availability-zones/az-overview
https://docs.microsoft.com/sql/database-engine/availability-groups/windows/overview-of-always-on-availability-groups-sql-server
https://docs.microsoft.com/azure/virtual-machine-scale-sets/virtual-machine-scale-sets-autoscale-overview
https://docs.microsoft.com/azure/architecture/checklist/scalability

SecuritySecurity

ResiliencyResiliency

Deploy the scenario
PrerequisitesPrerequisites

Deploy the componentsDeploy the components

Pricing

All the virtual network traffic into the front-end application tier and protected by network security groups. Rules
limit the flow of traffic so that only the front-end application tier VM instances can access the back-end database
tier. No outbound Internet traffic is allowed from the database tier. To reduce the attack footprint, no direct remote
management ports are open. For more information, see Azure network security groups.

To view guidance on deploying Payment Card Industry Data Security Standards (PCI DSS 3.2) compliant
infrastructure. For general guidance on designing secure scenarios, see the Azure Security Documentation.

In combination with the use of Availability Zones and virtual machine scale sets, this scenario uses Azure
Application Gateway and load balancer. These two networking components distribute traffic to the connected VM
instances, and include health probes that ensure traffic is only distributed to healthy VMs. Two Application
Gateway instances are configured in an active-passive configuration, and a zone-redundant load balancer is used.
This configuration makes the networking resources and application resilient to issues that would otherwise disrupt
traffic and impact end-user access.

For general guidance on designing resilient scenarios, see Designing resilient applications for Azure.

You must have an existing Azure account. If you don't have an Azure subscription, create a free account
before you begin.

To deploy a SQL Server cluster into the back-end scale set, you would need a domain in Azure Active
Directory (AD) Domain Services.

To deploy the core infrastructure for this scenario with an Azure Resource Manager template, perform the
following steps.

1. Select the Deploy to Azure button:

2. Wait for the template deployment to open in the Azure portal, then complete the following steps:
Choose to Create new resource group, then provide a name such as myWindowsscenario in the text
box.
Select a region from the Location drop-down box.
Provide a username and secure password for the virtual machine scale set instances.
Review the terms and conditions, then check I agree to the terms and conditions stated above.
Select the Purchase button.

It can take 15-20 minutes for the deployment to complete.

To explore the cost of running this scenario, all of the services are pre-configured in the cost calculator. To see how
the pricing would change for your particular use case, change the appropriate variables to match your expected
traffic.

We have provided three sample cost profiles based on the number of scale set VM instances that run your
applications.

Small: this pricing example correlates to two front-end and two back-end VM instances.

https://docs.microsoft.com/azure/virtual-network/security-overview
https://docs.microsoft.com/azure/security/blueprints/pcidss-iaaswa-overview
https://docs.microsoft.com/azure/security/
https://docs.microsoft.com/azure/architecture/resiliency/
https://azure.microsoft.com/free/?WT.mc_id=A261C142F
https://portal.azure.com/#create/Microsoft.Template/uri/https%3A%2F%2Fraw.githubusercontent.com%2Fmspnp%2Fsolution-architectures%2Fmaster%2Finfrastructure%2Fregulated-multitier-app.json
https://azure.com/e/711bbfcbbc884ef8aa91cdf0f2caff72

Related resources

Medium: this pricing example correlates to 20 front-end and 5 back-end VM instances.
Large: this pricing example correlates to 100 front-end and 10 back-end VM instances.

This scenario used a back-end virtual machine scale set that runs a Microsoft SQL Server cluster. Cosmos DB
could also be used as a scalable and secure database tier for the application data. An Azure virtual network service
endpoint allows you to secure your critical Azure service resources to only your virtual networks. In this scenario,
VNet endpoints allow you to secure traffic between the front-end application tier and Cosmos DB. For more
information, see the Azure Cosmos DB overview.

For more detailed implementation guides, review the reference architecture for N-tier applications using SQL
Server.

https://azure.com/e/b622d82d79b34b8398c4bce35477856f
https://azure.com/e/1d99d8b92f90496787abecffa1473a93
https://docs.microsoft.com/azure/virtual-network/virtual-network-service-endpoints-overview
https://docs.microsoft.com/azure/cosmos-db/introduction
https://docs.microsoft.com/azure/architecture/reference-architectures/n-tier/n-tier-sql-server

3D video rendering on Azure
3/13/2019 • 5 minutes to read • Edit Online

Relevant use cases

Architecture

3D video rendering is a time consuming process that requires a significant amount of CPU time to complete. On a
single machine, the process of generating a video file from static assets can take hours or even days depending on
the length and complexity of the video you are producing. Many companies will purchase either expensive high
end desktop computers to perform these tasks, or invest in large render farms that they can submit jobs to.
However, by taking advantage of Azure Batch, that power is available to you when you need it and shuts itself
down when you don't, all without any capital investment.

Batch gives you a consistent management experience and job scheduling, whether you select Windows Server or
Linux compute nodes. With Batch, you can use your existing Windows or Linux applications, including AutoDesk
Maya and Blender, to run large-scale render jobs in Azure.

Other relevant use cases include:

3D modeling
Visual FX (VFX) rendering
Video transcoding
Image processing, color correction, and resizing

This scenario shows a workflow that uses Azure Batch. The data flows as follows:

1. Upload input files and the applications to process those files to your Azure Storage account.
2. Create a Batch pool of compute nodes in your Batch account, a job to run the workload on the pool, and tasks in

the job.
3. Download input files and the applications to Batch.
4. Monitor task execution.
5. Upload task output.

https://github.com/mspnp/architecture-center/blob/master/docs/example-scenario/infrastructure/video-rendering.md

ComponentsComponents

Considerations
Machine Sizes available for Azure BatchMachine Sizes available for Azure Batch

AlternativesAlternatives

AvailabilityAvailability

ScalabilityScalability

6. Download output files.

To simplify this process, you could also use the Batch Plugins for Maya and 3ds Max

Azure Batch builds upon the following Azure technologies:

Virtual Networks are used for both the head node and the compute resources.
Azure Storage accounts are used for synchronization and data retention.
Virtual Machine Scale Sets are used by CycleCloud for compute resources.

While most rendering customers will choose resources with high CPU power, other workloads using virtual
machine scale sets may choose VMs differently and will depend on a number of factors:

Is the application being run memory bound?
Does the application need to use GPUs?
Are the job types embarrassingly parallel or require infiniband connectivity for tightly coupled jobs?
Require fast I/O to access storage on the compute Nodes.

Azure has a wide range of VM sizes that can address each and every one of the above application requirements,
some are specific to HPC, but even the smallest sizes can be utilized to provide an effective grid implementation:

HPC VM sizes Due to the CPU bound nature of rendering, Microsoft typically suggests the Azure H-Series
VMs. This type of VM is built specifically for high end computational needs, they have 8 and 16 core vCPU sizes
available, and features DDR4 memory, SSD temporary storage, and Haswell E5 Intel technology.
GPU VM sizes GPU optimized VM sizes are specialized virtual machines available with single or multiple
NVIDIA GPUs. These sizes are designed for compute-intensive, graphics-intensive, and visualization workloads.
NC, NCv2, NCv3, and ND sizes are optimized for compute-intensive and network-intensive applications and
algorithms, including CUDA and OpenCL-based applications and simulations, AI, and Deep Learning. NV sizes
are optimized and designed for remote visualization, streaming, gaming, encoding, and VDI scenarios utilizing
frameworks such as OpenGL and DirectX.
Memory optimized VM sizes When more memory is required, the memory optimized VM sizes offer a higher
memory-to-CPU ratio.
General purposes VM sizes General-purpose VM sizes are also available and provide balanced CPU-to-
memory ratio.

If you require more control over your rendering environment in Azure or need a hybrid implementation, then
CycleCloud computing can help orchestrate an IaaS grid in the cloud. Using the same underlying Azure
technologies as Azure Batch, it makes building and maintaining an IaaS grid an efficient process. To find out more
and learn about the design principles use the following link:

For a complete overview of all the HPC solutions that are available to you in Azure, see the article HPC, Batch, and
Big Compute solutions using Azure VMs

Monitoring of the Azure Batch components is available through a range of services, tools, and APIs. Monitoring is
discussed further in the Monitor Batch solutions article.

Pools within an Azure Batch account can either scale through manual intervention or, by using a formula based on

https://docs.microsoft.com/azure/batch/batch-rendering-service#options-for-submitting-a-render-job
https://docs.microsoft.com/azure/virtual-network/virtual-networks-overview
https://docs.microsoft.com/azure/storage/common/storage-introduction
https://docs.microsoft.com/azure/virtual-machine-scale-sets/overview
https://docs.microsoft.com/azure/virtual-machines/windows/sizes-hpc
https://docs.microsoft.com/azure/virtual-machines/windows/sizes-gpu
https://docs.microsoft.com/azure/virtual-machines/windows/sizes-memory
https://docs.microsoft.com/azure/virtual-machines/windows/sizes-general
https://docs.microsoft.com/azure/virtual-machines/linux/high-performance-computing?toc=%2fazure%2fbatch%2ftoc.json
https://docs.microsoft.com/azure/batch/monitoring-overview

SecuritySecurity

ResiliencyResiliency

Deploy the scenario
Create an Azure Batch account and pools manuallyCreate an Azure Batch account and pools manually

Deploy the componentsDeploy the components

Pricing

Azure Batch metrics, be scaled automatically. For more information on scalability, see the article Create an
automatic scaling formula for scaling nodes in a Batch pool.

For general guidance on designing secure solutions, see the Azure Security Documentation.

While there is currently no failover capability in Azure Batch, we recommend using the following steps to ensure
availability if there is an unplanned outage:

Create an Azure Batch account in an alternate Azure location with an alternate Storage Account
Create the same node pools with the same name, with zero nodes allocated
Ensure Applications are created and updated to the alternate Storage Account
Upload input files and submit jobs to the alternate Azure Batch account

This scenario demonstrates how Azure Batch works while showcasing Azure Batch Labs as an example SaaS
solution that can be developed for your own customers:

Azure Batch Masterclass

The template will deploy:

A new Azure Batch account
A storage account
A node pool associated with the batch account
The node pool will be configured to use A2 v2 VMs with Canonical Ubuntu images
The node pool will contain zero VMs initially and will require you to manually scale to add VMs

Learn more about Resource Manager templates

The cost of using Azure Batch will depend on the VM sizes that are used for the pools and how long these VMs are
allocated and running, there is no cost associated with an Azure Batch account creation. Storage and data egress
should be taken into account as these will apply additional costs.

The following are examples of costs that could be incurred for a job that completes in 8 hours using a different
number of servers:

100 High-Performance CPU VMs: Cost Estimate

100 x H16m (16 cores, 225 GB RAM, Premium Storage 512 GB), 2 TB Blob Storage, 1-TB egress

50 High-Performance CPU VMs: Cost Estimate

50 x H16m (16 cores, 225 GB RAM, Premium Storage 512 GB), 2 TB Blob Storage, 1-TB egress

10 High-Performance CPU VMs: Cost Estimate

10 x H16m (16 cores, 225 GB RAM, Premium Storage 512 GB), 2 TB Blob Storage, 1-TB egress

https://docs.microsoft.com/azure/batch/batch-automatic-scaling
https://docs.microsoft.com/azure/security/
https://github.com/azurebigcompute/BigComputeLabs/tree/master/Azure Batch Masterclass Labs
https://portal.azure.com/#create/Microsoft.Template/uri/https%3A%2F%2Fraw.githubusercontent.com%2Fmspnp%2Fsolution-architectures%2Fmaster%2Fhpc%2Fbatchcreatewithpools.json
https://docs.microsoft.com/azure/azure-resource-manager/resource-group-overview#template-deployment
https://azure.com/e/9ac25baf44ef49c3a6b156935ee9544c
https://azure.com/e/0286f1d6f6784310af4dcda5aec8c893
https://azure.com/e/e39afab4e71949f9bbabed99b428ba4a

Pricing for low-priority VMsPricing for low-priority VMs

NOTENOTE

Related resources

Azure Batch also supports the use of low-priority VMs in the node pools, which can potentially provide a
substantial cost saving. For more information, including a price comparison between standard VMs and low-
priority VMs, see Azure Batch Pricing.

Low-priority VMs are only suitable for certain applications and workloads.

Azure Batch Overview

Azure Batch Documentation

Using containers on Azure Batch

https://azure.microsoft.com/pricing/details/batch/
https://azure.microsoft.com/services/batch/
https://docs.microsoft.com/azure/batch/
https://github.com/Azure/batch-shipyard

Accelerate digital image-based modeling on Azure
3/13/2019 • 7 minutes to read • Edit Online

Relevant use cases

Architecture

This example scenario provides architecture and design guidance for any organization that wants to perform
image-based modeling on Azure infrastructure-as-a-service (IaaS). The scenario is designed for running
photogrammetry software on Azure Virtual Machines (VMs) using high-performance storage that accelerates
processing time. The environment can be scaled up and down as needed and supports terabytes of storage
without sacrificing performance.

Relevant use cases include:

Modeling and measuring buildings, engineering structures, and forensic accident scenes.
Creating visual effects for computer games and movies.
Using digital images to indirectly generate measurements of objects of various scales as in urban planning and
other applications.

This example describes the use of Agisoft PhotoScan photogrammetry software backed by Avere vFXT storage.
PhotoScan was chosen for its popularity in geographic information system (GIS) applications, cultural heritage
documentation, game development, and visual effects production. It is suitable for both close-range
photogrammetry and aerial photogrammetry.

The concepts in this article apply to any high-performance computing (HPC) workload based on a scheduler and
worker nodes managed as infrastructure. For this workload, Avere vFXT was selected for its superior performance
during benchmark tests. However, the scenario decouples the storage from the processing so that other storage
solutions can be used (see alternatives later in this document).

This architecture also includes Active Directory domain controllers to control access to Azure resources and
provide internal name resolution through the Domain Name System (DNS). Jump boxes provide administrator
access to the Windows and Linux VMs that run the solution.

https://github.com/mspnp/architecture-center/blob/master/docs/example-scenario/infrastructure/image-modeling.md

ComponentsComponents

1. User submits a number of images to PhotoScan.
2. The PhotoScan Scheduler runs on a Windows VM that serves as the head node and directs processing of the

user's images.
3. PhotoScan searches for common points on the photographs and constructs the geometry (mesh) using the

PhotoScan processing nodes running on VMs with graphics processing units (GPUs).
4. Avere vFXT provides a high-performance storage solution on Azure based on Network File System version 3

(NFSv3) and comprised of at least four VMs.
5. PhotoScan renders the model.

Agisoft PhotoScan: The PhotoScan Scheduler runs on a Windows 2016 Server VM, and the processing nodes
use five VMs with GPUs that run CentOS Linux 7.5.
Avere vFXT is a file caching solution that uses object storage and traditional network-attached storage (NAS) to
optimize storage of large datasets. It includes:

Microsoft Active Directory domain controllers allow the host access to domain resources and provide DNS
name resolution. Avere vFXT adds a number of A records — for example, each A record in a vFXT cluster points
to the IP address of each Avere vFXT node. In this setup, all VMs use the round-robin pattern to access vFXT
exports.
Other VMs serve as jump boxes used by the administrator to access the scheduler and processing nodes. The
Windows jumpbox is mandatory to allow the administrator to access the head node via remote desktop
protocol. The second jumpbox is optional and runs Linux for administration of the worker nodes.
Network security groups (NSGs) limit access to the public IP address (PIP) and allow ports 3389 and 22 for
access to the VMs attached to the Jumpbox subnet.
Virtual network peering connects a PhotoScan virtual network to an Avere virtual network.
Azure Blob storage works with Avere vFXT as the core filer to store the committed data being processed. Avere
vFXT identifies the active data stored in Azure Blob and tiers it into solid-state drives (SSD) used for caching in
its compute nodes while a PhotoScan job is running. If changes are made, the data is asynchronously
committed back to the core filer.
Azure Key Vault is used to store the administrator passwords and PhotoScan activation code.

Avere Controller. This VM executes the script that installs the Avere vFXT cluster and runs Ubuntu 18.04
LTS. The VM can be used later to add or remove cluster nodes and to destroy the cluster as well.
vFXT cluster. At least three VMs are used, one for each of the Avere vFXT nodes based on Avere OS
5.0.2.1. These VMs form the vFXT cluster, which is attached to Azure Blob storage.

http://www.agisoft.com/
https://docs.microsoft.com/azure/avere-vfxt/avere-vfxt-overview
https://docs.microsoft.com/windows/desktop/ad/active-directory-domain-services
https://docs.microsoft.com/azure/virtual-machines/
https://docs.microsoft.com/azure/virtual-network/manage-network-security-group
https://docs.microsoft.com/azure/virtual-network/virtual-network-peering-overview
https://docs.microsoft.com/azure/storage/blobs/storage-blobs-introduction
https://docs.microsoft.com/azure/key-vault/key-vault-overview

 AlternativesAlternatives

Considerations

SecuritySecurity

Pricing

To take advantage of Azure services for managing an HPC cluster, use tools such as Azure CycleCloud or Azure
Batch instead of managing the resources through templates or scripts.
Deploy the BeeGFS parallel virtual file system as the back-end storage on Azure instead of Avere vFXT. Use the
BeeGFS template to deploy this end-to-end solution on Azure.
Deploy the storage solution of your choice, such as GlusterFS, Lustre, or Windows Storage Spaces Direct. To do
this, edit the PhotoScan template to work with the storage solution you want.
Deploy the worker nodes with the Windows operating system instead of Linux, the default option. When
choosing Windows nodes, storage integration options are not executed by the deployment templates. You must
manually integrate the environment with an existing storage solution, or customize the PhotoScan template to
provide such automation, as described in the repository.

This scenario is designed specifically to provide high-performance storage for an HPC workload, whether it is
deployed on Windows or Linux. In general, the storage configuration of the HPC workload should match the
appropriate best practices used for on-premises deployments.

Deployment considerations depend on the applications and services used, but a few notes apply:

When building high-performance applications, use Azure Premium Storage and optimize the application layer.
Optimize storage for frequent access using Azure Blob hot tier access.
Use a storage replication option that that meets your availability and performance requirements. In this
example, Avere vFXT is configured for high availability by default, with locally redundant storage (LRS). For
load balancing, all VMs in this setup use the round-robin pattern to access vFXT exports.
If the backend storage will be consumed by both Windows clients and Linux clients, use Samba servers to
support the Windows nodes. A version of this example scenario based on BeeGFS uses Samba to support the
scheduler node of the HPC workload (PhotoScan) running on Windows. A load balancer is deployed to act like
a smart replacement for DNS round robin.
Run HPC applications using the VM type best suited for your Windows or Linux workload.
To isolate the HPC workload from the storage resources, deploy each in its own virtual network, then use
virtual network peering to connect the two. Peering creates a low-latency, high-bandwidth connection between
resources in different virtual networks and routes traffic through the Microsoft backbone infrastructure through
private IP addresses only.

This example focuses on deploying a high-performance storage solution for an HPC workload and is not a security
solution. Make sure to involve your security team for any changes.

For added security, this example infrastructure enables all the Windows VMs to be domain-joined and uses Active
Directory for central authentication. It also provides custom DNS services for all VMs. To help protect the
environment, this template relies on network security groups (NSGs). NSGs offer basic traffic filters and security
rules.

Consider the following options to further improve security in this scenario:

Use network virtual appliances such as Fortinet, Checkpoint, and Juniper.
Apply role-based access control to the resource groups.
Enable VM JIT access if jump boxes are accessed via the Internet.
Use Azure Key Vault to store the passwords used by administrator accounts.

https://github.com/paulomarquesc/beegfs-template
https://github.com/paulomarquesc/photoscan-template
https://github.com/paulomarquesc/photoscan-template/blob/master/docs/AverePostDeploymentSteps.md
https://docs.microsoft.com/azure/virtual-machines/windows/premium-storage-performance
https://docs.microsoft.com/azure/storage/blobs/storage-blob-storage-tiers
https://docs.microsoft.com/azure/storage/common/storage-redundancy
https://github.com/paulomarquesc/beegfs-template
https://docs.microsoft.com/azure/virtual-machines/windows/sizes-hpc
https://docs.microsoft.com/azure/virtual-machines/linux/sizes?toc=%2fazure%2fvirtual-machines%2flinux%2ftoc.json
https://docs.microsoft.com/azure/virtual-network/virtual-network-peering-overview
https://docs.microsoft.com/azure/virtual-network/security-overview
https://docs.microsoft.com/azure/role-based-access-control/overview
https://docs.microsoft.com/azure/security-center/security-center-just-in-time
https://docs.microsoft.com/azure/key-vault/quick-create-portal

Deployment

Related resources

The cost of running this scenario can vary greatly depending on on multiple factors. The number and size of VMs,
how much storage is required, and the amount of time to complete a job will determine your cost.

The following sample cost profile in the Azure pricing calculator is based on a typical configuration for Avere vFXT
and PhotoScan:

1 A1_v2 Ubuntu VM to run the Avere controller.
3 D16s_v3 Avere OS VMs, one for each of the Avere vFXT nodes that form the vFXT cluster.
5 NC24_v2 Linux VMs to provide the GPUs needed by the PhotoScan processing nodes.
1 D8s_v3 CentOS VM for the PhotoScan scheduler node.
1 DS2_v2 CentOS used as administrator jumpbox.
2 DS2_v2 VMs for the Active Directory domain controllers.
Premium managed disks.
General purpose v2 (GPv2) Blob storage with LRS and hot tier access (only GPv2 storage accounts expose the
Access Tier attribute).
Virtual network with support for 10 TB data transfer.

For details about this architecture, see the ebook. To see how the pricing would change for your particular use case,
choose different VM sizes in the pricing calculator to match your expected deployment.

For step-by-step instructions for deploying this architecture, including all the prerequisites for using either Avere
FxT or BeeGFS, download the ebook: Deploy Agisoft PhotoScan on Azure With Avere vFXT for Azure or BeeGFS.

The following resources will provide more information on the components utilized in this scenario, along with
alternative approaches for batch computing on Azure.

Overview of Avere vFXT for Azure
Agisoft PhotoScan home Page
Azure Storage Performance and Scalability Checklist
Parallel Virtual File Systems on Microsoft Azure: Performance tests of Lustre, GlusterFS, and BeeGFS (PDF)
An example scenario for computer-aided engineering (CAE) on Azure
HPC on Azure home page
Overview of Big Compute: HPC & Microsoft Batch

https://azure.com/e/42362ddfd2e245a28a8e78bc609c80f3
https://azure.microsoft.com/en-us/resources/deploy-agisoft-photoscan-on-azure-with-azere-vfxt-for-azure-or-beegfs/
https://azure.microsoft.com/en-us/resources/deploy-agisoft-photoscan-on-azure-with-azere-vfxt-for-azure-or-beegfs/
https://docs.microsoft.com/azure/avere-vfxt/avere-vfxt-overview
https://www.agisoft.com/
https://docs.microsoft.com/azure/storage/common/storage-performance-checklist
https://azure.microsoft.com/mediahandler/files/resourcefiles/parallel-virtual-file-systems-on-microsoft-azure/Parallel_Virtual_File_Systems_on_Microsoft_Azure.pdf
https://docs.microsoft.com/azure/architecture/example-scenario/apps/hpc-saas
https://azure.microsoft.com/en-us/solutions/high-performance-computing/
https://azure.microsoft.com/en-us/solutions/big-compute/

 AI and machine learning

Our reference architectures are arranged by scenario. Each architecture includes recommended practices, along with
considerations for scalability, availability, manageability, and security. Most also include a deployable solution or reference
implementation.

Jump to: AI | Big data | IoT | Microservices | Serverless | Virtual networks | VM workloads | SAP | Active Directory | Web apps

Distributed training of deep learning modelsDistributed training of deep learning models

Training of Python scikit-learn modelsTraining of Python scikit-learn models

Batch scoring for deep learning modelsBatch scoring for deep learning models

Run distributed training of deep learning models across clusters of GPU-enabled VMs.

Recommended practices for tuning the hyperparameters of a scikit-learn Python model.

Automate running batch jobs that apply neural style transfer to a video.

Batch scoring of Python modelsBatch scoring of Python models

Batch scoring of Spark models on Azure DatabricksBatch scoring of Spark models on Azure Databricks

Batch score many Python models in parallel on a schedule using Azure Machine Learning.

Build a scalable solution for batch scoring an Apache Spark classification model using Azure Databricks.

 Big data solutions

Real-time scoring of Python and deep learning modelsReal-time scoring of Python and deep learning models

Real-time scoring of R machine learning modelsReal-time scoring of R machine learning models

Real-time recommendation APIReal-time recommendation API

Enterprise-grade conversational botEnterprise-grade conversational bot

Deploy Python models as web services to make real-time predictions, using regular Python models or deep learning
models.

Implement a real-time prediction service in R using Microsoft Machine Learning Server running in Azure Kubernetes
Service (AKS).

Train a recommendation model using Azure Databricks and deploy it as an API using Azure Machine Learning.

How to build an enterprise-grade conversational bot using the Azure Bot Framework.

Enterprise BI with SQL Data WarehouseEnterprise BI with SQL Data Warehouse
ELT (extract-load-transform) pipeline to move data from an on-premises database into SQL Data Warehouse.

Internet of Things

Microservices

Automated enterprise BI with Azure Data FactoryAutomated enterprise BI with Azure Data Factory

Stream processing with Azure DatabricksStream processing with Azure Databricks

Stream processing with Azure Stream AnalyticsStream processing with Azure Stream Analytics

Automate an ELT pipeline to perform incremental loading from an on-premises database.

Stream processing pipeline that joins records from two streams, enriches the result, and calculates a rolling average.

End-to-end stream processing pipeline that correlates records from two data streams to calculate a rolling average.

Azure IoT reference architectureAzure IoT reference architecture
Recommended architecture for IoT applications on Azure using PaaS (platform-as-a-service) components.

Microservices on Azure Kubernetes Service (AKS)Microservices on Azure Kubernetes Service (AKS)

Microservices architecture on Azure Service FabricMicroservices architecture on Azure Service Fabric

Recommended architecture for deploying microservices on AKS.

Recommended architecture for microservices on Service Fabric.

Serverless applications

Virtual networks

Serverless web applicationServerless web application

Event processing using Azure FunctionsEvent processing using Azure Functions

A serverless web application that serves static content from Blob Storage and implements an API using Azure Functions.

An event-driven architecture that ingests a stream of data and uses Functions to processes the data.

Hybrid network using a virtual private network (VPN)Hybrid network using a virtual private network (VPN)

Hybrid network using ExpressRouteHybrid network using ExpressRoute

Hybrid network using ExpressRoute with VPN failoverHybrid network using ExpressRoute with VPN failover

Hub-spoke network topologyHub-spoke network topology

Hub-spoke topology with shared servicesHub-spoke topology with shared services

DMZ between Azure and on-premisesDMZ between Azure and on-premises

DMZ between Azure and the InternetDMZ between Azure and the Internet

Connect an on-premises network to an Azure virtual network.

Use a private, dedicated connection to extend an on-premises network to Azure.

Use ExpressRoute with a VPN as a failover connection for high availability.

Create a central point of connectivity to your on-premises network, while isolating workloads.

Extend a hub-spoke topology by including shared services such as Active Directory.

Use network virtual appliances to create a secure hybrid network.

Use network virtual appliances to create a secure network that accepts Internet traffic.

VM workloads

SAP

Highly available network virtual appliancesHighly available network virtual appliances
Deploy a set of network virtual appliances (NVAs) for high availability in Azure.

N-tier application with SQL ServerN-tier application with SQL Server

Multi-region N-tier applicationMulti-region N-tier application

N-tier application with CassandraN-tier application with Cassandra

Jenkins build serverJenkins build server

SharePoint Server 2016 farmSharePoint Server 2016 farm

Virtual machines configured for an N-tier application using SQL Server on Windows.

N-tier application in two regions for high availability, using SQL Server Always On Availability Groups.

Virtual machines configured for an N-tier application using Apache Cassandra on Linux.

Scalable, enterprise-grade Jenkins server on Azure.

Highly available SharePoint Server 2016 farm on Azure with SQL Server Always On Availability Groups.

SAP NetWeaverSAP NetWeaver
SAP NetWeaver on Windows, in a high availability environment that supports disaster recovery.

Extend on-premises Active Directory to Azure

Web applications

SAP S/4HANASAP S/4HANA

SAP HANA on Azure Large InstancesSAP HANA on Azure Large Instances

SAP S/4HANA on Linux, in a high availability environment that supports disaster recovery.

HANA Large Instances are deployed on physical servers in Azure regions.

Integrate with Azure Active DirectoryIntegrate with Azure Active Directory

Extend an on-premises Active Directory domain to AzureExtend an on-premises Active Directory domain to Azure

Create an AD DS forest in AzureCreate an AD DS forest in Azure

Extend Active Directory Federation Services (AD FS) to AzureExtend Active Directory Federation Services (AD FS) to Azure

Integrate on-premises AD domains with Azure Active Directory.

Deploy Active Directory Domain Services (AD DS) in Azure to extend your on-premises domain.

Create a separate AD domain in Azure that is trusted by your on-premises AD forest.

Use AD FS for federated authentication and authorization for components running in Azure.

Basic web applicationBasic web application

Highly scalable web applicationHighly scalable web application

Web application with Azure App Service and Azure SQL Database.

Proven practices for improving scalability in a web application.

Highly available web applicationHighly available web application

Web application monitoring on AzureWeb application monitoring on Azure

Run an App Service web app in multiple regions to achieve high availability.

Monitor a web application hosted in Azure App Service.

Distributed training of deep learning models on
Azure
3/13/2019 • 8 minutes to read • Edit Online

This reference architecture shows how to conduct distributed training of deep learning models across clusters of
GPU-enabled VMs. The scenario is image classification, but the solution can be generalized for other deep learning
scenarios such as segmentation and object detection.

A reference implementation for this architecture is available on GitHub.

Scenario: Image classification is a widely applied technique in computer vision, often tackled by training a
convolutional neural network (CNN). For particularly large models with large datasets, the training process can
take weeks or months on a single GPU. In some situations, the models are so large that it's not possible to fit
reasonable batch sizes onto the GPU. Using distributed training in these situations can shorten the training time.

In this specific scenario, a ResNet50 CNN model is trained using Horovod on the Imagenet dataset and on
synthetic data. The reference implementation shows how to accomplish this task using three of the most popular
deep learning frameworks: TensorFlow, Keras, and PyTorch.

There are several ways to train a deep learning model in a distributed fashion, including data-parallel and model-
parallel approaches based on synchronous or asynchronous updates. Currently the most common scenario is data
parallel with synchronous updates. This approach is the easiest to implement and is sufficient for most use cases.

In data-parallel distributed training with synchronous updates, the model is replicated across n hardware devices.
A mini-batch of training samples is divided into n micro-batches. Each device performs the forward and backward
passes for a micro-batch. When a device finishes the process, it shares the updates with the other devices. These
values are used to calculate the updated weights of the entire mini-batch, and the weights are synchronized across
the models. This scenario is covered in the GitHub repository.

https://github.com/mspnp/architecture-center/blob/master/docs/reference-architectures/ai/training-deep-learning.md
https://github.com/Azure/DistributedDeepLearning/
https://arxiv.org/abs/1512.03385
https://github.com/uber/horovod
http://www.image-net.org/
https://github.com/Azure/DistributedDeepLearning/

Architecture

NOTENOTE

This architecture can also be used for model-parallel and asynchronous updates. In model-parallel distributed
training, the model is divided across n hardware devices, with each device holding a part of the model. In the
simplest implementation, each device may hold a layer of the network, and information is passed between devices
during the forward and backwards pass. Larger neural networks can be trained this way, but at the cost of
performance, since devices are constantly waiting for each other to complete either the forward or backwards pass.
Some advanced techniques try to partially alleviate this issue by using synthetic gradients.

The steps for training are:

1. Create scripts that will run on the cluster and train your model, then transfer them to file storage.

2. Write the data to Blob Storage.

3. Create a Batch AI file server and download the data from Blob Storage onto it.

4. Create the Docker containers for each deep learning framework and transfer them to a container registry
(Docker Hub).

5. Create a Batch AI pool that also mounts the Batch AI file server.

6. Submit jobs. Each pulls in the appropriate Docker image and scripts.

7. Once the job is completed, write all the results to Files storage.

This architecture consists of the following components.

Azure Batch AI plays the central role in this architecture by scaling resources up and down according to need.
Batch AI is a service that helps provision and manage clusters of VMs, schedule jobs, gather results, scale
resources, handle failures, and create appropriate storage. It supports GPU-enabled VMs for deep learning
workloads. A Python SDK and a command-line interface (CLI) are available for Batch AI.

The Azure Batch AI service is retiring March 2019, and its at-scale training and scoring capabilities are now available in Azure
Machine Learning Service. This reference architecture will be updated soon to use Machine Learning, which offers a managed
compute target called Azure Machine Learning Compute for training, deploying, and scoring machine learning models.

Blob storage is used to stage the data. This data is downloaded to a Batch AI file server during training.

Azure Files is used to store the scripts, logs, and the final results from the training. File storage works well for
storing logs and scripts, but is not as performant as Blob Storage, so it shouldn't be used for data-intensive tasks.

Batch AI file server is a single-node NFS share used in this architecture to store the training data. Batch AI
creates an NFS share and mounts it on the cluster. Batch AI file servers are the recommended way to serve data to
the cluster with the necessary throughput.

https://docs.microsoft.com/azure/batch-ai/overview
https://docs.microsoft.com/azure/machine-learning/service/overview-what-is-azure-ml
https://docs.microsoft.com/azure/machine-learning/service/how-to-set-up-training-targets#amlcompute
https://docs.microsoft.com/azure/storage/blobs/storage-blobs-introduction
https://docs.microsoft.com/azure/storage/files/storage-files-introduction
https://docs.microsoft.com/azure/batch-ai/resource-concepts#file-server

Performance considerations

AZURE VM SERIES NVIDIA GPU

NC K80

ND P40

NCv2 P100

NCv3 V100

Scalability considerations

Docker Hub is used to store the Docker image that Batch AI uses to run the training. Docker Hub was chosen for
this architecture because it's easy to use and is the default image repository for Docker users. Azure Container
Registry can also be used.

Azure provides four GPU-enabled VM types suitable for training deep learning models. They range in price and
speed from low to high as follows:

We recommended scaling up your training before scaling out. For example, try a single V100 before trying a
cluster of K80s.

The following graph shows the performance differences for different GPU types based on benchmarking tests
carried out using TensorFlow and Horovod on Batch AI. The graph shows throughput of 32 GPU clusters across
various models, on different GPU types and MPI versions. Models were implemented in TensorFlow 1.9

Each VM series shown in the previous table includes a configuration with InfiniBand. Use the InfiniBand
configurations when you run distributed training, for faster communication between nodes. InfiniBand also
increases the scaling efficiency of the training for the frameworks that can take advantage of it. For details, see the
Infiniband benchmark comparison.

Although Batch AI can mount Blob storage using the blobfuse adapter, we don't recommend using Blob Storage
this way for distributed training, because the performance isn't good enough to handle the necessary throughput.
Move the data to a Batch AI file server instead, as shown in the architecture diagram.

The scaling efficiency of distributed training is always less than 100 percent due to network overhead — syncing
the entire model between devices becomes a bottleneck. Therefore, distributed training is most suited for large
models that cannot be trained using a reasonable batch size on a single GPU, or for problems that cannot be

https://hub.docker.com/
https://docs.microsoft.com/azure/container-registry/container-registry-intro
https://docs.microsoft.com/azure/virtual-machines/windows/sizes-gpu
https://github.com/msalvaris/BatchAIHorovodBenchmark
https://github.com/msalvaris/BatchAIHorovodBenchmark
https://github.com/Azure/azure-storage-fuse

Storage considerations

Security considerations
Restrict access to Azure Blob StorageRestrict access to Azure Blob Storage

Encrypt data at rest and in motionEncrypt data at rest and in motion

Secure data in a virtual networkSecure data in a virtual network

Monitoring considerations

addressed by distributing the model in a simple, parallel way.

Distributed training is not recommended for running hyperparameter searches. The scaling efficiency affects
performance and makes a distributed approach less efficient than training multiple model configurations
separately.

One way to increase scaling efficiency is to increase the batch size. That must be done carefully, however, because
increasing the batch size without adjusting the other parameters can hurt the model's final performance.

When training deep learning models, an often-overlooked aspect is where the data is stored. If the storage is too
slow to keep up with the demands of the GPUs, training performance can degrade.

Batch AI supports many storage solutions. This architecture uses a Batch AI file server, because it provides the best
tradeoff between ease of use and performance. For best performance, load the data locally. However, this can be
cumbersome, because all the nodes must download the data from Blob Storage, and with the ImageNet dataset,
this can take hours. Azure Premium Blob Storage (limited public preview) is another good option to consider.

Do not mount Blob and File storage as data stores for distributed training. They are too slow and will hinder
training performance.

This architecture uses storage account keys to access the Blob storage. For further control and protection, consider
using a shared access signature (SAS) instead. This grants limited access to objects in storage, without needing to
hard-code the account keys or save them in plaintext. Using a SAS also helps to ensure that the storage account
has proper governance, and that access is granted only to the people intended to have it.

For scenarios with more sensitive data, make sure that all of your storage keys are protected, because these keys
grant full access to all input and output data from the workload.

In scenarios that use sensitive data, encrypt the data at rest — that is, the data in storage. Each time data moves
from one location to the next, use SSL to secure the data transfer. For more information, see the Azure Storage
security guide.

For production deployments, consider deploying the Batch AI cluster into a subnet of a virtual network that you
specify. This allows the compute nodes in the cluster to communicate securely with other virtual machines or with
an on-premises network. You can also use service endpoints with blob storage to grant access from a virtual
network or use a single-node NFS inside the virtual network with Batch AI.

While running your job, it's important to monitor the progress and make sure that things are working as expected.
However, it can be a challenge to monitor across a cluster of active nodes.

The Batch AI file servers can be managed through the Azure portal or though the Azure CLI and Python SDK. To
get a sense of the overall state of the cluster, navigate to Batch AI in the Azure portal to inspect the state of the
cluster nodes. If a node is inactive or a job fails, the error logs are saved to blob storage, and are also accessible in
the Azure Portal under Jobs.

Enrich monitoring by connecting logs to Azure Application Insights or by running separate processes that poll for
the state of the Batch AI cluster and its jobs.

https://azure.microsoft.com/en-gb/blog/introducing-azure-premium-blob-storage-limited-public-preview/
https://docs.microsoft.com/azure/storage/common/storage-security-guide
https://docs.microsoft.com/azure/storage/common/storage-security-guide
https://docs.microsoft.com/azure/storage/common/storage-network-security?toc=%2fazure%2fvirtual-network%2ftoc.json#grant-access-from-a-virtual-network
https://github.com/Azure/BatchAI/blob/master/documentation/using-azure-cli-20.md
https://docs.microsoft.com/azure/application-insights/app-insights-overview

Deployment

Next steps

Batch AI automatically logs all stdout/stderr to the associate Blob storage account. Use a storage navigation tool
such as Azure Storage Explorer for an easier experience when navigating log files.

It is also possible to stream the logs for each job. For details about this option, see the development steps on
GitHub.

The reference implementation of this architecture is available on GitHub. Follow the steps described there to
conduct distributed training of deep learning models across clusters of GPU-enabled VMs.

The output from this architecture is a trained model that is saved to blob storage. You can operationalize this
model for either real-time scoring or batch scoring. For more information, see the following reference
architectures:

Real-time scoring of Python scikit-learn and deep learning models on Azure
Batch scoring on Azure for deep learning models

https://docs.microsoft.com/azure/vs-azure-tools-storage-manage-with-storage-explorer?tabs=windows
https://github.com/Azure/DistributedDeepLearning/
https://github.com/Azure/DistributedDeepLearning/
https://docs.microsoft.com/azure/architecture/reference-architectures/ai/realtime-scoring-python
https://docs.microsoft.com/azure/architecture/reference-architectures/ai/batch-scoring-deep-learning

Training of Python scikit-learn models on Azure
3/13/2019 • 5 minutes to read • Edit Online

This reference architecture shows recommended practices for tuning the hyperparameters (training parameters) of
a scikit-learn Python model. A reference implementation for this architecture is available on GitHub.

Scenario: The problem addressed here is Frequently Asked Question (FAQ) matching. This scenario uses a subset
of Stack Overflow question data that includes original questions tagged as JavaScript, their duplicate questions,
and their answers. It tunes a scikit-learn pipeline to predict the probability that a duplicate question matches one of
the original questions.

Processing in this scenario involves the following steps:

1. The training Python script is submitted to the Azure Machine Learning service.

2. The script runs in Docker containers that are created on each node.

3. That script retrieves training and testing data from Azure Storage.

4. The script learns a model from the training data using its combination of training parameters.

5. The model's performance is evaluated on the testing data, and is written to Azure Storage.

6. The best performing model is registered with the Azure Machine Learning service.

See also considerations for training deep learning models with GPUs.

https://github.com/mspnp/architecture-center/blob/master/docs/reference-architectures/ai/training-python-models.md
https://pypi.org/project/scikit-learn/
https://github.com/Microsoft/MLHyperparameterTuning
https://docs.microsoft.com/azure/machine-learning/service/overview-what-is-azure-ml
https://docs.microsoft.com/azure/storage/common/storage-introduction
https://docs.microsoft.com/azure/architecture/reference-architectures/ai/training-deep-learning

Architecture

Performance considerations

Monitoring and logging considerations

RunDetails Jupyter WidgetRunDetails Jupyter Widget

Azure portalAzure portal

This architecture consists of several Azure cloud services that scale resources according to need. The services and
their roles in this solution are described below.

Microsoft Data Science Virtual Machine (DSVM) is a VM image configured with tools used for data analytics and
machine learning. Both Windows Server and Linux versions are available. This deployment uses the Linux editions
of the DSVM on Ubuntu 16.04 LTS.

Azure Machine Learning service is used to train, deploy, automate, and manage machine learning models at cloud
scale. It's used in this architecture to manage the allocation and use of the Azure resources described below.

Azure Machine Learning Compute is the resource used to train and test machine learning and AI models at scale
in Azure. The compute target in this scenario is a cluster of nodes that are allocated on demand based on an
automatic scaling option. Each node is a VM that runs a training job for a particular hyperparameter set.

Azure Container Registry stores images for all types of Docker container deployments. These containers are
created on each node and used to run the training Python script. The image used in the Machine Learning
Compute cluster is created by the Machine Learning service in the local run and hyperparameter tuning
notebooks, and then is pushed to Container Registry.

Azure Blob storage receives the training and test data sets from the Machine Learning service that are used by the
training Python script. Storage is mounted as a virtual drive onto each node of a Machine Learning Compute
cluster.

Each set of hyperparameters runs on one node of the Machine Learning compute target. For this architecture, each
node is a Standard D4 v2 VM, which has four cores. This architecture uses a LightGBM classifier for machine
learning, a gradient boosting framework. This software can run on all four cores at the same time, speeding up
each run by a factor of up to four. That way, the whole hyperparameter tuning run takes up to one-quarter of the
time it would take had it been run on a Machine Learning Compute target based on Standard D1 v2 VMs, which
have only one core each.

The maximum number of Machine Learning Compute nodes affects the total run time. The recommended
minimum number of nodes is zero. With this setting, the time it takes for a job to start up includes some minutes
for auto-scaling at least one node into the cluster. If the hyperparameter tuning runs for a short time, however,
scaling up the job adds to the overhead. For example, a job can run in under five minutes, but scaling up to one
node might take another five minutes. In this case, setting the minimum to one node saves time but adds to the
cost.

Submit a HyperDrive run configuration to return a Run object for use in monitoring the run's progress.

Use the Run object with the RunDetails Jupyter widget to conveniently monitor its progress at queuing and when
running its children jobs. It also shows the values of the primary statistic that they log in real time.

Print a Run object to display a link to the run's page in Azure portal like this:

https://docs.microsoft.com/azure/machine-learning/data-science-virtual-machine/overview
https://docs.microsoft.com/azure/machine-learning/service/overview-what-is-azure-ml
https://docs.microsoft.com/azure/machine-learning/service/how-to-set-up-training-targets
https://docs.microsoft.com/azure/machine-learning/service/how-to-auto-train-remote
https://docs.microsoft.com/azure/virtual-machine-scale-sets/overview
https://docs.microsoft.com/azure/machine-learning/service/how-to-tune-hyperparameters
https://docs.microsoft.com/azure/container-registry/container-registry-intro
https://docs.microsoft.com/azure/storage/blobs/storage-blobs-introduction
https://docs.microsoft.com/azure/machine-learning/service/how-to-tune-hyperparameters
https://docs.microsoft.com/azure/machine-learning/service/how-to-auto-train-remote
https://github.com/Microsoft/LightGBM
https://docs.microsoft.com/azure/machine-learning/service/how-to-tune-hyperparameters
http://jupyter.org/widgets

Cost considerations

Security considerations
Restrict access to Azure Blob StorageRestrict access to Azure Blob Storage

Encrypt data at rest and in motionEncrypt data at rest and in motion

Secure data in a virtual networkSecure data in a virtual network

Deployment

Use this page to monitor the status of the run and its children runs. Each child run has a driver log containing the
output of the training script it has run.

The cost of a hyperparameter tuning run depends linearly on the choice of Machine Learning Compute VM size,
whether low-priority nodes are used, and the maximum number of nodes allowed in the cluster.

Ongoing costs when the cluster is not in use depend on the minimum number of nodes required by the cluster.
With cluster autoscaling, the system automatically adds nodes up to the allowed maximum to match the number of
jobs, and then removes nodes down to the requested minimum as they are no longer needed. If the cluster can
autoscale down to zero nodes, it does not cost anything when it is not in use.

This architecture uses storage account keys to access the Blob storage. For further control and protection, consider
using a shared access signature (SAS) instead. This grants limited access to objects in storage, without needing to
hard-code the account keys or save them in plaintext. Using a SAS also helps to ensure that the storage account
has proper governance, and that access is granted only to the people intended to have it.

For scenarios with more sensitive data, make sure that all of your storage keys are protected, because these keys
grant full access to all input and output data from the workload.

In scenarios that use sensitive data, encrypt the data at rest—that is, the data in storage. Each time data moves
from one location to the next, use SSL to secure the data transfer. For more information, see the Azure Storage
security guide.

For production deployments, consider deploying the cluster into a subnet of a virtual network that you specify. This
allows the compute nodes in the cluster to communicate securely with other virtual machines or with an on-
premises network. You can also use service endpoints with blob storage to grant access from a virtual network or
use a single-node NFS inside the virtual network with Azure Machine Learning service.

To deploy the reference implementation for this architecture, follow the steps in the GitHub repo.

https://docs.microsoft.com/azure/storage/common/storage-security-guide
https://docs.microsoft.com/azure/storage/common/storage-security-guide
https://docs.microsoft.com/azure/storage/common/storage-network-security?toc=%2fazure%2fvirtual-network%2ftoc.json#grant-access-from-a-virtual-network
https://github.com/Microsoft/MLHyperparameterTuning

Batch scoring on Azure for deep learning models
3/13/2019 • 8 minutes to read • Edit Online

STYLE IMAGE: INPUT/CONTENT VIDEO: OUTPUT VIDEO:

click to view video click to view video

This reference architecture shows how to apply neural style transfer to a video, using Azure Machine Learning.
Style transfer is a deep learning technique that composes an existing image in the style of another image. This
architecture can be generalized for any scenario that uses batch scoring with deep learning. Deploy this solution.

Scenario: A media organization has a video whose style they want to change to look like a specific painting. The
organization wants to be able to apply this style to all frames of the video in a timely manner and in an automated
fashion. For more background about neural style transfer algorithms, see Image Style Transfer Using
Convolutional Neural Networks (PDF).

This reference architecture is designed for workloads that are triggered by the presence of new media in Azure
storage.

Processing involves the following steps:

1. Upload a video file to storage.

https://github.com/mspnp/architecture-center/blob/master/docs/reference-architectures/ai/batch-scoring-deep-learning.md
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_CVPR_2016_paper.pdf
https://happypathspublic.blob.core.windows.net/assets/batch_scoring_for_dl/input_video.mp4
https://happypathspublic.blob.core.windows.net/assets/batch_scoring_for_dl/output_video.mp4

Architecture

ComputeCompute

StorageStorage

Trigger / schedulingTrigger / scheduling

Preprocessing and postprocessing our dataPreprocessing and postprocessing our data

Performance considerations
GPU versus CPUGPU versus CPU

Parallelizing across VMs versus coresParallelizing across VMs versus cores

2. The video file triggers a Logic App to send a request to the Azure Machine Learning pipeline published
endpoint.

3. The pipeline processes the video, applies style transfer with MPI, and postprocesses the video.
4. The output is saved back to blob storage once the pipeline is completed.

This architecture consists of the following components.

Azure Machine Learning Service uses Azure Machine Learning Pipelines to create reproducible and easy-to-
manage sequences of computation. It also offers a managed compute target (on which a pipeline computation can
run) called Azure Machine Learning Compute for training, deploying, and scoring machine learning models.

Blob storage is used to store all images (input images, style images, and output images). Azure Machine Learning
Service integrates with Blob storage so that users do not have to manually move data across compute platforms
and Blob storage. Blob storage is also very cost-effective for the performance that this workload requires.

Azure Logic Apps is used to trigger the workflow. When the Logic App detects that a blob has been added to the
container, it triggers the Azure Machine Learning Pipeline. Logic Apps is a good fit for this reference architecture
because it's an easy way to detect changes to blob storage and provides an easy process for changing the trigger.

This reference architecture uses video footage of an orangutan in a tree. You can download the footage from here.

1. Use FFmpeg to extract the audio file from the video footage, so that the audio file can be stitched back into the
output video later.

2. Use FFmpeg to break the video into individual frames. The frames will be processed independently, in parallel.
3. At this point, we can apply neural style transfer to each individual frame in parallel.
4. One each frame has been processed, we need to use FFmpeg to restitch the frames back together.
5. Finally we reattach the audio file to the restitched footage.

For deep learning workloads, GPUs will generally out-perform CPUs by a considerable amount, to the extent that
a sizeable cluster of CPUs is usually needed to get comparable performance. While it's an option to use only CPUs
in this architecture, GPUs will provide a much better cost/performance profile. We recommend using the latest
[NCv3 series]vm-sizes-gpu of GPU optimized VMs.

GPUs are not enabled by default in all regions. Make sure to select a region with GPUs enabled. In addition,
subscriptions have a default quota of zero cores for GPU-optimized VMs. You can raise this quota by opening a
support request. Make sure that your subscription has enough quota to run your workload.

When running a style transfer process as a batch job, the jobs that run primarily on GPUs will have to be
parallelized across VMs. Two approaches are possible: You can create a larger cluster using VMs that have a single
GPU, or create a smaller cluster using VMs with many GPUs.

For this workload, these two options will have comparable performance. Using fewer VMs with more GPUs per
VM can help to reduce data movement. However, the data volume per job for this workload is not very big, so you
won't observe much throttling by blob storage.

https://docs.microsoft.com/azure/machine-learning/service/overview-what-is-azure-ml
https://docs.microsoft.com/azure/machine-learning/service/how-to-set-up-training-targets#amlcompute
https://docs.microsoft.com/azure/storage/blobs/storage-blobs-introduction
https://docs.microsoft.com/azure/logic-apps/
https://happypathspublic.blob.core.windows.net/videos/orangutan.mp4
https://www.ffmpeg.org/

MPI stepMPI step

Security considerations
Restricting access to Azure blob storageRestricting access to Azure blob storage

Data encryption and data movementData encryption and data movement

Securing your computation in a virtual networkSecuring your computation in a virtual network

Protecting against malicious activityProtecting against malicious activity

Monitoring and logging
Monitoring Batch jobsMonitoring Batch jobs

When creating the pipeline in Azure Machine Learning, one of the steps used to perform parallel computation is
the MPI step. The MPI step will help split the data evenly across the available nodes. The MPI step will not
executed until all the requested nodes are ready. Should one node fail or get pre-empted (if it is a low-priority
virtual machine), the MPI step will have to be re-run.

In this reference architecture, Azure blob storage is the main storage component that needs to be protected. The
baseline deployment shown in the GitHub repo uses storage account keys to access the blob storage. For further
control and protection, consider using a shared access signature (SAS) instead. This grants limited access to
objects in storage, without needing to hard code the account keys or save them in plaintext. This approach is
especially useful because account keys are visible in plaintext inside of Logic App's designer interface. Using an
SAS also helps to ensure that the storage account has proper governance, and that access is granted only to the
people intended to have it.

For scenarios with more sensitive data, make sure that all of your storage keys are protected, because these keys
grant full access to all input and output data from the workload.

This reference architecture uses style transfer as an example of a batch scoring process. For more data-sensitive
scenarios, the data in storage should be encrypted at rest. Each time data is moved from one location to the next,
use SSL to secure the data transfer. For more information, see Azure Storage security guide.

When deploying your Machine Learning compute cluster, you can configure your cluster to be provisioned inside a
subnet of a virtual network. This allows the compute nodes in the cluster to communicate securely with other
virtual machines.

In scenarios where there are multiple users, make sure that sensitive data is protected against malicious activity. If
other users are given access to this deployment to customize the input data, take note of the following precautions
and considerations:

Use RBAC to limit users' access to only the resources they need.
Provision two separate storage accounts. Store input and output data in the first account. External users can be
given access to this account. Store executable scripts and output log files in the other account. External users
should not have access to this account. This will ensure that external users cannot modify any executable files
(to inject malicious code), and don't have access to logfiles, which could hold sensitive information.
Malicious users can DDOS the job queue or inject malformed poison messages in the job queue, causing the
system to lock up or causing dequeuing errors.

While running your job, it's important to monitor the progress and make sure that things are working as expected.
However, it can be a challenge to monitor across a cluster of active nodes.

To get a sense of the overall state of the cluster, go to the Machine Learning blade of the Azure Portal to inspect the
state of the nodes in the cluster. If a node is inactive or a job has failed, the error logs are saved to blob storage, and
are also accessible in the Azure Portal.

Monitoring can be further enriched by connecting logs to Application Insights or by running separate processes to

https://docs.microsoft.com/azure/storage/common/storage-security-guide
https://docs.microsoft.com/azure/machine-learning/service/how-to-enable-virtual-network

Logging with Azure Machine LearningLogging with Azure Machine Learning

Cost considerations

Deploy the solution

NOTENOTE

poll for the state of the cluster and its jobs.

Azure Machine Learing will automatically log all stdout/stderr to the associate blob storage account. Unless
otherwise specified, your Azure Machine Learning Workspace will automatically provision a storage account and
dump your logs into it. You can also use a storage navigation tool such as Storage Explorer which will provide a
much easier experience for navigating log files.

Compared to the storage and scheduling components, the compute resources used in this reference architecture
by far dominate in terms of costs. One of the main challenges is effectively parallelizing the work across a cluster
of GPU-enabled machines.

The Machine Learning Compute cluster size can automatically scale up and down depending on the jobs in the
queue. You can enable auto-scale programmatically by setting the minimum and maximum nodes.

For work that doesn't require immediate processing, configure auto-scale so the default state (minimum) is a
cluster of zero nodes. With this configuration, the cluster starts with zero nodes and only scales up when it detects
jobs in the queue. If the batch scoring process only happens a few times a day or less, this setting enables
significant cost savings.

Auto-scaling may not be appropriate for batch jobs that happen too close to each other. The time that it takes for a
cluster to spin up and spin down also incur a cost, so if a batch workload begins only a few minutes after the
previous job ends, it might be more cost effective to keep the cluster running between jobs.

Machine Learning Compute also supports low-priority virtual machines. This allows you to run your computation
on discounted virtual machines, with the caveat that they may be pre-empted at any time. Low-priority virtual
machines are ideal for non-critical batch scoring workloads.

To deploy this reference architecture, follow the steps described in the GitHub repo.

You can also deploy a batch scoring architecture for deep learning models using the Azure Kubernetes Service. Follow the
steps described in this Github repo.

https://github.com/Azure/Batch-Scoring-Deep-Learning-Models-With-AML
https://github.com/Azure/Batch-Scoring-Deep-Learning-Models-With-AKS

Batch scoring of Python models on Azure
3/13/2019 • 5 minutes to read • Edit Online

Architecture

This reference architecture shows how to build a scalable solution for batch scoring many models on a schedule in
parallel using Azure Machine Learning Service. The solution can be used as a template and can generalize to
different problems.

A reference implementation for this architecture is available on GitHub.

Scenario: This solution monitors the operation of a large number of devices in an IoT setting where each device
sends sensor readings continuously. Each device is assumed to be associated with pretrained anomaly detection
models that need to be used to predict whether a series of measurements, that are aggregated over a predefined
time interval, correspond to an anomaly or not. In real-world scenarios, this could be a stream of sensor readings
that need to be filtered and aggregated before being used in training or real-time scoring. For simplicity, this
solution uses the same data file when executing scoring jobs.

This reference architecture is designed for workloads that are triggered on a schedule. Processing involves the
following steps:

1. Send sensor readings for ingestion to Azure Event Hubs.
2. Perform stream processing and store the raw data.
3. Send the data to a Machine Learning cluster that is ready to start taking work. Each node in the cluster runs a

scoring job for a specific sensor.
4. Execute the scoring pipeline, which runs the scoring jobs in parallel using Machine Learning Python scripts. The

pipeline is created, published, and scheduled to run on a predefined interval of time.
5. Generate predictions and store them in Blob storage for later consumption.

This architecture consists of the following components:

Azure Event Hubs. This message ingestion service can ingest millions of event messages per second. In this
architecture, sensors send a stream of data to the event hub.

https://github.com/mspnp/architecture-center/blob/master/docs/reference-architectures/ai/batch-scoring-python.md
https://github.com/Microsoft/AMLBatchScoringPipeline
https://docs.microsoft.com/azure/event-hubs/event-hubs-geo-dr

Performance considerations

Parallelizing across VMs versus coresParallelizing across VMs versus cores

Management considerations

Cost considerations

Azure Stream Analytics. An event-processing engine. A Stream Analytics job reads the data streams from the event
hub and performs stream processing.

Azure SQL Database. Data from the sensor readings is loaded into SQL Database. SQL is a familiar way to store
the processed, streamed data (which is tabular and structured), but other data stores can be used.

Azure Machine Learning Service. Machine Learning is a cloud service for training, scoring, deploying, and
managing machine learning models at scale. In the context of batch scoring, Machine Learning creates a cluster of
virtual machines on demand with an automatic scaling option, where each node in the cluster runs a scoring job
for a specific sensor. The scoring jobs are executed in parallel as Python-script steps that are queued and managed
by Machine Learning. These steps are part of a Machine Learning pipeline that is created, published, and
scheduled to run on a predefined interval of time.

Azure Blob Storage. Blob containers are used to store the pretrained models, the data, and the output predictions.
The models are uploaded to Blob storage in the 01_create_resources.ipynb notebook. These one-class SVM
models are trained on data that represents values of different sensors for different devices. This solution assumes
that the data values are aggregated over a fixed interval of time.

Azure Container Registry. The scoring Python script runs in Docker containers that are created on each node of the
cluster, where it reads the relevant sensor data, generates predictions and stores them in Blob storage.

For standard Python models, it's generally accepted that CPUs are sufficient to handle the workload. This
architecture uses CPUs. However, for deep learning workloads, GPUs generally outperform CPUs by a
considerable amount — a sizeable cluster of CPUs is usually needed to get comparable performance.

When running scoring processes of many models in batch mode, the jobs need to be parallelized across VMs. Two
approaches are possible:

Create a larger cluster using low-cost VMs.

Create a smaller cluster using high performing VMs with more cores available on each.

In general, scoring of standard Python models is not as demanding as scoring of deep learning models, and a
small cluster should be able to handle a large number of queued models efficiently. You can increase the number of
cluster nodes as the dataset sizes increase.

For convenience in this scenario, one scoring task is submitted within a single Machine Learning pipeline step.
However, it can be more efficient to score multiple data chunks within the same pipeline step. In those cases, write
custom code to read in multiple datasets and execute the scoring script for those during a single-step execution.

Monitor jobs. It's important to monitor the progress of running jobs, but it can be a challenge to monitor
across a cluster of active nodes. To inspect the state of the nodes in the cluster, use the Azure Portal to manage
the machine learning workspace. If a node is inactive or a job has failed, the error logs are saved to blob
storage, and are also accessible in the Pipelines section. For richer monitoring, connect logs to Application
Insights, or run separate processes to poll for the state of the cluster and its jobs.
Logging. Machine Learning Service logs all stdout/stderr to the associated Azure Storage account. To easily
view the log files, use a storage navigation tool such as Azure Storage Explorer.

The most expensive components used in this reference architecture are the compute resources. The compute

https://docs.microsoft.com/azure/stream-analytics/
https://docs.microsoft.com/azure/sql-database/
https://docs.microsoft.com/azure/machine-learning/service/overview-what-is-azure-ml
https://docs.microsoft.com/azure/storage/blobs/storage-blobs-overview
https://github.com/Microsoft/AMLBatchScoringPipeline/blob/master/01_create_resources.ipynb
http://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html
https://docs.microsoft.com/azure/container-registry/container-registry-intro
https://github.com/Microsoft/AMLBatchScoringPipeline/blob/master/scripts/predict.py
https://docs.microsoft.com/azure/architecture/reference-architectures/ai/batch-scoring-deep-learning
https://portal.azure.com
https://docs.microsoft.com/azure/machine-learning/studio/create-workspace
https://docs.microsoft.com/azure/application-insights/app-insights-overview
https://azure.microsoft.com/en-us/features/storage-explorer/

Deployment

cluster size scales up and down depending on the jobs in the queue. Enable automatic scaling programmatically
through the Python SDK by modifying the compute’s provisioning configuration. Or use the Azure CLI to set the
automatic scaling parameters of the cluster.

For work that doesn't require immediate processing, configure the automatic scaling formula so the default state
(minimum) is a cluster of zero nodes. With this configuration, the cluster starts with zero nodes and only scales up
when it detects jobs in the queue. If the batch scoring process happens only a few times a day or less, this setting
enables significant cost savings.

Automatic scaling may not be appropriate for batch jobs that happen too close to each other. The time that it takes
for a cluster to spin up and spin down also incurs a cost, so if a batch workload begins only a few minutes after the
previous job ends, it might be more cost effective to keep the cluster running between jobs. That depends on
whether scoring processes are scheduled to run at a high frequency (every hour, for example), or less frequently
(once a month, for example).

To deploy this reference architecture, follow the steps described in the GitHub repo.

https://docs.microsoft.com/cli/azure
https://github.com/Microsoft/AMLBatchScoringPipeline

Batch scoring of Spark models on Azure Databricks
3/13/2019 • 5 minutes to read • Edit Online

This reference architecture shows how to build a scalable solution for batch scoring an Apache Spark classification
model on a schedule using Azure Databricks, an Apache Spark-based analytics platform optimized for Azure. The
solution can be used as a template that can be generalized to other scenarios.

A reference implementation for this architecture is available on GitHub.

Scenario: A business in an asset-heavy industry wants to minimize the costs and downtime associated with
unexpected mechanical failures. Using IoT data collected from their machines, they can create a predictive
maintenance model. This model enables the business to maintain components proactively and repair them before
they fail. By maximizing mechanical component use, they can control costs and reduce downtime.

A predictive maintenance model collects data from the machines and retains historical examples of component
failures. The model can then be used to monitor the current state of the components and predict if a given
component will fail in the near future. For common use cases and modeling approaches, see Azure AI guide for
predictive maintenance solutions.

This reference architecture is designed for workloads that are triggered by the presence of new data from the
component machines. Processing involves the following steps:

1. Ingest the data from the external data store onto an Azure Databricks data store.

2. Train a machine learning model by transforming the data into a training data set, then building a Spark
MLlib model. MLlib consists of most common machine learning algorithms and utilities optimized to take
advantage of Spark data scalability capabilities.

3. Apply the trained model to predict (classify) component failures by transforming the data into a scoring data

https://github.com/mspnp/architecture-center/blob/master/docs/reference-architectures/ai/batch-scoring-databricks.md
https://github.com/Azure/BatchSparkScoringPredictiveMaintenance
https://docs.microsoft.com/azure/machine-learning/team-data-science-process/cortana-analytics-playbook-predictive-maintenance

Architecture

Recommendations

set. Score the data with the Spark MLLib model.

4. Store results on the Databricks data store for post-processing consumption.

Notebooks are provided on GitHub to perform each of these tasks.

The architecture defines a data flow that is entirely contained within Azure Databricks based on a set of
sequentially executed notebooks. It consists of the following components:

Data files. The reference implementation uses a simulated data set contained in five static data files.

Ingestion. The data ingestion notebook downloads the input data files into a collection of Databricks data sets. In
a real-world scenario, data from IoT devices would stream onto Databricks-accessible storage such as Azure SQL
Server or Azure Blob storage. Databricks supports multiple data sources.

Training pipeline. This notebook executes the feature engineering notebook to create an analysis data set from
the ingested data. It then executes a model building notebook that trains the machine learning model using the
Apache Spark MLlib scalable machine learning library.

Scoring pipeline. This notebook executes the feature engineering notebook to create scoring data set from the
ingested data and executes the scoring notebook. The scoring notebook uses the trained Spark MLlib model to
generate predictions for the observations in the scoring data set. The predictions are stored in the results store, a
new data set on the Databricks data store.

Scheduler. A scheduled Databricks job handles batch scoring with the Spark model. The job executes the scoring
pipeline notebook, passing variable arguments through notebook parameters to specify the details for
constructing the scoring data set and where to store the results data set.

The scenario is constructed as a pipeline flow. Each notebook is optimized to perform in a batch setting for each of
the operations: ingestion, feature engineering, model building, and model scorings. To accomplish this, the feature
engineering notebook is designed to generate a general data set for any of the training, calibration, testing, or
scoring operations. In this scenario, we use a temporal split strategy for these operations, so the notebook
parameters are used to set date-range filtering.

Because the scenario creates a batch pipeline, we provide a set of optional examination notebooks to explore the
output of the pipeline notebooks. You can find these in the GitHub repository:

1a_raw-data_exploring

2a_feature_exploration

2b_model_testing

3b_model_scoring_evaluation

Databricks is set up so you can load and deploy your trained models to make predictions with new data. We used
Databricks for this scenario because it provides these additional advantages:

Single sign-on support using Azure Active Directory credentials.
Job scheduler to execute jobs for production pipelines.
Fully interactive notebook with collaboration, dashboards, REST APIs.
Unlimited clusters that can scale to any size.
Advanced security, role-based access controls, and audit logs.

To interact with the Azure Databricks service, use the Databricks Workspace interface in a web browser or the

https://github.com/Azure/BatchSparkScoringPredictiveMaintenance
https://docs.microsoft.com/azure/azure-databricks/
https://docs.databricks.com/user-guide/notebooks/index.html
https://github.com/Azure/BatchSparkScoringPredictiveMaintenance
https://docs.databricks.com/user-guide/notebooks/index.html
https://docs.databricks.com/spark/latest/data-sources/index.html
https://docs.databricks.com/spark/latest/mllib/index.html
https://docs.databricks.com/spark/latest/mllib/index.html#apache-spark-mllib
https://docs.databricks.com/user-guide/jobs.html
https://docs.databricks.com/user-guide/workspace.html

Performance considerations

Storage considerations

Cost considerations

Deploy the solution

Related architectures

command-line interface (CLI). Access the Databricks CLI from any platform that supports Python 2.7.9 to 3.6.

The reference implementation uses notebooks to execute tasks in sequence. Each notebook stores intermediate
data artifacts (training, test, scoring, or results data sets) to the same data store as the input data. The goal is to
make it easy for you to use it as needed in your particular use case. In practice, you would connect your data
source to your Azure Databricks instance for the notebooks to read and write directly back into your storage.

You can monitor job execution through the Databricks user interface, the data store, or the Databricks CLI as
necessary. Monitor the cluster using the event log and other metrics that Databricks provides.

An Azure Databricks cluster enables autoscaling by default so that during runtime, Databricks dynamically
reallocates workers to account for the characteristics of your job. Certain parts of your pipeline may be more
computationally demanding than others. Databricks adds additional workers during these phases of your job (and
removes them when they’re no longer needed). Autoscaling makes it easier to achieve high cluster utilization,
because you don’t need to provision the cluster to match a workload.

Additionally, more complex scheduled pipelines can be developed by using Azure Data Factory with Azure
Databricks.

In this reference implementation, the data is stored directly within Databricks storage for simplicity. In a production
setting, however, the data can be stored on cloud data storage such as Azure Blob Storage. Databricks also
supports Azure Data Lake Store, Azure SQL Data Warehouse, Azure Cosmos DB, Apache Kafka, and Hadoop.

Azure Databricks is a premium Spark offering with an associated cost. In addition, there are standard and premium
Databricks pricing tiers.

For this scenario, the standard pricing tier is sufficient. However, if your specific application requires automatically
scaling clusters to handle larger workloads or interactive Databricks dashboards, the premium level could increase
costs further.

The solution notebooks can run on any Spark-based platform with minimal edits to remove the Databricks-specific
packages. See the following similar solutions for various Azure platforms:

Python on Azure Machine Learning Studio
SQL Server R services
PySpark on an Azure Data Science Virtual Machine

To deploy this reference architecture, follow the steps described in the GitHub repository to build a scalable
solution for scoring Spark models in batch on Azure Databricks.

We have also built a reference architecture that uses Spark for building real-time recommendation systems with
offline, pre-computed scores. These recommendation systems are common scenarios where scores are batch-
processed.

https://docs.databricks.com/user-guide/dev-tools/databricks-cli.html
https://docs.databricks.com/user-guide/notebooks/index.html
https://docs.databricks.com/user-guide/dev-tools/databricks-cli.html
https://docs.databricks.com/user-guide/clusters/event-log.html
https://docs.databricks.com/user-guide/clusters/metrics.html
https://docs.azuredatabricks.net/user-guide/clusters/sizing.html
https://azure.microsoft.com/blog/operationalize-azure-databricks-notebooks-using-data-factory/
https://docs.databricks.com/spark/latest/data-sources/azure/azure-storage.html
https://docs.microsoft.com/azure/azure-databricks/databricks-connect-to-data-sources
https://azure.microsoft.com/en-us/pricing/details/databricks/
https://gallery.azure.ai/Notebook/Predictive-Maintenance-Modelling-Guide-Python-Notebook-1
https://gallery.azure.ai/Tutorial/Predictive-Maintenance-Modeling-Guide-using-SQL-R-Services-1
https://gallery.azure.ai/Tutorial/Predictive-Maintenance-using-PySpark
https://github.com/Azure/BatchSparkScoringPredictiveMaintenance
https://docs.microsoft.com/azure/architecture/reference-architectures/ai/real-time-recommendation

Real-time scoring of Python scikit-learn and deep
learning models on Azure
3/13/2019 • 7 minutes to read • Edit Online

Scenarios

This reference architecture shows how to deploy Python models as web services to make real-time predictions
using the Azure Machine Learning service. Two scenarios are covered: deploying regular Python models, and the
specific requirements of deploying deep learning models. Both scenarios use the architecture shown.

Two reference implementations for this architecture are available on GitHub, one for regular Python models and
one for deep learning models.

The reference implementations demonstrate two scenarios using this architecture.

Scenario 1: FAQ matching. This scenario shows how to deploy a frequently asked questions (FAQ) matching
model as a web service to provide predictions for user questions. For this scenario, "Input Data" in the architecture
diagram refers to text strings containing user questions to match with a list of FAQs. This scenario is designed for
the scikit-learn machine learning library for Python, but can be generalized to any scenario that uses Python
models to make real-time predictions.

This scenario uses a subset of Stack Overflow question data that includes original questions tagged as JavaScript,
their duplicate questions, and their answers. It trains a scikit-learn pipeline to predict the match probability of a
duplicate question with each of the original questions. These predictions are made in real time using a REST API
endpoint.

The application flow for this architecture is as follows:

1. The trained model is registered to the Machine Learning model registry.

https://github.com/mspnp/architecture-center/blob/master/docs/reference-architectures/ai/realtime-scoring-python.md
https://github.com/Microsoft/MLAKSDeployAML
https://github.com/Microsoft/AKSDeploymentTutorial_AML
https://pypi.org/project/scikit-learn/

2. The Machine Learning service creates a Docker image that includes the model and scoring script.
3. Machine Learning deploys the scoring image on Azure Kubernetes Service (AKS) as a web service.
4. The client sends an HTTP POST request with the encoded question data.
5. The web service created by Machine Learning extracts the question from the request.
6. The question is sent to the Scikit-learn pipeline model for featurization and scoring.
7. The matching FAQ questions with their scores are returned to the client.

Here is a screenshot of the example app that consumes the results:

Scenario 2: Image classification. This scenario shows how to deploy a Convolutional Neural Network (CNN)
model as a web service to provide predictions on images. For this scenario, "Input Data" in the architecture
diagram refers to image files. CNNs are very effective in computer vision for tasks such as image classification and
object detection. This scenario is designed for the frameworks TensorFlow, Keras (with the TensorFlow back end),
and PyTorch. However, it can be generalized to any scenario that uses deep learning models to make real-time
predictions.

This scenario uses a pre-trained ResNet-152 model trained on ImageNet-1K (1,000 classes) dataset to predict
which category (see figure below) an image belongs to. These predictions are made in real time using a REST API
endpoint.

Architecture

Performance considerations

The application flow for the deep learning model is as follows:

1. The deep learning model is registered to the Machine Learning model registry.
2. The Machine Learning service creates a docker image including the model and scoring script.
3. Machine Learning deploys the scoring image on Azure Kubernetes Service (AKS) as a web service.
4. The client sends an HTTP POST request with the encoded image data.
5. The web service created by Machine Learning preprocesses the image data and sends it to the model for

scoring.
6. The predicted categories with their scores are returned to the client.

This architecture consists of the following components.

Azure Machine Learning service is a cloud service that is used to train, deploy, automate and manage machine
learning models, all at the broad scale that the cloud provides. It is used in this architecture to manage the
deployment of models as well as authentication, routing, and load balancing of the web service.

Virtual machine (VM). The VM is shown as an example of a device — local or in the cloud — that can send an
HTTP request.

Azure Kubernetes Service (AKS) is used to deploy the application on a Kubernetes cluster. AKS simplifies the
deployment and operations of Kubernetes. The cluster can be configured using CPU-only VMs for regular Python
models or GPU-enabled VMs for deep learning models.

Azure Container Registry enables storage of images for all types of Docker container deployments including
DC/OS, Docker Swarm and Kubernetes. The scoring images are deployed as containers on Azure Kubernetes
Service and used to run the scoring script. The image used here is created by Machine Learning from the trained
model and scoring script, and then is pushed to the Azure Container Registry.

For real-time scoring architectures, throughput performance becomes a dominant consideration. For regular

https://docs.microsoft.com/azure/machine-learning/service/overview-what-is-azure-ml
https://docs.microsoft.com/azure/virtual-machines/
https://docs.microsoft.com/azure/aks/intro-kubernetes
https://docs.microsoft.com/azure/container-registry/

Scalability considerations

Monitoring and logging considerations
AKS monitoringAKS monitoring

Python models, it's generally accepted that CPUs are sufficient to handle the workload.

However for deep learning workloads, when speed is a bottleneck, GPUs generally provide better performance
compared to CPUs. To match GPU performance using CPUs, a cluster with large number of CPUs is usually
needed.

You can use CPUs for this architecture in either scenario, but for deep learning models, GPUs provide significantly
higher throughput values compared to a CPU cluster of similar cost. AKS supports the use of GPUs, which is one
advantage of using AKS for this architecture. Also, deep learning deployments typically use models with a high
number of parameters. Using GPUs prevents contention for resources between the model and the web service,
which is an issue in CPU-only deployments.

For regular Python models, where the AKS cluster is provisioned with CPU-only VMs, take care when scaling out
the number of pods. The goal is to fully utilize the cluster. Scaling depends on the CPU requests and limits defined
for the pods. Machine Learning through Kubernetes also supports pod autoscaling based on CPU utilization or
other metrics. The cluster autoscaler (in preview) can scale agent nodes based on the pending pods.

For deep learning scenarios, using GPU-enabled VMs, resource limits on pods are such that one GPU is assigned
to one pod. Depending on the type of VM used, you must scale the nodes of the cluster to meet the demand for
the service. You can do this easily using the Azure CLI and kubectl.

For visibility into AKS performance, use the Azure Monitor for containers feature. It collects memory and
processor metrics from controllers, nodes, and containers that are available in Kubernetes through the Metrics API.

While deploying your application, monitor the AKS cluster to make sure it's working as expected, all the nodes are
operational, and all pods are running. Although you can use the kubectl command-line tool to retrieve pod status,
Kubernetes also includes a web dashboard for basic monitoring of the cluster status and management.

To see the overall state of the cluster and nodes, go to the Nodes section of the Kubernetes dashboard. If a node is

https://azure.microsoft.com/en-us/blog/gpus-vs-cpus-for-deployment-of-deep-learning-models/
https://docs.microsoft.com/azure/aks/tutorial-kubernetes-scale#manually-scale-pods
https://docs.microsoft.com/azure/aks/tutorial-kubernetes-scale#autoscale-pods
https://docs.microsoft.com/azure/aks/autoscaler
https://docs.microsoft.com/azure/aks/scale-cluster
https://docs.microsoft.com/azure/monitoring/monitoring-container-insights-overview
https://kubernetes.io/docs/tasks/tools/install-kubectl/

AKS logsAKS logs

Security considerations

Deployment

inactive or has failed, you can display the error logs from that page. Similarly, go to the Pods and Deployments
sections for information about the number of pods and status of your deployment.

AKS automatically logs all stdout/stderr to the logs of the pods in the cluster. Use kubectl to see these and also
node-level events and logs. For details, see the deployment steps.

Use Azure Monitor for containers to collect metrics and logs through a containerized version of the Log Analytics
agent for Linux, which is stored in your Log Analytics workspace.

Use Azure Security Center to get a central view of the security state of your Azure resources. Security Center
monitors potential security issues and provides a comprehensive picture of the security health of your deployment,
although it doesn't monitor AKS agent nodes. Security Center is configured per Azure subscription. Enable
security data collection as described in Onboard your Azure subscription to Security Center Standard. When data
collection is enabled, Security Center automatically scans any VMs created under that subscription.

Operations. To sign in to an AKS cluster using your Azure Active Directory (Azure AD) authentication token,
configure AKS to use Azure AD for user authentication. Cluster administrators can also configure Kubernetes role-
based access control (RBAC) based on a user's identity or directory group membership.

Use RBAC to control access to the Azure resources that you deploy. RBAC lets you assign authorization roles to
members of your DevOps team. A user can be assigned to multiple roles, and you can create custom roles for even
more fine-grained permissions.

HTTPS. As a security best practice, the application should enforce HTTPS and redirect HTTP requests. Use an
ingress controller to deploy a reverse proxy that terminates SSL and redirects HTTP requests. For more
information, see Create an HTTPS ingress controller on Azure Kubernetes Service (AKS).

Authentication. This solution doesn't restrict access to the endpoints. To deploy the architecture in an enterprise
setting, secure the endpoints through API keys and add some form of user authentication to the client application.

Container registry. This solution uses Azure Container Registry to store the Docker image. The code that the
application depends on, and the model, are contained within this image. Enterprise applications should use a
private registry to help guard against running malicious code and to help keep the information inside the container
from being compromised.

DDoS protection. Consider enabling DDoS Protection Standard. Although basic DDoS protection is enabled as
part of the Azure platform, DDoS Protection Standard provides mitigation capabilities that are tuned specifically to
Azure virtual network resources.

Logging. Use best practices before storing log data, such as scrubbing user passwords and other information that
could be used to commit security fraud.

To deploy this reference architecture, follow the steps described in the GitHub repos:

Regular Python models
Deep learning models

https://docs.microsoft.com/azure/monitoring/monitoring-container-insights-overview
https://docs.microsoft.com/azure/security-center/security-center-intro
https://docs.microsoft.com/azure/security-center/security-center-get-started
https://docs.microsoft.com/azure/aks/aad-integration
https://docs.microsoft.com/azure/active-directory/role-based-access-control-what-is
https://docs.microsoft.com/azure/aks/concepts-identity
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://docs.microsoft.com/azure/aks/ingress-tls
https://docs.microsoft.com/azure/virtual-network/ddos-protection-overview
https://github.com/Microsoft/MLAKSDeployAML
https://github.com/Microsoft/AKSDeploymentTutorial_AML

Real-time scoring of R machine learning models
3/13/2019 • 5 minutes to read • Edit Online

Architecture

Performance considerations

This reference architecture shows how to implement a real-time (synchronous) prediction service in R using
Microsoft Machine Learning Server running in Azure Kubernetes Service (AKS). This architecture is intended to be
generic and suited for any predictive model built in R that you want to deploy as a real-time service. Deploy this
solution.

This reference architecture takes a container-based approach. A Docker image is built containing R, as well as the
various artifacts needed to score new data. These include the model object itself and a scoring script. This image is
pushed to a Docker registry hosted in Azure, and then deployed to a Kubernetes cluster, also in Azure.

The architecture of this workflow includes the following components.

Azure Container Registry is used to store the images for this workflow. Registries created with Container
Registry can be managed via the standard Docker Registry V2 API and client.

Azure Kubernetes Service is used to host the deployment and service. Clusters created with AKS can be
managed using the standard Kubernetes API and client (kubectl).

Microsoft Machine Learning Server is used to define the REST API for the service and includes Model
Operationalization. This service-oriented web server process listens for requests, which are then handed off
to other background processes that run the actual R code to generate the results. All these processes run on
a single node in this configuration, which is wrapped in a container. For details about using this service
outside a dev or test environment, contact your Microsoft representative.

Machine learning workloads tend to be compute-intensive, both when training and when scoring new data. As a
rule of thumb, try not to run more than one scoring process per core. Machine Learning Server lets you define the

https://github.com/mspnp/architecture-center/blob/master/docs/reference-architectures/ai/realtime-scoring-r.md
https://github.com/Azure/RealtimeRDeployment
https://docs.microsoft.com/azure/container-registry/container-registry-intro
https://docs.docker.com/registry/spec/api/
https://docs.microsoft.com/azure/aks/intro-kubernetes
https://kubernetes.io/docs/reference/
https://docs.microsoft.com/machine-learning-server/what-is-machine-learning-server
https://docs.microsoft.com/machine-learning-server/what-is-operationalization

Security considerations
Network encryptionNetwork encryption

Authentication and authorizationAuthentication and authorization

Separate storageSeparate storage

Monitoring and logging considerations

Cost considerations

number of R processes running in each container. The default is five processes. When creating a relatively simple
model, such as a linear regression with a small number of variables, or a small decision tree, you can increase the
number of processes. Monitor the CPU load on your cluster nodes to determine the appropriate limit on the
number of containers.

A GPU-enabled cluster can speed up some types of workloads, and deep learning models in particular. Not all
workloads can take advantage of GPUs — only those that make heavy use of matrix algebra. For example, tree-
based models, including random forests and boosting models, generally derive no advantage from GPUs.

Some model types such as random forests are massively parallelizable on CPUs. In these cases, speed up the
scoring of a single request by distributing the workload across multiple cores. However, doing so reduces your
capacity to handle multiple scoring requests given a fixed cluster size.

In general, open-source R models store all their data in memory, so ensure that your nodes have enough memory
to accommodate the processes you plan to run concurrently. If you are using Machine Learning Server to fit your
models, use the libraries that can process data on disk, rather than reading it all into memory. This can help reduce
memory requirements significantly. Regardless of whether you use Machine Learning Server or open-source R,
monitor your nodes to ensure that your scoring processes are not memory-starved.

In this reference architecture, HTTPS is enabled for communication with the cluster, and a staging certificate from
Let’s Encrypt is used. For production purposes, substitute your own certificate from an appropriate signing
authority.

Machine Learning Server Model Operationalization requires scoring requests to be authenticated. In this
deployment, a username and password are used. In an enterprise setting, you can enable authentication using
Azure Active Directory or create a separate front end using Azure API Management.

For Model Operationalization to work correctly with Machine Learning Server on containers, you must install a
JSON Web Token (JWT) certificate. This deployment uses a certificate supplied by Microsoft. In a production
setting, supply your own.

For traffic between Container Registry and AKS, consider enabling role-based access control (RBAC) to limit
access privileges to only those needed.

This reference architecture bundles the application (R) and the data (model object and scoring script) into a single
image. In some cases, it may be beneficial to separate these. You can place the model data and code into Azure
blob or file storage, and retrieve them at container initialization. In this case, ensure that the storage account is set
to allow authenticated access only and require HTTPS.

Use the Kubernetes dashboard to monitor the overall status of your AKS cluster. See the cluster’s overview blade
in Azure portal for more details. The GitHub resources also show how to bring up the dashboard from R.

Although the dashboard gives you a view of the overall health of your cluster, it’s also important to track the status
of individual containers. To do this, enable Azure Monitor Insights from the cluster overview blade in Azure portal,
or see Azure Monitor for containers (in preview).

https://letsencrypt.org/
https://docs.microsoft.com/machine-learning-server/what-is-operationalization
https://docs.microsoft.com/azure/active-directory/fundamentals/active-directory-whatis
https://docs.microsoft.com/azure/api-management/api-management-key-concepts
https://docs.microsoft.com/azure/role-based-access-control/overview
https://docs.microsoft.com/azure/storage/common/storage-introduction
https://docs.microsoft.com/azure/aks/kubernetes-dashboard
https://github.com/Azure/RealtimeRDeployment
https://docs.microsoft.com/azure/monitoring/monitoring-container-insights-overview
https://docs.microsoft.com/azure/azure-monitor/insights/container-insights-overview

Deploy the solution

Machine Learning Server is licensed on a per-core basis, and all the cores in the cluster that will run Machine
Learning Server count towards this. If you are an enterprise Machine Learning Server or Microsoft SQL Server
customer, contact your Microsoft representative for pricing details.

An open-source alternative to Machine Learning Server is Plumber, an R package that turns your code into a REST
API. Plumber is less fully featured than Machine Learning Server. For example, by default it doesn't include any
features that provide request authentication. If you use Plumber, it’s recommended that you enable Azure API
Management to handle authentication details.

Besides licensing, the main cost consideration is the Kubernetes cluster's compute resources. The cluster must be
large enough to handle the expected request volume at peak times, but this approach leaves resources idle at other
times. To limit the impact of idle resources, enable the horizontal autoscaler for the cluster using the kubectl tool.
Or use the AKS cluster autoscaler.

The reference implementation of this architecture is available on GitHub. Follow the steps described there to
deploy a simple predictive model as a service.

https://www.rplumber.io
https://docs.microsoft.com/azure/api-management/api-management-key-concepts
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://docs.microsoft.com/azure/aks/autoscaler
https://github.com/Azure/RealtimeRDeployment

Enterprise-grade conversational bot
3/13/2019 • 13 minutes to read • Edit Online

Architecture

Bot logic and user experienceBot logic and user experience

Bot cognition and intelligenceBot cognition and intelligence

This reference architecture describes how to build an enterprise-grade conversational bot (chatbot) using the
Azure Bot Framework. Each bot is different, but there are some common patterns, workflows, and technologies to
be aware of. Especially for a bot to serve enterprise workloads, there are many design considerations beyond just
the core functionality. This article covers the most essential design aspects, and introduces the tools needed to
build a robust, secure, and actively learning bot.

The best practice utility samples used in this architecture are fully open-sourced and available on GitHub.

The architecture shown here uses the following Azure services. Your own bot may not use all of these services, or
may incorporate additional services.

Bot Framework Service (BFS). This service connects your bot to a communication app such as Cortana,
Facebook Messenger, or Slack. It facilitates communication between your bot and the user.
Azure App Service. The bot application logic is hosted in Azure App Service.

Language Understanding (LUIS). Part of Azure Cognitive Services, LUIS enables your bot to understand
natural language by identifying user intents and entities.
Azure Search. Search is a managed service that provides a quick searchable document index.
QnA Maker. QnA Maker is a cloud-based API service that creates a conversational, question-and-answer layer
over your data. Typically, it's loaded with semi-structured content such as FAQs. Use it to create a knowledge
base for answering natural-language questions.
Web app. If your bot needs AI solutions not provided by an existing service, you can implement your own
custom AI and host it as a web app. This provides a web endpoint for your bot to call.

https://github.com/mspnp/architecture-center/blob/master/docs/reference-architectures/ai/conversational-bot.md
https://dev.botframework.com/
file:///T:/oehk/reference-architectures/ai/_images/conversational-bot.png
https://github.com/Microsoft/botbuilder-utils-js
https://docs.microsoft.com/azure/bot-service/bot-builder-basics
https://docs.microsoft.com/azure/app-service/
https://docs.microsoft.com/azure/cognitive-services/luis/
https://docs.microsoft.com/azure/cognitive-services/welcome
https://docs.microsoft.com/azure/search/
https://docs.microsoft.com/azure/cognitive-services/QnAMaker/
https://docs.microsoft.com/azure/app-service/overview

Data ingestionData ingestion

Logging and monitoringLogging and monitoring

Security and governanceSecurity and governance

Quality assurance and enhancementsQuality assurance and enhancements

Design considerations

The bot will rely on raw data that must be ingested and prepared. Consider any of the following options to
orchestrate this process:

Azure Data Factory. Data Factory orchestrates and automates data movement and data transformation.
Logic Apps. Logic Apps is a serverless platform for building workflows that integrate applications, data, and
services. Logic Apps provides data connectors for many applications, including Office 365.
Azure Functions. You can use Azure Functions to write custom serverless code that is invoked by a trigger —
for example, whenever a document is added to blob storage or Cosmos DB.

Application Insights. Use Application Insights to log the bot's application metrics for monitoring, diagnostic,
and analytical purposes.
Azure Blob Storage. Blob storage is optimized for storing massive amounts of unstructured data.
Cosmos DB. Cosmos DB is well-suited for storing semi-structured log data such as conversations.
Power BI. Use Power BI to create monitoring dashboards for your bot.

Azure Active Directory (Azure AD). Users will authenticate through an identity provider such as Azure AD.
The Bot Service handles the authentication flow and OAuth token management. See Add authentication to your
bot via Azure Bot Service.
Azure Key Vault. Store credentials and other secrets using Key Vault.

Azure DevOps. Provides many services for app management, including source control, building, testing,
deployment, and project tracking.
VS Code A lightweight code editor for app development. You can use any other IDE with similar features.

At a high level, a conversational bot can be divided into the bot functionality (the "brain") and a set of surrounding
requirements (the "body"). The brain includes the domain-aware components, including the bot logic and ML
capabilities. Other components are domain agnostic and address non-functional requirements such as CI/CD,
quality assurance, and security.

Before getting into the specifics of this architecture, let's start with the data flow through each subcomponent of
the design. The data flow includes user-initiated and system-initiated data flows.

https://docs.microsoft.com/azure/data-factory/
https://docs.microsoft.com/azure/logic-apps/logic-apps-overview
https://docs.microsoft.com/azure/azure-functions/
https://docs.microsoft.com/azure/azure-functions/functions-triggers-bindings
https://docs.microsoft.com/azure/azure-monitor/app/app-insights-overview
https://docs.microsoft.com/azure/storage/blobs/storage-blobs-introduction
https://docs.microsoft.com/azure/cosmos-db/
https://docs.microsoft.com/power-bi/
https://docs.microsoft.com/azure/active-directory/
https://docs.microsoft.com/azure/bot-service/bot-builder-authentication
https://docs.microsoft.com/azure/key-vault/
https://azure.microsoft.com/solutions/devops/
https://azure.microsoft.com/products/visual-studio-code/

User message flowUser message flow

System Data FlowSystem Data Flow

Building a bot

Ingest dataIngest data

Authentication. Users start by authenticating themselves using whatever mechanism is provided by their channel
of communication with the bot. The bot framework supports many communication channels, including Cortana,
Microsoft Teams, Facebook Messenger, Kik, and Slack. For a list of channels, see Connect a bot to channels. When
you create a bot with Azure Bot Service, the Web Chat channel is automatically configured. This channel allows
users to interact with your bot directly in a web page. You can also connect the bot to a custom app by using the
Direct Line channel. The user's identity is used to provide role-based access control, as well as to serve
personalized content.

User message. Once authenticated, the user sends a message to the bot. The bot reads the message and routes it
to a natural language understanding service such as LUIS. This step gets the intents (what the user wants to do)
and entities (what things the user is interested in). The bot then builds a query that it passes to a service that
serves information, such as Azure Search for document retrieval, QnA Maker for FAQs, or a custom knowledge
base. The bot uses these results to construct a response. To give the best result for a given query, the bot might
make several back-and-forth calls to these remote services.

Response. At this point, the bot has determined the best response and sends it to the user. If the confidence score
of the best-matched answer is low, the response might be a disambiguation question or an acknowledgement that
the bot could not reply adequately.

Logging. When a user request is received or a response is sent, all conversation actions should be logged to a
logging store, along with performance metrics and general errors from external services. These logs will be useful
later when diagnosing issues and improving the system.

Feedback. Another good practice is to collect user feedback and satisfaction scores. As a follow up to the bot's
final response, the bot should ask the user to rate their satisfaction with the reply. Feedback can help you to solve
the cold start problem of natural language understanding, and continually improve the accuracy of responses.

ETL. The bot relies on information and knowledge extracted from the raw data by an ETL process in the backend.
This data might be structured (SQL database), semi-structured (CRM system, FAQs), or unstructured (Word
documents, PDFs, web logs). An ETL subsystem extracts the data on a fixed schedule. The content is transformed
and enriched, then loaded into an intermediary data store, such as Cosmos DB or Azure Blob Storage.

Data in the intermediary store is then indexed into Azure Search for document retrieval, loaded into QnA Maker to
create question and answer pairs, or loaded into a custom web app for unstructured text processing. The data is
also used to train a LUIS model for intent and entity extraction.

Quality assurance. The conversation logs are used to diagnose and fix bugs, provide insight into how the bot is
being used, and track overall performance. Feedback data is useful for retraining the AI models to improve bot
performance.

Before you even write a single line of code, it's important to write a functional specification so the development
team has a clear idea of what the bot is expected to do. The specification should include a reasonably
comprehensive list of user inputs and expected bot responses in various knowledge domains. This living document
will be an invaluable guide for developing and testing your bot.

Next, identify the data sources that will enable the bot to interact intelligently with users. As mentioned earlier,
these data sources could contain structured, semi-structured, or unstructured data sets. When you're getting
started, a good approach is to make a one-off copy of the data to a central store, such as Cosmos DB or Azure
Storage. As you progress, you should create an automated data ingestion pipeline to keep this data current.
Options for an automated ingestion pipeline include Data Factory, Functions, and Logic Apps. Depending on the

https://docs.microsoft.com/azure/bot-service/bot-service-manage-channels
https://docs.microsoft.com/azure/bot-service/bot-service-channel-connect-webchat?view=azure-bot-service-4.0/
https://docs.microsoft.com/azure/bot-service/bot-service-channel-connect-directline
https://docs.microsoft.com/azure/cognitive-services/luis/
https://docs.microsoft.com/azure/search/
https://www.qnamaker.ai/

Core bot logic and UXCore bot logic and UX

Add smarts to your botAdd smarts to your bot

data stores and the schemas, you might use a combination of these approaches.

As you get started, it's reasonable to use the Azure portal to manually create Azure resources. Later on, you should
put more thought into automating the deployment of these resources.

Once you have a specification and some data, it's time to start making your bot into reality. Let's focus on the core
bot logic. This is the code that handles the conversation with the user, including the routing logic, disambiguation
logic, and logging. Start by familiarizing yourself with the Bot Framework, including:

Basic concepts and terminology used in the framework, especially conversations, turns, and activities.
The Bot Connector service, which handles the networking between the bot and your channels.
How conversation state is maintained, either in memory or better yet in a store such as Azure Blob Storage or
Azure Cosmos DB.
Middleware, and how it can be used to hook up your bot with external services, such as Cognitive Services.

For a rich user experience, there are many options.

You can use cards to include buttons, images, carousels, and menus.
A bot can support speech.
You can even embed your bot in an app or website and use the capabilities of the app hosting it.

To get started, you can build your bot online using the Azure Bot Service, selecting from the available C# and
Node.js templates. As your bot gets more sophisticated, however, you will need to create your bot locally then
deploy it to the web. Choose an IDE, such as Visual Studio or Visual Studio Code, and a programming language.
SDKs are available for the following languages:

C#
JavaScript
Java (preview)
Python (preview)

As a starting point, you can download the source code for the bot you created using the Azure Bot Service. You can
also find sample code, from simple echo bots to more sophisticated bots that integrate with various AI services.

For a simple bot with a well-defined list of commands, you might be able to use a rules-based approach to parse
the user input via regex. This has the advantage of being deterministic and understandable. However, when your
bot needs to understand the intents and entities of a more natural-language message, there are AI services that
can help.

LUIS is specifically designed to understand user intents and entities. You train it with a moderately sized
collection of relevant user input and desired responses, and it returns the intents and entities for a user's
given message.

Azure Search can work alongside LUIS. Using Search, you create searchable indexes over all relevant data.
The bot queries these indexes for the entities extracted by LUIS. Azure Search also supports synonyms,
which can widen the net of correct word mappings.

QnA Maker is another service that is designed to return answers for given questions. It's typically trained
over semi-structured data such as FAQs.

Your bot can use other AI services to further enrich the user experience. The Cognitive Services suite of pre-built
AI services (which includes LUIS and QnA Maker) has services for vision, speech, language, search, and location.
You can quickly add functionality such as language translation, spell checking, sentiment analysis, OCR, location
awareness, and content moderation. These services can be wired up as middleware modules in your bot to interact

https://dev.botframework.com/
https://docs.microsoft.com/azure/bot-service/bot-service-design-conversation-flow
https://docs.microsoft.com/azure/bot-service/bot-builder-basics#defining-a-turn
https://docs.microsoft.com/azure/bot-service/rest-api/bot-framework-rest-connector-activities
https://docs.microsoft.com/azure/bot-service/rest-api/bot-framework-rest-connector-quickstart
https://docs.microsoft.com/azure/bot-service/bot-builder-concept-state
https://docs.microsoft.com/azure/bot-service/bot-builder-basics#middleware
https://docs.microsoft.com/azure/bot-service/bot-service-design-user-experience
https://docs.microsoft.com/azure/bot-service/bot-service-design-user-experience#cards
https://docs.microsoft.com/azure/bot-service/bot-service-quickstart
https://github.com/microsoft/botbuilder-dotnet
https://github.com/microsoft/botbuilder-js
https://github.com/microsoft/botbuilder-java
https://github.com/microsoft/botbuilder-python
https://github.com/Microsoft/BotBuilder-Samples/blob/master/README.md
https://docs.microsoft.com/azure/cognitive-services/luis/luis-concept-utterance
https://docs.microsoft.com/azure/search/search-synonyms
https://azure.microsoft.com/en-us/services/cognitive-services/?v=18.44a

Quality assurance and enhancement

NOTENOTE

Availability considerations

Security considerations

more naturally and intelligently with the user.

Another option is to integrate your own custom AI service. This approach is more complex, but gives you complete
flexibility in terms of the machine learning algorithm, training, and model. For example, you could implement your
own topic modeling and use algorithm such as LDA to find similar or relevant documents. A good approach is to
expose your custom AI solution as a web service endpoint, and call the endpoint from the core bot logic. The web
service could be hosted in App Service or in a cluster of VMs. Azure Machine Learning provides a number of
services and libraries to assist you in training and deploying your models.

Logging. Log user conversations with the bot, including the underlying performance metrics and any errors.
These logs will prove invaluable for debugging issues, understanding user interactions, and improving the system.
Different data stores might be appropriate for different types of logs. For example, consider Application Insights
for web logs, Cosmos DB for conversations, and Azure Storage for large payloads. See Write directly to Azure
Storage.

Feedback. It's also important to understand how satisfied users are with their bot interactions. If you have a
record of user feedback, you can use this data to focus your efforts on improving certain interactions and
retraining the AI models for improved performance. Use the feedback to retrain the models, such as LUIS, in your
system.

Testing. Testing a bot involves unit tests, integration tests, regression tests, and functional tests. For testing, we
recommend recording real HTTP responses from external services, such as Azure Search or QnA Maker, so they
can be played back during unit testing without needing to make real network calls to external services.

To jump-start your development in these areas, look at the Botbuilder Utils for JavaScript. This repo contains sample utility
code for bots built with Microsoft Bot Framework v4 and running Node.js. It includes the following packages:

Cosmos DB Logging Store. Shows how to store and query bot logs in Cosmos DB.
Application Insights Logging Store. Shows how to store and query bot logs in Application Insights.
Feedback Collection Middleware. Sample middleware that provides a bot user feedback-request mechanism.
Http Test Recorder. Records HTTP traffic from services external to the bot. It comes pre-built with support for LUIS, Azure
Search, and QnAMaker, but extensions are available to support any service. This helps you automate bot testing.

These packages are provided as utility sample code, and come with no guarantee of support or updates.

As you roll out new features or bug fixes to your bot, it's best to use multiple deployment environments, such as
staging and production. Using deployment slots from Azure DevOps allows you to do this with zero downtime.
You can test your latest upgrades in the staging environment before swapping them to the production
environment. In terms of handling load, App Service is designed to scale up or out manually or automatically.
Because your bot is hosted in Microsoft's global datacenter infrastructure, the App Service SLA promises high
availability.

As with any other application, the bot can be designed to handle sensitive data. Therefore, restrict who can sign in
and use the bot. Also limit which data can be accessed, based on the user's identity or role. Use Azure AD for
identity and access control and Key Vault to manage keys and secrets.

https://wikipedia.org/wiki/Latent_Dirichlet_allocation/
https://docs.microsoft.com/azure/machine-learning/service/
https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/training
https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/deployment
https://docs.microsoft.com/azure/bot-service/bot-builder-howto-v4-storage
https://github.com/Microsoft/botbuilder-utils-js
https://dev.botframework.com/
https://github.com/Microsoft/botbuilder-utils-js/tree/master/packages/botbuilder-transcript-cosmosdb
https://github.com/Microsoft/botbuilder-utils-js/tree/master/packages/botbuilder-transcript-app-insights
https://github.com/Microsoft/botbuilder-utils-js/tree/master/packages/botbuilder-feedback
https://github.com/Microsoft/botbuilder-utils-js/tree/master/packages/botbuilder-http-test-recorder
https://docs.microsoft.com/azure/app-service/deploy-staging-slots/
https://azure.microsoft.com/solutions/devops/

Manageability considerations
Monitoring and reportingMonitoring and reporting

Automated resource deploymentAutomated resource deployment

Continuous bot deploymentContinuous bot deployment

Once your bot is running in production, you will need a DevOps team to keep it that way. Continually monitor the
system to ensure the bot operates at peak performance. Use the logs sent to Application Insights or Cosmos DB to
create monitoring dashboards, either using Application Insights itself, Power BI, or a custom web app dashboard.
Send alerts to the DevOps team if critical errors occur or performance falls below an acceptable threshold.

The bot itself is only part of a larger system that provides it with the latest data and ensures its proper operation.
All of these other Azure resources — data orchestration services such as Data Factory, storage services such as
Cosmos DB, and so forth — must be deployed. Azure Resource Manager provides a consistent management layer
that you can access through the Azure portal, PowerShell, or the Azure CLI. For speed and consistency, it's best to
automate your deployment using one of these approaches.

You can deploy the bot logic directly from your IDE or from a command line, such as the Azure CLI. As your bot
matures, however, it's best to use a continual deployment process using a CI/CD solution such as Azure DevOps,
as described in the article Set up continuous deployment. This is a good way to ease the friction in testing new
features and fixes in your bot in a near-production environment. It's also a good idea to have multiple deployment
environments, typically at least staging and production. Azure DevOps supports this approach.

https://docs.microsoft.com/azure/bot-service/bot-service-build-continuous-deployment

Build a real-time recommendation API on Azure
3/13/2019 • 6 minutes to read • Edit Online

This reference architecture shows how to train a recommendation model using Azure Databricks and deploy it as
an API by using Azure Cosmos DB, Azure Machine Learning, and Azure Kubernetes Service (AKS). This
architecture can be generalized for most recommendation engine scenarios, including recommendations for
products, movies, and news.

A reference implementation for this architecture is available on GitHub.

Scenario: A media organization wants to provide movie or video recommendations to its users. By providing
personalized recommendations, the organization meets several business goals, including increased click-through
rates, increased engagement on site, and higher user satisfaction.

This reference architecture is for training and deploying a real-time recommender service API that can provide the
top 10 movie recommendations for a given user.

The data flow for this recommendation model is as follows:

1. Track user behaviors. For example, a backend service might log when a user rates a movie or clicks a
product or news article.

2. Load the data into Azure Databricks from an available data source.

3. Prepare the data and split it into training and testing sets to train the model. (This guide describes options
for splitting data.)

4. Fit the Spark Collaborative Filtering model to the data.

5. Evaluate the quality of the model using rating and ranking metrics. (This guide provides details about the
metrics you can evaluate your recommender on.)

https://github.com/mspnp/architecture-center/blob/master/docs/reference-architectures/ai/real-time-recommendation.md
https://github.com/Microsoft/Recommenders/blob/master/notebooks/05_operationalize/als_movie_o16n.ipynb
https://docs.azuredatabricks.net/spark/latest/data-sources/index.html
https://github.com/Microsoft/Recommenders/blob/master/notebooks/01_prepare_data/data_split.ipynb
https://spark.apache.org/docs/latest/ml-collaborative-filtering.html
https://github.com/Microsoft/Recommenders/blob/master/notebooks/03_evaluate/evaluation.ipynb

Architecture

Performance considerations

6. Precompute the top 10 recommendations per user and store as a cache in Azure Cosmos DB.

7. Deploy an API service to AKS using the Azure Machine Learning APIs to containerize and deploy the API.

8. When the backend service gets a request from a user, call the recommendations API hosted in AKS to get
the top 10 recommendations and display them to the user.

This architecture consists of the following components:

Azure Databricks. Databricks is a development environment used to prepare input data and train the
recommender model on a Spark cluster. Azure Databricks also provides an interactive workspace to run and
collaborate on notebooks for any data processing or machine learning tasks.

Azure Kubernetes Service (AKS). AKS is used to deploy and operationalize a machine learning model service API
on a Kubernetes cluster. AKS hosts the containerized model, providing scalability that meets your throughput
requirements, identity and access management, and logging and health monitoring.

Azure Cosmos DB. Cosmos DB is a globally distributed database service used to store the top 10 recommended
movies for each user. Azure Cosmos DB is well-suited for this scenario, because it provides low latency (10 ms at
99th percentile) to read the top recommended items for a given user.

Azure Machine Learning Service. This service is used to track and manage machine learning models, and then
package and deploy these models to a scalable AKS environment.

Microsoft Recommenders. This open-source repository contains utility code and samples to help users get started
in building, evaluating, and operationalizing a recommender system.

Performance is a primary consideration for real-time recommendations, because recommendations usually fall in
the critical path of the request a user makes on your site.

The combination of AKS and Azure Cosmos DB enables this architecture to provide a good starting point to
provide recommendations for a medium-sized workload with minimal overhead. Under a load test with 200
concurrent users, this architecture provides recommendations at a median latency of about 60 ms and performs at
a throughput of 180 requests per second. The load test was run against the default deployment configuration (a 3x
D3 v2 AKS cluster with 12 vCPUs, 42 GB of memory, and 11,000 Request Units (RUs) per second provisioned for
Azure Cosmos DB).

https://docs.microsoft.com/azure/azure-databricks/what-is-azure-databricks
https://docs.microsoft.com/azure/aks/intro-kubernetes
https://docs.microsoft.com/azure/cosmos-db/introduction
https://docs.microsoft.com/azure/machine-learning/service/
https://github.com/Microsoft/Recommenders
https://docs.microsoft.com/azure/cosmos-db/request-units

Scalability considerations

Azure Cosmos DB is recommended for its turnkey global distribution and usefulness in meeting any database
requirements your app has. For slightly faster latency, consider using Azure Redis Cache instead of Azure Cosmos
DB to serve lookups. Redis Cache can improve performance of systems that rely highly on data in back-end stores.

If you don't plan to use Spark, or you have a smaller workload where you don't need distribution, consider using
Data Science Virtual Machine (DSVM) instead of Azure Databricks. DSVM is an Azure virtual machine with deep
learning frameworks and tools for machine learning and data science. As with Azure Databricks, any model you
create in a DSVM can be operationalized as a service on AKS via Azure Machine Learning.

During training, provision a larger fixed-size Spark cluster in Azure Databricks or configure autoscaling. When
autoscaling is enabled, Databricks monitors the load on your cluster and scales up and downs when required.
Provision or scale out a larger cluster if you have a large data size and you want to reduce the amount of time it
takes for data preparation or modeling tasks.

Scale the AKS cluster to meet your performance and throughput requirements. Take care to scale up the number
of pods to fully utilize the cluster, and to scale the nodes of the cluster to meet the demand of your service. For
more information on how to scale your cluster to meet the performance and throughput requirements of your

https://github.com/jessebenson/azure-performance
https://docs.microsoft.com/azure/redis-cache/cache-overview
https://docs.microsoft.com/azure/machine-learning/data-science-virtual-machine/overview
https://docs.azuredatabricks.net/user-guide/clusters/sizing.html
https://docs.microsoft.com/azure/aks/tutorial-kubernetes-scale
https://docs.microsoft.com/azure/aks/scale-cluster

Cost considerations

Deploy the solution

recommender service, see Scaling Azure Container Service Clusters.

To manage Azure Cosmos DB performance, estimate the number of reads required per second, and provision the
number of RUs per second (throughput) needed. Use best practices for partitioning and horizontal scaling.

The main drivers of cost in this scenario are:

The Azure Databricks cluster size required for training.
The AKS cluster size required to meet your performance requirements.
Azure Cosmos DB RUs provisioned to meet your performance requirements.

Manage the Azure Databricks costs by retraining less frequently and turning off the Spark cluster when not in use.
The AKS and Azure Cosmos DB costs are tied to the throughput and performance required by your site and will
scale up and down depending on the volume of traffic to your site.

To deploy this architecture, follow the Azure Databricks instructions in the setup document. Briefly, the
instructions require you to:

1. Create an Azure Databricks workspace.

2. Create a new cluster with the following configuration in Azure Databricks:

Cluster mode: Standard
Databricks Runtime Version: 4.3 (includes Apache Spark 2.3.1, Scala 2.11)
Python Version: 3
Driver Type: Standard_DS3_v2
Worker Type: Standard_DS3_v2 (min and max as required)
Auto Termination: (as required)
Spark Config: (as required)
Environment Variables: (as required)

3. Create a personal access token within the Azure Databricks workspace. See the Azure Databricks
authentication documentation for details.

4. Clone the Microsoft Recommenders repository into an environment where you can execute scripts (e.g.
your local computer).

5. Follow the Quick install setup instructions to install the relevant libraries on Azure Databricks.

6. Follow the Quick install setup instructions to prepare Azure Databricks for operationalization.

7. Import the ALS Movie Operationalization notebook into your workspace. After logging into your Azure
Databricks Workspace, do the following:

a. Click Home on the left side of the workspace.

b. Right-click on white space in your home directory. Select Import.

c. Select URL, and paste the following into the text field:
https://github.com/Microsoft/Recommenders/blob/master/notebooks/05_operationalize/als_movie_o16n.ipynb

d. Click Import.

8. Open the notebook within Azure Databricks and attach the configured cluster.

https://blogs.technet.microsoft.com/machinelearning/2018/03/20/scaling-azure-container-service-cluster/
https://docs.microsoft.com/azure/cosmos-db/request-units
https://docs.microsoft.com/azure/cosmos-db/partition-data
https://github.com/Microsoft/Recommenders/blob/master/SETUP.md#repository-installation
https://docs.azuredatabricks.net/getting-started/index.html
https://docs.azuredatabricks.net/getting-started/index.html
https://docs.azuredatabricks.net/api/latest/authentication.html#generate-a-token
https://github.com/Microsoft/Recommenders
https://github.com/Microsoft/Recommenders/blob/master/SETUP.md#repository-installation
https://github.com/Microsoft/Recommenders/blob/master/SETUP.md#prepare-azure-databricks-for-operationalization
https://github.com/Microsoft/Recommenders/blob/master/notebooks/05_operationalize/als_movie_o16n.ipynb

Related architectures

9. Run the notebook to create the Azure resources required to create a recommendation API that provides the
top-10 movie recommendations for a given user.

We have also built a reference architecture that uses Spark and Azure Databricks to execute scheduled batch-
scoring processes. See that reference architecture to understand a recommended approach for generating new
recommendations routinely.

https://docs.microsoft.com/azure/architecture/reference-architectures/ai/batch-scoring-databricks

Enterprise BI in Azure with SQL Data Warehouse
3/13/2019 • 11 minutes to read • Edit Online

Architecture

Data sourceData source

Ingestion and data storageIngestion and data storage

Analysis and reportingAnalysis and reporting

This reference architecture implements an extract, load, and transform (ELT) pipeline that moves data from an on-
premises SQL Server database into SQL Data Warehouse and transforms the data for analysis.

A reference implementation for this architecture is available on GitHub.

Scenario: An organization has a large OLTP data set stored in a SQL Server database on premises. The
organization wants to use SQL Data Warehouse to perform analysis using Power BI.

This reference architecture is designed for one-time or on-demand jobs. If you need to move data on a continuing
basis (hourly or daily), we recommend using Azure Data Factory to define an automated workflow. For a reference
architecture that uses Data Factory, see Automated enterprise BI with SQL Data Warehouse and Azure Data
Factory.

The architecture consists of the following components.

SQL Server. The source data is located in a SQL Server database on premises. To simulate the on-premises
environment, the deployment scripts for this architecture provision a VM in Azure with SQL Server installed. The
Wide World Importers OLTP sample database is used as the source data.

Blob Storage. Blob storage is used as a staging area to copy the data before loading it into SQL Data Warehouse.

Azure SQL Data Warehouse. SQL Data Warehouse is a distributed system designed to perform analytics on
large data. It supports massive parallel processing (MPP), which makes it suitable for running high-performance
analytics.

Azure Analysis Services. Analysis Services is a fully managed service that provides data modeling capabilities.
Use Analysis Services to create a semantic model that users can query. Analysis Services is especially useful in a BI
dashboard scenario. In this architecture, Analysis Services reads data from the data warehouse to process the
semantic model, and efficiently serves dashboard queries. It also supports elastic concurrency, by scaling out
replicas for faster query processing.

https://github.com/mspnp/architecture-center/blob/master/docs/reference-architectures/data/enterprise-bi-sqldw.md
https://github.com/mspnp/reference-architectures/tree/master/data/enterprise_bi_sqldw
https://docs.microsoft.com/sql/sample/world-wide-importers/wide-world-importers-oltp-database
https://docs.microsoft.com/azure/sql-data-warehouse/
https://docs.microsoft.com/azure/analysis-services/

AuthenticationAuthentication

Data pipeline

NOTENOTE

Export data from SQL ServerExport data from SQL Server

Currently, Azure Analysis Services supports tabular models but not multidimensional models. Tabular models use
relational modeling constructs (tables and columns), whereas multidimensional models use OLAP modeling
constructs (cubes, dimensions, and measures). If you require multidimensional models, use SQL Server Analysis
Services (SSAS). For more information, see Comparing tabular and multidimensional solutions.

Power BI. Power BI is a suite of business analytics tools to analyze data for business insights. In this architecture, it
queries the semantic model stored in Analysis Services.

Azure Active Directory (Azure AD) authenticates users who connect to the Analysis Services server through
Power BI.

This reference architecture uses the WorldWideImporters sample database as a data source. The data pipeline has
the following stages:

1. Export the data from SQL Server to flat files (bcp utility).
2. Copy the flat files to Azure Blob Storage (AzCopy).
3. Load the data into SQL Data Warehouse (PolyBase).
4. Transform the data into a star schema (T-SQL).
5. Load a semantic model into Analysis Services (SQL Server Data Tools).

For steps 1 – 3, consider using Redgate Data Platform Studio. Data Platform Studio applies the most appropriate
compatibility fixes and optimizations, so it's the quickest way to get started with SQL Data Warehouse. For more information,
see Load data with Redgate Data Platform Studio.

The next sections describe these stages in more detail.

The bcp (bulk copy program) utility is a fast way to create flat text files from SQL tables. In this step, you select the
columns that you want to export, but don't transform the data. Any data transformations should happen in SQL
Data Warehouse.

Recommendations:

If possible, schedule data extraction during off-peak hours, to minimize resource contention in the production
environment.

https://docs.microsoft.com/sql/analysis-services/comparing-tabular-and-multidimensional-solutions-ssas
https://docs.microsoft.com/sql/sample/world-wide-importers/wide-world-importers-oltp-database
https://docs.microsoft.com/azure/sql-data-warehouse/sql-data-warehouse-load-with-redgate
https://docs.microsoft.com/sql/tools/bcp-utility

Copy flat files into blob storageCopy flat files into blob storage

Load data into SQL Data WarehouseLoad data into SQL Data Warehouse

Avoid running bcp on the database server. Instead, run it from another machine. Write the files to a local drive.
Ensure that you have sufficient I/O resources to handle the concurrent writes. For best performance, export the
files to dedicated fast storage drives.

You can speed up the network transfer by saving the exported data in Gzip compressed format. However, loading
compressed files into the warehouse is slower than loading uncompressed files, so there is a tradeoff between
faster network transfer versus faster loading. If you decide to use Gzip compression, don't create a single Gzip file.
Instead, split the data into multiple compressed files.

The AzCopy utility is designed for high-performance copying of data into Azure blob storage.

Recommendations:

Create the storage account in a region near the location of the source data. Deploy the storage account and the
SQL Data Warehouse instance in the same region.

Don't run AzCopy on the same machine that runs your production workloads, because the CPU and I/O
consumption can interfere with the production workload.

Test the upload first to see what the upload speed is like. You can use the /NC option in AzCopy to specify the
number of concurrent copy operations. Start with the default value, then experiment with this setting to tune the
performance. In a low-bandwidth environment, too many concurrent operations can overwhelm the network
connection and prevent the operations from completing successfully.

AzCopy moves data to storage over the public internet. If this isn't fast enough, consider setting up an
ExpressRoute circuit. ExpressRoute is a service that routes your data through a dedicated private connection to
Azure. Another option, if your network connection is too slow, is to physically ship the data on disk to an Azure
datacenter. For more information, see Transferring data to and from Azure.

During a copy operation, AzCopy creates a temporary journal file, which enables AzCopy to restart the operation
if it gets interrupted (for example, due to a network error). Make sure there is enough disk space to store the
journal files. You can use the /Z option to specify where the journal files are written.

Use PolyBase to load the files from blob storage into the data warehouse. PolyBase is designed to leverage the
MPP (Massively Parallel Processing) architecture of SQL Data Warehouse, which makes it the fastest way to load
data into SQL Data Warehouse.

Loading the data is a two-step process:

1. Create a set of external tables for the data. An external table is a table definition that points to data stored
outside of the warehouse — in this case, the flat files in blob storage. This step does not move any data into the
warehouse.

2. Create staging tables, and load the data into the staging tables. This step copies the data into the warehouse.

Recommendations:

Consider SQL Data Warehouse when you have large amounts of data (more than 1 TB) and are running an
analytics workload that will benefit from parallelism. SQL Data Warehouse is not a good fit for OLTP workloads or
smaller data sets (< 250GB). For data sets less than 250GB, consider Azure SQL Database or SQL Server. For
more information, see Data warehousing.

Create the staging tables as heap tables, which are not indexed. The queries that create the production tables will
result in a full table scan, so there is no reason to index the staging tables.

PolyBase automatically takes advantage of parallelism in the warehouse. The load performance scales as you
increase DWUs. For best performance, use a single load operation. There is no performance benefit to breaking

https://docs.microsoft.com/azure/storage/common/storage-use-azcopy
https://docs.microsoft.com/azure/expressroute/
https://docs.microsoft.com/azure/architecture/data-guide/scenarios/data-transfer
https://docs.microsoft.com/sql/relational-databases/polybase/polybase-guide

Transform the dataTransform the data

NOTENOTE

Load the semantic modelLoad the semantic model

Use Power BI to visualize the dataUse Power BI to visualize the data

the input data into chunks and running multiple concurrent loads.

PolyBase can read Gzip compressed files. However, only a single reader is used per compressed file, because
uncompressing the file is a single-threaded operation. Therefore, avoid loading a single large compressed file.
Instead, split the data into multiple compressed files, in order to take advantage of parallelism.

Be aware of the following limitations:

PolyBase supports a maximum column size of varchar(8000) , nvarchar(4000) , or varbinary(8000) . If you
have data that exceeds these limits, one option is to break the data up into chunks when you export it, and
then reassemble the chunks after import.

PolyBase uses a fixed row terminator of \n or newline. This can cause problems if newline characters appear
in the source data.

Your source data schema might contain data types that are not supported in SQL Data Warehouse.

To work around these limitations, you can create a stored procedure that performs the necessary conversions.
Reference this stored procedure when you run bcp. Alternatively, Redgate Data Platform Studio automatically
converts data types that aren’t supported in SQL Data Warehouse.

For more information, see the following articles:

Best practices for loading data into Azure SQL Data Warehouse.
Migrate your schemas to SQL Data Warehouse
Guidance for defining data types for tables in SQL Data Warehouse

Transform the data and move it into production tables. In this step, the data is transformed into a star schema with
dimension tables and fact tables, suitable for semantic modeling.

Create the production tables with clustered columnstore indexes, which offer the best overall query performance.
Columnstore indexes are optimized for queries that scan many records. Columnstore indexes don't perform as
well for singleton lookups (that is, looking up a single row). If you need to perform frequent singleton lookups, you
can add a non-clustered index to a table. Singleton lookups can run significantly faster using a non-clustered index.
However, singleton lookups are typically less common in data warehouse scenarios than OLTP workloads. For
more information, see Indexing tables in SQL Data Warehouse.

Clustered columnstore tables do not support varchar(max) , nvarchar(max) , or varbinary(max) data types. In that
case, consider a heap or clustered index. You might put those columns into a separate table.

Because the sample database is not very large, we created replicated tables with no partitions. For production
workloads, using distributed tables is likely to improve query performance. See Guidance for designing distributed
tables in Azure SQL Data Warehouse. Our example scripts run the queries using a static resource class.

Load the data into a tabular model in Azure Analysis Services. In this step, you create a semantic data model by
using SQL Server Data Tools (SSDT). You can also create a model by importing it from a Power BI Desktop file.
Because SQL Data Warehouse does not support foreign keys, you must add the relationships to the semantic
model, so that you can join across tables.

Power BI supports two options for connecting to Azure Analysis Services:

Import. The data is imported into the Power BI model.

https://docs.microsoft.com/azure/sql-data-warehouse/sql-data-warehouse-load-with-redgate
https://docs.microsoft.com/azure/sql-data-warehouse/guidance-for-loading-data
https://docs.microsoft.com/azure/sql-data-warehouse/sql-data-warehouse-migrate-schema
https://docs.microsoft.com/azure/sql-data-warehouse/sql-data-warehouse-tables-data-types
https://docs.microsoft.com/azure/sql-data-warehouse/sql-data-warehouse-tables-index
https://docs.microsoft.com/azure/sql-data-warehouse/sql-data-warehouse-tables-distribute
https://docs.microsoft.com/azure/sql-data-warehouse/resource-classes-for-workload-management

Scalability considerations
SQL Data WarehouseSQL Data Warehouse

Analysis ServicesAnalysis Services

Security considerations
IP whitelisting of Analysis Services clientsIP whitelisting of Analysis Services clients

AuthorizationAuthorization

Live Connection. Data is pulled directly from Analysis Services.

We recommend Live Connection because it doesn't require copying data into the Power BI model. Also, using
DirectQuery ensures that results are always consistent with the latest source data. For more information, see
Connect with Power BI.

Recommendations:

Avoid running BI dashboard queries directly against the data warehouse. BI dashboards require very low response
times, which direct queries against the warehouse may be unable to satisfy. Also, refreshing the dashboard will
count against the number of concurrent queries, which could impact performance.

Azure Analysis Services is designed to handle the query requirements of a BI dashboard, so the recommended
practice is to query Analysis Services from Power BI.

With SQL Data Warehouse, you can scale out your compute resources on demand. The query engine optimizes
queries for parallel processing based on the number of compute nodes, and moves data between nodes as
necessary. For more information, see Manage compute in Azure SQL Data Warehouse.

For production workloads, we recommend the Standard Tier for Azure Analysis Services, because it supports
partitioning and DirectQuery. Within a tier, the instance size determines the memory and processing power.
Processing power is measured in Query Processing Units (QPUs). Monitor your QPU usage to select the
appropriate size. For more information, see Monitor server metrics.

Under high load, query performance can become degraded due to query concurrency. You can scale out Analysis
Services by creating a pool of replicas to process queries, so that more queries can be performed concurrently. The
work of processing the data model always happens on the primary server. By default, the primary server also
handles queries. Optionally, you can designate the primary server to run processing exclusively, so that the query
pool handles all queries. If you have high processing requirements, you should separate the processing from the
query pool. If you have high query loads, and relatively light processing, you can include the primary server in the
query pool. For more information, see Azure Analysis Services scale-out.

To reduce the amount of unnecessary processing, consider using partitions to divide the tabular model into logical
parts. Each partition can be processed separately. For more information, see Partitions.

Consider using the Analysis Services firewall feature to whitelist client IP addresses. If enabled, the firewall blocks
all client connections other than those specified in the firewall rules. The default rules whitelist the Power BI
service, but you can disable this rule if desired. For more information, see Hardening Azure Analysis Services with
the new firewall capability.

Azure Analysis Services uses Azure Active Directory (Azure AD) to authenticate users who connect to an Analysis
Services server. You can restrict what data a particular user is able to view, by creating roles and then assigning
Azure AD users or groups to those roles. For each role, you can:

Protect tables or individual columns.
Protect individual rows based on filter expressions.

https://docs.microsoft.com/azure/analysis-services/analysis-services-connect-pbi
https://docs.microsoft.com/azure/sql-data-warehouse/sql-data-warehouse-manage-compute-overview
https://docs.microsoft.com/azure/analysis-services/analysis-services-monitor
https://docs.microsoft.com/azure/analysis-services/analysis-services-scale-out
https://docs.microsoft.com/sql/analysis-services/tabular-models/partitions-ssas-tabular
https://azure.microsoft.com/blog/hardening-azure-analysis-services-with-the-new-firewall-capability/

Deploy the solution

Next steps

Related resources

For more information, see Manage database roles and users.

To the deploy and run the reference implementation, follow the steps in the GitHub readme. It deploys the
following:

A Windows VM to simulate an on-premises database server. It includes SQL Server 2017 and related tools,
along with Power BI Desktop.
An Azure storage account that provides Blob storage to hold data exported from the SQL Server database.
An Azure SQL Data Warehouse instance.
An Azure Analysis Services instance.

Use Azure Data Factory to automate the ELT pipeline. See Automated enterprise BI with SQL Data Warehouse
and Azure Data Factory.

You may want to review the following Azure example scenarios that demonstrate specific solutions using some of
the same technologies:

Data warehousing and analytics for sales and marketing
Hybrid ETL with existing on-premises SSIS and Azure Data Factory

https://docs.microsoft.com/azure/analysis-services/analysis-services-database-users
https://github.com/mspnp/reference-architectures/tree/master/data/enterprise_bi_sqldw
https://docs.microsoft.com/azure/architecture/example-scenario
https://docs.microsoft.com/azure/architecture/example-scenario/data/data-warehouse
https://docs.microsoft.com/azure/architecture/example-scenario/data/hybrid-etl-with-adf

Automated enterprise BI with SQL Data Warehouse
and Azure Data Factory
3/13/2019 • 10 minutes to read • Edit Online

Architecture

Data sourcesData sources

Ingestion and data storageIngestion and data storage

This reference architecture shows how to perform incremental loading in an extract, load, and transform (ELT)
pipeline. It uses Azure Data Factory to automate the ELT pipeline. The pipeline incrementally moves the latest
OLTP data from an on-premises SQL Server database into SQL Data Warehouse. Transactional data is
transformed into a tabular model for analysis.

A reference implementation for this architecture is available on GitHub.

This architecture builds on the one shown in Enterprise BI with SQL Data Warehouse, but adds some features that
are important for enterprise data warehousing scenarios.

Automation of the pipeline using Data Factory.
Incremental loading.
Integrating multiple data sources.
Loading binary data such as geospatial data and images.

The architecture consists of the following components.

On-premises SQL Server. The source data is located in a SQL Server database on premises. To simulate the on-
premises environment, the deployment scripts for this architecture provision a virtual machine in Azure with SQL
Server installed. The Wide World Importers OLTP sample database is used as the source database.

External data. A common scenario for data warehouses is to integrate multiple data sources. This reference
architecture loads an external data set that contains city populations by year, and integrates it with the data from
the OLTP database. You can use this data for insights such as: "Does sales growth in each region match or exceed
population growth?"

https://github.com/mspnp/architecture-center/blob/master/docs/reference-architectures/data/enterprise-bi-adf.md
https://www.microsoft.com/en-us/videoplayer/embed/RE2Gnz2
https://github.com/mspnp/azure-data-factory-sqldw-elt-pipeline
https://docs.microsoft.com/sql/sample/world-wide-importers/wide-world-importers-oltp-database

Analysis and reportingAnalysis and reporting

AuthenticationAuthentication

Data pipeline

Incremental loading

Blob Storage. Blob storage is used as a staging area for the source data before loading it into SQL Data
Warehouse.

Azure SQL Data Warehouse. SQL Data Warehouse is a distributed system designed to perform analytics on
large data. It supports massive parallel processing (MPP), which makes it suitable for running high-performance
analytics.

Azure Data Factory. Data Factory is a managed service that orchestrates and automates data movement and
data transformation. In this architecture, it coordinates the various stages of the ELT process.

Azure Analysis Services. Analysis Services is a fully managed service that provides data modeling capabilities.
The semantic model is loaded into Analysis Services.

Power BI. Power BI is a suite of business analytics tools to analyze data for business insights. In this architecture,
it queries the semantic model stored in Analysis Services.

Azure Active Directory (Azure AD) authenticates users who connect to the Analysis Services server through
Power BI.

Data Factory can use also use Azure AD to authenticate to SQL Data Warehouse, by using a service principal or
Managed Service Identity (MSI). For simplicity, the example deployment uses SQL Server authentication.

In Azure Data Factory, a pipeline is a logical grouping of activities used to coordinate a task — in this case, loading
and transforming data into SQL Data Warehouse.

This reference architecture defines a master pipeline that runs a sequence of child pipelines. Each child pipeline
loads data into one or more data warehouse tables.

When you run an automated ETL or ELT process, it's most efficient to load only the data that changed since the
previous run. This is called an incremental load, as opposed to a full load that loads all of the data. To perform an
incremental load, you need a way to identify which data has changed. The most common approach is to use a high
water mark value, which means tracking the latest value of some column in the source table, either a datetime
column or a unique integer column.

https://docs.microsoft.com/azure/sql-data-warehouse/
https://docs.microsoft.com/azure/data-factory
https://docs.microsoft.com/azure/analysis-services/
https://docs.microsoft.com/azure/data-factory

NOTENOTE

Data cleansing

Starting with SQL Server 2016, you can use temporal tables. These are system-versioned tables that keep a full
history of data changes. The database engine automatically records the history of every change in a separate
history table. You can query the historical data by adding a FOR SYSTEM_TIME clause to a query. Internally, the
database engine queries the history table, but this is transparent to the application.

For earlier versions of SQL Server, you can use Change Data Capture (CDC). This approach is less convenient than temporal
tables, because you have to query a separate change table, and changes are tracked by a log sequence number, rather than
a timestamp.

Temporal tables are useful for dimension data, which can change over time. Fact tables usually represent an
immutable transaction such as a sale, in which case keeping the system version history doesn't make sense.
Instead, transactions usually have a column that represents the transaction date, which can be used as the
watermark value. For example, in the Wide World Importers OLTP database, the Sales.Invoices and
Sales.InvoiceLines tables have a LastEditedWhen field that defaults to sysdatetime() .

Here is the general flow for the ELT pipeline:

1. For each table in the source database, track the cutoff time when the last ELT job ran. Store this information
in the data warehouse. (On initial setup, all times are set to '1-1-1900'.)

2. During the data export step, the cutoff time is passed as a parameter to a set of stored procedures in the
source database. These stored procedures query for any records that were changed or created after the
cutoff time. For the Sales fact table, the LastEditedWhen column is used. For the dimension data, system-
versioned temporal tables are used.

3. When the data migration is complete, update the table that stores the cutoff times.

It's also useful to record a lineage for each ELT run. For a given record, the lineage associates that record with the
ELT run that produced the data. For each ETL run, a new lineage record is created for every table, showing the
starting and ending load times. The lineage keys for each record are stored in the dimension and fact tables.

After a new batch of data is loaded into the warehouse, refresh the Analysis Services tabular model. See
Asynchronous refresh with the REST API.

Data cleansing should be part of the ELT process. In this reference architecture, one source of bad data is the city
population table, where some cities have zero population, perhaps because no data was available. During
processing, the ELT pipeline removes those cities from the city population table. Perform data cleansing on staging
tables, rather than external tables.

Here is the stored procedure that removes the cities with zero population from the City Population table. (You can
find the source file here.)

https://docs.microsoft.com/sql/relational-databases/tables/temporal-tables
https://docs.microsoft.com/sql/relational-databases/track-changes/about-change-data-capture-sql-server
https://docs.microsoft.com/azure/analysis-services/analysis-services-async-refresh
https://github.com/mspnp/reference-architectures/blob/master/data/enterprise_bi_sqldw_advanced/azure/sqldw_scripts/citypopulation/%5BIntegration%5D.%5BMigrateExternalCityPopulationData%5D.sql

DELETE FROM [Integration].[CityPopulation_Staging]
WHERE RowNumber in (SELECT DISTINCT RowNumber
FROM [Integration].[CityPopulation_Staging]
WHERE POPULATION = 0
GROUP BY RowNumber
HAVING COUNT(RowNumber) = 4)

External data sources

Handling large binary data

Slowly changing dimensions

Data warehouses often consolidate data from multiple sources. This reference architecture loads an external data
source that contains demographics data. This dataset is available in Azure blob storage as part of the
WorldWideImportersDW sample.

Azure Data Factory can copy directly from blob storage, using the blob storage connector. However, the connector
requires a connection string or a shared access signature, so it can't be used to copy a blob with public read access.
As a workaround, you can use PolyBase to create an external table over Blob storage and then copy the external
tables into SQL Data Warehouse.

In the source database, the Cities table has a Location column that holds a geography spatial data type. SQL Data
Warehouse doesn't support the geography type natively, so this field is converted to a varbinary type during
loading. (See Workarounds for unsupported data types.)

However, PolyBase supports a maximum column size of varbinary(8000) , which means some data could be
truncated. A workaround for this problem is to break the data up into chunks during export, and then reassemble
the chunks, as follows:

1. Create a temporary staging table for the Location column.

2. For each city, split the location data into 8000-byte chunks, resulting in 1 – N rows for each city.

3. To reassemble the chunks, use the T-SQL PIVOT operator to convert rows into columns and then
concatenate the column values for each city.

The challenge is that each city will be split into a different number of rows, depending on the size of geography
data. For the PIVOT operator to work, every city must have the same number of rows. To make this work, the T-
SQL query (which you can view here) does some tricks to pad out the rows with blank values, so that every city
has the same number of columns after the pivot. The resulting query turns out to be much faster than looping
through the rows one at a time.

The same approach is used for image data.

Dimension data is relatively static, but it can change. For example, a product might get reassigned to a different
product category. There are several approaches to handling slowly changing dimensions. A common technique,
called Type 2, is to add a new record whenever a dimension changes.

In order to implement the Type 2 approach, dimension tables need additional columns that specify the effective
date range for a given record. Also, primary keys from the source database will be duplicated, so the dimension
table must have an artificial primary key.

The following image shows the Dimension.City table. The WWI City ID column is the primary key from the source
database. The City Key column is an artificial key generated during the ETL pipeline. Also notice that the table
has Valid From and Valid To columns, which define the range when each row was valid. Current values have a

https://github.com/Microsoft/sql-server-samples/tree/master/samples/databases/wide-world-importers/sample-scripts/polybase
https://docs.microsoft.com/azure/data-factory/connector-azure-blob-storage
https://docs.microsoft.com/sql/t-sql/spatial-geography/spatial-types-geography
https://docs.microsoft.com/azure/sql-data-warehouse/sql-data-warehouse-tables-data-types#unsupported-data-types
https://docs.microsoft.com/sql/t-sql/queries/from-using-pivot-and-unpivot
https://github.com/mspnp/reference-architectures/blob/master/data/enterprise_bi_sqldw_advanced/azure/sqldw_scripts/city/%5BIntegration%5D.%5BMergeLocation%5D.sql
https://wikipedia.org/wiki/Slowly_changing_dimension#Type_2:_add_new_row

CREATE TABLE CityHolder
WITH (HEAP , DISTRIBUTION = HASH([WWI Invoice ID]))
AS
SELECT DISTINCT s1.[WWI Invoice ID] AS [WWI Invoice ID],
 c.[City Key] AS [City Key]
 FROM [Integration].[Sale_Staging] s1
 CROSS APPLY (
 SELECT TOP 1 [City Key]
 FROM [Dimension].[City]
 WHERE [WWI City ID] = s1.[WWI City ID]
 AND s1.[Last Modified When] > [Valid From]
 AND s1.[Last Modified When] <= [Valid To]
 ORDER BY [Valid From], [City Key] DESC
) c

UPDATE [Integration].[Sale_Staging]
SET [Integration].[Sale_Staging].[WWI Customer ID] = CustomerHolder.[WWI Customer ID]

Security considerations

Valid To equal to '9999-12-31'.

The advantage of this approach is that it preserves historical data, which can be valuable for analysis. However, it
also means there will be multiple rows for the same entity. For example, here are the records that match
WWI City ID = 28561:

For each Sales fact, you want to associate that fact with a single row in City dimension table, corresponding to the
invoice date. As part of the ETL process, create an additional column that

The following T-SQL query creates a temporary table that associates each invoice with the correct City Key from
the City dimension table.

This table is used to populate a column in the Sales fact table:

This column enables a Power BI query to find the correct City record for a given sales invoice.

For additional security, you can use Virtual Network service endpoints to secure Azure service resources to only
your virtual network. This fully removes public Internet access to those resources, allowing traffic only from your

https://docs.microsoft.com/azure/virtual-network/virtual-network-service-endpoints-overview

Deploy the solution

Related resources

virtual network.

With this approach, you create a VNet in Azure and then create private service endpoints for Azure services.
Those services are then restricted to traffic from that virtual network. You can also reach them from your on-
premises network through a gateway.

Be aware of the following limitations:

At the time this reference architecture was created, VNet service endpoints are supported for Azure
Storage and Azure SQL Data Warehouse, but not for Azure Analysis Service. Check the latest status here.

If service endpoints are enabled for Azure Storage, PolyBase cannot copy data from Storage into SQL Data
Warehouse. There is a mitigation for this issue. For more information, see Impact of using VNet Service
Endpoints with Azure storage.

To move data from on-premises into Azure Storage, you will need to whitelist public IP addresses from
your on-premises or ExpressRoute. For details, see Securing Azure services to virtual networks .

To enable Analysis Services to read data from SQL Data Warehouse, deploy a Windows VM to the virtual
network that contains the SQL Data Warehouse service endpoint. Install Azure On-premises Data Gateway
on this VM. Then connect your Azure Analysis service to the data gateway.

To the deploy and run the reference implementation, follow the steps in the GitHub readme. It deploys the
following:

A Windows VM to simulate an on-premises database server. It includes SQL Server 2017 and related tools,
along with Power BI Desktop.
An Azure storage account that provides Blob storage to hold data exported from the SQL Server database.
An Azure SQL Data Warehouse instance.
An Azure Analysis Services instance.
Azure Data Factory and the Data Factory pipeline for the ELT job.

You may want to review the following Azure example scenarios that demonstrate specific solutions using some of
the same technologies:

Data warehousing and analytics for sales and marketing
Hybrid ETL with existing on-premises SSIS and Azure Data Factory

https://azure.microsoft.com/updates/?product=virtual-network
https://docs.microsoft.com/azure/sql-database/sql-database-vnet-service-endpoint-rule-overview?toc=%2fazure%2fvirtual-network%2ftoc.json#impact-of-using-vnet-service-endpoints-with-azure-storage
https://docs.microsoft.com/azure/virtual-network/virtual-network-service-endpoints-overview#securing-azure-services-to-virtual-networks
https://docs.microsoft.com/azure/analysis-services/analysis-services-gateway
https://github.com/mspnp/azure-data-factory-sqldw-elt-pipeline
https://docs.microsoft.com/azure/architecture/example-scenario
https://docs.microsoft.com/azure/architecture/example-scenario/data/data-warehouse
https://docs.microsoft.com/azure/architecture/example-scenario/data/hybrid-etl-with-adf

Create a stream processing pipeline with Azure
Databricks
3/13/2019 • 8 minutes to read • Edit Online

Architecture

This reference architecture shows an end-to-end stream processing pipeline. This type of pipeline has four stages:
ingest, process, store, and analysis and reporting. For this reference architecture, the pipeline ingests data from two
sources, performs a join on related records from each stream, enriches the result, and calculates an average in real
time. The results are stored for further analysis. Deploy this solution.

Scenario: A taxi company collects data about each taxi trip. For this scenario, we assume there are two separate
devices sending data. The taxi has a meter that sends information about each ride — the duration, distance, and
pickup and dropoff locations. A separate device accepts payments from customers and sends data about fares. To
spot ridership trends, the taxi company wants to calculate the average tip per mile driven, in real time, for each
neighborhood.

The architecture consists of the following components.

Data sources. In this architecture, there are two data sources that generate data streams in real time. The first
stream contains ride information, and the second contains fare information. The reference architecture includes a
simulated data generator that reads from a set of static files and pushes the data to Event Hubs. The data sources
in a real application would be devices installed in the taxi cabs.

Azure Event Hubs. Event Hubs is an event ingestion service. This architecture uses two event hub instances, one
for each data source. Each data source sends a stream of data to the associated event hub.

Azure Databricks. Databricks is an Apache Spark-based analytics platform optimized for the Microsoft Azure
cloud services platform. Databricks is used to correlate of the taxi ride and fare data, and also to enrich the
correlated data with neighborhood data stored in the Databricks file system.

https://github.com/mspnp/architecture-center/blob/master/docs/reference-architectures/data/stream-processing-databricks.md
https://docs.microsoft.com/azure/architecture/data-guide/big-data/real-time-processing
https://docs.microsoft.com/azure/event-hubs/
https://docs.microsoft.com/azure/azure-databricks/

Data ingestion

Cosmos DB. The output from Azure Databricks job is a series of records, which are written to Cosmos DB using
the Cassandra API. The Cassandra API is used because it supports time series data modeling.

Azure Log Analytics. Application log data collected by Azure Monitor is stored in a Log Analytics workspace. Log
Analytics queries can be used to analyze and visualize metrics and inspect log messages to identify issues within
the application.

To simulate a data source, this reference architecture uses the New York City Taxi Data dataset . This dataset
contains data about taxi trips in New York City over a four-year period (2010 – 2013). It contains two types of
record: Ride data and fare data. Ride data includes trip duration, trip distance, and pickup and dropoff location. Fare
data includes fare, tax, and tip amounts. Common fields in both record types include medallion number, hack
license, and vendor ID. Together these three fields uniquely identify a taxi plus a driver. The data is stored in CSV
format.

[1]

 [1] Donovan, Brian; Work, Dan (2016): New York City Taxi Trip Data (2010-2013). University of Illinois at
Urbana-Champaign. https://doi.org/10.13012/J8PN93H8

The data generator is a .NET Core application that reads the records and sends them to Azure Event Hubs. The
generator sends ride data in JSON format and fare data in CSV format.

Event Hubs uses partitions to segment the data. Partitions allow a consumer to read each partition in parallel.
When you send data to Event Hubs, you can specify the partition key explicitly. Otherwise, records are assigned to
partitions in round-robin fashion.

In this scenario, ride data and fare data should end up with the same partition ID for a given taxi cab. This enables
Databricks to apply a degree of parallelism when it correlates the two streams. A record in partition n of the ride
data will match a record in partition n of the fare data.

In the data generator, the common data model for both record types has a PartitionKey property that is the
concatenation of Medallion , HackLicense , and VendorId .

https://docs.microsoft.com/azure/cosmos-db/
https://docs.microsoft.com/azure/monitoring-and-diagnostics/
https://docs.microsoft.com/azure/log-analytics
https://uofi.app.box.com/v/NYCtaxidata/folder/2332218797
https://doi.org/10.13012/J8PN93H8
https://docs.microsoft.com/azure/event-hubs/event-hubs-features#partitions

public abstract class TaxiData
{
 public TaxiData()
 {
 }

 [JsonProperty]
 public long Medallion { get; set; }

 [JsonProperty]
 public long HackLicense { get; set; }

 [JsonProperty]
 public string VendorId { get; set; }

 [JsonProperty]
 public DateTimeOffset PickupTime { get; set; }

 [JsonIgnore]
 public string PartitionKey
 {
 get => $"{Medallion}_{HackLicense}_{VendorId}";
 }

using (var client = pool.GetObject())
{
 return client.Value.SendAsync(new EventData(Encoding.UTF8.GetBytes(
 t.GetData(dataFormat))), t.PartitionKey);
}

Event HubsEvent Hubs

Stream processing

Reading the stream from the two event hub instancesReading the stream from the two event hub instances

This property is used to provide an explicit partition key when sending to Event Hubs:

The throughput capacity of Event Hubs is measured in throughput units. You can autoscale an event hub by
enabling auto-inflate, which automatically scales the throughput units based on traffic, up to a configured
maximum.

In Azure Databricks, data processing is performed by a job. The job is assigned to and runs on a cluster. The job
can either be custom code written in Java, or a Spark notebook.

In this reference architecture, the job is a Java archive with classes written in both Java and Scala. When specifying
the Java archive for a Databricks job, the class is specified for execution by the Databricks cluster. Here, the main
method of the com.microsoft.pnp.TaxiCabReader class contains the data processing logic.

The data processing logic uses Spark structured streaming to read from the two Azure event hub instances:

https://docs.microsoft.com/azure/event-hubs/event-hubs-features#throughput-units
https://docs.microsoft.com/azure/event-hubs/event-hubs-auto-inflate
https://docs.databricks.com/user-guide/notebooks/index.html
https://spark.apache.org/docs/2.1.2/structured-streaming-programming-guide.html

val rideEventHubOptions = EventHubsConf(rideEventHubConnectionString)
 .setConsumerGroup(conf.taxiRideConsumerGroup())
 .setStartingPosition(EventPosition.fromStartOfStream)
 val rideEvents = spark.readStream
 .format("eventhubs")
 .options(rideEventHubOptions.toMap)
 .load

 val fareEventHubOptions = EventHubsConf(fareEventHubConnectionString)
 .setConsumerGroup(conf.taxiFareConsumerGroup())
 .setStartingPosition(EventPosition.fromStartOfStream)
 val fareEvents = spark.readStream
 .format("eventhubs")
 .options(fareEventHubOptions.toMap)
 .load

Enriching the data with the neighborhood informationEnriching the data with the neighborhood information

val neighborhoodFinder = (lon: Double, lat: Double) => {
 NeighborhoodFinder.getNeighborhood(lon, lat).get()
 }

Joining the ride and fare dataJoining the ride and fare data

The ride data includes the latitude and longitude coordinates of the pick up and drop off locations. While these
coordinates are useful, they are not easily consumed for analysis. Therefore, this data is enriched with
neighborhood data that is read from a shapefile.

The shapefile format is binary and not easily parsed, but the GeoTools library provides tools for geospatial data
that use the shapefile format. This library is used in the com.microsoft.pnp.GeoFinder class to determine the
neighborhood name based on the pick up and drop off coordinates.

First the ride and fare data is transformed:

https://en.wikipedia.org/wiki/Shapefile
http://geotools.org/

 val rides = transformedRides
 .filter(r => {
 if (r.isNullAt(r.fieldIndex("errorMessage"))) {
 true
 }
 else {
 malformedRides.add(1)
 false
 }
 })
 .select(
 $"ride.*",
 to_neighborhood($"ride.pickupLon", $"ride.pickupLat")
 .as("pickupNeighborhood"),
 to_neighborhood($"ride.dropoffLon", $"ride.dropoffLat")
 .as("dropoffNeighborhood")
)
 .withWatermark("pickupTime", conf.taxiRideWatermarkInterval())

 val fares = transformedFares
 .filter(r => {
 if (r.isNullAt(r.fieldIndex("errorMessage"))) {
 true
 }
 else {
 malformedFares.add(1)
 false
 }
 })
 .select(
 $"fare.*",
 $"pickupTime"
)
 .withWatermark("pickupTime", conf.taxiFareWatermarkInterval())

val mergedTaxiTrip = rides.join(fares, Seq("medallion", "hackLicense", "vendorId", "pickupTime"))

Processing the data and inserting into Cosmos DBProcessing the data and inserting into Cosmos DB

val maxAvgFarePerNeighborhood = mergedTaxiTrip.selectExpr("medallion", "hackLicense", "vendorId",
"pickupTime", "rateCode", "storeAndForwardFlag", "dropoffTime", "passengerCount", "tripTimeInSeconds",
"tripDistanceInMiles", "pickupLon", "pickupLat", "dropoffLon", "dropoffLat", "paymentType", "fareAmount",
"surcharge", "mtaTax", "tipAmount", "tollsAmount", "totalAmount", "pickupNeighborhood", "dropoffNeighborhood")
 .groupBy(window($"pickupTime", conf.windowInterval()), $"pickupNeighborhood")
 .agg(
 count("*").as("rideCount"),
 sum($"fareAmount").as("totalFareAmount"),
 sum($"tipAmount").as("totalTipAmount")
)
 .select($"window.start", $"window.end", $"pickupNeighborhood", $"rideCount", $"totalFareAmount",
$"totalTipAmount")

And then the ride data is joined with the fare data:

The average fare amount for each neighborhood is calculated for a given time interval:

Which is then inserted into Cosmos DB:

maxAvgFarePerNeighborhood
 .writeStream
 .queryName("maxAvgFarePerNeighborhood_cassandra_insert")
 .outputMode(OutputMode.Append())
 .foreach(new CassandraSinkForeach(connector))
 .start()
 .awaitTermination()

Security considerations

Managing secretsManaging secrets

databricks secrets create-scope --scope "azure-databricks-job"

databricks secrets put --scope "azure-databricks-job" --key "taxi-ride"

NOTENOTE

Monitoring considerations

Access to the Azure Database workspace is controlled using the administrator console. The administrator console
includes functionality to add users, manage user permissions, and set up single sign-on. Access control for
workspaces, clusters, jobs, and tables can also be set through the administrator console.

Azure Databricks includes a secret store that is used to store secrets, including connection strings, access keys, user
names, and passwords. Secrets within the Azure Databricks secret store are partitioned by scopes:

Secrets are added at the scope level:

An Azure Key Vault-backed scope can be used instead of the native Azure Databricks scope. To learn more, see Azure Key
Vault-backed scopes.

In code, secrets are accessed via the Azure Databricks secrets utilities.

Azure Databricks is based on Apache Spark, and both use log4j as the standard library for logging. In addition to
the default logging provided by Apache Spark, this reference architecture sends logs and metrics to Azure Log
Analytics.

The com.microsoft.pnp.TaxiCabReader class configures the Apache Spark logging system to send its logs to
Azure Log Analytics using the values in the log4j.properties file. While the Apache Spark logger messages are
strings, Azure Log Analytics requires log messages to be formatted as JSON. The
com.microsoft.pnp.log4j.LogAnalyticsAppender class transforms these messages to JSON:

https://docs.databricks.com/administration-guide/admin-settings/index.html
https://docs.azuredatabricks.net/user-guide/secrets/index.html
https://docs.azuredatabricks.net/user-guide/secrets/secret-scopes.html#azure-key-vault-backed-scopes
https://docs.databricks.com/user-guide/dev-tools/dbutils.html#secrets-utilities
https://logging.apache.org/log4j/2.x/
https://docs.microsoft.com/azure/log-analytics/

 @Override
 protected void append(LoggingEvent loggingEvent) {
 if (this.layout == null) {
 this.setLayout(new JSONLayout());
 }

 String json = this.getLayout().format(loggingEvent);
 try {
 this.client.send(json, this.logType);
 } catch(IOException ioe) {
 LogLog.warn("Error sending LoggingEvent to Log Analytics", ioe);
 }
 }

 @transient val appMetrics = new AppMetrics(spark.sparkContext)
 appMetrics.registerGauge("metrics.malformedrides", AppAccumulators.getRideInstance(spark.sparkContext))
 appMetrics.registerGauge("metrics.malformedfares", AppAccumulators.getFareInstance(spark.sparkContext))
 SparkEnv.get.metricsSystem.registerSource(appMetrics)

spark.streams.addListener(new StreamingMetricsListener())

Latency and throughput for streaming queriesLatency and throughput for streaming queries

taxijob_CL
| where TimeGenerated > startofday(datetime(<date>)) and TimeGenerated < endofday(datetime(<date>))
| project mdc_inputRowsPerSecond_d, mdc_durationms_triggerExecution_d
| render timechart

Exceptions logged during stream query executionExceptions logged during stream query execution

taxijob_CL
| where TimeGenerated > startofday(datetime(<date>)) and TimeGenerated < endofday(datetime(<date>))
| where Level contains "Error"

As the com.microsoft.pnp.TaxiCabReader class processes ride and fare messages, it's possible that either one
may be malformed and therefore not valid. In a production environment, it's important to analyze these
malformed messages to identify a problem with the data sources so it can be fixed quickly to prevent data loss. The
com.microsoft.pnp.TaxiCabReader class registers an Apache Spark Accumulator that keeps track of the number
of malformed fare and ride records:

Apache Spark uses the Dropwizard library to send metrics, and some of the native Dropwizard metrics fields are
incompatible with Azure Log Analytics. Therefore, this reference architecture includes a custom Dropwizard sink
and reporter. It formats the metrics in the format expected by Azure Log Analytics. When Apache Spark reports
metrics, the custom metrics for the malformed ride and fare data are also sent.

The last metric to be logged to the Azure Log Analytics workspace is the cumulative progress of the Spark
Structured Streaming job progress. This is done using a custom StreamingQuery listener implemented in the
com.microsoft.pnp.StreamingMetricsListener class. This class is registered to the Apache Spark Session when
the job runs:

The methods in the StreamingMetricsListener are called by the Apache Spark runtime whenever a structured
steaming event occurs, sending log messages and metrics to the Azure Log Analytics workspace. You can use the
following queries in your workspace to monitor the application:

Accumulation of malformed fare and ride dataAccumulation of malformed fare and ride data

SparkMetric_CL
| where TimeGenerated > startofday(datetime(<date>)) and TimeGenerated < endofday(datetime(<date>))
| render timechart
| where name_s contains "metrics.malformedrides"

SparkMetric_CL
| where TimeGenerated > startofday(datetime(<date>)) and TimeGenerated < endofday(datetime(<date>))
| render timechart
| where name_s contains "metrics.malformedfares"

Job execution to trace resiliencyJob execution to trace resiliency

SparkMetric_CL
| where TimeGenerated > startofday(datetime(<date>)) and TimeGenerated < endofday(datetime(<date>))
| render timechart
| where name_s contains "driver.DAGScheduler.job.allJobs"

Deploy the solution
To the deploy and run the reference implementation, follow the steps in the GitHub readme.

https://github.com/mspnp/azure-databricks-streaming-analytics

Create a stream processing pipeline with Azure
Stream Analytics
3/13/2019 • 9 minutes to read • Edit Online

Architecture

This reference architecture shows an end-to-end stream processing pipeline. The pipeline ingests data from two
sources, correlates records in the two streams, and calculates a rolling average across a time window. The results
are stored for further analysis.

A reference implementation for this architecture is available on GitHub.

Scenario: A taxi company collects data about each taxi trip. For this scenario, we assume there are two separate
devices sending data. The taxi has a meter that sends information about each ride — the duration, distance, and
pickup and dropoff locations. A separate device accepts payments from customers and sends data about fares. The
taxi company wants to calculate the average tip per mile driven, in real time, in order to spot trends.

The architecture consists of the following components.

Data sources. In this architecture, there are two data sources that generate data streams in real time. The first
stream contains ride information, and the second contains fare information. The reference architecture includes a
simulated data generator that reads from a set of static files and pushes the data to Event Hubs. In a real
application, the data sources would be devices installed in the taxi cabs.

Azure Event Hubs. Event Hubs is an event ingestion service. This architecture uses two event hub instances, one
for each data source. Each data source sends a stream of data to the associated event hub.

Azure Stream Analytics. Stream Analytics is an event-processing engine. A Stream Analytics job reads the data
streams from the two event hubs and performs stream processing.

Cosmos DB. The output from the Stream Analytics job is a series of records, which are written as JSON
documents to a Cosmos DB document database.

Microsoft Power BI. Power BI is a suite of business analytics tools to analyze data for business insights. In this
architecture, it loads the data from Cosmos DB. This allows users to analyze the complete set of historical data
that's been collected. You could also stream the results directly from Stream Analytics to Power BI for a real-time
view of the data. For more information, see Real-time streaming in Power BI.

https://github.com/mspnp/architecture-center/blob/master/docs/reference-architectures/data/stream-processing-stream-analytics.md
https://docs.microsoft.com/azure/architecture/data-guide/big-data/real-time-processing
https://github.com/mspnp/azure-stream-analytics-data-pipeline
https://docs.microsoft.com/azure/event-hubs/
https://docs.microsoft.com/azure/stream-analytics/
https://docs.microsoft.com/power-bi/service-real-time-streaming

Data ingestion

Azure Monitor. Azure Monitor collects performance metrics about the Azure services deployed in the solution.
By visualizing these in a dashboard, you can get insights into the health of the solution.

To simulate a data source, this reference architecture uses the New York City Taxi Data dataset . This dataset
contains data about taxi trips in New York City over a 4-year period (2010 – 2013). It contains two types of record:
Ride data and fare data. Ride data includes trip duration, trip distance, and pickup and dropoff location. Fare data
includes fare, tax, and tip amounts. Common fields in both record types include medallion number, hack license,
and vendor ID. Together these three fields uniquely identify a taxi plus a driver. The data is stored in CSV format.

[1]

 [1] Donovan, Brian; Work, Dan (2016): New York City Taxi Trip Data (2010-2013). University of Illinois at Urbana-
Champaign. https://doi.org/10.13012/J8PN93H8

The data generator is a .NET Core application that reads the records and sends them to Azure Event Hubs. The
generator sends ride data in JSON format and fare data in CSV format.

Event Hubs uses partitions to segment the data. Partitions allow a consumer to read each partition in parallel.
When you send data to Event Hubs, you can specify the partition key explicitly. Otherwise, records are assigned to
partitions in round-robin fashion.

In this particular scenario, ride data and fare data should end up with the same partition ID for a given taxi cab.
This enables Stream Analytics to apply a degree of parallelism when it correlates the two streams. A record in
partition n of the ride data will match a record in partition n of the fare data.

In the data generator, the common data model for both record types has a PartitionKey property which is the
concatenation of Medallion , HackLicense , and VendorId .

https://docs.microsoft.com/azure/monitoring-and-diagnostics/
https://uofi.app.box.com/v/NYCtaxidata/folder/2332218797
https://doi.org/10.13012/J8PN93H8
https://docs.microsoft.com/azure/event-hubs/event-hubs-features#partitions

public abstract class TaxiData
{
 public TaxiData()
 {
 }

 [JsonProperty]
 public long Medallion { get; set; }

 [JsonProperty]
 public long HackLicense { get; set; }

 [JsonProperty]
 public string VendorId { get; set; }

 [JsonProperty]
 public DateTimeOffset PickupTime { get; set; }

 [JsonIgnore]
 public string PartitionKey
 {
 get => $"{Medallion}_{HackLicense}_{VendorId}";
 }

using (var client = pool.GetObject())
{
 return client.Value.SendAsync(new EventData(Encoding.UTF8.GetBytes(
 t.GetData(dataFormat))), t.PartitionKey);
}

Stream processing

WITH
Step1 AS (
 SELECT PartitionId,
 TRY_CAST(Medallion AS nvarchar(max)) AS Medallion,
 TRY_CAST(HackLicense AS nvarchar(max)) AS HackLicense,
 VendorId,
 TRY_CAST(PickupTime AS datetime) AS PickupTime,
 TripDistanceInMiles
 FROM [TaxiRide] PARTITION BY PartitionId
),
Step2 AS (
 SELECT PartitionId,
 medallion AS Medallion,
 hack_license AS HackLicense,
 vendor_id AS VendorId,
 TRY_CAST(pickup_datetime AS datetime) AS PickupTime,
 tip_amount AS TipAmount
 FROM [TaxiFare] PARTITION BY PartitionId
),

This property is used to provide an explicit partition key when sending to Event Hubs:

The stream processing job is defined using a SQL query with several distinct steps. The first two steps simply
select records from the two input streams.

The next step joins the two input streams to select matching records from each stream.

Step3 AS (
 SELECT
 tr.Medallion,
 tr.HackLicense,
 tr.VendorId,
 tr.PickupTime,
 tr.TripDistanceInMiles,
 tf.TipAmount
 FROM [Step1] tr
 PARTITION BY PartitionId
 JOIN [Step2] tf PARTITION BY PartitionId
 ON tr.Medallion = tf.Medallion
 AND tr.HackLicense = tf.HackLicense
 AND tr.VendorId = tf.VendorId
 AND tr.PickupTime = tf.PickupTime
 AND tr.PartitionId = tf.PartitionId
 AND DATEDIFF(minute, tr, tf) BETWEEN 0 AND 15
)

SELECT System.Timestamp AS WindowTime,
 SUM(tr.TipAmount) / SUM(tr.TripDistanceInMiles) AS AverageTipPerMile
 INTO [TaxiDrain]
 FROM [Step3] tr
 GROUP BY HoppingWindow(Duration(minute, 5), Hop(minute, 1))

Scalability considerations
Event HubsEvent Hubs

Stream AnalyticsStream Analytics

This query joins records on a set of fields that uniquely identify matching records (Medallion, HackLicense,
VendorId, and PickupTime). The JOIN statement also includes the partition ID. As mentioned, this takes
advantage of the fact that matching records always have the same partition ID in this scenario.

In Stream Analytics, joins are temporal, meaning records are joined within a particular window of time. Otherwise,
the job might need to wait indefinitely for a match. The DATEDIFF function specifies how far two matching records
can be separated in time for a match.

The last step in the job computes the average tip per mile, grouped by a hopping window of 5 minutes.

Stream Analytics provides several windowing functions. A hopping window moves forward in time by a fixed
period, in this case 1 minute per hop. The result is to calculate a moving average over the past 5 minutes.

In the architecture shown here, only the results of the Stream Analytics job are saved to Cosmos DB. For a big data
scenario, consider also using Event Hubs Capture to save the raw event data into Azure Blob storage. Keeping the
raw data will allow you to run batch queries over your historical data at later time, in order to derive new insights
from the data.

The throughput capacity of Event Hubs is measured in throughput units. You can autoscale an event hub by
enabling auto-inflate, which automatically scales the throughput units based on traffic, up to a configured
maximum.

For Stream Analytics, the computing resources allocated to a job are measured in Streaming Units. Stream
Analytics jobs scale best if the job can be parallelized. That way, Stream Analytics can distribute the job across
multiple compute nodes.

For Event Hubs input, use the PARTITION BY keyword to partition the Stream Analytics job. The data will be
divided into subsets based on the Event Hubs partitions.

https://msdn.microsoft.com/azure/stream-analytics/reference/join-azure-stream-analytics
https://docs.microsoft.com/azure/stream-analytics/stream-analytics-window-functions
https://docs.microsoft.com/azure/event-hubs/event-hubs-capture-overview
https://docs.microsoft.com/azure/event-hubs/event-hubs-features#throughput-units
https://docs.microsoft.com/azure/event-hubs/event-hubs-auto-inflate

Cosmos DBCosmos DB

Monitoring considerations

Windowing functions and temporal joins require additional SU. When possible, use PARTITION BY so that each
partition is processed separately. For more information, see Understand and adjust Streaming Units.

If it's not possible to parallelize the entire Stream Analytics job, try to break the job into multiple steps, starting
with one or more parallel steps. That way, the first steps can run in parallel. For example, in this reference
architecture:

Steps 1 and 2 are simple SELECT statements that select records within a single partition.
Step 3 performs a partitioned join across two input streams. This step takes advantage of the fact that matching
records share the same partition key, and so are guaranteed to have the same partition ID in each input stream.
Step 4 aggregates across all of the partitions. This step cannot be parallelized.

Use the Stream Analytics job diagram to see how many partitions are assigned to each step in the job. The
following diagram shows the job diagram for this reference architecture:

Throughput capacity for Cosmos DB is measured in Request Units (RU). In order to scale a Cosmos DB container
past 10,000 RU, you must specify a partition key when you create the container, and include the partition key in
every document.

In this reference architecture, new documents are created only once per minute (the hopping window interval), so
the throughput requirements are quite low. For that reason, there's no need to assign a partition key in this
scenario.

With any stream processing solution, it's important to monitor the performance and health of the system. Azure
Monitor collects metrics and diagnostics logs for the Azure services used in the architecture. Azure Monitor is built
into the Azure platform and does not require any additional code in your application.

Any of the following warning signals indicate that you should scale out the relevant Azure resource:

Event Hubs throttles requests or is close to the daily message quota.
The Stream Analytics job consistently uses more than 80% of allocated Streaming Units (SU).
Cosmos DB begins to throttle requests.

The reference architecture includes a custom dashboard, which is deployed to the Azure portal. After you deploy
the architecture, you can view the dashboard by opening the Azure Portal and selecting TaxiRidesDashboard from
list of dashboards. For more information about creating and deploying custom dashboards in the Azure portal, see
Programmatically create Azure Dashboards.

The following image shows the dashboard after the Stream Analytics job ran for about an hour.

https://docs.microsoft.com/azure/stream-analytics/stream-analytics-streaming-unit-consumption#windowed-aggregates
https://docs.microsoft.com/azure/stream-analytics/stream-analytics-job-diagram-with-metrics
https://docs.microsoft.com/azure/cosmos-db/request-units
https://docs.microsoft.com/azure/cosmos-db/partition-data
https://docs.microsoft.com/azure/monitoring-and-diagnostics/
https://portal.azure.com
https://docs.microsoft.com/azure/azure-portal/azure-portal-dashboards-create-programmatically

The panel on the lower left shows that the SU consumption for the Stream Analytics job climbs during the first 15
minutes and then levels off. This is a typical pattern as the job reaches a steady state.

Notice that Event Hubs is throttling requests, shown in the upper right panel. An occasional throttled request is not
a problem, because the Event Hubs client SDK automatically retries when it receives a throttling error. However, if
you see consistent throttling errors, it means the event hub needs more throughput units. The following graph
shows a test run using the Event Hubs auto-inflate feature, which automatically scales out the throughput units as
needed.

Auto-inflate was enabled at about the 06:35 mark. You can see the p drop in throttled requests, as Event Hubs
automatically scaled up to 3 throughput units.

Interestingly, this had the side effect of increasing the SU utilization in the Stream Analytics job. By throttling,
Event Hubs was artificially reducing the ingestion rate for the Stream Analytics job. It's actually common that
resolving one performance bottleneck reveals another. In this case, allocating additional SU for the Stream

Deploy the solution

Related resources

Analytics job resolved the issue.

To the deploy and run the reference implementation, follow the steps in the GitHub readme.

You may wish to review the following Azure example scenarios that demonstrate specific solutions using some of
the same technologies:

IoT and data analytics in the construction industry
Real-time fraud detection

https://github.com/mspnp/azure-stream-analytics-data-pipeline
https://docs.microsoft.com/azure/architecture/example-scenario
https://docs.microsoft.com/azure/architecture/example-scenario/data/big-data-with-iot
https://docs.microsoft.com/azure/architecture/example-scenario/data/fraud-detection

Basic enterprise integration on Azure
3/13/2019 • 10 minutes to read • Edit Online

Architecture

This reference architecture uses Azure Integration Services to orchestrate calls to enterprise backend systems. The
backend systems may include software as a service (SaaS) systems, Azure services, and existing web services in
your enterprise.

Azure Integration Services is a collection of services for integrating applications and data. This architecture uses
two of those services: Logic Apps to orchestrate workflows, and API Management to create catalogs of APIs. This
architecture is sufficient for basic integration scenarios where the workflow is triggered by synchronous calls to
backend services. A more sophisticated architecture using queues and events builds on this basic architecture.

The architecture has the following components:

Backend systems. The right-hand side of the diagram shows the various backend systems that the
enterprise has deployed or relies on. These might include SaaS systems, other Azure services, or web
services that expose REST or SOAP endpoints.

Azure Logic Apps. Logic Apps is a serverless platform for building enterprise workflows that integrate
applications, data, and services. In this architecture, the logic apps are triggered by HTTP requests. You can
also nest workflows for more complex orchestration. Logic Apps uses connectors to integrate with
commonly used services. Logic Apps offers hundreds of connectors, and you can create custom connectors.

Azure API Management. API Management is a managed service for publishing catalogs of HTTP APIs, to
promote reuse and discoverability. API Management consists of two related components:

API gateway. The API gateway accepts HTTP calls and routes them to the backend.

Developer portal. Each instance of Azure API Management provides access to a developer portal.

https://github.com/mspnp/architecture-center/blob/master/docs/reference-architectures/enterprise-integration/basic-enterprise-integration.md
https://azure.microsoft.com/product-categories/integration/
https://docs.microsoft.com/azure/logic-apps/logic-apps-overview
https://docs.microsoft.com/azure/api-management
https://docs.microsoft.com/azure/logic-apps/logic-apps-overview
https://docs.microsoft.com/azure/connectors/apis-list
https://docs.microsoft.com/azure/api-management
https://docs.microsoft.com/azure/api-management/api-management-key-concepts#a-namedeveloper-portal-a-developer-portal

Recommendations

API ManagementAPI Management

Logic AppsLogic Apps

RegionRegion

Scalability considerations

This portal gives your developers access to documentation and code samples for calling the APIs.
You can also test APIs in the developer portal.

In this architecture, composite APIs are built by importing logic apps as APIs. You can also import existing
web services by importing OpenAPI (Swagger) specifications or importing SOAP APIs from WSDL
specifications.

The API gateway helps to decouple front-end clients from the back end. For example, it can rewrite URLs, or
transform requests before they reach the backend. It also handles many cross-cutting concerns such as
authentication, cross-origin resource sharing (CORS) support, and response caching.

Azure DNS. Azure DNS is a hosting service for DNS domains. Azure DNS provides name resolution by
using the Microsoft Azure infrastructure. By hosting your domains in Azure, you can manage your DNS
records by using the same credentials, APIs, tools, and billing that you use for your other Azure services. To
use a custom domain name, such as contoso.com, create DNS records that map the custom domain name
to the IP address. For more information, see Configure a custom domain name in API Management.

Azure Active Directory (Azure AD). Use Azure AD to authenticate clients that call the API gateway.
Azure AD supports the OpenID Connect (OIDC) protocol. Clients obtain an access token from Azure AD,
and API Gateway validates the token to authorize the request. When using the Standard or Premium tier of
API Management, Azure AD can also secure access to the developer portal.

Your specific requirements might differ from the generic architecture shown here. Use the recommendations in
this section as a starting point.

Use the API Management Basic, Standard, or Premium tiers. These tiers offer a production service level agreement
(SLA) and support scale out within the Azure region. Throughput capacity for API Management is measured in
units. Each pricing tier has a maximum scale-out. The Premium tier also supports scale out across multiple Azure
regions. Choose your tier based on your feature set and the level of required throughput. For more information,
see API Management pricing and Capacity of an Azure API Management instance.

Each Azure API Management instance has a default domain name, which is a subdomain of azure-api.net

&mdash, for example, contoso.azure-api.net . Consider configuring a custom domain for your organization.

Logic Apps works best in scenarios that don't require low latency for a response, such as asynchronous or semi
long-running API calls. If low latency is required, for example in a call that blocks a user interface, use a different
technology. For example, use Azure Functions or a web API deployed to Azure App Service. Use API Management
to front the API to your API consumers.

To minimize network latency, put API Management and Logic Apps in the same region. In general, choose the
region that's closest to your users (or closest to your backend services).

The resource group also has a region. This region specifies where to store deployment metadata and where to
execute the deployment template. To improve availability during deployment, put the resource group and
resources in the same region.

To increase the scalability of API Management, add caching policies where appropriate. Caching also helps reduce
the load on back-end services.

https://docs.microsoft.com/azure/api-management/import-logic-app-as-api
https://docs.microsoft.com/azure/api-management/import-api-from-oas
https://docs.microsoft.com/azure/api-management/import-soap-api
https://docs.microsoft.com/azure/dns/
https://docs.microsoft.com/azure/api-management/configure-custom-domain
https://docs.microsoft.com/azure/active-directory
https://docs.microsoft.com/azure/api-management/policies/authorize-request-based-on-jwt-claims
https://azure.microsoft.com/pricing/details/api-management/
https://docs.microsoft.com/azure/api-management/api-management-capacity
https://docs.microsoft.com/azure/api-management/configure-custom-domain
https://docs.microsoft.com/azure/api-management/api-management-howto-cache

Availability considerations

BackupsBackups

Manageability considerations

To offer greater capacity, you can scale out Azure API Management Basic, Standard, and Premium tiers in an Azure
region. To analyze the usage for your service, on the Metrics menu, select the Capacity Metric option and then
scale up or scale down as appropriate. The upgrade or scale process can take from 15 to 45 minutes to apply.

Recommendations for scaling an API Management service:

Consider traffic patterns when scaling. Customers with more volatile traffic patterns need more capacity.

Consistent capacity that's greater than 66% might indicate a need to scale up.

Consistent capacity that's under 20% might indicate an opportunity to scale down.

Before you enable the load in production, always load-test your API Management service with a
representative load.

With the Premium tier, you can scale an API Management instance across multiple Azure regions. This makes API
Management eligible for a higher SLA, and lets you provision services near users in multiple regions.

The Logic Apps serverless model means administrators don't have to plan for service scalability. The service
automatically scales to meet demand.

Review the SLA for each service:

API Management SLA
Logic Apps SLA

If you deploy API Management across two or more regions with Premium tier, it is eligible for a higher SLA. See
API Management pricing.

Regularly back up your API Management configuration. Store your backup files in a location or Azure region that
differs from the region where the service is deployed. Based on your RTO, choose a disaster recovery strategy:

In a disaster recovery event, provision a new API Management instance, restore the backup to the new
instance, and repoint the DNS records.

Keep a passive instance of the API Management service in another Azure region. Regularly restore backups
to that instance, to keep it in sync with the active service. To restore the service during a disaster recovery
event, you need only repoint the DNS records. This approach incurs additional cost because you pay for the
passive instance, but reduces the time to recover.

For logic apps, we recommend a configuration-as-code approach to backing up and restoring. Because logic apps
are serverless, you can quickly recreate them from Azure Resource Manager templates. Save the templates in
source control, integrate the templates with your continuous integration/continuous deployment (CI/CD) process.
In a disaster recovery event, deploy the template to a new region.

If you deploy a logic app to a different region, update the configuration in API Management. You can update the
API's Backend property by using a basic PowerShell script.

Create separate resource groups for production, development, and test environments. Separate resource groups
make it easier to manage deployments, delete test deployments, and assign access rights.

When you assign resources to resource groups, consider these factors:

Lifecycle. In general, put resources that have the same lifecycle in the same resource group.

https://azure.microsoft.com/support/legal/sla/api-management/
https://azure.microsoft.com/support/legal/sla/logic-apps
https://azure.microsoft.com/pricing/details/api-management/
https://docs.microsoft.com/azure/api-management/api-management-howto-disaster-recovery-backup-restore

DeploymentDeployment

VersionsVersions

Diagnostics and monitoring

Security considerations

Access. To apply access policies to the resources in a group, you can use role-based access control (RBAC).

Billing. You can view rollup costs for the resource group.

Pricing tier for API Management. Use the Developer tier for development and test environments. To
minimize costs during preproduction, deploy a replica of your production environment, run your tests, and
then shut down.

Use Azure Resource Manager templates to deploy the Azure resources. Templates make it easier to automate
deployments using PowerShell or the Azure CLI.

Put API Management and any individual logic apps in their own separate Resource Manager templates. By using
separate templates, you can store the resources in source control systems. You can deploy the templates together
or individually as part of a CI/CD process.

Each time you change a logic app's configuration or deploy an update through a Resource Manager template,
Azure keeps a copy of that version and keeps all versions that have a run history. You can use these versions to
track historical changes or promote a version as the logic app's current configuration. For example, you can roll
back a logic app to a previous version.

API Management supports two distinct but complementary versioning concepts:

Versions allow API consumers to choose an API version based on their needs, for example, v1, v2, beta, or
production.

Revisions allow API administrators to make non-breaking changes in an API and deploy those changes,
along with a change log to inform API consumers about the changes.

You can make a revision in a development environment and deploy that change in other environments by using
Resource Manager templates. For more information, see Publish multiple versions of your API

You can also use revisions to test an API before making the changes current and accessible to users. However, this
method isn't recommended for load testing or integration testing. Use separate test or preproduction
environments instead.

Use Azure Monitor for operational monitoring in both API Management and Logic Apps. Azure Monitor provides
information based on the metrics configured for each service and is enabled by default. For more information, see:

Monitor published APIs
Monitor status, set up diagnostics logging, and turn on alerts for Azure Logic Apps

Each service also has these options:

For deeper analysis and dashboarding, send Logic Apps logs to Azure Log Analytics.

For DevOps monitoring, configure Azure Application Insights for API Management.

API Management supports the Power BI solution template for custom API analytics. You can use this
solution template for creating your own analytics solution. For business users, Power BI makes reports
available.

Although this list doesn't completely describe all security best practices, here are some security considerations that

https://docs.microsoft.com/azure/role-based-access-control/overview
https://docs.microsoft.com/azure/azure-resource-manager/resource-group-authoring-templates
https://docs.microsoft.com/azure/api-management/api-management-get-started-publish-versions
https://docs.microsoft.com/azure/azure-monitor/overview
https://docs.microsoft.com/azure/api-management/api-management-howto-use-azure-monitor
https://docs.microsoft.com/azure/logic-apps/logic-apps-monitor-your-logic-apps
https://docs.microsoft.com/azure/logic-apps/logic-apps-monitor-your-logic-apps-oms
https://aka.ms/apimpbi

Storing secretsStoring secrets

Cost considerations

Next steps

apply specifically to this architecture:

The Azure API Management service has a fixed public IP address. Restrict access for calling Logic Apps
endpoints to only the IP address of API Management. For more information, see Restrict incoming IP
addresses.

To make sure users have appropriate access levels, use role-based access control (RBAC).

Secure public API endpoints in API Management by using OAuth or OpenID Connect. To secure public API
endpoints, configure an identity provider, and add a JSON Web Token (JWT) validation policy. For more
information, see Protect an API by using OAuth 2.0 with Azure Active Directory and API Management.

Connect to back-end services from API Management by using mutual certificates.

Enforce HTTPS on the API Management APIs.

Never check passwords, access keys, or connection strings into source control. If these values are required, secure
and deploy these values by using the appropriate techniques.

If a logic app requires any sensitive values that you can't create within a connector, store those values in Azure Key
Vault and reference them from a Resource Manager template. Use deployment template parameters and
parameter files for each environment. For more information, see Secure parameters and inputs within a workflow.

API Management manages secrets by using objects called named values or properties. These objects securely
store values that you can access through API Management policies. For more information, see How to use Named
Values in Azure API Management policies.

You are charged for all API Management instances when they are running. If you have scaled up and don't need
that level of performance all the time, manually scale down or configure autoscaling.

Logic Apps uses a serverless model. Billing is calculated based on action and connector execution. For more
information, see Logic Apps pricing. Currently, there are no tier considerations for Logic Apps.

For greater reliability and scalability, use message queues and events to decouple the backend systems. This
pattern is shown in the next reference architecture in this series: Enterprise integration using message queues and
events.

https://docs.microsoft.com/azure/logic-apps/logic-apps-securing-a-logic-app#restrict-incoming-ip-addresses
https://docs.microsoft.com/azure/api-management/api-management-howto-protect-backend-with-aad
https://docs.microsoft.com/azure/logic-apps/logic-apps-securing-a-logic-app#secure-parameters-and-inputs-within-a-workflow
https://docs.microsoft.com/azure/api-management/api-management-howto-properties
https://docs.microsoft.com/azure/api-management/api-management-howto-autoscale
https://docs.microsoft.com/azure/logic-apps/logic-apps-serverless-overview
https://azure.microsoft.com/pricing/details/logic-apps/

Enterprise integration on Azure using message
queues and events
3/13/2019 • 4 minutes to read • Edit Online

Architecture

This reference architecture integrates enterprise backend systems, using message queues and events to decouple
services for greater scalability and reliability. The backend systems may include software as a service (SaaS)
systems, Azure services, and existing web services in your enterprise.

The architecture shown here builds on a simpler architecture that is shown in Basic enterprise integration. That
architecture uses Logic Apps to orchestrate workflows and API Management to create catalogs of APIs.

This version of the architecture adds two components that help make the system more reliable and scalable:

Azure Service Bus. Service Bus is a secure, reliable message broker.

Azure Event Grid. Event Grid is an event routing service. It uses a publish/subscribe (pub/sub) eventing
model.

Asynchronous communication using a message broker provides a number of advantages over making direct,
synchronous calls to backend services:

Provides load-leveling to handle bursts in workloads, using the Queue-Based Load Leveling pattern.
Reliably tracks the progress of long-running workflows that involve multiple steps or multiple applications.
Helps to decouple applications.
Integrates with existing message-based systems.
Allows work to be queued when a backend system is not available.

Event Grid enables the various components in the system to react to events as they happen, rather than relying on
polling or scheduled tasks. As with a message queue, it helps decouple applications and services. An application or
service can publish events, and any interested subscribers will be notified. New subscribers can be added without

https://github.com/mspnp/architecture-center/blob/master/docs/reference-architectures/enterprise-integration/queues-events.md
https://docs.microsoft.com/azure/logic-apps/logic-apps-overview
https://docs.microsoft.com/azure/api-management
https://docs.microsoft.com/azure/service-bus-messaging/
https://docs.microsoft.com/azure/event-grid/

Recommendations

Service BusService Bus

Event GridEvent Grid

Scalability considerations

Availability considerations

Security considerations

updating the sender.

Many Azure services support sending events to Event Grid. For example, a logic app can listen for an event when
new files are added to a blob store. This pattern enables reactive workflows, where uploading a file or putting a
message on a queue kicks off a series of processes. The processes might be executed in parallel or in a specific
sequence.

The recommendations described in Basic enterprise integration apply to this architecture. The following
recommendations also apply:

Service Bus has two delivery modes, pull or push. In the pull model, the receiver continuously polls for new
messages. Polling can be inefficient, especially if you have many queues that each receive a few messages, or if
there a lot of time between messages. In the push model, Service Bus sends an event through Event Grid when
there are new messages. The receiver subscribes to the event. When the event is triggered, the receiver pulls the
next batch of messages from Service Bus.

When you create a logic app to consume Service Bus messages, we recommend using the push model with Event
Grid integration. It's often more cost efficient, because the logic app doesn't need to poll Service Bus. For more
information, see Azure Service Bus to Event Grid integration overview. Currently, Service Bus Premium tier is
required for Event Grid notifications.

Use PeekLock for accessing a group of messages. When you use PeekLock, the logic app can perform steps to
validate each message before completing or abandoning the message. This approach protects against accidental
message loss.

When an Event Grid trigger fires, it means at least one event happened. For example, when a logic app gets an
Event Grid triggers for a Service Bus message, it should assume that several messages might be available to
process.

Event Grid uses a serverless model. Billing is calculated based on the number of operations (event executions). For
more information, see Event Grid pricing. Currently, there are no tier considerations for Event Grid.

To achieve higher scalability, the Service Bus Premium tier can scale out the number of messaging units. Premium
tier configurations can have one, two, or four messaging units. For more information about scaling Service Bus,
see Best practices for performance improvements by using Service Bus Messaging.

Review the SLA for each service:

API Management SLA
Event Grid SLA
Logic Apps SLA
Service Bus SLA

To enable failover if a serious outage occurs, consider implementing geo-disaster recovery in Service Bus
Premium. For more information, see Azure Service Bus geo-disaster recovery.

https://docs.microsoft.com/azure/service-bus-messaging/service-bus-to-event-grid-integration-concept
https://azure.microsoft.com/pricing/details/service-bus/
https://docs.microsoft.com/azure/service-bus-messaging/service-bus-messaging-overview#queues
https://azure.microsoft.com/pricing/details/event-grid/
https://docs.microsoft.com/azure/service-bus-messaging/service-bus-performance-improvements
https://azure.microsoft.com/support/legal/sla/api-management/
https://azure.microsoft.com/support/legal/sla/event-grid
https://azure.microsoft.com/support/legal/sla/logic-apps
https://azure.microsoft.com/support/legal/sla/service-bus/
https://docs.microsoft.com/azure/service-bus-messaging/service-bus-geo-dr

To secure Service Bus, use shared access signature (SAS). You can grant a user access to Service Bus resources
with specific rights by using SAS authentication. For more information, see Service Bus authentication and
authorization.

If you need to expose a Service Bus queue as an HTTP endpoint, for example, to post new messages, use API
Management to secure the queue by fronting the endpoint. You can then secure the endpoint with certificates or
OAuth authentication as appropriate. The easiest way to secure an endpoint is using a logic app with an HTTP
request/response trigger as an intermediary.

The Event Grid service secures event delivery through a validation code. If you use Logic Apps to consume the
event, validation is automatically performed. For more information, see Event Grid security and authentication.

https://docs.microsoft.com/azure/service-bus-messaging/service-bus-sas
https://docs.microsoft.com/azure/service-bus-messaging/service-bus-authentication-and-authorization
https://docs.microsoft.com/azure/event-grid/security-authentication

Choose a solution for connecting an on-premises
network to Azure
3/13/2019 • 2 minutes to read • Edit Online

VPN connection

BenefitsBenefits

ChallengesChallenges

Reference architectureReference architecture

Azure ExpressRoute connection

BenefitsBenefits

ChallengesChallenges

This article compares options for connecting an on-premises network to an Azure Virtual Network (VNet). For
each option, a more detailed reference architecture is available.

A VPN gateway is a type of virtual network gateway that sends encrypted traffic between an Azure virtual
network and an on-premises location. The encrypted traffic goes over the public Internet.

This architecture is suitable for hybrid applications where the traffic between on-premises hardware and the cloud
is likely to be light, or you are willing to trade slightly extended latency for the flexibility and processing power of
the cloud.

Simple to configure.

Requires an on-premises VPN device.
Although Microsoft guarantees 99.9% availability for each VPN Gateway, this SLA only covers the VPN
gateway, and not your network connection to the gateway.
A VPN connection over Azure VPN Gateway currently supports a maximum of 1.25 Gbps bandwidth. You may
need to partition your Azure virtual network across multiple VPN connections if you expect to exceed this
throughput.

Hybrid network with VPN gateway

ExpressRoute connections use a private, dedicated connection through a third-party connectivity provider. The
private connection extends your on-premises network into Azure.

This architecture is suitable for hybrid applications running large-scale, mission-critical workloads that require a
high degree of scalability.

Much higher bandwidth available; up to 10 Gbps depending on the connectivity provider.
Supports dynamic scaling of bandwidth to help reduce costs during periods of lower demand. However, not all
connectivity providers have this option.
May allow your organization direct access to national clouds, depending on the connectivity provider.
99.9% availability SLA across the entire connection.

Can be complex to set up. Creating an ExpressRoute connection requires working with a third-party
connectivity provider. The provider is responsible for provisioning the network connection.
Requires high-bandwidth routers on-premises.

https://github.com/mspnp/architecture-center/blob/master/docs/reference-architectures/hybrid-networking/index.md
https://docs.microsoft.com/azure/vpn-gateway/vpn-gateway-about-vpngateways
https://azure.microsoft.com/support/legal/sla/vpn-gateway/
https://docs.microsoft.com/azure/expressroute/

Reference architectureReference architecture

ExpressRoute with VPN failover

BenefitsBenefits

ChallengesChallenges

Reference architectureReference architecture

Hub-spoke network topology

Reference architecturesReference architectures

Hybrid network with ExpressRoute

This options combines the previous two, using ExpressRoute in normal conditions, but failing over to a VPN
connection if there is a loss of connectivity in the ExpressRoute circuit.

This architecture is suitable for hybrid applications that need the higher bandwidth of ExpressRoute, and also
require highly available network connectivity.

High availability if the ExpressRoute circuit fails, although the fallback connection is on a lower bandwidth
network.

Complex to configure. You need to set up both a VPN connection and an ExpressRoute circuit.
Requires redundant hardware (VPN appliances), and a redundant Azure VPN Gateway connection for which
you pay charges.

Hybrid network with ExpressRoute and VPN failover

A hub-spoke network topology is a way to isolate workloads while sharing services such as identity and security.
The hub is a virtual network (VNet) in Azure that acts as a central point of connectivity to your on-premises
network. The spokes are VNets that peer with the hub. Shared services are deployed in the hub, while individual
workloads are deployed as spokes.

Hub-spoke topology
Hub-spoke with shared services

Connect an on-premises network to Azure using a
VPN gateway
3/13/2019 • 9 minutes to read • Edit Online

Architecture

This reference architecture shows how to extend an on-premises network to Azure, using a site-to-site virtual
private network (VPN). Traffic flows between the on-premises network and an Azure Virtual Network (VNet)
through an IPSec VPN tunnel. Deploy this solution.

Download a Visio file of this architecture.

The architecture consists of the following components.

On-premises network. A private local-area network running within an organization.

VPN appliance. A device or service that provides external connectivity to the on-premises network. The
VPN appliance may be a hardware device, or it can be a software solution such as the Routing and Remote
Access Service (RRAS) in Windows Server 2012. For a list of supported VPN appliances and information
on configuring them to connect to an Azure VPN gateway, see the instructions for the selected device in
the article About VPN devices for Site-to-Site VPN Gateway connections.

Virtual network (VNet). The cloud application and the components for the Azure VPN gateway reside in
the same VNet.

Azure VPN gateway. The VPN gateway service enables you to connect the VNet to the on-premises
network through a VPN appliance. For more information, see Connect an on-premises network to a
Microsoft Azure virtual network. The VPN gateway includes the following elements:

Virtual network gateway. A resource that provides a virtual VPN appliance for the VNet. It is
responsible for routing traffic from the on-premises network to the VNet.
Local network gateway. An abstraction of the on-premises VPN appliance. Network traffic from the
cloud application to the on-premises network is routed through this gateway.
Connection. The connection has properties that specify the connection type (IPSec) and the key shared
with the on-premises VPN appliance to encrypt traffic.
Gateway subnet. The virtual network gateway is held in its own subnet, which is subject to various

https://github.com/mspnp/architecture-center/blob/master/docs/reference-architectures/hybrid-networking/vpn.md
https://archcenter.blob.core.windows.net/cdn/hybrid-network-architectures.vsdx
https://docs.microsoft.com/azure/vpn-gateway/vpn-gateway-about-vpn-devices
https://docs.microsoft.com/azure/virtual-network/virtual-networks-overview
https://azure.microsoft.com/services/vpn-gateway/
https://technet.microsoft.com/library/dn786406.aspx

Recommendations

VNet and gateway subnetVNet and gateway subnet

WARNINGWARNING

Virtual network gatewayVirtual network gateway

requirements, described in the Recommendations section below.
Cloud application. The application hosted in Azure. It might include multiple tiers, with multiple subnets
connected through Azure load balancers. For more information about the application infrastructure, see
Running Windows VM workloads and Running Linux VM workloads.

Internal load balancer. Network traffic from the VPN gateway is routed to the cloud application through
an internal load balancer. The load balancer is located in the front-end subnet of the application.

The following recommendations apply for most scenarios. Follow these recommendations unless you have a
specific requirement that overrides them.

Create an Azure VNet with an address space large enough for all of your required resources. Ensure that the
VNet address space has sufficient room for growth if additional VMs are likely to be needed in the future. The
address space of the VNet must not overlap with the on-premises network. For example, the diagram above uses
the address space 10.20.0.0/16 for the VNet.

Create a subnet named GatewaySubnet, with an address range of /27. This subnet is required by the virtual
network gateway. Allocating 32 addresses to this subnet will help to prevent reaching gateway size limitations in
the future. Also, avoid placing this subnet in the middle of the address space. A good practice is to set the address
space for the gateway subnet at the upper end of the VNet address space. The example shown in the diagram
uses 10.20.255.224/27. Here is a quick procedure to calculate the CIDR:

1. Set the variable bits in the address space of the VNet to 1, up to the bits being used by the gateway subnet,
then set the remaining bits to 0.

2. Convert the resulting bits to decimal and express it as an address space with the prefix length set to the size of
the gateway subnet.

For example, for a VNet with an IP address range of 10.20.0.0/16, applying step #1 above becomes
10.20.0b11111111.0b11100000. Converting that to decimal and expressing it as an address space yields
10.20.255.224/27.

Do not deploy any VMs to the gateway subnet. Also, do not assign an NSG to this subnet, as it will cause the gateway to
stop functioning.

Allocate a public IP address for the virtual network gateway.

Create the virtual network gateway in the gateway subnet and assign it the newly allocated public IP address. Use
the gateway type that most closely matches your requirements and that is enabled by your VPN appliance:

Create a policy-based gateway if you need to closely control how requests are routed based on policy
criteria such as address prefixes. Policy-based gateways use static routing, and only work with site-to-site
connections.

Create a route-based gateway if you connect to the on-premises network using RRAS, support multi-site
or cross-region connections, or implement VNet-to-VNet connections (including routes that traverse
multiple VNets). Route-based gateways use dynamic routing to direct traffic between networks. They can
tolerate failures in the network path better than static routes because they can try alternative routes. Route-
based gateways can also reduce the management overhead because routes might not need to be updated
manually when network addresses change.

https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/virtual-machines-windows/index
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/virtual-machines-linux/index
https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing
https://en.wikipedia.org/wiki/Policy-based_routing
https://en.wikipedia.org/wiki/Static_routing

NOTENOTE

NOTENOTE

On-premises network connectionOn-premises network connection

Scalability considerations

For a list of supported VPN appliances, see About VPN devices for Site-to-Site VPN Gateway connections.

After the gateway has been created, you cannot change between gateway types without deleting and re-creating the
gateway.

Select the Azure VPN gateway SKU that most closely matches your throughput requirements. For more
information, see Gateway SKUs

The Basic SKU is not compatible with Azure ExpressRoute. You can change the SKU after the gateway has been created.

You are charged based on the amount of time that the gateway is provisioned and available. See VPN Gateway
Pricing.

Create routing rules for the gateway subnet that direct incoming application traffic from the gateway to the
internal load balancer, rather than allowing requests to pass directly to the application VMs.

Create a local network gateway. Specify the public IP address of the on-premises VPN appliance, and the address
space of the on-premises network. Note that the on-premises VPN appliance must have a public IP address that
can be accessed by the local network gateway in Azure VPN Gateway. The VPN device cannot be located behind
a network address translation (NAT) device.

Create a site-to-site connection for the virtual network gateway and the local network gateway. Select the site-to-
site (IPSec) connection type, and specify the shared key. Site-to-site encryption with the Azure VPN gateway is
based on the IPSec protocol, using preshared keys for authentication. You specify the key when you create the
Azure VPN gateway. You must configure the VPN appliance running on-premises with the same key. Other
authentication mechanisms are not currently supported.

Ensure that the on-premises routing infrastructure is configured to forward requests intended for addresses in
the Azure VNet to the VPN device.

Open any ports required by the cloud application in the on-premises network.

Test the connection to verify that:

The on-premises VPN appliance correctly routes traffic to the cloud application through the Azure VPN
gateway.
The VNet correctly routes traffic back to the on-premises network.
Prohibited traffic in both directions is blocked correctly.

You can achieve limited vertical scalability by moving from the Basic or Standard VPN Gateway SKUs to the High
Performance VPN SKU.

For VNets that expect a large volume of VPN traffic, consider distributing the different workloads into separate
smaller VNets and configuring a VPN gateway for each of them.

You can partition the VNet either horizontally or vertically. To partition horizontally, move some VM instances
from each tier into subnets of the new VNet. The result is that each VNet has the same structure and functionality.
To partition vertically, redesign each tier to divide the functionality into different logical areas (such as handling

https://docs.microsoft.com/azure/vpn-gateway/vpn-gateway-about-vpn-devices
https://docs.microsoft.com/azure/vpn-gateway/vpn-gateway-about-vpngateways#gwsku
https://azure.microsoft.com/blog/azure-virtual-network-gateway-improvements/
https://azure.microsoft.com/pricing/details/vpn-gateway/

Availability considerations

Manageability considerations

orders, invoicing, customer account management, and so on). Each functional area can then be placed in its own
VNet.

Replicating an on-premises Active Directory domain controller in the VNet, and implementing DNS in the VNet,
can help to reduce some of the security-related and administrative traffic flowing from on-premises to the cloud.
For more information, see Extending Active Directory Domain Services (AD DS) to Azure.

If you need to ensure that the on-premises network remains available to the Azure VPN gateway, implement a
failover cluster for the on-premises VPN gateway.

If your organization has multiple on-premises sites, create multi-site connections to one or more Azure VNets.
This approach requires dynamic (route-based) routing, so make sure that the on-premises VPN gateway supports
this feature.

For details about service level agreements, see SLA for VPN Gateway.

Monitor diagnostic information from on-premises VPN appliances. This process depends on the features
provided by the VPN appliance. For example, if you are using the Routing and Remote Access Service on
Windows Server 2012, RRAS logging.

Use Azure VPN gateway diagnostics to capture information about connectivity issues. These logs can be used to
track information such as the source and destinations of connection requests, which protocol was used, and how
the connection was established (or why the attempt failed).

Monitor the operational logs of the Azure VPN gateway using the audit logs available in the Azure portal.
Separate logs are available for the local network gateway, the Azure network gateway, and the connection. This
information can be used to track any changes made to the gateway, and can be useful if a previously functioning
gateway stops working for some reason.

https://docs.microsoft.com/azure/vpn-gateway/vpn-gateway-multi-site
https://azure.microsoft.com/support/legal/sla/vpn-gateway/
https://www.petri.com/enable-diagnostic-logging-in-windows-server-2012-r2-routing-and-remote-access
https://blogs.technet.microsoft.com/keithmayer/2016/10/12/step-by-step-capturing-azure-resource-manager-arm-vnet-gateway-diagnostic-logs/

 Security considerations

NOTENOTE

Monitor connectivity, and track connectivity failure events. You can use a monitoring package such as Nagios to
capture and report this information.

Generate a different shared key for each VPN gateway. Use a strong shared key to help resist brute-force attacks.

Currently, you cannot use Azure Key Vault to preshare keys for the Azure VPN gateway.

Ensure that the on-premises VPN appliance uses an encryption method that is compatible with the Azure VPN
gateway. For policy-based routing, the Azure VPN gateway supports the AES256, AES128, and 3DES encryption
algorithms. Route-based gateways support AES256 and 3DES.

If your on-premises VPN appliance is on a perimeter network (DMZ) that has a firewall between the perimeter
network and the Internet, you might have to configure additional firewall rules to allow the site-to-site VPN
connection.

If the application in the VNet sends data to the Internet, consider implementing forced tunneling to route all
Internet-bound traffic through the on-premises network. This approach enables you to audit outgoing requests
made by the application from the on-premises infrastructure.

https://www.nagios.org/
https://docs.microsoft.com/azure/vpn-gateway/vpn-gateway-about-vpn-devices#ipsec-parameters
https://technet.microsoft.com/library/dn786406.aspx#firewall
https://docs.microsoft.com/azure/vpn-gateway/vpn-gateway-about-forced-tunneling

NOTENOTE

Deploy the solution

Forced tunneling can impact connectivity to Azure services (the Storage Service, for example) and the Windows license
manager.

Prerequisites. You must have an existing on-premises infrastructure already configured with a suitable network
appliance.

To deploy the solution, perform the following steps.

1. Click the button below:

2. Wait for the link to open in the Azure portal, then follow these steps:

3. Wait for the deployment to complete.

The Resource group name is already defined in the parameter file, so select Create New and enter
ra-hybrid-vpn-rg in the text box.

Select the region from the Location drop down box.
Do not edit the Template Root Uri or the Parameter Root Uri text boxes.
Review the terms and conditions, then click the I agree to the terms and conditions stated above
checkbox.
Click the Purchase button.

To troubleshoot the connection, see Troubleshoot a hybrid VPN connection.

https://portal.azure.com/#create/Microsoft.Template/uri/https%3A%2F%2Fraw.githubusercontent.com%2Fmspnp%2Freference-architectures%2Fmaster%2Fhybrid-networking%2Fvpn%2Fazuredeploy.json

Connect an on-premises network to Azure using
ExpressRoute
3/13/2019 • 12 minutes to read • Edit Online

Architecture

This reference architecture shows how to connect an on-premises network to virtual networks on Azure, using
Azure ExpressRoute. ExpressRoute connections use a private, dedicated connection through a third-party
connectivity provider. The private connection extends your on-premises network into Azure. Deploy this
solution.

Download a Visio file of this architecture.

The architecture consists of the following components.

On-premises corporate network. A private local-area network running within an organization.

ExpressRoute circuit. A layer 2 or layer 3 circuit supplied by the connectivity provider that joins the on-
premises network with Azure through the edge routers. The circuit uses the hardware infrastructure
managed by the connectivity provider.

Local edge routers. Routers that connect the on-premises network to the circuit managed by the provider.
Depending on how your connection is provisioned, you may need to provide the public IP addresses used
by the routers.

Microsoft edge routers. Two routers in an active-active highly available configuration. These routers
enable a connectivity provider to connect their circuits directly to their datacenter. Depending on how your
connection is provisioned, you may need to provide the public IP addresses used by the routers.

Azure virtual networks (VNets). Each VNet resides in a single Azure region, and can host multiple
application tiers. Application tiers can be segmented using subnets in each VNet.

Azure public services. Azure services that can be used within a hybrid application. These services are also
available over the Internet, but accessing them using an ExpressRoute circuit provides low latency and
more predictable performance, because traffic does not go through the Internet. Connections are
performed using public peering, with addresses that are either owned by your organization or supplied by
your connectivity provider.

Office 365 services. The publicly available Office 365 applications and services provided by Microsoft.
Connections are performed using Microsoft peering, with addresses that are either owned by your
organization or supplied by your connectivity provider. You can also connect directly to Microsoft CRM

https://github.com/mspnp/architecture-center/blob/master/docs/reference-architectures/hybrid-networking/expressroute.md
https://docs.microsoft.com/azure/expressroute/expressroute-introduction
https://archcenter.blob.core.windows.net/cdn/hybrid-network-architectures.vsdx
https://docs.microsoft.com/azure/expressroute/expressroute-circuit-peerings
https://docs.microsoft.com/azure/expressroute/expressroute-circuit-peerings

Recommendations

Connectivity providersConnectivity providers

Get-AzureRmExpressRouteServiceProvider

ExpressRoute circuitExpressRoute circuit

Online through Microsoft peering.

Connectivity providers (not shown). Companies that provide a connection either using layer 2 or layer 3
connectivity between your datacenter and an Azure datacenter.

The following recommendations apply for most scenarios. Follow these recommendations unless you have a
specific requirement that overrides them.

Select a suitable ExpressRoute connectivity provider for your location. To get a list of connectivity providers
available at your location, use the following Azure PowerShell command:

ExpressRoute connectivity providers connect your datacenter to Microsoft in the following ways:

Co-located at a cloud exchange. If you're co-located in a facility with a cloud exchange, you can order
virtual cross-connections to Azure through the co-location provider’s Ethernet exchange. Co-location
providers can offer either layer 2 cross-connections, or managed layer 3 cross-connections between your
infrastructure in the co-location facility and Azure.
Point-to-point Ethernet connections. You can connect your on-premises datacenters/offices to Azure
through point-to-point Ethernet links. Point-to-point Ethernet providers can offer layer 2 connections, or
managed layer 3 connections between your site and Azure.
Any-to-any (IPVPN) networks. You can integrate your wide area network (WAN) with Azure. Internet
protocol virtual private network (IPVPN) providers (typically a multiprotocol label switching VPN) offer any-
to-any connectivity between your branch offices and datacenters. Azure can be interconnected to your WAN to
make it look just like any other branch office. WAN providers typically offer managed layer 3 connectivity.

For more information about connectivity providers, see the ExpressRoute introduction.

Ensure that your organization has met the ExpressRoute prerequisite requirements for connecting to Azure.

If you haven't already done so, add a subnet named GatewaySubnet to your Azure VNet and create an
ExpressRoute virtual network gateway using the Azure VPN gateway service. For more information about this
process, see ExpressRoute workflows for circuit provisioning and circuit states.

Create an ExpressRoute circuit as follows:

New-AzureRmExpressRouteCircuit -Name <<circuit-name>> -ResourceGroupName <<resource-group>> -Location
<<location>> -SkuTier <<sku-tier>> -SkuFamily <<sku-family>> -ServiceProviderName <<service-provider-
name>> -PeeringLocation <<peering-location>> -BandwidthInMbps <<bandwidth-in-mbps>>

Get-AzureRmExpressRouteCircuit -Name <<circuit-name>> -ResourceGroupName <<resource-group>>

1. Run the following PowerShell command:

2. Send the ServiceKey for the new circuit to the service provider.

3. Wait for the provider to provision the circuit. To verify the provisioning state of a circuit, run the following
PowerShell command:

The Provisioning state field in the Service Provider section of the output will change from

https://docs.microsoft.com/azure/expressroute/expressroute-introduction
https://docs.microsoft.com/azure/expressroute/expressroute-prerequisites
https://docs.microsoft.com/azure/expressroute/expressroute-workflows

TroubleshootingTroubleshooting

Get-AzureRmExpressRouteCircuit -Name <<circuit-name>> -ResourceGroupName <<resource-group>>

NOTENOTE

$circuit = Get-AzureRmExpressRouteCircuit -Name <<circuit-name>> -ResourceGroupName <<resource-group>>
$gw = Get-AzureRmVirtualNetworkGateway -Name <<gateway-name>> -ResourceGroupName <<resource-group>>
New-AzureRmVirtualNetworkGatewayConnection -Name <<connection-name>> -ResourceGroupName <<resource-
group>> -Location <<location> -VirtualNetworkGateway1 $gw -PeerId $circuit.Id -ConnectionType
ExpressRoute

NotProvisioned to Provisioned when the circuit is ready.

If you're using a layer 3 connection, the provider should configure and manage routing for you. You provide the
information necessary to enable the provider to implement the appropriate routes.

4. If you're using a layer 2 connection:

Set-AzureRmExpressRouteCircuitPeeringConfig -Name <<peering-name>> -Circuit <<circuit-name>> -
PeeringType <<peering-type>> -PeerASN <<peer-asn>> -PrimaryPeerAddressPrefix <<primary-peer-
address-prefix>> -SecondaryPeerAddressPrefix <<secondary-peer-address-prefix>> -VlanId <<vlan-
id>>

Set-AzureRmExpressRouteCircuit -ExpressRouteCircuit <<circuit-name>>

a. Reserve two /30 subnets composed of valid public IP addresses for each type of peering you want
to implement. These /30 subnets will be used to provide IP addresses for the routers used for the
circuit. If you are implementing private, public, and Microsoft peering, you'll need 6 /30 subnets with
valid public IP addresses.

b. Configure routing for the ExpressRoute circuit. Run the following PowerShell commands for each
type of peering you want to configure (private, public, and Microsoft). For more information, see
Create and modify routing for an ExpressRoute circuit.

c. Reserve another pool of valid public IP addresses to use for network address translation (NAT) for
public and Microsoft peering. It is recommended to have a different pool for each peering. Specify
the pool to your connectivity provider, so they can configure border gateway protocol (BGP)
advertisements for those ranges.

5. Run the following PowerShell commands to link your private VNet(s) to the ExpressRoute circuit. For more
information,see Link a virtual network to an ExpressRoute circuit.

You can connect multiple VNets located in different regions to the same ExpressRoute circuit, as long as all VNets
and the ExpressRoute circuit are located within the same geopolitical region.

If a previously functioning ExpressRoute circuit now fails to connect, in the absence of any configuration changes
on-premises or within your private VNet, you may need to contact the connectivity provider and work with them
to correct the issue. Use the following PowerShell commands to verify that the ExpressRoute circuit has been
provisioned:

The output of this command shows several properties for your circuit, including ProvisioningState ,
CircuitProvisioningState , and ServiceProviderProvisioningState as shown below.

https://docs.microsoft.com/azure/expressroute/expressroute-howto-routing-arm
https://docs.microsoft.com/azure/expressroute/expressroute-howto-linkvnet-arm

ProvisioningState : Succeeded
Sku : {
 "Name": "Standard_MeteredData",
 "Tier": "Standard",
 "Family": "MeteredData"
 }
CircuitProvisioningState : Enabled
ServiceProviderProvisioningState : NotProvisioned

Remove-AzureRmExpressRouteCircuit -Name <<circuit-name>> -ResourceGroupName <<resource-group>>

Scalability considerations

If the ProvisioningState is not set to Succeeded after you tried to create a new circuit, remove the circuit by using
the command below and try to create it again.

If your provider had already provisioned the circuit, and the ProvisioningState is set to Failed , or the
CircuitProvisioningState is not Enabled , contact your provider for further assistance.

ExpressRoute circuits provide a high bandwidth path between networks. Generally, the higher the bandwidth the
greater the cost.

ExpressRoute offers two pricing plans to customers, a metered plan and an unlimited data plan. Charges vary
according to circuit bandwidth. Available bandwidth will likely vary from provider to provider. Use the
Get-AzureRmExpressRouteServiceProvider cmdlet to see the providers available in your region and the bandwidths

that they offer.

A single ExpressRoute circuit can support a certain number of peerings and VNet links. See ExpressRoute limits
for more information.

For an extra charge, the ExpressRoute Premium add-on provides some additional capability:

Increased route limits for public and private peering.
Increased number of VNet links per ExpressRoute circuit.
Global connectivity for services.

See ExpressRoute pricing for details.

ExpressRoute circuits are designed to allow temporary network bursts up to two times the bandwidth limit that
you procured for no additional cost. This is achieved by using redundant links. However, not all connectivity
providers support this feature. Verify that your connectivity provider enables this feature before depending on it.

Although some providers allow you to change your bandwidth, make sure you pick an initial bandwidth that
surpasses your needs and provides room for growth. If you need to increase bandwidth in the future, you are left
with two options:

$ckt = Get-AzureRmExpressRouteCircuit -Name <<circuit-name>> -ResourceGroupName <<resource-group>>
$ckt.ServiceProviderProperties.BandwidthInMbps = <<bandwidth-in-mbps>>
Set-AzureRmExpressRouteCircuit -ExpressRouteCircuit $ckt

Increase the bandwidth. You should avoid this option as much as possible, and not all providers allow you
to increase bandwidth dynamically. But if a bandwidth increase is needed, check with your provider to
verify they support changing ExpressRoute bandwidth properties via PowerShell commands. If they do,
run the commands below.

You can increase the bandwidth without loss of connectivity. Downgrading the bandwidth will result in

https://azure.microsoft.com/pricing/details/expressroute/
https://docs.microsoft.com/azure/azure-subscription-service-limits
https://azure.microsoft.com/pricing/details/expressroute/

 Availability considerations

$ckt = Get-AzureRmExpressRouteCircuit -Name <<circuit-name>> -ResourceGroupName <<resource-group>>

$ckt.Sku.Tier = "Premium"
$ckt.Sku.Family = "MeteredData"
$ckt.Sku.Name = "Premium_MeteredData"

Set-AzureRmExpressRouteCircuit -ExpressRouteCircuit $ckt

IMPORTANTIMPORTANT

disruption in connectivity, because you must delete the circuit and recreate it with the new configuration.

Change your pricing plan and/or upgrade to Premium. To do so, run the following commands. The
Sku.Tier property can be Standard or Premium ; the Sku.Name property can be MeteredData or
UnlimitedData .

Make sure the Sku.Name property matches the Sku.Tier and Sku.Family . If you change the family and tier,
but not the name, your connection will be disabled.

You can upgrade the SKU without disruption, but you cannot switch from the unlimited pricing plan to
metered. When downgrading the SKU, your bandwidth consumption must remain within the default limit
of the standard SKU.

ExpressRoute does not support router redundancy protocols such as hot standby routing protocol (HSRP) and
virtual router redundancy protocol (VRRP) to implement high availability. Instead, it uses a redundant pair of BGP
sessions per peering. To facilitate highly-available connections to your network, Azure provisions you with two
redundant ports on two routers (part of the Microsoft edge) in an active-active configuration.

By default, BGP sessions use an idle timeout value of 60 seconds. If a session times out three times (180 seconds
total), the router is marked as unavailable, and all traffic is redirected to the remaining router. This 180-second
timeout might be too long for critical applications. If so, you can change your BGP time-out settings on the on-
premises router to a smaller value.

You can configure high availability for your Azure connection in different ways, depending on the type of provider
you use, and the number of ExpressRoute circuits and virtual network gateway connections you're willing to
configure. The following summarizes your availability options:

If you're using a layer 2 connection, deploy redundant routers in your on-premises network in an active-
active configuration. Connect the primary circuit to one router, and the secondary circuit to the other. This
will give you a highly available connection at both ends of the connection. This is necessary if you require
the ExpressRoute service level agreement (SLA). See SLA for Azure ExpressRoute for details.

The following diagram shows a configuration with redundant on-premises routers connected to the
primary and secondary circuits. Each circuit handles the traffic for a public peering and a private peering
(each peering is designated a pair of /30 address spaces, as described in the previous section).

https://azure.microsoft.com/support/legal/sla/expressroute

Manageability considerations

Security considerations

If you're using a layer 3 connection, verify that it provides redundant BGP sessions that handle availability
for you.

Connect the VNet to multiple ExpressRoute circuits, supplied by different service providers. This strategy
provides additional high-availability and disaster recovery capabilities.

Configure a site-to-site VPN as a failover path for ExpressRoute. For more about this option, see Connect
an on-premises network to Azure using ExpressRoute with VPN failover. This option only applies to
private peering. For Azure and Office 365 services, the Internet is the only failover path.

You can use the Azure Connectivity Toolkit (AzureCT) to monitor connectivity between your on-premises
datacenter and Azure.

You can configure security options for your Azure connection in different ways, depending on your security
concerns and compliance needs.

ExpressRoute operates in layer 3. Threats in the application layer can be prevented by using a network security
appliance that restricts traffic to legitimate resources. Additionally, ExpressRoute connections using public peering
can only be initiated from on-premises. This prevents a rogue service from accessing and compromising on-
premises data from the Internet.

To maximize security, add network security appliances between the on-premises network and the provider edge
routers. This will help to restrict the inflow of unauthorized traffic from the VNet:

https://github.com/Azure/NetworkMonitoring/tree/master/AzureCT

NOTENOTE

Deploy the solution

For auditing or compliance purposes, it may be necessary to prohibit direct access from components running in
the VNet to the Internet and implement forced tunneling. In this situation, Internet traffic should be redirected
back through a proxy running on-premises where it can be audited. The proxy can be configured to block
unauthorized traffic flowing out, and filter potentially malicious inbound traffic.

To maximize security, do not enable a public IP address for your VMs, and use NSGs to ensure that these VMs
aren't publicly accessible. VMs should only be available using the internal IP address. These addresses can be
made accessible through the ExpressRoute network, enabling on-premises DevOps staff to perform configuration
or maintenance.

If you must expose management endpoints for VMs to an external network, use NSGs or access control lists to
restrict the visibility of these ports to a whitelist of IP addresses or networks.

By default, Azure VMs deployed through the Azure portal include a public IP address that provides login access.

Prerequisites. You must have an existing on-premises infrastructure already configured with a suitable network
appliance.

To deploy the solution, perform the following steps.

1. Click the button below:

2. Wait for the link to open in the Azure portal, then follow these steps:

The Resource group name is already defined in the parameter file, so select Create New and enter
ra-hybrid-er-rg in the text box.

Select the region from the Location drop down box.
Do not edit the Template Root Uri or the Parameter Root Uri text boxes.
Review the terms and conditions, then click the I agree to the terms and conditions stated above
checkbox.
Click the Purchase button.

3. Wait for the deployment to complete.

https://portal.azure.com/#create/Microsoft.Template/uri/https%3A%2F%2Fraw.githubusercontent.com%2Fmspnp%2Freference-architectures%2Fmaster%2Fhybrid-networking%2Fexpressroute%2Fazuredeploy.json

4. Click the button below:

5. Wait for the link to open in the Azure portal, then follow these steps:

Select Use existing in the Resource group section and enter ra-hybrid-er-rg in the text box.
Select the region from the Location drop down box.
Do not edit the Template Root Uri or the Parameter Root Uri text boxes.
Review the terms and conditions, then click the I agree to the terms and conditions stated above
checkbox.
Click the Purchase button.

6. Wait for the deployment to complete.

https://portal.azure.com/#create/Microsoft.Template/uri/https%3A%2F%2Fraw.githubusercontent.com%2Fmspnp%2Freference-architectures%2Fmaster%2Fhybrid-networking%2Fexpressroute%2Fazuredeploy-expressRouteCircuit.json

Connect an on-premises network to Azure using
ExpressRoute with VPN failover
3/13/2019 • 4 minutes to read • Edit Online

Architecture

This reference architecture shows how to connect an on-premises network to an Azure virtual network (VNet)
using ExpressRoute, with a site-to-site virtual private network (VPN) as a failover connection. Traffic flows
between the on-premises network and the Azure VNet through an ExpressRoute connection. If there is a loss of
connectivity in the ExpressRoute circuit, traffic is routed through an IPSec VPN tunnel. Deploy this solution.

Note that if the ExpressRoute circuit is unavailable, the VPN route will only handle private peering connections.
Public peering and Microsoft peering connections will pass over the Internet.

Download a Visio file of this architecture.

The architecture consists of the following components.

On-premises network. A private local-area network running within an organization.

VPN appliance. A device or service that provides external connectivity to the on-premises network. The
VPN appliance may be a hardware device, or it can be a software solution such as the Routing and Remote
Access Service (RRAS) in Windows Server 2012. For a list of supported VPN appliances and information
on configuring selected VPN appliances for connecting to Azure, see About VPN devices for Site-to-Site
VPN Gateway connections.

ExpressRoute circuit. A layer 2 or layer 3 circuit supplied by the connectivity provider that joins the on-
premises network with Azure through the edge routers. The circuit uses the hardware infrastructure
managed by the connectivity provider.

ExpressRoute virtual network gateway. The ExpressRoute virtual network gateway enables the VNet to
connect to the ExpressRoute circuit used for connectivity with your on-premises network.

VPN virtual network gateway. The VPN virtual network gateway enables the VNet to connect to the
VPN appliance in the on-premises network. The VPN virtual network gateway is configured to accept
requests from the on-premises network only through the VPN appliance. For more information, see
Connect an on-premises network to a Microsoft Azure virtual network.

VPN connection. The connection has properties that specify the connection type (IPSec) and the key
shared with the on-premises VPN appliance to encrypt traffic.

https://github.com/mspnp/architecture-center/blob/master/docs/reference-architectures/hybrid-networking/expressroute-vpn-failover.md
https://archcenter.blob.core.windows.net/cdn/hybrid-network-architectures.vsdx
https://docs.microsoft.com/azure/vpn-gateway/vpn-gateway-about-vpn-devices
https://technet.microsoft.com/library/dn786406.aspx

Recommendations

VNet and GatewaySubnetVNet and GatewaySubnet

$vnet = Get-AzureRmVirtualNetworkGateway -Name <yourvnetname> -ResourceGroupName <yourresourcegroup>
Remove-AzureRmVirtualNetworkSubnetConfig -Name GatewaySubnet -VirtualNetwork $vnet

$vnet = Get-AzureRmVirtualNetworkGateway -Name <yourvnetname> -ResourceGroupName <yourresourcegroup>
Add-AzureRmVirtualNetworkSubnetConfig -Name "GatewaySubnet" -VirtualNetwork $vnet -AddressPrefix
"10.200.255.224/27"
$vnet = Set-AzureRmVirtualNetwork -VirtualNetwork $vnet

VPN and ExpressRoute gatewaysVPN and ExpressRoute gateways

Remove-AzureRmVirtualNetworkGateway -Name <yourgatewayname> -ResourceGroupName <yourresourcegroup>

Azure Virtual Network (VNet). Each VNet resides in a single Azure region, and can host multiple
application tiers. Application tiers can be segmented using subnets in each VNet.

Gateway subnet. The virtual network gateways are held in the same subnet.

Cloud application. The application hosted in Azure. It might include multiple tiers, with multiple subnets
connected through Azure load balancers. For more information about the application infrastructure, see
Running Windows VM workloads and Running Linux VM workloads.

The following recommendations apply for most scenarios. Follow these recommendations unless you have a
specific requirement that overrides them.

Create the ExpressRoute virtual network gateway and the VPN virtual network gateway in the same VNet. This
means that they should share the same subnet named GatewaySubnet.

If the VNet already includes a subnet named GatewaySubnet, ensure that it has a /27 or larger address space. If
the existing subnet is too small, use the following PowerShell command to remove the subnet:

If the VNet does not contain a subnet named GatewaySubnet, create a new one using the following PowerShell
command:

Verify that your organization meets the ExpressRoute prerequisite requirements for connecting to Azure.

If you already have a VPN virtual network gateway in your Azure VNet, use the following PowerShell command
to remove it:

Follow the instructions in Implementing a hybrid network architecture with Azure ExpressRoute to establish your
ExpressRoute connection.

Follow the instructions in Implementing a hybrid network architecture with Azure and On-premises VPN to
establish your VPN virtual network gateway connection.

After you have established the virtual network gateway connections, test the environment as follows:

1. Make sure you can connect from your on-premises network to your Azure VNet.
2. Contact your provider to stop ExpressRoute connectivity for testing.
3. Verify that you can still connect from your on-premises network to your Azure VNet using the VPN virtual

network gateway connection.
4. Contact your provider to reestablish ExpressRoute connectivity.

https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/virtual-machines-windows/index
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/virtual-machines-linux/index
https://docs.microsoft.com/azure/expressroute/expressroute-prerequisites

Considerations

Deploy the solution

For ExpressRoute considerations, see the Implementing a Hybrid Network Architecture with Azure ExpressRoute
guidance.

For site-to-site VPN considerations, see the Implementing a Hybrid Network Architecture with Azure and On-
premises VPN guidance.

For general Azure security considerations, see Microsoft cloud services and network security.

Prerequisites. You must have an existing on-premises infrastructure already configured with a suitable network
appliance.

To deploy the solution, perform the following steps.

1. Click the button below:

2. Wait for the link to open in the Azure portal, then follow these steps:

The Resource group name is already defined in the parameter file, so select Create New and enter
ra-hybrid-vpn-er-rg in the text box.

Select the region from the Location drop down box.
Do not edit the Template Root Uri or the Parameter Root Uri text boxes.
Review the terms and conditions, then click the I agree to the terms and conditions stated above
checkbox.
Click the Purchase button.

3. Wait for the deployment to complete.

4. Click the button below:

5. Wait for the link to open in the Azure portal, then enter then follow these steps:

Select Use existing in the Resource group section and enter ra-hybrid-vpn-er-rg in the text box.
Select the region from the Location drop down box.
Do not edit the Template Root Uri or the Parameter Root Uri text boxes.
Review the terms and conditions, then click the I agree to the terms and conditions stated above
checkbox.
Click the Purchase button.

https://docs.microsoft.com/azure/best-practices-network-security
https://portal.azure.com/#create/Microsoft.Template/uri/https%3A%2F%2Fraw.githubusercontent.com%2Fmspnp%2Freference-architectures%2Fmaster%2Fhybrid-networking%2Fexpressroute-vpn-failover%2Fazuredeploy.json
https://portal.azure.com/#create/Microsoft.Template/uri/https%3A%2F%2Fraw.githubusercontent.com%2Fmspnp%2Freference-architectures%2Fmaster%2Fhybrid-networking%2Fexpressroute-vpn-failover%2Fazuredeploy-expressRouteCircuit.json

Implement a hub-spoke network topology in Azure
3/13/2019 • 10 minutes to read • Edit Online

Architecture

This reference architecture shows how to implement a hub-spoke topology in Azure. The hub is a virtual network
(VNet) in Azure that acts as a central point of connectivity to your on-premises network. The spokes are VNets
that peer with the hub, and can be used to isolate workloads. Traffic flows between the on-premises datacenter
and the hub through an ExpressRoute or VPN gateway connection. Deploy this solution.

Download a Visio file of this architecture

The benefits of this toplogy include:

Cost savings by centralizing services that can be shared by multiple workloads, such as network virtual
appliances (NVAs) and DNS servers, in a single location.
Overcome subscriptions limits by peering VNets from different subscriptions to the central hub.
Separation of concerns between central IT (SecOps, InfraOps) and workloads (DevOps).

Typical uses for this architecture include:

Workloads deployed in different environments, such as development, testing, and production, that require
shared services such as DNS, IDS, NTP, or AD DS. Shared services are placed in the hub VNet, while each
environment is deployed to a spoke to maintain isolation.
Workloads that do not require connectivity to each other, but require access to shared services.
Enterprises that require central control over security aspects, such as a firewall in the hub as a DMZ, and
segregated management for the workloads in each spoke.

The architecture consists of the following components.

https://github.com/mspnp/architecture-center/blob/master/docs/reference-architectures/hybrid-networking/hub-spoke.md
https://archcenter.blob.core.windows.net/cdn/hybrid-network-hub-spoke.vsdx

NOTENOTE

NOTENOTE

Recommendations

Resource groupsResource groups

VNet and GatewaySubnetVNet and GatewaySubnet

On-premises network. A private local-area network running within an organization.

VPN device. A device or service that provides external connectivity to the on-premises network. The VPN
device may be a hardware device, or a software solution such as the Routing and Remote Access Service
(RRAS) in Windows Server 2012. For a list of supported VPN appliances and information on configuring
selected VPN appliances for connecting to Azure, see About VPN devices for Site-to-Site VPN Gateway
connections.

VPN virtual network gateway or ExpressRoute gateway. The virtual network gateway enables the
VNet to connect to the VPN device, or ExpressRoute circuit, used for connectivity with your on-premises
network. For more information, see Connect an on-premises network to a Microsoft Azure virtual network.

The deployment scripts for this reference architecture use a VPN gateway for connectivity, and a VNet in Azure to simulate
your on-premises network.

Hub VNet. Azure VNet used as the hub in the hub-spoke topology. The hub is the central point of
connectivity to your on-premises network, and a place to host services that can be consumed by the
different workloads hosted in the spoke VNets.

Gateway subnet. The virtual network gateways are held in the same subnet.

Spoke VNets. One or more Azure VNets that are used as spokes in the hub-spoke topology. Spokes can
be used to isolate workloads in their own VNets, managed separately from other spokes. Each workload
might include multiple tiers, with multiple subnets connected through Azure load balancers. For more
information about the application infrastructure, see Running Windows VM workloads and Running Linux
VM workloads.

VNet peering. Two VNets can be connected using a peering connection. Peering connections are non-
transitive, low latency connections between VNets. Once peered, the VNets exchange traffic by using the
Azure backbone, without the need for a router. In a hub-spoke network topology, you use VNet peering to
connect the hub to each spoke. You can peer virtual networks in the same region, or different regions. For
more information, see Requirements and constraints.

This article only covers Resource Manager deployments, but you can also connect a classic VNet to a Resource Manager
VNet in the same subscription. That way, your spokes can host classic deployments and still benefit from services shared in
the hub.

The following recommendations apply for most scenarios. Follow these recommendations unless you have a
specific requirement that overrides them.

The hub VNet, and each spoke VNet, can be implemented in different resource groups, and even different
subscriptions. When you peer virtual networks in different subscriptions, both subscriptions can be associated to
the same or different Azure Active Directory tenant. This allows for a decentralized management of each
workload, while sharing services maintained in the hub VNet.

Create a subnet named GatewaySubnet, with an address range of /27. This subnet is required by the virtual

https://docs.microsoft.com/azure/vpn-gateway/vpn-gateway-about-vpn-devices
https://technet.microsoft.com/library/dn786406.aspx
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/virtual-machines-windows/index
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/virtual-machines-linux/index
https://docs.microsoft.com/azure/virtual-network/virtual-network-peering-overview
https://docs.microsoft.com/azure/virtual-network/virtual-network-manage-peering#requirements-and-constraints
https://docs.microsoft.com/azure/azure-resource-manager/resource-group-overview

VNet peeringVNet peering

Considerations
Spoke connectivitySpoke connectivity

network gateway. Allocating 32 addresses to this subnet will help to prevent reaching gateway size limitations in
the future.

For more information about setting up the gateway, see the following reference architectures, depending on your
connection type:

Hybrid network using ExpressRoute
Hybrid network using a VPN gateway

For higher availability, you can use ExpressRoute plus a VPN for failover. See Connect an on-premises network to
Azure using ExpressRoute with VPN failover.

A hub-spoke topology can also be used without a gateway, if you don't need connectivity with your on-premises
network.

VNet peering is a non-transitive relationship between two VNets. If you require spokes to connect to each other,
consider adding a separate peering connection between those spokes.

However, if you have several spokes that need to connect with each other, you will run out of possible peering
connections very quickly due to the limitation on number of VNets peerings per VNet. In this scenario, consider
using user defined routes (UDRs) to force traffic destined to a spoke to be sent to an NVA acting as a router at the
hub VNet. This will allow the spokes to connect to each other.

You can also configure spokes to use the hub VNet gateway to communicate with remote networks. To allow
gateway traffic to flow from spoke to hub, and connect to remote networks, you must:

Configure the VNet peering connection in the hub to allow gateway transit.
Configure the VNet peering connection in each spoke to use remote gateways.
Configure all VNet peering connections to allow forwarded traffic.

If you require connectivity between spokes, consider implementing an NVA for routing in the hub, and using
UDRs in the spoke to forward traffic to the hub.

Spoke1 VNet

Spoke2 VNet

Hu b VNet

U DR

U DR

Router
NVA

In this scenario, you must configure the peering connections to allow forwarded traffic.

https://docs.microsoft.com/azure/azure-subscription-service-limits#networking-limits

Overcoming VNet peering limitsOvercoming VNet peering limits

Deploy the solution

PrerequisitesPrerequisites

Deploy the simulated on-premises datacenterDeploy the simulated on-premises datacenter

Make sure you consider the limitation on number of VNets peerings per VNet in Azure. If you decide you need
more spokes than the limit will allow, consider creating a hub-spoke-hub-spoke topology, where the first level of
spokes also act as hubs. The following diagram shows this approach.

Hub VNet
10.255.0.0/24

Spoke-Hub1
10.255.1.0/24

Spoke-Hub2
10.255.2.0/24

Spoke1 VNet
10.1.1.0/24

Spoke2 VNet
10.1.2.0/24

Spoke3 VNet
10.1.3.0/24

Spoke4 VNet
10.1.4.0/24

Also consider what services are shared in the hub, to ensure the hub scales for a larger number of spokes. For
instance, if your hub provides firewall services, consider the bandwidth limits of your firewall solution when
adding multiple spokes. You might want to move some of these shared services to a second level of hubs.

A deployment for this architecture is available on GitHub. It uses VMs in each VNet to test connectivity. There are
no actual services hosted in the shared-services subnet in the hub VNet.

The deployment creates the following resource groups in your subscription:

hub-nva-rg
hub-vnet-rg
onprem-jb-rg
onprem-vnet-rg
spoke1-vnet-rg
spoke2-vent-rg

The template parameter files refer to these names, so if you change them, update the parameter files to match.

npm install -g @mspnp/azure-building-blocks

az login

1. Clone, fork, or download the zip file for the reference architectures GitHub repository.

2. Install Azure CLI 2.0.

3. Install the Azure building blocks npm package.

4. From a command prompt, bash prompt, or PowerShell prompt, sign into your Azure account as follows:

To deploy the simulated on-premises datacenter as an Azure VNet, follow these steps:

https://docs.microsoft.com/azure/azure-subscription-service-limits#networking-limits
https://github.com/mspnp/reference-architectures
https://github.com/mspnp/reference-architectures
https://docs.microsoft.com/cli/azure/install-azure-cli?view=azure-cli-latest
https://github.com/mspnp/template-building-blocks/wiki/Install-Azure-Building-Blocks

Deploy the hub VNetDeploy the hub VNet

Test connectivity to the hub VNet — Windows deploymentTest connectivity to the hub VNet — Windows deployment

"adminUsername": "<user name>",
"adminPassword": "<password>",

azbb -s <subscription_id> -g onprem-vnet-rg -l <location> -p onprem.json --deploy

1. Navigate to the hybrid-networking/hub-spoke folder of the reference architectures repository.

2. Open the onprem.json file. Replace the values for adminUsername and adminPassword .

3. (Optional) For a Linux deployment, set osType to Linux .

4. Run the following command:

5. Wait for the deployment to finish. This deployment creates a virtual network, a virtual machine, and a VPN
gateway. It can take about 40 minutes to create the VPN gateway.

To deploy the hub VNet, perform the following steps.

"adminUsername": "<user name>",
"adminPassword": "<password>",

"sharedKey": "",

azbb -s <subscription_id> -g hub-vnet-rg -l <location> -p hub-vnet.json --deploy

1. Open the hub-vnet.json file. Replace the values for adminUsername and adminPassword .

2. (Optional) For a Linux deployment, set osType to Linux .

3. Find both instances of sharedKey and enter a shared key for the VPN connection. The values must match.

4. Run the following command:

5. Wait for the deployment to finish. This deployment creates a virtual network, a virtual machine, a VPN
gateway, and a connection to the gateway. It can take about 40 minutes to create the VPN gateway.

To test conectivity from the simulated on-premises environment to the hub VNet using Windows VMs, follow
these steps:

Test-NetConnection 10.0.0.68 -CommonTCPPort RDP

1. Use the Azure portal to find the VM named jb-vm1 in the onprem-jb-rg resource group.

2. Click Connect to open a remote desktop session to the VM. Use the password that you specified in the
onprem.json parameter file.

3. Open a PowerShell console in the VM, and use the Test-NetConnection cmdlet to verify that you can
connect to the jumpbox VM in the hub VNet.

The output should look similar to the following:

ComputerName : 10.0.0.68
RemoteAddress : 10.0.0.68
RemotePort : 3389
InterfaceAlias : Ethernet 2
SourceAddress : 192.168.1.000
TcpTestSucceeded : True

NOTENOTE

Test connectivity to the hub VNet — Linux deploymentTest connectivity to the hub VNet — Linux deployment

Deploy the spoke VNetsDeploy the spoke VNets

Test connectivity to the spoke VNets — Windows deploymentTest connectivity to the spoke VNets — Windows deployment

By default, Windows Server VMs do not allow ICMP responses in Azure. If you want to use ping to test connectivity, you
need to enable ICMP traffic in the Windows Advanced Firewall for each VM.

To test conectivity from the simulated on-premises environment to the hub VNet using Linux VMs, follow these
steps:

ping 10.0.0.68

1. Use the Azure portal to find the VM named jb-vm1 in the onprem-jb-rg resource group.

2. Click Connect and copy the ssh command shown in the portal.

3. From a Linux prompt, run ssh to connect to the simulated on-premises environment. Use the password
that you specified in the onprem.json parameter file.

4. Use the ping command to test connectivity to the jumpbox VM in the hub VNet:

To deploy the spoke VNets, perform the following steps.

"adminUsername": "<user name>",
"adminPassword": "<password>",

azbb -s <subscription_id> -g spoke1-vnet-rg -l <location> -p spoke1.json --deploy

azbb -s <subscription_id> -g spoke2-vnet-rg -l <location> -p spoke2.json --deploy

azbb -s <subscription_id> -g hub-vnet-rg -l <location> -p hub-vnet-peering.json --deploy

1. Open the spoke1.json file. Replace the values for adminUsername and adminPassword .

2. (Optional) For a Linux deployment, set osType to Linux .

3. Run the following command:

4. Repeat steps 1-2 for the spoke2.json file.

5. Run the following command:

6. Run the following command:

Test connectivity to the spoke VNets — Linux deploymentTest connectivity to the spoke VNets — Linux deployment

Add connectivity between spokesAdd connectivity between spokes

To test conectivity from the simulated on-premises environment to the spoke VNets using Windows VMs,
perform the following steps:

Test-NetConnection 10.1.0.68 -CommonTCPPort RDP
Test-NetConnection 10.2.0.68 -CommonTCPPort RDP

1. Use the Azure portal to find the VM named jb-vm1 in the onprem-jb-rg resource group.

2. Click Connect to open a remote desktop session to the VM. Use the password that you specified in the
onprem.json parameter file.

3. Open a PowerShell console in the VM, and use the Test-NetConnection cmdlet to verify that you can
connect to the jumpbox VMs in the spoke VNets.

To test conectivity from the simulated on-premises environment to the spoke VNets using Linux VMs, perform
the following steps:

ping 10.1.0.68
ping 10.2.0.68

1. Use the Azure portal to find the VM named jb-vm1 in the onprem-jb-rg resource group.

2. Click Connect and copy the ssh command shown in the portal.

3. From a Linux prompt, run ssh to connect to the simulated on-premises environment. Use the password
that you specified in the onprem.json parameter file.

4. Use the ping command to test connectivity to the jumpbox VMs in each spoke:

This step is optional. If you want to allow spokes to connect to each other, you must use a network virtual
appliance (NVA) as a router in the hub VNet, and force traffic from spokes to the router when trying to connect to
another spoke. To deploy a basic sample NVA as a single VM, along with user-defined routes (UDRs) to allow the
two spoke VNets to connect, perform the following steps:

"adminUsername": "<user name>",
"adminPassword": "<password>",

azbb -s <subscription_id> -g hub-nva-rg -l <location> -p hub-nva.json --deploy

1. Open the hub-nva.json file. Replace the values for adminUsername and adminPassword .

2. Run the following command:

Implement a hub-spoke network topology with
shared services in Azure
3/13/2019 • 8 minutes to read • Edit Online

NOTENOTE

This reference architecture builds on the hub-spoke reference architecture to include shared services in the hub
that can be consumed by all spokes. As a first step toward migrating a datacenter to the cloud, and building a
virtual datacenter, the first services you need to share are identity and security. This reference architecture shows
you how to extend your Active Directory services from your on-premises datacenter to Azure, and how to add a
network virtual appliance (NVA) that can act as a firewall, in a hub-spoke topology. Deploy this solution.

This scenario can also be accomplished using Azure Firewall, a cloud-based network security service.

Download a Visio file of this architecture

The benefits of this topology include:

Cost savings by centralizing services that can be shared by multiple workloads, such as network virtual
appliances (NVAs) and DNS servers, in a single location.
Overcome subscriptions limits by peering VNets from different subscriptions to the central hub.
Separation of concerns between central IT (SecOps, InfraOps) and workloads (DevOps).

Typical uses for this architecture include:

Workloads deployed in different environments, such as development, testing, and production, that require
shared services such as DNS, IDS, NTP, or AD DS. Shared services are placed in the hub VNet, while each
environment is deployed to a spoke to maintain isolation.
Workloads that do not require connectivity to each other, but require access to shared services.

https://github.com/mspnp/architecture-center/blob/master/docs/reference-architectures/hybrid-networking/shared-services.md
https://aka.ms/vdc
https://docs.microsoft.com/azure/firewall/
https://archcenter.blob.core.windows.net/cdn/hybrid-network-hub-spoke.vsdx

Architecture

NOTENOTE

NOTENOTE

Recommendations

Enterprises that require central control over security aspects, such as a firewall in the hub as a DMZ, and
segregated management for the workloads in each spoke.

The architecture consists of the following components.

On-premises network. A private local-area network running within an organization.

VPN device. A device or service that provides external connectivity to the on-premises network. The VPN
device may be a hardware device, or a software solution such as the Routing and Remote Access Service
(RRAS) in Windows Server 2012. For a list of supported VPN appliances and information on configuring
selected VPN appliances for connecting to Azure, see About VPN devices for Site-to-Site VPN Gateway
connections.

VPN virtual network gateway or ExpressRoute gateway. The virtual network gateway enables the
VNet to connect to the VPN device, or ExpressRoute circuit, used for connectivity with your on-premises
network. For more information, see Connect an on-premises network to a Microsoft Azure virtual network.

The deployment scripts for this reference architecture use a VPN gateway for connectivity, and a VNet in Azure to simulate
your on-premises network.

Hub VNet. Azure VNet used as the hub in the hub-spoke topology. The hub is the central point of
connectivity to your on-premises network, and a place to host services that can be consumed by the
different workloads hosted in the spoke VNets.

Gateway subnet. The virtual network gateways are held in the same subnet.

Shared services subnet. A subnet in the hub VNet used to host services that can be shared among all
spokes, such as DNS or AD DS.

DMZ subnet. A subnet in the hub VNet used to host NVAs that can act as security appliances, such as
firewalls.

Spoke VNets. One or more Azure VNets that are used as spokes in the hub-spoke topology. Spokes can
be used to isolate workloads in their own VNets, managed separately from other spokes. Each workload
might include multiple tiers, with multiple subnets connected through Azure load balancers. For more
information about the application infrastructure, see Running Windows VM workloads and Running Linux
VM workloads.

VNet peering. Two VNets can be connected using a peering connection. Peering connections are non-
transitive, low latency connections between VNets. Once peered, the VNets exchange traffic by using the
Azure backbone, without the need for a router. In a hub-spoke network topology, you use VNet peering to
connect the hub to each spoke. You can peer virtual networks in the same region, or different regions
(Global VNet Peering). For more information, see Requirements and constraints.

This article only covers Resource Manager deployments, but you can also connect a classic VNet to a Resource Manager
VNet in the same subscription. That way, your spokes can host classic deployments and still benefit from services shared in
the hub.

https://docs.microsoft.com/azure/vpn-gateway/vpn-gateway-about-vpn-devices
https://technet.microsoft.com/library/dn786406.aspx
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/virtual-machines-windows/index
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/virtual-machines-linux/index
https://docs.microsoft.com/azure/virtual-network/virtual-network-peering-overview
https://docs.microsoft.com/azure/virtual-network/virtual-network-peering-overview#requirements-and-constraints
https://docs.microsoft.com/azure/azure-resource-manager/resource-group-overview

IdentityIdentity

SecuritySecurity

NOTENOTE

Considerations
Overcoming VNet peering limitsOvercoming VNet peering limits

All the recommendations for the hub-spoke reference architecture also apply to the shared services reference
architecture.

Also, the following recommendations apply for most scenarios under shared services. Follow these
recommendations unless you have a specific requirement that overrides them.

Most enterprise organizations have an Active Directory Directory Services (ADDS) environment in their on-
premises datacenter. To facilitate management of assets moved to Azure from your on-premises network that
depend on ADDS, it is recommended to host ADDS domain controllers in Azure.

If you use Group Policy Objects, that you want to control separately for Azure and your on-premises environment,
use a different AD site for each Azure region. Place your domain controllers in a central VNet (hub) that
dependent workloads can access.

As you move workloads from your on-premises environment to Azure, some of these workloads will require to be
hosted in VMs. For compliance reasons, you may need to enforce restrictions on traffic traversing those
workloads.

You can use network virtual appliances (NVAs) in Azure to host different types of security and performance
services. If you are familiar with a given set of appliances on-premises today, it is recommended to use the same
virtualized appliances in Azure, where applicable.

The deployment scripts for this reference architecture use an Ubuntu VM with IP forwarding enabled to mimic a network
virtual appliance.

Make sure you consider the limitation on number of VNets peerings per VNet in Azure. If you decide you need
more spokes than the limit will allow, consider creating a hub-spoke-hub-spoke topology, where the first level of
spokes also act as hubs. The following diagram shows this approach.

Hub VNet
10.255.0.0/24

Spoke-Hub1
10.255.1.0/24

Spoke-Hub2
10.255.2.0/24

Spoke1 VNet
10.1.1.0/24

Spoke2 VNet
10.1.2.0/24

Spoke3 VNet
10.1.3.0/24

Spoke4 VNet
10.1.4.0/24

Also consider what services are shared in the hub, to ensure the hub scales for a larger number of spokes. For
instance, if your hub provides firewall services, consider the bandwidth limits of your firewall solution when
adding multiple spokes. You might want to move some of these shared services to a second level of hubs.

https://docs.microsoft.com/azure/azure-subscription-service-limits#networking-limits

 Deploy the solution

PrerequisitesPrerequisites

Deploy the simulated on-premises datacenter using azbbDeploy the simulated on-premises datacenter using azbb

Deploy the hub VNetDeploy the hub VNet

A deployment for this architecture is available on GitHub. The deployment creates the following resource groups
in your subscription:

hub-adds-rg
hub-nva-rg
hub-vnet-rg
onprem-vnet-rg
spoke1-vnet-rg
spoke2-vnet-rg

The template parameter files refer to these names, so if you change them, update the parameter files to match.

npm install -g @mspnp/azure-building-blocks

az login

1. Clone, fork, or download the zip file for the reference architectures GitHub repository.

2. Install Azure CLI 2.0.

3. Install the Azure building blocks npm package.

4. From a command prompt, bash prompt, or PowerShell prompt, sign into your Azure account as follows:

This step deploys the simulated on-premises datacenter as an Azure VNet.

azbb -s <subscription_id> -g onprem-vnet-rg -l <location> -p onprem.json --deploy

1. Navigate to the hybrid-networking\shared-services-stack\ folder of the GitHub repository.

2. Open the onprem.json file.

3. Search for all instances of UserName , adminUserName , Password , and adminPassword . Enter values for the
user name and password in the parameters and save the file.

4. Run the following command:

5. Wait for the deployment to finish. This deployment creates a virtual network, a virtual machine running
Windows, and a VPN gateway. The VPN gateway creation can take more than 40 minutes to complete.

This step deploys the hub VNet and connects it to the simulated on-premises VNet.

"sharedKey": "abc123",

1. Open the hub-vnet.json file.

2. Search for adminPassword and enter a user name and password in the parameters.

3. Search for all instances of sharedKey and enter a value for a shared key. Save the file.

https://github.com/mspnp/reference-architectures
https://github.com/mspnp/reference-architectures
https://docs.microsoft.com/cli/azure/install-azure-cli?view=azure-cli-latest
https://github.com/mspnp/template-building-blocks/wiki/Install-Azure-Building-Blocks

Deploy AD DS in AzureDeploy AD DS in Azure

Deploy the spoke VNetsDeploy the spoke VNets

Peer the hub VNet to the spoke VNetsPeer the hub VNet to the spoke VNets

azbb -s <subscription_id> -g hub-vnet-rg -l <location> -p hub-vnet-peering.json --deploy

Deploy the NVADeploy the NVA

azbb -s <subscription_id> -g hub-vnet-rg -l <location> -p hub-vnet.json --deploy

4. Run the following command:

5. Wait for the deployment to finish. This deployment creates a virtual network, a virtual machine, a VPN
gateway, and a connection to the gateway created in the previous section. The VPN gateway can take more
than 40 minutes to complete.

This step deploys AD DS domain controllers in Azure.

azbb -s <subscription_id> -g hub-adds-rg -l <location> -p hub-adds.json --deploy

1. Open the hub-adds.json file.

2. Search for all instances of Password and adminPassword . Enter values for the user name and password in
the parameters and save the file.

3. Run the following command:

This deployment step may take several minutes, because it joins the two VMs to the domain hosted in the
simulated on-premises datacenter, and installs AD DS on them.

This step deploys the spoke VNets.

azbb -s <subscription_id> -g spoke1-vnet-rg -l <location> -p spoke1.json --deploy

azbb -s <subscription_id> -g spoke2-vnet-rg -l <location> -p spoke2.json --deploy

1. Open the spoke1.json file.

2. Search for adminPassword and enter a user name and password in the parameters.

3. Run the following command:

4. Repeat steps 1 and 2 for the file spoke2.json .

5. Run the following command:

To create a peering connection from the hub VNet to the spoke VNets, run the following command:

This step deploys an NVA in the dmz subnet.

1. Open the hub-nva.json file.

2. Search for adminPassword and enter a user name and password in the parameters.

3. Run the following command:

Test connectivityTest connectivity

ComputerName : 10.0.0.68
RemoteAddress : 10.0.0.68
RemotePort : 3389
InterfaceAlias : Ethernet 2
SourceAddress : 192.168.1.000
TcpTestSucceeded : True

NOTENOTE

Test-NetConnection 10.1.0.68 -CommonTCPPort RDP
Test-NetConnection 10.2.0.68 -CommonTCPPort RDP

azbb -s <subscription_id> -g hub-nva-rg -l <location> -p hub-nva.json --deploy

Test conectivity from the simulated on-premises environment to the hub VNet.

Test-NetConnection 10.0.0.68 -CommonTCPPort RDP

1. Use the Azure portal to find the VM named jb-vm1 in the onprem-jb-rg resource group.

2. Click Connect to open a remote desktop session to the VM. Use the password that you specified in the
onprem.json parameter file.

3. Open a PowerShell console in the VM, and use the Test-NetConnection cmdlet to verify that you can
connect to the jumpbox VM in the hub VNet.

The output should look similar to the following:

By default, Windows Server VMs do not allow ICMP responses in Azure. If you want to use ping to test connectivity, you
need to enable ICMP traffic in the Windows Advanced Firewall for each VM.

Repeat the sames steps to test connectivity to the spoke VNets:

Troubleshoot a hybrid VPN connection
3/13/2019 • 8 minutes to read • Edit Online

Verify the VPN appliance is functioning correctly

Get-EventLog -LogName System -EntryType Error -Source RemoteAccess | Format-List -Property *

This article gives some tips for troubleshooting a VPN gateway connection between an on-premises network and
Azure. For general information on troubleshooting common VPN-related errors, see Troubleshooting common
VPN related errors.

The following recommendations are useful for determining if your on-premises VPN appliance is functioning
correctly.

Check any log files generated by the VPN appliance for errors or failures. This will help you determine if
the VPN appliance is functioning correctly. The location of this information will vary according to your appliance.
For example, if you are using RRAS on Windows Server 2012, you can use the following PowerShell command to
display error event information for the RRAS service:

The Message property of each entry provides a description of the error. Some common examples are:

Inability to connect, possibly due to an incorrect IP address specified for the Azure VPN gateway in the
RRAS VPN network interface configuration.

https://github.com/mspnp/architecture-center/blob/master/docs/reference-architectures/hybrid-networking/troubleshoot-vpn.md
https://blogs.technet.microsoft.com/rrasblog/2009/08/12/troubleshooting-common-vpn-related-errors/

EventID : 20111
MachineName : on-premises-vm
Data : {41, 3, 0, 0}
Index : 14231
Category : (0)
CategoryNumber : 0
EntryType : Error
Message : RoutingDomainID- {00000000-0000-0000-0000-000000000000}: A demand dial connection
to the remote
 interface AzureGateway on port VPN2-4 was successfully initiated but failed to
complete
 successfully because of the following error: The network connection between
your computer and
 the VPN server could not be established because the remote server is not
responding. This could
 be because one of the network devices (for example, firewalls, NAT, routers, and
so on) between your computer
 and the remote server is not configured to allow VPN connections. Please contact
your
 Administrator or your service provider to determine which device may be causing
the problem.
Source : RemoteAccess
ReplacementStrings : {{00000000-0000-0000-0000-000000000000}, AzureGateway, VPN2-4, The network
connection between
 your computer and the VPN server could not be established because the remote
server is not
 responding. This could be because one of the network devices (for example,
firewalls, NAT, routers, and so on)
 between your computer and the remote server is not configured to allow VPN
connections. Please
 contact your Administrator or your service provider to determine which device
may be causing the
 problem.}
InstanceId : 20111
TimeGenerated : 3/18/2016 1:26:02 PM
TimeWritten : 3/18/2016 1:26:02 PM
UserName :
Site :
Container :

The wrong shared key being specified in the RRAS VPN network interface configuration.

Get-EventLog -LogName Application -Source RasClient | Format-List -Property *

EventID : 20227
MachineName : on-premises-vm
Data : {}
Index : 4203
Category : (0)
CategoryNumber : 0
EntryType : Error
Message : CoId={B4000371-A67F-452F-AA4C-3125AA9CFC78}: The user SYSTEM dialed a connection named
 AzureGateway that has failed. The error code returned on failure is 809.
Source : RasClient
ReplacementStrings : {{B4000371-A67F-452F-AA4C-3125AA9CFC78}, SYSTEM, AzureGateway, 809}
InstanceId : 20227
TimeGenerated : 3/18/2016 1:29:21 PM
TimeWritten : 3/18/2016 1:29:21 PM
UserName :
Site :
Container :

Verify connectivity

EventID : 20111
MachineName : on-premises-vm
Data : {233, 53, 0, 0}
Index : 14245
Category : (0)
CategoryNumber : 0
EntryType : Error
Message : RoutingDomainID- {00000000-0000-0000-0000-000000000000}: A demand dial connection
to the remote
 interface AzureGateway on port VPN2-4 was successfully initiated but failed to
complete
 successfully because of the following error: Internet key exchange (IKE)
authentication credentials are unacceptable.

Source : RemoteAccess
ReplacementStrings : {{00000000-0000-0000-0000-000000000000}, AzureGateway, VPN2-4, IKE authentication
credentials are
 unacceptable.
 }
InstanceId : 20111
TimeGenerated : 3/18/2016 1:34:22 PM
TimeWritten : 3/18/2016 1:34:22 PM
UserName :
Site :
Container :

You can also obtain event log information about attempts to connect through the RRAS service using the
following PowerShell command:

In the event of a failure to connect, this log will contain errors that look similar to the following:

Verify connectivity and routing across the VPN gateway. The VPN appliance may not be correctly routing
traffic through the Azure VPN Gateway. Use a tool such as PsPing to verify connectivity and routing across the
VPN gateway. For example, to test connectivity from an on-premises machine to a web server located on the VNet,
run the following command (replacing <<web-server-address>> with the address of the web server):

https://technet.microsoft.com/sysinternals/jj729731.aspx

PsPing -t <<web-server-address>>:80

D:\PSTools>psping -t 10.20.0.5:80

PsPing v2.01 - PsPing - ping, latency, bandwidth measurement utility
Copyright (C) 2012-2014 Mark Russinovich
Sysinternals - www.sysinternals.com

TCP connect to 10.20.0.5:80:
Infinite iterations (warmup 1) connecting test:
Connecting to 10.20.0.5:80 (warmup): 6.21ms
Connecting to 10.20.0.5:80: 3.79ms
Connecting to 10.20.0.5:80: 3.44ms
Connecting to 10.20.0.5:80: 4.81ms

 Sent = 3, Received = 3, Lost = 0 (0% loss),
 Minimum = 3.44ms, Maximum = 4.81ms, Average = 4.01ms

D:\PSTools>psping -t 10.20.1.6:80

PsPing v2.01 - PsPing - ping, latency, bandwidth measurement utility
Copyright (C) 2012-2014 Mark Russinovich
Sysinternals - www.sysinternals.com

TCP connect to 10.20.1.6:80:
Infinite iterations (warmup 1) connecting test:
Connecting to 10.20.1.6:80 (warmup): This operation returned because the timeout period expired.
Connecting to 10.20.1.6:80: This operation returned because the timeout period expired.
Connecting to 10.20.1.6:80: This operation returned because the timeout period expired.
Connecting to 10.20.1.6:80: This operation returned because the timeout period expired.
Connecting to 10.20.1.6:80:
 Sent = 3, Received = 0, Lost = 3 (100% loss),
 Minimum = 0.00ms, Maximum = 0.00ms, Average = 0.00ms

Check for problems with the Azure VPN gateway

azure network vpn-connection shared-key show <<resource-group>> <<vpn-connection-name>>

If the on-premises machine can route traffic to the web server, you should see output similar to the following:

If the on-premises machine cannot communicate with the specified destination, you will see messages like this:

Verify that the on-premises firewall allows VPN traffic to pass and that the correct ports are opened.

Verify that the on-premises VPN appliance uses an encryption method that is compatible with the
Azure VPN gateway. For policy-based routing, the Azure VPN gateway supports the AES256, AES128, and
3DES encryption algorithms. Route-based gateways support AES256 and 3DES. For more information, see About
VPN devices and IPsec/IKE parameters for Site-to-Site VPN Gateway connections.

The following recommendations are useful for determining if there is a problem with the Azure VPN gateway:

Examine Azure VPN gateway diagnostic logs for potential issues. See Step-by-Step: Capturing Azure
Resource Manager VNET Gateway Diagnostic Logs.

Verify that the Azure VPN gateway and on-premises VPN appliance are configured with the same
shared authentication key. You can view the shared key stored by the Azure VPN gateway using the following
Azure CLI command:

https://docs.microsoft.com/azure/vpn-gateway/vpn-gateway-about-vpn-devices
https://blogs.technet.microsoft.com/keithmayer/2016/10/12/step-by-step-capturing-azure-resource-manager-arm-vnet-gateway-diagnostic-logs/

azure network vnet subnet show -g <<resource-group>> -e <<vnet-name>> -n GatewaySubnet

C:\>azure network vnet subnet show -g profx-prod-rg -e profx-vnet -n GatewaySubnet
 info: Executing command network vnet subnet show
 + Looking up virtual network "profx-vnet"
 + Looking up the subnet "GatewaySubnet"
 data: Id : /subscriptions/########-####-####-####-
############/resourceGroups/profx-prod-rg/providers/Microsoft.Network/virtualNetworks/profx-
vnet/subnets/GatewaySubnet
 data: Name : GatewaySubnet
 data: Provisioning state : Succeeded
 data: Address prefix : 10.20.3.0/27
 data: Network Security Group id : /subscriptions/########-####-####-####-
############/resourceGroups/profx-prod-rg/providers/Microsoft.Network/networkSecurityGroups/VPN-Gateway-Group
 info: network vnet subnet show command OK

azure network nsg show -g <<resource-group>> -n <<nsg-name>>

Get-AzureRmVirtualNetworkGatewayConnection -Name <<connection-name>> - ResourceGroupName <<resource-group>>

Use the command appropriate for your on-premises VPN appliance to show the shared key configured for that
appliance.

Verify that the GatewaySubnet subnet holding the Azure VPN gateway is not associated with an NSG.

You can view the subnet details using the following Azure CLI command:

Ensure there is no data field named Network Security Group ID. The following example shows the results for an
instance of the GatewaySubnet that has an assigned NSG (VPN-Gateway-Group). This can prevent the gateway
from working correctly if there are any rules defined for this NSG.

Verify that the virtual machines in the Azure VNet are configured to permit traffic coming in from
outside the VNet. Check any NSG rules associated with subnets containing these virtual machines. You can view
all NSG rules using the following Azure CLI command:

Verify that the Azure VPN gateway is connected. You can use the following Azure PowerShell command to
check the current status of the Azure VPN connection. The <<connection-name>> parameter is the name of the
Azure VPN connection that links the virtual network gateway and the local gateway.

The following snippets highlight the output generated if the gateway is connected (the first example), and
disconnected (the second example):

PS C:\> Get-AzureRmVirtualNetworkGatewayConnection -Name profx-gateway-connection -ResourceGroupName profx-
prod-rg

AuthorizationKey :
VirtualNetworkGateway1 : Microsoft.Azure.Commands.Network.Models.PSVirtualNetworkGateway
VirtualNetworkGateway2 :
LocalNetworkGateway2 : Microsoft.Azure.Commands.Network.Models.PSLocalNetworkGateway
Peer :
ConnectionType : IPsec
RoutingWeight : 0
SharedKey : ####################################
ConnectionStatus : Connected
EgressBytesTransferred : 55254803
IngressBytesTransferred : 32227221
ProvisioningState : Succeeded
...

PS C:\> Get-AzureRmVirtualNetworkGatewayConnection -Name profx-gateway-connection2 -ResourceGroupName profx-
prod-rg

AuthorizationKey :
VirtualNetworkGateway1 : Microsoft.Azure.Commands.Network.Models.PSVirtualNetworkGateway
VirtualNetworkGateway2 :
LocalNetworkGateway2 : Microsoft.Azure.Commands.Network.Models.PSLocalNetworkGateway
Peer :
ConnectionType : IPsec
RoutingWeight : 0
SharedKey : ####################################
ConnectionStatus : NotConnected
EgressBytesTransferred : 0
IngressBytesTransferred : 0
ProvisioningState : Succeeded
...

Miscellaneous issues
The following recommendations are useful for determining if there is an issue with Host VM configuration,
network bandwidth utilization, or application performance:

Verify firewall configuration. Verify that the firewall in the guest operating system running on the Azure VMs in
the subnet is configured correctly to allow permitted traffic from the on-premises IP ranges.

Verify that the volume of traffic is not close to the limit of the bandwidth available to the Azure VPN
gateway. How to verify this depends on the VPN appliance running on-premises. For example, if you are using
RRAS on Windows Server 2012, you can use Performance Monitor to track the volume of data being received and
transmitted over the VPN connection. Using the RAS Total object, select the Bytes Received/Sec and Bytes
Transmitted/Sec counters:

You should compare the results with the bandwidth available to the VPN gateway (from 100 Mbps for the Basic
SKU to 1.25 Gbps for VpnGw3 SKU):

Verify that you have deployed the right number and size of VMs for your application load. Determine if
any of the virtual machines in the Azure VNet are running slowly. If so, they may be overloaded, there may be too
few to handle the load, or the load-balancers may not be configured correctly. To determine this, capture and
analyze diagnostic information. You can examine the results using the Azure portal, but many third-party tools are
also available that can provide detailed insights into the performance data.

https://azure.microsoft.com/blog/windows-azure-virtual-machine-monitoring-with-wad-extension/

Verify that the application is making efficient use of cloud resources. Instrument application code running
on each VM to determine whether applications are making the best use of resources. You can use tools such as
Application Insights.

https://docs.microsoft.com/azure/application-insights/app-insights-overview-usage

Choose a solution for integrating on-premises Active
Directory with Azure
3/13/2019 • 4 minutes to read • Edit Online

Integrate your on-premises domains with Azure AD

This article compares options for integrating your on-premises Active Directory (AD) environment with an Azure
network. For each option, a more detailed reference architecture is available.

Many organizations use Active Directory Domain Services (AD DS) to authenticate identities associated with
users, computers, applications, or other resources that are included in a security boundary. Directory and identity
services are typically hosted on-premises, but if your application is hosted partly on-premises and partly in Azure,
there may be latency sending authentication requests from Azure back to on-premises. Implementing directory
and identity services in Azure can reduce this latency.

Azure provides two solutions for implementing directory and identity services in Azure:

Use Azure AD to create an Active Directory domain in the cloud and connect it to your on-premises Active
Directory domain. Azure AD Connect integrates your on-premises directories with Azure AD.

Extend your existing on-premises Active Directory infrastructure to Azure, by deploying a VM in Azure that
runs AD DS as a domain controller. This architecture is more common when the on-premises network and
the Azure virtual network (VNet) are connected by a VPN or ExpressRoute connection. Several variations of
this architecture are possible:

Create a domain in Azure and join it to your on-premises AD forest.
Create a separate forest in Azure that is trusted by domains in your on-premises forest.
Replicate an Active Directory Federation Services (AD FS) deployment to Azure.

The next sections describe each of these options in more detail.

Use Azure Active Directory (Azure AD) to create a domain in Azure and link it to an on-premises AD domain.

The Azure AD directory is not an extension of an on-premises directory. Rather, it's a copy that contains the same
objects and identities. Changes made to these items on-premises are copied to Azure AD, but changes made in
Azure AD are not replicated back to the on-premises domain.

You can also use Azure AD without using an on-premises directory. In this case, Azure AD acts as the primary
source of all identity information, rather than containing data replicated from an on-premises directory.

Benefits

You don't need to maintain an AD infrastructure in the cloud. Azure AD is entirely managed and maintained by
Microsoft.
Azure AD provides the same identity information that is available on-premises.
Authentication can happen in Azure, reducing the need for external applications and users to contact the on-
premises domain.

Challenges

Identity services are limited to users and groups. There is no ability to authenticate service and computer
accounts.

https://github.com/mspnp/architecture-center/blob/master/docs/reference-architectures/identity/index.md
https://docs.microsoft.com/azure/active-directory-domain-services/active-directory-ds-overview
https://docs.microsoft.com/azure/active-directory/hybrid/whatis-hybrid-identity

AD DS in Azure joined to an on-premises forest

AD DS in Azure with a separate forest

Extend AD FS to Azure

You must configure connectivity with your on-premises domain to keep the Azure AD directory synchronized.
Applications may need to be rewritten to enable authentication through Azure AD.

Reference architecture

Integrate on-premises Active Directory domains with Azure Active Directory

Deploy AD Domain Services (AD DS) servers to Azure. Create a domain in Azure and join it to your on-premises
AD forest.

Consider this option if you need to use AD DS features that are not currently implemented by Azure AD.

Benefits

Provides access to the same identity information that is available on-premises.
You can authenticate user, service, and computer accounts on-premises and in Azure.
You don't need to manage a separate AD forest. The domain in Azure can belong to the on-premises forest.
You can apply group policy defined by on-premises Group Policy Objects to the domain in Azure.

Challenges

You must deploy and manage your own AD DS servers and domain in the cloud.
There may be some synchronization latency between the domain servers in the cloud and the servers running
on-premises.

Reference architecture

Extend Active Directory Domain Services (AD DS) to Azure

Deploy AD Domain Services (AD DS) servers to Azure, but create a separate Active Directory forest that is
separate from the on-premises forest. This forest is trusted by domains in your on-premises forest.

Typical uses for this architecture include maintaining security separation for objects and identities held in the
cloud, and migrating individual domains from on-premises to the cloud.

Benefits

You can implement on-premises identities and separate Azure-only identities.
You don't need to replicate from the on-premises AD forest to Azure.

Challenges

Authentication within Azure for on-premises identities requires extra network hops to the on-premises AD
servers.
You must deploy your own AD DS servers and forest in the cloud, and establish the appropriate trust
relationships between forests.

Reference architecture

Create an Active Directory Domain Services (AD DS) resource forest in Azure

Replicate an Active Directory Federation Services (AD FS) deployment to Azure, to perform federated

https://docs.microsoft.com/windows/desktop/AD/forests

authentication and authorization for components running in Azure.

Typical uses for this architecture:

Authenticate and authorize users from partner organizations.
Allow users to authenticate from web browsers running outside of the organizational firewall.
Allow users to connect from authorized external devices such as mobile devices.

Benefits

You can leverage claims-aware applications.
Provides the ability to trust external partners for authentication.
Compatibility with large set of authentication protocols.

Challenges

You must deploy your own AD DS, AD FS, and AD FS Web Application Proxy servers in Azure.
This architecture can be complex to configure.

Reference architecture

Extend Active Directory Federation Services (AD FS) to Azure

Integrate on-premises Active Directory domains with
Azure Active Directory
3/13/2019 • 16 minutes to read • Edit Online

NOTENOTE

NOTENOTE

Architecture

Azure Active Directory (Azure AD) is a cloud based multi-tenant directory and identity service. This reference
architecture shows best practices for integrating on-premises Active Directory domains with Azure AD to provide
cloud-based identity authentication. Deploy this solution.

Download a Visio file of this architecture.

For simplicity, this diagram only shows the connections directly related to Azure AD, and not protocol-related traffic that
may occur as part of authentication and identity federation. For example, a web application may redirect the web browser to
authenticate the request through Azure AD. Once authenticated, the request can be passed back to the web application,
with the appropriate identity information.

Typical uses for this reference architecture include:

Web applications deployed in Azure that provide access to remote users who belong to your organization.
Implementing self-service capabilities for end-users, such as resetting their passwords, and delegating group
management. Note that this requires Azure AD Premium edition.
Architectures in which the on-premises network and the application's Azure VNet are not connected using a
VPN tunnel or ExpressRoute circuit.

Azure AD can authenticate the identity of users and applications that exist in an organization’s directory. Some applications
and services, such as SQL Server, may require computer authentication, in which case this solution is not appropriate.

For additional considerations, see Choose a solution for integrating on-premises Active Directory with Azure.

The architecture has the following components.

Azure AD tenant. An instance of Azure AD created by your organization. It acts as a directory service for
cloud applications by storing objects copied from the on-premises Active Directory and provides identity

https://github.com/mspnp/architecture-center/blob/master/docs/reference-architectures/identity/azure-ad.md
https://archcenter.blob.core.windows.net/cdn/identity-architectures.vsdx
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/identity/considerations
https://docs.microsoft.com/azure/active-directory-domain-services/active-directory-ds-overview

Recommendations

Azure AD Connect sync serviceAzure AD Connect sync service

Security recommendationsSecurity recommendations

NOTENOTE

services.

Web tier subnet. This subnet holds VMs that run a web application. Azure AD can act as an identity broker
for this application.

On-premises AD DS server. An on-premises directory and identity service. The AD DS directory can be
synchronized with Azure AD to enable it to authenticate on-premises users.

Azure AD Connect sync server. An on-premises computer that runs the Azure AD Connect sync service.
This service synchronizes information held in the on-premises Active Directory to Azure AD. For example, if
you provision or deprovision groups and users on-premises, these changes propagate to Azure AD.

For security reasons, Azure AD stores user's passwords as a hash. If a user requires a password reset, this must be
performed on-premises and the new hash must be sent to Azure AD. Azure AD Premium editions include features
that can automate this task to enable users to reset their own passwords.

VMs for N-tier application. The deployment includes infrastructure for an N-tier application. For more
information about these resources, see Run VMs for an N-tier architecture.

The following recommendations apply for most scenarios. Follow these recommendations unless you have a
specific requirement that overrides them.

The Azure AD Connect sync service ensures that identity information stored in the cloud is consistent with that
held on-premises. You install this service using the Azure AD Connect software.

Before implementing Azure AD Connect sync, determine the synchronization requirements of your organization.
For example, what to synchronize, from which domains, and how frequently. For more information, see Determine
directory synchronization requirements.

You can run the Azure AD Connect sync service on a VM or a computer hosted on-premises. Depending on the
volatility of the information in your Active Directory directory, the load on the Azure AD Connect sync service is
unlikely to be high after the initial synchronization with Azure AD. Running the service on a VM makes it easier to
scale the server if needed. Monitor the activity on the VM as described in the Monitoring considerations section to
determine whether scaling is necessary.

If you have multiple on-premises domains in a forest, we recommend storing and synchronizing information for
the entire forest to a single Azure AD tenant. Filter information for identities that occur in more than one domain,
so that each identity appears only once in Azure AD, rather than being duplicated. Duplication can lead to
inconsistencies when data is synchronized. For more information, see the Topology section below.

Use filtering so that only necessary data is stored in Azure AD. For example, your organization might not want to
store information about inactive accounts in Azure AD. Filtering can be group-based, domain-based, organization
unit (OU)-based, or attribute-based. You can combine filters to generate more complex rules. For example, you
could synchronize objects held in a domain that have a specific value in a selected attribute. For detailed
information, see Azure AD Connect sync: Configure Filtering.

To implement high availability for the AD Connect sync service, run a secondary staging server. For more
information, see the Topology recommendations section.

User password management. The Azure AD Premium editions support password writeback, enabling your on-

https://docs.microsoft.com/azure/active-directory/hybrid/whatis-hybrid-identity
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/virtual-machines-windows/n-tier
https://docs.microsoft.com/azure/active-directory/active-directory-hybrid-identity-design-considerations-directory-sync-requirements
https://docs.microsoft.com/azure/active-directory/hybrid/how-to-connect-sync-configure-filtering

Topology recommendationsTopology recommendations

premises users to perform self-service password resets from within the Azure portal. This feature should only be
enabled after reviewing your organization's password security policy. For example, you can restrict which users can
change their passwords, and you can tailor the password management experience. For more information, see
Customizing Password Management to fit your organization's needs.

Protect on-premises applications that can be accessed externally. Use the Azure AD Application Proxy to
provide controlled access to on-premises web applications for external users through Azure AD. Only users that
have valid credentials in your Azure directory have permission to use the application. For more information, see
the article Enable Application Proxy in the Azure portal.

Actively monitor Azure AD for signs of suspicious activity. Consider using Azure AD Premium P2 edition,
which includes Azure AD Identity Protection. Identity Protection uses adaptive machine learning algorithms and
heuristics to detect anomalies and risk events that may indicate that an identity has been compromised. For
example, it can detect potentially unusual activity such as irregular sign-in activities, sign-ins from unknown
sources or from IP addresses with suspicious activity, or sign-ins from devices that may be infected. Using this
data, Identity Protection generates reports and alerts that enables you to investigate these risk events and take
appropriate action. For more information, see Azure Active Directory Identity Protection.

You can use the reporting feature of Azure AD in the Azure portal to monitor security-related activities occurring
in your system. For more information about using these reports, see Azure Active Directory Reporting Guide.

Configure Azure AD Connect to implement a topology that most closely matches the requirements of your
organization. Topologies that Azure AD Connect supports include the following:

NOTENOTE

NOTENOTE

Single forest, single Azure AD directory. In this topology, Azure AD Connect synchronizes objects and
identity information from one or more domains in a single on-premises forest into a single Azure AD
tenant. This is the default topology implemented by the express installation of Azure AD Connect.

Don't use multiple Azure AD Connect sync servers to connect different domains in the same on-premises forest to
the same Azure AD tenant, unless you are running a server in staging mode, described below.

Multiple forests, single Azure AD directory. In this topology, Azure AD Connect synchronizes objects
and identity information from multiple forests into a single Azure AD tenant. Use this topology if your
organization has more than one on-premises forest. You can consolidate identity information so that each
unique user is represented once in the Azure AD directory, even if the same user exists in more than one
forest. All forests use the same Azure AD Connect sync server. The Azure AD Connect sync server does not
have to be part of any domain, but it must be reachable from all forests.

In this topology, don't use separate Azure AD Connect sync servers to connect each on-premises forest to a single
Azure AD tenant. This can result in duplicated identity information in Azure AD if users are present in more than one
forest.

Multiple forests, separate topologies. This topology merges identity information from separate forests
into a single Azure AD tenant, treating all forests as separate entities. This topology is useful if you are
combining forests from different organizations and the identity information for each user is held in only
one forest.

https://docs.microsoft.com/azure/active-directory/active-directory-passwords-customize
https://docs.microsoft.com/azure/active-directory/active-directory-application-proxy-enable
https://docs.microsoft.com/azure/active-directory/active-directory-identityprotection
https://docs.microsoft.com/azure/active-directory/active-directory-reporting-guide

User authenticationUser authentication

Azure AD application proxyAzure AD application proxy

NOTENOTE
If the global address lists (GAL) in each forest are synchronized, a user in one forest may be present in another as a
contact. This can occur if your organization has implemented GALSync with Forefront Identity manager 2010 or
Microsoft Identity Manager 2016. In this scenario, you can specify that users should be identified by their Mail
attribute. You can also match identities using the ObjectSID and msExchMasterAccountSID attributes. This is useful if
you have one or more resource forests with disabled accounts.

Staging server. In this configuration, you run a second instance of the Azure AD Connect sync server in
parallel with the first. This structure supports scenarios such as:

High availability.

Testing and deploying a new configuration of the Azure AD Connect sync server.

Introducing a new server and decommissioning an old configuration.

In these scenarios, the second instance runs in staging mode. The server records imported objects
and synchronization data in its database, but does not pass the data to Azure AD. If you disable
staging mode, the server starts writing data to Azure AD, and also starts performing password
write-backs into the on-premises directories where appropriate. For more information, see Azure AD
Connect sync: Operational tasks and considerations.

Multiple Azure AD directories. It is recommended that you create a single Azure AD directory for an
organization, but there may be situations where you need to partition information across separate Azure
AD directories. In this case, avoid synchronization and password write-back issues by ensuring that each
object from the on-premises forest appears in only one Azure AD directory. To implement this scenario,
configure separate Azure AD Connect sync servers for each Azure AD directory, and use filtering so that
each Azure AD Connect sync server operates on a mutually exclusive set of objects.

For more information about these topologies, see Topologies for Azure AD Connect.

By default, the Azure AD Connect sync server configures password hash synchronization between the on-
premises domain and Azure AD, and the Azure AD service assumes that users authenticate by providing the same
password that they use on-premises. For many organizations, this is appropriate, but you should consider your
organization's existing policies and infrastructure. For example:

The security policy of your organization may prohibit synchronizing password hashes to the cloud. In this case
your organization should consider pass-through authentication.
You might require that users experience seamless single sign-on (SSO) when accessing cloud resources from
domain-joined machines on the corporate network.
Your organization might already have Active Directory Federation Services (AD FS) or a third party federation
provider deployed. You can configure Azure AD to use this infrastructure to implement authentication and SSO
rather than by using password information held in the cloud.

For more information, see Azure AD Connect User Sign on options.

Use Azure AD to provide access to on-premises applications.

Expose your on-premises web applications using application proxy connectors managed by the Azure AD
application proxy component. The application proxy connector opens an outbound network connection to the
Azure AD application proxy, and remote users' requests are routed back from Azure AD through this connection
to the web apps. This removes the need to open inbound ports in the on-premises firewall and reduces the attack
surface exposed by your organization.

https://docs.microsoft.com/azure/active-directory/hybrid/how-to-connect-sync-operations
https://docs.microsoft.com/azure/active-directory/hybrid/plan-connect-topologies
https://docs.microsoft.com/azure/active-directory/connect/active-directory-aadconnect-pass-through-authentication
https://docs.microsoft.com/azure/active-directory/hybrid/plan-connect-user-signin

Object synchronizationObject synchronization

MonitoringMonitoring

Scalability considerations

Availability considerations

For more information, see Publish applications using Azure AD Application proxy.

Azure AD Connect's default configuration synchronizes objects from your local Active Directory directory based
on the rules specified in the article Azure AD Connect sync: Understanding the default configuration. Objects that
satisfy these rules are synchronized while all other objects are ignored. Some example rules:

User objects must have a unique sourceAnchor attribute and the accountEnabled attribute must be populated.
User objects must have a sAMAccountName attribute and cannot start with the text Azure AD_ or MSOL_.

Azure AD Connect applies several rules to User, Contact, Group, ForeignSecurityPrincipal, and Computer objects.
Use the Synchronization Rules Editor installed with Azure AD Connect if you need to modify the default set of
rules. For more information, see Azure AD Connect sync: Understanding the default configuration).

You can also define your own filters to limit the objects to be synchronized by domain or OU. Alternatively, you
can implement more complex custom filtering such as that described in Azure AD Connect sync: Configure
Filtering.

Health monitoring is performed by the following agents installed on-premises:

Azure AD Connect installs an agent that captures information about synchronization operations. Use the Azure
AD Connect Health blade in the Azure portal to monitor its health and performance. For more information, see
Using Azure AD Connect Health for sync.
To monitor the health of the AD DS domains and directories from Azure, install the Azure AD Connect Health
for AD DS agent on a machine within the on-premises domain. Use the Azure Active Directory Connect Health
blade in the Azure portal for health monitoring. For more information, see Using Azure AD Connect Health
with AD DS
Install the Azure AD Connect Health for AD FS agent to monitor the health of services running on on-
premises, and use the Azure Active Directory Connect Health blade in the Azure portal to monitor AD FS. For
more information, see Using Azure AD Connect Health with AD FS

For more information on installing the AD Connect Health agents and their requirements, see Azure AD Connect
Health Agent Installation.

The Azure AD service supports scalability based on replicas, with a single primary replica that handles write
operations plus multiple read-only secondary replicas. Azure AD transparently redirects attempted writes made
against secondary replicas to the primary replica and provides eventual consistency. All changes made to the
primary replica are propagated to the secondary replicas. This architecture scales well because most operations
against Azure AD are reads rather than writes. For more information, see Azure AD: Under the hood of our geo-
redundant, highly available, distributed cloud directory.

For the Azure AD Connect sync server, determine how many objects you are likely to synchronize from your local
directory. If you have less than 100,000 objects, you can use the default SQL Server Express LocalDB software
provided with Azure AD Connect. If you have a larger number of objects, you should install a production version
of SQL Server and perform a custom installation of Azure AD Connect, specifying that it should use an existing
instance of SQL Server.

The Azure AD service is geo-distributed and runs in multiple data centers spread around the world with
automated failover. If a data center becomes unavailable, Azure AD ensures that your directory data is available
for instance access in at least two more regionally dispersed data centers.

https://docs.microsoft.com/azure/active-directory/active-directory-application-proxy-enable
https://docs.microsoft.com/azure/active-directory/hybrid/concept-azure-ad-connect-sync-default-configuration
https://docs.microsoft.com/azure/active-directory/hybrid/concept-azure-ad-connect-sync-default-configuration
https://docs.microsoft.com/azure/active-directory/hybrid/how-to-connect-sync-configure-filtering
https://docs.microsoft.com/azure/active-directory/active-directory-aadconnect-health-sync
https://docs.microsoft.com/azure/active-directory/active-directory-aadconnect-health-adds
https://docs.microsoft.com/azure/active-directory/active-directory-aadconnect-health-adfs
https://docs.microsoft.com/azure/active-directory/active-directory-aadconnect-health-agent-install
https://blogs.technet.microsoft.com/enterprisemobility/2014/09/02/azure-ad-under-the-hood-of-our-geo-redundant-highly-available-distributed-cloud-directory/

NOTENOTE

Manageability considerations

Security considerations

The service level agreement (SLA) for Azure AD Basic and Premium services guarantees at least 99.9% availability. There is no
SLA for the Free tier of Azure AD. For more information, see SLA for Azure Active Directory.

Consider provisioning a second instance of Azure AD Connect sync server in staging mode to increase availability,
as discussed in the topology recommendations section.

If you are not using the SQL Server Express LocalDB instance that comes with Azure AD Connect, consider using
SQL clustering to achieve high availability. Solutions such as mirroring and Always On are not supported by
Azure AD Connect.

For additional considerations about achieving high availability of the Azure AD Connect sync server and also how
to recover after a failure, see Azure AD Connect sync: Operational tasks and considerations - Disaster Recovery.

There are two aspects to managing Azure AD:

Administering Azure AD in the cloud.
Maintaining the Azure AD Connect sync servers.

Azure AD provides the following options for managing domains and directories in the cloud:

Azure Active Directory PowerShell Module. Use this module if you need to script common Azure AD
administrative tasks such as user management, domain management, and configuring single sign-on.
Azure AD management blade in the Azure portal. This blade provides an interactive management view of
the directory, and enables you to control and configure most aspects of Azure AD.

Azure AD Connect installs the following tools to maintain Azure AD Connect sync services from your on-premises
machines:

Microsoft Azure Active Directory Connect console. This tool enables you to modify the configuration of
the Azure AD Sync server, customize how synchronization occurs, enable or disable staging mode, and switch
the user sign-in mode. Note that you can enable Active Directory FS sign-in using your on-premises
infrastructure.
Synchronization Service Manager. Use the Operations tab in this tool to manage the synchronization
process and detect whether any parts of the process have failed. You can trigger synchronizations manually
using this tool. The Connectors tab enables you to control the connections for the domains that the
synchronization engine is attached to.
Synchronization Rules Editor. Use this tool to customize the way objects are transformed when they are
copied between an on-premises directory and Azure AD. This tool enables you to specify additional attributes
and objects for synchronization, then executes filters to determine which objects should or should not be
synchronized. For more information, see the Synchronization Rule Editor section in the document Azure AD
Connect sync: Understanding the default configuration.

For more information and tips for managing Azure AD Connect, see Azure AD Connect sync: Best practices for
changing the default configuration.

Use conditional access control to deny authentication requests from unexpected sources:

Trigger Azure Multi-Factor Authentication (MFA) if a user attempts to connect from a nontrusted location
such as across the Internet instead of a trusted network.

https://azure.microsoft.com/support/legal/sla/active-directory
https://docs.microsoft.com/azure/active-directory/hybrid/how-to-connect-sync-operations#disaster-recovery
https://msdn.microsoft.com/library/azure/mt757189.aspx
https://docs.microsoft.com/azure/active-directory/hybrid/concept-azure-ad-connect-sync-default-configuration
https://docs.microsoft.com/azure/active-directory/hybrid/how-to-connect-sync-best-practices-changing-default-configuration
https://docs.microsoft.com/azure/multi-factor-authentication/multi-factor-authentication

 Deploy the solution

Use the device platform type of the user (iOS, Android, Windows Mobile, Windows) to determine access
policy to applications and features.

Record the enabled/disabled state of users' devices, and incorporate this information into the access policy
checks. For example, if a user's phone is lost or stolen it should be recorded as disabled to prevent it from
being used to gain access.

Control user access to resources based on group membership. Use Azure AD dynamic membership rules
to simplify group administration. For a brief overview of how this works, see Introduction to Dynamic
Memberships for Groups.

Use conditional access risk policies with Azure AD Identity Protection to provide advanced protection based
on unusual sign-in activities or other events.

For more information, see Azure Active Directory conditional access.

A deployment for a reference architecture that implements these recommendations and considerations is available
on GitHub. This reference architecture deploys a simulated on-premises network in Azure that you can use to test
and experiment. The reference architecture can be deployed with either with Windows or Linux VMs by following
the directions below:

1. Click the button below:

2. Once the link has opened in the Azure portal, you must enter values for some of the settings:

The Resource group name is already defined in the parameter file, so select Create New and enter
ra-aad-onpremise-rg in the text box.

Select the region from the Location drop down box.
Do not edit the Template Root Uri or the Parameter Root Uri text boxes.
Select windows or linux in the Os Type the drop down box.
Review the terms and conditions, then click the I agree to the terms and conditions stated above
checkbox.
Click the Purchase button.

3. Wait for the deployment to complete.

4. The parameter files include a hard-coded administrator user names and passwords, and it is strongly
recommended that you immediately change both on all the VMs. Click each VM in the Azure Portal then
click on Reset password in the Support + troubleshooting blade. Select Reset password in the Mode
drop down box, then select a new User name and Password. Click the Update button to persist the new
user name and password.

https://docs.microsoft.com/azure/active-directory/active-directory-accessmanagement-groups-with-advanced-rules
https://youtu.be/Tdiz2JqCl9Q
https://docs.microsoft.com/azure/active-directory//active-directory-conditional-access
https://portal.azure.com/#create/Microsoft.Template/uri/https%3A%2F%2Fraw.githubusercontent.com%2Fmspnp%2Fidentity-reference-architectures%2Fmaster%2Fazure-ad%2Fazuredeploy.json

Extend Active Directory Domain Services (AD DS) to
Azure
3/13/2019 • 8 minutes to read • Edit Online

Architecture

This reference architecture shows how to extend your Active Directory environment to Azure to provide
distributed authentication services using Active Directory Domain Services (AD DS). Deploy this solution.

Download a Visio file of this architecture.

AD DS is used to authenticate user, computer, application, or other identities that are included in a security
domain. It can be hosted on-premises, but if your application is hosted partly on-premises and partly in Azure, it
may be more efficient to replicate this functionality in Azure. This can reduce the latency caused by sending
authentication and local authorization requests from the cloud back to AD DS running on-premises.

This architecture is commonly used when the on-premises network and the Azure virtual network are connected
by a VPN or ExpressRoute connection. This architecture also supports bidirectional replication, meaning changes
can be made either on-premises or in the cloud, and both sources will be kept consistent. Typical uses for this
architecture include hybrid applications in which functionality is distributed between on-premises and Azure, and
applications and services that perform authentication using Active Directory.

For additional considerations, see Choose a solution for integrating on-premises Active Directory with Azure.

This architecture extends the architecture shown in DMZ between Azure and the Internet. It has the following
components.

On-premises network. The on-premises network includes local Active Directory servers that can perform
authentication and authorization for components located on-premises.
Active Directory servers. These are domain controllers implementing directory services (AD DS) running as
VMs in the cloud. These servers can provide authentication of components running in your Azure virtual
network.
Active Directory subnet. The AD DS servers are hosted in a separate subnet. Network security group
(NSG) rules protect the AD DS servers and provide a firewall against traffic from unexpected sources.
Azure Gateway and Active Directory synchronization. The Azure gateway provides a connection

https://github.com/mspnp/architecture-center/blob/master/docs/reference-architectures/identity/adds-extend-domain.md
https://archcenter.blob.core.windows.net/cdn/identity-architectures.vsdx
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/identity/considerations

Recommendations

VM recommendationsVM recommendations

Networking recommendationsNetworking recommendations

NOTENOTE

Active Directory siteActive Directory site

Active Directory operations mastersActive Directory operations masters

between the on-premises network and the Azure VNet. This can be a VPN connection or Azure ExpressRoute.
All synchronization requests between the Active Directory servers in the cloud and on-premises pass through
the gateway. User-defined routes (UDRs) handle routing for on-premises traffic that passes to Azure. Traffic to
and from the Active Directory servers does not pass through the network virtual appliances (NVAs) used in
this scenario.

For more information about configuring UDRs and the NVAs, see Implementing a secure hybrid network
architecture in Azure.

The following recommendations apply for most scenarios. Follow these recommendations unless you have a
specific requirement that overrides them.

Determine your VM size requirements based on the expected volume of authentication requests. Use the
specifications of the machines hosting AD DS on premises as a starting point, and match them with the Azure
VM sizes. Once deployed, monitor utilization and scale up or down based on the actual load on the VMs. For
more information about sizing AD DS domain controllers, see Capacity Planning for Active Directory Domain
Services.

Create a separate virtual data disk for storing the database, logs, and SYSVOL for Active Directory. Do not store
these items on the same disk as the operating system. Note that by default, data disks that are attached to a VM
use write-through caching. However, this form of caching can conflict with the requirements of AD DS. For this
reason, set the Host Cache Preference setting on the data disk to None. For more information, see Guidelines for
Deploying Windows Server Active Directory on Azure Virtual Machines.

Deploy at least two VMs running AD DS as domain controllers and add them to an availability set.

Configure the VM network interface (NIC) for each AD DS server with a static private IP address for full domain
name service (DNS) support. For more information, see How to set a static private IP address in the Azure portal.

Do not configure the VM NIC for any AD DS with a public IP address. See Security considerations for more details.

The Active Directory subnet NSG requires rules to permit incoming traffic from on-premises. For detailed
information on the ports used by AD DS, see Active Directory and Active Directory Domain Services Port
Requirements. Also, ensure the UDR tables do not route AD DS traffic through the NVAs used in this
architecture.

In AD DS, a site represents a physical location, network, or collection of devices. AD DS sites are used to manage
AD DS database replication by grouping together AD DS objects that are located close to one another and are
connected by a high speed network. AD DS includes logic to select the best strategy for replacating the AD DS
database between sites.

We recommend that you create an AD DS site including the subnets defined for your application in Azure. Then,
configure a site link between your on-premises AD DS sites, and AD DS will automatically perform the most
efficient database replication possible. Note that this database replication requires little beyond the initial
configuration.

The operations masters role can be assigned to AD DS domain controllers to support consistency checking

https://docs.microsoft.com/azure/vpn-gateway/vpn-gateway-about-vpngateways
https://docs.microsoft.com/azure/expressroute/expressroute-introduction
https://docs.microsoft.com/azure/virtual-machines/virtual-machines-windows-sizes
https://social.technet.microsoft.com/wiki/contents/articles/14355.capacity-planning-for-active-directory-domain-services.aspx
https://msdn.microsoft.com/library/mt674703.aspx
https://docs.microsoft.com/azure/virtual-machines/virtual-machines-windows-create-availability-set
https://docs.microsoft.com/azure/virtual-network/virtual-networks-static-private-ip-arm-pportal
https://technet.microsoft.com/library/dd772723(v=ws.11).aspx

MonitoringMonitoring

Scalability considerations

Availability considerations

Manageability considerations

Security considerations

Deploy the solution

between instances of replicated AD DS databases. There are five operations master roles: schema master, domain
naming master, relative identifier master, primary domain controller master emulator, and infrastructure master.
For more information about these roles, see What are Operations Masters?.

We recommend you do not assign operations masters roles to the domain controllers deployed in Azure.

Monitor the resources of the domain controller VMs as well as the AD DS Services and create a plan to quickly
correct any problems. For more information, see Monitoring Active Directory. You can also install tools such as
Microsoft Systems Center on the monitoring server (see the architecture diagram) to help perform these tasks.

AD DS is designed for scalability. You don't need to configure a load balancer or traffic controller to direct
requests to AD DS domain controllers. The only scalability consideration is to configure the VMs running AD DS
with the correct size for your network load requirements, monitor the load on the VMs, and scale up or down as
necessary.

Deploy the VMs running AD DS into an availability set. Also, consider assigning the role of standby operations
master to at least one server, and possibly more depending on your requirements. A standby operations master is
an active copy of the operations master that can be used in place of the primary operations masters server during
fail over.

Perform regular AD DS backups. Don't simply copy the VHD files of domain controllers instead of performing
regular backups, because the AD DS database file on the VHD may not be in a consistent state when it's copied,
making it impossible to restart the database.

Do not shut down a domain controller VM using Azure portal. Instead, shut down and restart from the guest
operating system. Shutting down through the portal causes the VM to be deallocated, which resets both the
VM-GenerationID and the invocationID of the Active Directory repository. This discards the AD DS relative

identifier (RID) pool and marks SYSVOL as nonauthoritative, and may require reconfiguration of the domain
controller.

AD DS servers provide authentication services and are an attractive target for attacks. To secure them, prevent
direct Internet connectivity by placing the AD DS servers in a separate subnet with an NSG acting as a firewall.
Close all ports on the AD DS servers except those necessary for authentication, authorization, and server
synchronization. For more information, see Active Directory and Active Directory Domain Services Port
Requirements.

Consider implementing an additional security perimeter around servers with a pair of subnets and NVAs, as
described in Implementing a secure hybrid network architecture with Internet access in Azure.

Use either BitLocker or Azure disk encryption to encrypt the disk hosting the AD DS database.

A deployment for this architecture is available on GitHub. Note that the entire deployment can take up to two
hours, which includes creating the VPN gateway and running the scripts that configure AD DS.

https://technet.microsoft.com/library/cc779716(v=ws.10).aspx
https://msdn.microsoft.com/library/bb727046.aspx
https://www.microsoft.com/download/details.aspx?id=50013
https://docs.microsoft.com/azure/virtual-machines/virtual-machines-windows-create-availability-set
https://technet.microsoft.com/library/cc794737(v=ws.10).aspx
https://technet.microsoft.com/library/dd772723(v=ws.11).aspx
https://github.com/mspnp/identity-reference-architectures/tree/master/adds-extend-domain

PrerequisitesPrerequisites

Deploy the simulated on-premises datacenterDeploy the simulated on-premises datacenter

Deploy the Azure VNetDeploy the Azure VNet

Test connectivity with the Azure VNetTest connectivity with the Azure VNet

npm install -g @mspnp/azure-building-blocks

az login

1. Clone, fork, or download the zip file for the GitHub repository.

2. Install Azure CLI 2.0.

3. Install the Azure building blocks npm package.

4. From a command prompt, bash prompt, or PowerShell prompt, sign into your Azure account as follows:

azbb -s <subscription_id> -g <resource group> -l <location> -p onprem.json --deploy

1. Navigate to the identity/adds-extend-domain folder of the GitHub repository.

2. Open the onprem.json file. Search for instances of adminPassword and Password and add values for the
passwords.

3. Run the following command and wait for the deployment to finish:

"sharedKey": "",

azbb -s <subscription_id> -g <resource group> -l <location> -p azure.json --deploy

1. Open the azure.json file. Search for instances of adminPassword and Password and add values for the
passwords.

2. In the same file, search for instances of sharedKey and enter shared keys for the VPN connection.

3. Run the following command and wait for the deployment to finish.

Deploy to the same resource group as the on-premises VNet.

After deployment completes, you can test conectivity from the simulated on-premises environment to the Azure
VNet.

1. Use the Azure portal, navigate to the resource group that you created.

2. Find the VM named ra-onpremise-mgmt-vm1 .

3. Click Connect to open a remote desktop session to the VM. The username is contoso\testuser , and the
password is the one that you specified in the onprem.json parameter file.

4. From inside your remote desktop session, open another remote desktop session to 10.0.4.4, which is the
IP address of the VM named adds-vm1 . The username is contoso\testuser , and the password is the one
that you specified in the azure.json parameter file.

5. From inside the remote desktop session for adds-vm1 , go to Server Manager and click Add other

https://github.com/mspnp/identity-reference-architectures
https://docs.microsoft.com/cli/azure/install-azure-cli?view=azure-cli-latest
https://github.com/mspnp/template-building-blocks/wiki/Install-Azure-Building-Blocks

Next steps

servers to manage.

6. In the Active Directory tab, click Find now. You should see a list of the AD, AD DS, and Web VMs.

Learn the best practices for creating an AD DS resource forest in Azure.
Learn the best practices for creating an Active Directory Federation Services (AD FS) infrastructure in Azure.

Create an Active Directory Domain Services (AD DS)
resource forest in Azure
3/13/2019 • 6 minutes to read • Edit Online

Architecture

This reference architecture shows how to create a separate Active Directory domain in Azure that is trusted by
domains in your on-premises AD forest. Deploy this solution.

Download a Visio file of this architecture.

Active Directory Domain Services (AD DS) stores identity information in a hierarchical structure. The top node in
the hierarchical structure is known as a forest. A forest contains domains, and domains contain other types of
objects. This reference architecture creates an AD DS forest in Azure with a one-way outgoing trust relationship
with an on-premises domain. The forest in Azure contains a domain that does not exist on-premises. Because of
the trust relationship, logons made against on-premises domains can be trusted for access to resources in the
separate Azure domain.

Typical uses for this architecture include maintaining security separation for objects and identities held in the
cloud, and migrating individual domains from on-premises to the cloud.

For additional considerations, see Choose a solution for integrating on-premises Active Directory with Azure.

The architecture has the following components.

On-premises network. The on-premises network contains its own Active Directory forest and domains.
Active Directory servers. These are domain controllers implementing domain services running as VMs in the
cloud. These servers host a forest containing one or more domains, separate from those located on-premises.
One-way trust relationship. The example in the diagram shows a one-way trust from the domain in Azure to
the on-premises domain. This relationship enables on-premises users to access resources in the domain in
Azure, but not the other way around. It is possible to create a two-way trust if cloud users also require access to
on-premises resources.
Active Directory subnet. The AD DS servers are hosted in a separate subnet. Network security group (NSG)
rules protect the AD DS servers and provide a firewall against traffic from unexpected sources.

https://github.com/mspnp/architecture-center/blob/master/docs/reference-architectures/identity/adds-forest.md
https://archcenter.blob.core.windows.net/cdn/identity-architectures.vsdx
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/identity/considerations

Recommendations

TrustTrust

SCENARIO ON-PREMISES TRUST CLOUD TRUST

On-premises users require access to
resources in the cloud, but not vice
versa

One-way, incoming One-way, outgoing

Users in the cloud require access to
resources located on-premises, but not
vice versa

One-way, outgoing One-way, incoming

Users in the cloud and on-premises
both requires access to resources held
in the cloud and on-premises

Two-way, incoming and outgoing Two-way, incoming and outgoing

Scalability considerations

Availability considerations

Azure gateway. The Azure gateway provides a connection between the on-premises network and the Azure
VNet. This can be a VPN connection or Azure ExpressRoute. For more information, see Implementing a secure
hybrid network architecture in Azure.

For specific recommendations on implementing Active Directory in Azure, see the following articles:

Extending Active Directory Domain Services (AD DS) to Azure.
Guidelines for Deploying Windows Server Active Directory on Azure Virtual Machines.

The on-premises domains are contained within a different forest from the domains in the cloud. To enable
authentication of on-premises users in the cloud, the domains in Azure must trust the logon domain in the on-
premises forest. Similarly, if the cloud provides a logon domain for external users, it may be necessary for the on-
premises forest to trust the cloud domain.

You can establish trusts at the forest level by creating forest trusts, or at the domain level by creating external
trusts. A forest level trust creates a relationship between all domains in two forests. An external domain level trust
only creates a relationship between two specified domains. You should only create external domain level trusts
between domains in different forests.

Trusts can be unidirectional (one-way) or bidirectional (two-way):

A one-way trust enables users in one domain or forest (known as the incoming domain or forest) to access the
resources held in another (the outgoing domain or forest).
A two-way trust enables users in either domain or forest to access resources held in the other.

The following table summarizes trust configurations for some simple scenarios:

Active Directory is automatically scalable for domain controllers that are part of the same domain. Requests are
distributed across all controllers within a domain. You can add another domain controller, and it synchronizes
automatically with the domain. Do not configure a separate load balancer to direct traffic to controllers within the
domain. Ensure that all domain controllers have sufficient memory and storage resources to handle the domain
database. Make all domain controller VMs the same size.

Provision at least two domain controllers for each domain. This enables automatic replication between servers.
Create an availability set for the VMs acting as Active Directory servers handling each domain. Put at least two

https://docs.microsoft.com/azure/vpn-gateway/vpn-gateway-about-vpngateways
https://docs.microsoft.com/azure/expressroute/expressroute-introduction
https://msdn.microsoft.com/library/azure/jj156090.aspx
https://technet.microsoft.com/library/cc816810(v=ws.10).aspx
https://technet.microsoft.com/library/cc816837(v=ws.10).aspx

Manageability considerations

Security considerations

Deploy the solution

PrerequisitesPrerequisites

Deploy the simulated on-premises datacenterDeploy the simulated on-premises datacenter

Deploy the Azure VNetDeploy the Azure VNet

servers in this availability set.

Also, consider designating one or more servers in each domain as standby operations masters in case connectivity
to a server acting as a flexible single master operation (FSMO) role fails.

For information about management and monitoring considerations, see Extending Active Directory to Azure.

For additional information, see Monitoring Active Directory. You can install tools such as Microsoft Systems
Center on a monitoring server in the management subnet to help perform these tasks.

Forest level trusts are transitive. If you establish a forest level trust between an on-premises forest and a forest in
the cloud, this trust is extended to other new domains created in either forest. If you use domains to provide
separation for security purposes, consider creating trusts at the domain level only. Domain level trusts are non-
transitive.

For Active Directory-specific security considerations, see the security considerations section in Extending Active
Directory to Azure.

A deployment for this architecture is available on GitHub. Note that the entire deployment can take up to two
hours, which includes creating the VPN gateway and running the scripts that configure AD DS.

npm install -g @mspnp/azure-building-blocks

az login

1. Clone, fork, or download the zip file for the GitHub repository.

2. Install Azure CLI 2.0.

3. Install the Azure building blocks npm package.

4. From a command prompt, bash prompt, or PowerShell prompt, sign into your Azure account as follows:

azbb -s <subscription_id> -g <resource group> -l <location> -p onprem.json --deploy

1. Navigate to the identity/adds-forest folder of the GitHub repository.

2. Open the onprem.json file. Search for instances of adminPassword and Password and add values for the
passwords.

3. Run the following command and wait for the deployment to finish:

1. Open the azure.json file. Search for instances of adminPassword and Password and add values for the
passwords.

https://technet.microsoft.com/library/cc794737(v=ws.10).aspx
https://msdn.microsoft.com/library/bb727046.aspx
https://microsoft.com/cloud-platform/system-center
https://github.com/mspnp/identity-reference-architectures/tree/master/adds-forest
https://github.com/mspnp/identity-reference-architectures
https://docs.microsoft.com/cli/azure/install-azure-cli?view=azure-cli-latest
https://github.com/mspnp/template-building-blocks/wiki/Install-Azure-Building-Blocks

Test the AD trust relationTest the AD trust relation

Next steps

"sharedKey": "",

azbb -s <subscription_id> -g <resource group> -l <location> -p azure.json --deploy

2. In the same file, search for instances of sharedKey and enter shared keys for the VPN connection.

3. Run the following command and wait for the deployment to finish.

Deploy to the same resource group as the on-premises VNet.

1. Use the Azure portal, navigate to the resource group that you created.

2. Use the Azure portal to find the VM named ra-adt-mgmt-vm1 .

3. Click Connect to open a remote desktop session to the VM. The username is contoso\testuser , and the
password is the one that you specified in the onprem.json parameter file.

4. From inside your remote desktop session, open another remote desktop session to 192.168.0.4, which is
the IP address of the VM named ra-adtrust-onpremise-ad-vm1 . The username is contoso\testuser , and the
password is the one that you specified in the azure.json parameter file.

5. From inside the remote desktop session for ra-adtrust-onpremise-ad-vm1 , go to Server Manager and click
Tools > Active Directory Domains and Trusts.

6. In the left pane, right-click on the contoso.com and select Properties.

7. Click the Trusts tab. You should see treyresearch.net listed as an incoming trust.

Learn the best practices for extending your on-premises AD DS domain to Azure
Learn the best practices for creating an AD FS infrastructure in Azure.

Extend Active Directory Federation Services (AD FS)
to Azure
3/13/2019 • 15 minutes to read • Edit Online

This reference architecture implements a secure hybrid network that extends your on-premises network to Azure
and uses Active Directory Federation Services (AD FS) to perform federated authentication and authorization for
components running in Azure. Deploy this solution.

Download a Visio file of this architecture.

AD FS can be hosted on-premises, but if your application is a hybrid in which some parts are implemented in
Azure, it may be more efficient to replicate AD FS in the cloud.

The diagram shows the following scenarios:

Application code from a partner organization accesses a web application hosted inside your Azure VNet.
An external, registered user with credentials stored inside Active Directory Domain Services (DS) accesses a
web application hosted inside your Azure VNet.
A user connected to your VNet using an authorized device executes a web application hosted inside your
Azure VNet.

Typical uses for this architecture include:

Hybrid applications where workloads run partly on-premises and partly in Azure.

https://github.com/mspnp/architecture-center/blob/master/docs/reference-architectures/identity/adfs.md
https://docs.microsoft.com/windows-server/identity/active-directory-federation-services
https://archcenter.blob.core.windows.net/cdn/identity-architectures.vsdx

Architecture

Solutions that use federated authorization to expose web applications to partner organizations.
Systems that support access from web browsers running outside of the organizational firewall.
Systems that enable users to access to web applications by connecting from authorized external devices such
as remote computers, notebooks, and other mobile devices.

This reference architecture focuses on passive federation, in which the federation servers decide how and when to
authenticate a user. The user provides sign in information when the application is started. This mechanism is most
commonly used by web browsers and involves a protocol that redirects the browser to a site where the user
authenticates. AD FS also supports active federation, where an application takes on responsibility for supplying
credentials without further user interaction, but that scenario is outside the scope of this architecture.

For additional considerations, see Choose a solution for integrating on-premises Active Directory with Azure.

This architecture extends the implementation described in Extending AD DS to Azure. It contains the followign
components.

AD DS subnet. The AD DS servers are contained in their own subnet with network security group (NSG)
rules acting as a firewall.

AD DS servers. Domain controllers running as VMs in Azure. These servers provide authentication of
local identities within the domain.

AD FS subnet. The AD FS servers are located within their own subnet with NSG rules acting as a firewall.

AD FS servers. The AD FS servers provide federated authorization and authentication. In this architecture,
they perform the following tasks:

Receiving security tokens containing claims made by a partner federation server on behalf of a
partner user. AD FS verifies that the tokens are valid before passing the claims to the web
application running in Azure to authorize requests.

The application running in Azure is the relying party. The partner federation server must issue
claims that are understood by the web application. The partner federation servers are referred to as
account partners, because they submit access requests on behalf of authenticated accounts in the
partner organization. The AD FS servers are called resource partners because they provide access to
resources (the web application).

Authenticating and authorizing incoming requests from external users running a web browser or
device that needs access to web applications, by using AD DS and the Active Directory Device
Registration Service.

The AD FS servers are configured as a farm accessed through an Azure load balancer. This implementation
improves availability and scalability. The AD FS servers are not exposed directly to the Internet. All Internet
traffic is filtered through AD FS web application proxy servers and a DMZ (also referred to as a perimeter
network).

For more information about how AD FS works, see Active Directory Federation Services Overview. Also,
the article AD FS deployment in Azure contains a detailed step-by-step introduction to implementation.

AD FS proxy subnet. The AD FS proxy servers can be contained within their own subnet, with NSG rules
providing protection. The servers in this subnet are exposed to the Internet through a set of network virtual
appliances that provide a firewall between your Azure virtual network and the Internet.

AD FS web application proxy (WAP) servers. These VMs act as AD FS servers for incoming requests
from partner organizations and external devices. The WAP servers act as a filter, shielding the AD FS
servers from direct access from the Internet. As with the AD FS servers, deploying the WAP servers in a

https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/identity/considerations
https://technet.microsoft.com/library/dn486831.aspx
https://technet.microsoft.com/library/hh831502(v=ws.11).aspx
https://docs.microsoft.com/azure/active-directory/hybrid/whatis-hybrid-identity

Recommendations

Networking recommendationsNetworking recommendations

AD FS installationAD FS installation

NOTENOTE

NOTENOTE

farm with load balancing gives you greater availability and scalability than deploying a collection of stand-
alone servers.

For detailed information about installing WAP servers, see Install and Configure the Web Application Proxy Server

Partner organization. A partner organization running a web application that requests access to a web
application running in Azure. The federation server at the partner organization authenticates requests
locally, and submits security tokens containing claims to AD FS running in Azure. AD FS in Azure validates
the security tokens, and if valid can pass the claims to the web application running in Azure to authorize
them.

You can also configure a VPN tunnel using Azure gateway to provide direct access to AD FS for trusted partners.
Requests received from these partners do not pass through the WAP servers.

The following recommendations apply for most scenarios. Follow these recommendations unless you have a
specific requirement that overrides them.

Configure the network interface for each of the VMs hosting AD FS and WAP servers with static private IP
addresses.

Do not give the AD FS VMs public IP addresses. For more information, see the Security considerations section.

Set the IP address of the preferred and secondary domain name service (DNS) servers for the network interfaces
for each AD FS and WAP VM to reference the Active Directory DS VMs. The Active Directory DS VMs should be
running DNS. This step is necessary to enable each VM to join the domain.

The article Deploying a Federation Server Farm provides detailed instructions for installing and configuring AD
FS. Perform the following tasks before configuring the first AD FS server in the farm:

1. Obtain a publicly trusted certificate for performing server authentication. The subject name must contain
the name clients use to access the federation service. This can be the DNS name registered for the load
balancer, for example, adfs.contoso.com (avoid using wildcard names such as *.contoso.com, for security
reasons). Use the same certificate on all AD FS server VMs. You can purchase a certificate from a trusted
certification authority, but if your organization uses Active Directory Certificate Services you can create
your own.

The subject alternative name is used by the device registration service (DRS) to enable access from
external devices. This should be of the form enterpriseregistration.contoso.com.

For more information, see Obtain and Configure a Secure Sockets Layer (SSL) Certificate for AD FS.

2. On the domain controller, generate a new root key for the Key Distribution Service. Set the effective time to
the current time minus 10 hours (this configuration reduces the delay that can occur in distributing and
synchronizing keys across the domain). This step is necessary to support creating the group service
account that is used to run the AD FS service. The following PowerShell command shows an example of
how to do this:

https://technet.microsoft.com/library/dn383662.aspx
https://docs.microsoft.com/windows-server/identity/ad-fs/deployment/deploying-a-federation-server-farm
https://technet.microsoft.com/library/dn781428(v=ws.11).aspx

NOTENOTE

AD FS trustAD FS trust

AD FS monitoringAD FS monitoring

Scalability considerations

Add-KdsRootKey -EffectiveTime (Get-Date).AddHours(-10)

3. Add each AD FS server VM to the domain.

To install AD FS, the domain controller running the primary domain controller (PDC) emulator flexible single master
operation (FSMO) role for the domain must be running and accessible from the AD FS VMs. <<RBC: Is there a way to make
this less repetitive?>>

Establish federation trust between your AD FS installation, and the federation servers of any partner
organizations. Configure any claims filtering and mapping required.

DevOps staff at each partner organization must add a relying party trust for the web applications accessible
through your AD FS servers.
DevOps staff in your organization must configure claims-provider trust to enable your AD FS servers to trust
the claims that partner organizations provide.
DevOps staff in your organization must also configure AD FS to pass claims on to your organization's web
applications.

For more information, see Establishing Federation Trust.

Publish your organization's web applications and make them available to external partners by using
preauthentication through the WAP servers. For more information, see Publish Applications using AD FS
Preauthentication

AD FS supports token transformation and augmentation. Azure Active Directory does not provide this feature.
With AD FS, when you set up the trust relationships, you can:

Configure claim transformations for authorization rules. For example, you can map group security from a
representation used by a non-Microsoft partner organization to something that that Active Directory DS can
authorize in your organization.
Transform claims from one format to another. For example, you can map from SAML 2.0 to SAML 1.1 if your
application only supports SAML 1.1 claims.

The Microsoft System Center Management Pack for Active Directory Federation Services 2012 R2 provides both
proactive and reactive monitoring of your AD FS deployment for the federation server. This management pack
monitors:

Events that the AD FS service records in its event logs.
The performance data that the AD FS performance counters collect.
The overall health of the AD FS system and web applications (relying parties), and provides alerts for critical
issues and warnings.

The following considerations, summarized from the article Plan your AD FS deployment, give a starting point for
sizing AD FS farms:

If you have fewer than 1000 users, do not create dedicated servers, but instead install AD FS on each of the
Active Directory DS servers in the cloud. Make sure that you have at least two Active Directory DS servers to
maintain availability. Create a single WAP server.

https://blogs.msdn.microsoft.com/alextch/2011/06/27/establishing-federation-trust/
https://technet.microsoft.com/library/dn383640.aspx
https://www.microsoft.com/download/details.aspx?id=41184
https://msdn.microsoft.com/library/azure/dn151324.aspx

Availability considerations

Manageability considerations

If you have between 1000 and 15000 users, create two dedicated AD FS servers and two dedicated WAP
servers.
If you have between 15000 and 60000 users, create between three and five dedicated AD FS servers and at
least two dedicated WAP servers.

These considerations assume that you are using dual quad-core VM (Standard D4_v2, or better) sizes in Azure.

If you are using the Windows Internal Database to store AD FS configuration data, you are limited to eight AD FS
servers in the farm. If you anticipate that you will need more in the future, use SQL Server. For more information,
see The Role of the AD FS Configuration Database.

Create an AD FS farm with at least two servers to increase availability of the service. Use different storage
accounts for each AD FS VM in the farm. This approach helps to ensure that a failure in a single storage account
does not make the entire farm inaccessible.

Create separate Azure availability sets for the AD FS and WAP VMs. Ensure that there are at least two VMs in
each set. Each availability set must have at least two update domains and two fault domains.

Configure the load balancers for the AD FS VMs and WAP VMs as follows:

NOTENOTE

Use an Azure load balancer to provide external access to the WAP VMs, and an internal load balancer to
distribute the load across the AD FS servers in the farm.

Only pass traffic appearing on port 443 (HTTPS) to the AD FS/WAP servers.

Give the load balancer a static IP address.

Create a health probe using HTTP against /adfs/probe . For more information, see Hardware Load
Balancer Health Checks and Web Application Proxy / AD FS 2012 R2.

AD FS servers use the Server Name Indication (SNI) protocol, so attempting to probe using an HTTPS endpoint from
the load balancer fails.

Add a DNS A record to the domain for the AD FS load balancer. Specify the IP address of the load
balancer, and give it a name in the domain (such as adfs.contoso.com). This is the name clients and the
WAP servers use to access the AD FS server farm.

You can use either SQL Server or the Windows Internal Database to hold AD FS configuration information. The
Windows Internal Database provides basic redundancy. Changes are written directly to only one of the AD FS
databases in the AD FS cluster, while the other servers use pull replication to keep their databases up to date.
Using SQL Server can provide full database redundancy and high availability using failover clustering or
mirroring.

DevOps staff should be prepared to perform the following tasks:

Managing the federation servers, including managing the AD FS farm, managing trust policy on the federation
servers, and managing the certificates used by the federation services.
Managing the WAP servers including managing the WAP farm and certificates.
Managing web applications including configuring relying parties, authentication methods, and claims
mappings.

https://technet.microsoft.com/library/ee913581(v=ws.11).aspx
https://blogs.technet.microsoft.com/applicationproxyblog/2014/10/17/hardware-load-balancer-health-checks-and-web-application-proxy-ad-fs-2012-r2/

Security considerations

Deploy the solution

PrerequisitesPrerequisites

Deploy the simulated on-premises datacenterDeploy the simulated on-premises datacenter

Deploy the Azure infrastructureDeploy the Azure infrastructure

Backing up AD FS components.

AD FS uses HTTPS, so make sure that the NSG rules for the subnet containing the web tier VMs permit HTTPS
requests. These requests can originate from the on-premises network, the subnets containing the web tier,
business tier, data tier, private DMZ, public DMZ, and the subnet containing the AD FS servers.

Prevent direct exposure of the AD FS servers to the Internet. AD FS servers are domain-joined computers that
have full authorization to grant security tokens. If a server is compromised, a malicious user can issue full access
tokens to all web applications and to all federation servers that are protected by AD FS. If your system must
handle requests from external users not connecting from trusted partner sites, use WAP servers to handle these
requests. For more information, see Where to Place a Federation Server Proxy.

Place AD FS servers and WAP servers in separate subnets with their own firewalls. You can use NSG rules to
define firewall rules. All firewalls should allow traffic on port 443 (HTTPS).

Restrict direct sign in access to the AD FS and WAP servers. Only DevOps staff should be able to connect. Do not
join the WAP servers to the domain.

Consider using a set of network virtual appliances that logs detailed information on traffic traversing the edge of
your virtual network for auditing purposes.

A deployment for this architecture is available on GitHub. Note that the entire deployment can take up to two
hours, which includes creating the VPN gateway and running the scripts that configure Active Directory and AD
FS.

npm install -g @mspnp/azure-building-blocks

az login

1. Clone, fork, or download the zip file for the GitHub repository.

2. Install Azure CLI 2.0.

3. Install the Azure building blocks npm package.

4. From a command prompt, bash prompt, or PowerShell prompt, sign into your Azure account as follows:

azbb -s <subscription_id> -g <resource group> -l <location> -p onprem.json --deploy

1. Navigate to the adfs folder of the GitHub repository.

2. Open the onprem.json file. Search for instances of adminPassword , Password , and SafeModeAdminPassword

and update the passwords.

3. Run the following command and wait for the deployment to finish:

1. Open the azure.json file. Search for instances of adminPassword and Password and add values for the

https://technet.microsoft.com/library/dd807048.aspx
https://github.com/mspnp/identity-reference-architectures/tree/master/adfs
https://github.com/mspnp/identity-reference-architectures
https://docs.microsoft.com/cli/azure/install-azure-cli?view=azure-cli-latest
https://github.com/mspnp/template-building-blocks/wiki/Install-Azure-Building-Blocks

Set up the AD FS farmSet up the AD FS farm

Configure AD FS (part 1)Configure AD FS (part 1)

azbb -s <subscription_id> -g <resource group> -l <location> -p azure.json --deploy

passwords.

2. Run the following command and wait for the deployment to finish:

azbb -s <subscription_id> -g <resource group> -l <location> -p adfs-farm-first.json --deploy

azbb -s <subscription_id> -g <resource group> -l <location> -p adfs-farm-rest.json --deploy

1. Open the adfs-farm-first.json file. Search for AdminPassword and replace the default password.

2. Run the following command:

3. Open the adfs-farm-rest.json file. Search for AdminPassword and replace the default password.

4. Run the following command and wait for the deployment to finish:

C:\Packages\Plugins\Microsoft.Powershell.DSC\2.77.0.0\DSCWork\adfs-v2.0

. .\adfs-webproxy.ps1
$cd = @{
 AllNodes = @(
 @{
 NodeName = 'localhost'
 PSDscAllowPlainTextPassword = $true
 PSDscAllowDomainUser = $true
 }
)
}

$c1 = Get-Credential -UserName testuser -Message "Enter password"
InstallWebProxyApp -DomainName contoso.com -FederationName adfs.contoso.com -WebApplicationProxyName
"Contoso App" -AdminCreds $c1 -ConfigurationData $cd
Start-DscConfiguration .\InstallWebProxyApp

Get-DscConfigurationStatus

1. Open a remote desktop session to the VM named ra-adfs-jb-vm1 , which is the jumpbox VM. The user
name is testuser .

2. From the jumpbox, open a remote desktop session to the VM named ra-adfs-proxy-vm1 . The private IP
address is 10.0.6.4.

3. From this remote desktop session, run the PowerShell ISE.

4. In PowerShell, navigate to the following directory:

5. Paste the following code into a script pane and run it:

At the Get-Credential prompt, enter the password that you specified in the deployment parameter file.

6. Run the following command to monitor the progress of the DSC configuration:

https://docs.microsoft.com/powershell/scripting/components/ise/windows-powershell-integrated-scripting-environment--ise-
https://docs.microsoft.com/powershell/dsc/overview/overview

Configure AD FS (part 2)Configure AD FS (part 2)

Sign into AD FSSign into AD FS

PS C:\Packages\Plugins\Microsoft.Powershell.DSC\2.77.0.0\DSCWork\adfs-v2.0> Get-DscConfigurationStatus

Status StartDate Type Mode RebootRequested NumberOfResources
------ --------- ---- ---- --------------- -----------------
Success 12/17/2018 8:21:09 PM Consistency PUSH True 4

It can take several minutes to reach consistency. During this time, you may see errors from the command.
When the configuration succeeds, the output should look similar to the following:

C:\Packages\Plugins\Microsoft.Powershell.DSC\2.77.0.0\DSCWork\adfs-v2.0

. .\adfs-webproxy-rest.ps1
$cd = @{
 AllNodes = @(
 @{
 NodeName = 'localhost'
 PSDscAllowPlainTextPassword = $true
 PSDscAllowDomainUser = $true
 }
)
}

$c1 = Get-Credential -UserName testuser -Message "Enter password"
InstallWebProxy -DomainName contoso.com -FederationName adfs.contoso.com -WebApplicationProxyName
"Contoso App" -AdminCreds $c1 -ConfigurationData $cd
Start-DscConfiguration .\InstallWebProxy

Get-DscConfigurationStatus

PS C:\Packages\Plugins\Microsoft.Powershell.DSC\2.77.0.0\DSCWork\adfs-v2.0> Get-DscConfigurationStatus

Status StartDate Type Mode RebootRequested NumberOfResources
------ --------- ---- ---- --------------- -----------------
Success 12/17/2018 8:21:09 PM Consistency PUSH True 4

1. From the jumpbox, open a remote desktop session to the VM named ra-adfs-proxy-vm2 . The private IP
address is 10.0.6.5.

2. From this remote desktop session, run the PowerShell ISE.

3. Navigate to the following directory:

4. Past the following in a script pane and run the script:

At the Get-Credential prompt, enter the password that you specified in the deployment parameter file.

5. Run the following command to monitor the progress of the DSC configuration:

It can take several minutes to reach consistency. During this time, you may see errors from the command.
When the configuration succeeds, the output should look similar to the following:

Sometimes this DSC fails. If the status check shows Status=Failure and Type=Consistency , try re-running
step 4.

https://docs.microsoft.com/powershell/scripting/components/ise/windows-powershell-integrated-scripting-environment--ise-

1. From the jumpbox, open a remote desktop session to the VM named ra-adfs-adfs-vm1 . The private IP
address is 10.0.5.4.

2. Follow the steps in Enable the Idp-Intiated Sign on page to enable the sign-on page.

3. From the jump box, browse to https://adfs.contoso.com/adfs/ls/idpinitiatedsignon.htm . You may receive
a certificate warning that you can ignore for this test.

4. Verify that the Contoso Corporation sign-in page appears. Sign in as contoso\testuser.

https://docs.microsoft.com/windows-server/identity/ad-fs/troubleshooting/ad-fs-tshoot-initiatedsignon#enable-the-idp-intiated-sign-on-page

Azure IoT reference architecture
3/13/2019 • 10 minutes to read • Edit Online

Architecture

This reference architecture shows a recommended architecture for IoT applications on Azure using PaaS
(platform-as-a-service) components.

IoT applications can be described as things (devices) sending data that generates insights. These insights
generate actions to improve a business or process. An example is an engine (the thing) sending temperature data.
This data is used to evaluate whether the engine is performing as expected (the insight). The insight is used to
proactively prioritize the maintenance schedule for the engine (the action).

This reference architecture uses Azure PaaS (platform-as-a-service) components. Other options for building IoT
solutions on Azure include:

Azure IoT Central. IoT Central is a fully managed SaaS (software-as-a-service) solution. It abstracts the
technical choices and lets you focus on your solution exclusively. This simplicity comes with a tradeoff in being
less customizable than a PaaS-based solution.
Using OSS components such as the SMACK stack (Spark, Mesos, Akka, Cassandra, Kafka) deployed on Azure
VMs. This approach offers a great deal of control but is more complex.

At a high level, there are two ways to process telemetry data, hot path and cold path. The difference has to do with
requirements for latency and data access.

The hot path analyzes data in near-real-time, as it arrives. In the hot path, telemetry must be processed with
very low latency. The hot path is typically implemented using a stream processing engine. The output may
trigger an alert, or be written to a structured format that can be queried using analytical tools.
The cold path performs batch processing at longer intervals (hourly or daily). The cold path typically operates
over large volumes of data, but the results don't need to be as timely as the hot path. In the cold path, raw
telemetry is captured and then fed into a batch process.

https://github.com/mspnp/architecture-center/blob/master/docs/reference-architectures/iot/index.md
https://docs.microsoft.com/azure/iot-central/

Scalability considerations

This architecture consists of the following components. Some applications may not require every component listed
here.

IoT devices. Devices can securely register with the cloud, and can connect to the cloud to send and receive data.
Some devices may be edge devices that perform some data processing on the device itself or in a field gateway.
We recommend Azure IoT Edge for edge processing.

Cloud gateway. A cloud gateway provides a cloud hub for devices to connect securely to the cloud and send data.
It also provides device management, capabilities, including command and control of devices. For the cloud
gateway, we recommend IoT Hub. IoT Hub is a hosted cloud service that ingests events from devices, acting as a
message broker between devices and backend services. IoT Hub provides secure connectivity, event ingestion,
bidirectional communication, and device management.

Device provisioning. For registering and connecting large sets of devices, we recommend using the IoT Hub
Device Provisioning Service (DPS). DPS lets you assign and register devices to specific Azure IoT Hub endpoints
at scale.

Stream processing. Stream processing analyzes large streams of data records and evaluates rules for those
streams. For stream processing, we recommend Azure Stream Analytics. Stream Analytics can execute complex
analysis at scale, using time windowing functions, stream aggregations, and external data source joins. Another
option is Apache Spark on Azure Databricks.

Machine learning allows predictive algorithms to be executed over historical telemetry data, enabling scenarios
such as predictive maintenance. For machine learning, we recommend Azure Machine Learning Service.

Warm path storage holds data that must be available immediately from device for reporting and visualization.
For warm path storage, we recommend Cosmos DB. Cosmos DB is a globally distributed, multi-model database.

Cold path storage holds data that is kept longer term and is used for batch processing. For cold path storage, we
recommend Azure Blob Storage. Data can be archived in Blob storage indefinitely at low cost, and is easily
accessible for batch processing.

Data transformation manipulates or aggregates the telemetry stream. Examples include protocol transformation,
such as converting binary data to JSON, or combining data points. If the data must be transformed before
reaching IoT Hub, we recommend using a protocol gateway (not shown). Otherwise, data can be transformed after
it reaches IoT Hub. In that case, we recommend using Azure Functions. Functions has built-in integration with IoT
Hub, Cosmos DB, and Blob Storage.

Business process integration performs actions based on insights from the device data. This could include storing
informational messages, raising alarms, sending email or SMS messages, or integrating with CRM. We
recommend using Azure Logic Apps for business process integration.

User management restricts which users or groups can perform actions on devices, such as upgrading firmware. It
also defines capabilities for users in applications. We recommend using Azure Active Directory to authenticate and
authorize users.

An IoT application should be built as discrete services that can scale independently. Consider the following
scalability points:

IoTHub. For IoT Hub, consider the following scale factors:

The maximum daily quota of messages into IoT Hub.
The quota of connected devices in an IoT Hub instance.
Ingestion throughput — how quickly IoT Hub can ingest messages.
Processing throughput — how quickly the incoming messages are processed.

https://docs.microsoft.com/azure/iot-edge/
https://docs.microsoft.com/azure/iot-hub/
https://docs.microsoft.com/azure/iot-dps/
https://docs.microsoft.com/azure/stream-analytics/
https://docs.microsoft.com/azure/azure-databricks/
https://docs.microsoft.com/azure/machine-learning/service/
https://docs.microsoft.com/azure/cosmos-db/introduction
https://docs.microsoft.com/azure/storage/blobs/storage-blobs-introduction
https://docs.microsoft.com/azure/iot-hub/iot-hub-protocol-gateway
https://docs.microsoft.com/azure/azure-functions/
https://docs.microsoft.com/azure/logic-apps/logic-apps-overview
https://docs.microsoft.com/azure/active-directory/
https://docs.microsoft.com/azure/iot-hub/iot-hub-devguide-quotas-throttling

Security considerations
Trustworthy and secure communicationTrustworthy and secure communication

Physical tamper proofingPhysical tamper proofing

Each IoT hub is provisioned with a certain number of units in a specific tier. The tier and number of units determine
the maximum daily quota of messages that devices can send to the hub. For more information, see IoT Hub quotas
and throttling. You can scale up a hub without interrupting existing operations.

Stream Analytics. Stream Analytics jobs scale best if they are parallel at all points in the Stream Analytics pipeline,
from input to query to output. A fully parallel job allows Stream Analytics to split the work across multiple
compute nodes. Otherwise, Stream Analytics has to combine the stream data into one place. For more information,
see Leverage query parallelization in Azure Stream Analytics.

IoT Hub automatically partitions device messages based on the device ID. All of the messages from a particular
device will always arrive on the same partition, but a single partition will have messages from multiple devices.
Therefore, the unit of parallelization is the partition ID.

Functions. When reading from the Event Hubs endpoint, there is a maximum of function instance per event hub
partition. The maximum processing rate is determined by how fast one function instance can process the events
from a single partition. The function should process messages in batches.

Cosmos DB. To scale out a Cosmos DB collection, create the collection with a partition key and include the
partition key in each document that you write. For more information, see Best practices when choosing a partition
key.

If you store and update a single document per device, the device ID is a good partition key. Writes are evenly
distributed across the keys. The size of each partition is strictly bounded, because there is a single document for
each key value.
If you store a separate document for every device message, using the device ID as a partition key would quickly
exceed the 10-GB limit per partition. Message ID is a better partition key in that case. Typically you would still
include device ID in the document for indexing and querying.

All information received from and sent to a device must be trustworthy. Unless a device can support the following
cryptographic capabilities, it should be constrained to local networks and all internetwork communication should
go through a field gateway:

Data encryption with a provably secure, publicly analyzed, and broadly implemented symmetric-key encryption
algorithm.
Digital signature with a provably secure, publicly analyzed, and broadly implemented symmetric-key signature
algorithm.
Support for either TLS 1.2 for TCP or other stream-based communication paths or DTLS 1.2 for datagram-
based communication paths. Support of X.509 certificate handling is optional and can be replaced by the more
compute-efficient and wire-efficient pre-shared key mode for TLS, which can be implemented with support for
the AES and SHA-2 algorithms.
Updateable key-store and per-device keys. Each device must have unique key material or tokens that identify it
toward the system. The devices should store the key securely on the device (for example, using a secure key-
store). The device should be able to update the keys or tokens periodically, or reactively in emergency situations
such as a system breach.
The firmware and application software on the device must allow for updates to enable the repair of discovered
security vulnerabilities.

However, many devices are too constrained to support these requirements. In that case, a field gateway should be
used. Devices connect securely to the field gateway through a local area network, and the gateway enables secure
communication to the cloud.

https://docs.microsoft.com/azure/stream-analytics/stream-analytics-parallelization
https://docs.microsoft.com/azure/cosmos-db/partition-data#best-practices-when-choosing-a-partition-key

Monitoring and loggingMonitoring and logging

Tracing telemetryTracing telemetry

LoggingLogging

It is strongly recommended that device design incorporates features that defend against physical manipulation
attempts, to help ensure the security integrity and trustworthiness of the overall system.

For example:

Choose microcontrollers/microprocessors or auxiliary hardware that provide secure storage and use of
cryptographic key material, such as trusted platform module (TPM) integration.
Secure boot loader and secure software loading, anchored in the TPM.
Use sensors to detect intrusion attempts and attempts to manipulate the device environment with alerting and
potentially “digital self-destruction” of the device.

For additional security considerations, see Internet of Things (IoT) security architecture.

Logging and monitoring systems are used to determine whether the solution is functioning and to help
troubleshoot problems. Monitoring and logging systems help answer the following operational questions:

Are devices or systems in an error condition?
Are devices or systems correctly configured?
Are devices or systems generating accurate data?
Are systems meeting the expectations of both the business and end customers?

Logging and monitoring tools are typically comprised of the following four components:

System performance and timeline visualization tools to monitor the system and for basic troubleshooting.
Buffered data ingestion, to buffer log data.
Persistence store to store log data.
Search and query capabilities, to view log data for use in detailed troubleshooting.

Monitoring systems provide insights into the health, security, and stability, and performance of an IoT solution.
These systems can also provide a more detailed view, recording component configuration changes and providing
extracted logging data that can surface potential security vulnerabilities, enhance the incident management
process, and help the owner of the system troubleshoot problems. Comprehensive monitoring solutions include
the ability to query information for specific subsystems or aggregating across multiple subsystems.

Monitoring system development should begin by defining healthy operation, regulatory compliance, and audit
requirements. Metrics collected may include:

Physical devices, edge devices, and infrastructure components reporting configuration changes.
Applications reporting configuration changes, security audit logs, request rates, response times, error rates, and
garbage collection statistics for managed languages.
Databases, persistence stores, and caches reporting query and write performance, schema changes, security
audit log, locks or deadlocks, index performance, CPU, memory, and disk usage.
Managed services (IaaS, PaaS, SaaS, and FaaS) reporting health metrics and configuration changes that impact
dependent system health and performance.

Visualization of monitoring metrics alert operators to system instabilities and facilitate incident response.

Tracing telemetry allows an operator to follow the journey of a piece of telemetry from creation through the
system. Tracing is important for debugging and troubleshooting. For IoT solutions that use Azure IoT Hub and the
IoT Hub Device SDKs, tracing datagrams can be originated as Cloud-to-Device messages and included in the
telemetry stream.

https://docs.microsoft.com/azure/iot-fundamentals/iot-security-architecture
https://docs.microsoft.com/azure/iot-hub/iot-hub-devguide-sdks

Next steps

Logging systems are integral in understanding what actions or activities a solution has performed, failures that
have occurred, and can provide help in fixing those failures. Logs can be analyzed to help understand and remedy
error conditions, enhance performance characteristics, and ensure compliance with governing rule and regulations.

Though plain-text logging is lower impact on upfront development costs, it is more challenging for a machine to
parse/read. We recommend structured logging be used, as collected information is both machine parsable and
human readable. Structured logging adds situational context and metadata to the log information. In structured
logging, properties are first class citizens formatted as key/value pairs, or with a fixed schema, to enhance search
and query capabilities.

For a more detailed discussion of the recommended architecture and implementation choices, see Microsoft
Azure IoT Reference Architecture (PDF).

For detailed documentation of the various Azure IoT services, see Azure IoT Fundamentals.

A sample IoT implementation is available on GitHub.

http://aka.ms/iotrefarchitecture
https://docs.microsoft.com/azure/iot-fundamentals/
https://github.com/mspnp/iot-guidance

Microservices architecture on Azure Kubernetes
Service (AKS)
3/13/2019 • 21 minutes to read • Edit Online

Architecture

This reference architectures shows a microservices application deployed to Azure Kubernetes Service (AKS). It
shows a basic AKS configuration that can be the starting point for most deployments. More advanced options,
including advanced networking options, will be covered in a separate reference architecture.

This article assumes basic knowledge of Kubernetes. The article focuses mainly on the infrastructure and DevOps
considerations of running a microservices architecture on AKS. For guidance on how to design microservices from
a Domain Driven Design (DDD) perspective, see Designing, building, and operating microservices on Azure.

The architecture consists of the following components.

Azure Kubernetes Service (AKS). AKS is an Azure service that deploys a managed Kubernetes cluster.

Kubernetes cluster. AKS is responsible for deploying the Kubernetes cluster and for managing the Kubernetes
masters. You only manage the agent nodes.

Virtual network. By default, AKS creates a virtual network to deploy the agent nodes into. For more advanced
scenarios, you can create the virtual network first, which lets you control things like how the subnets are
configured, on-premises connectivity, and IP addressing. For more information, see Configure advanced
networking in Azure Kubernetes Service (AKS).

Ingress. An ingress exposes HTTP(S) routes to services inside the cluster. For more information, see the section
API Gateway below.

https://github.com/mspnp/architecture-center/blob/master/docs/reference-architectures/microservices/aks.md
https://docs.microsoft.com/azure/architecture/microservices
https://docs.microsoft.com/azure/aks/configure-advanced-networking

Design considerations

MicroservicesMicroservices

External data stores. Microservices are typically stateless and write state to external data stores, such as Azure
SQL Database or Cosmos DB.

Azure Active Directory. AKS uses an Azure Active Directory (Azure AD) identity to create and manage other
Azure resources such as Azure load balancers. Azure AD is also recommended for user authentication in client
applications.

Azure Container Registry. Use Container Registry to store private Docker images, which are deployed to the
cluster. AKS can authenticate with Container Registry using its Azure AD identity. Note that AKS does not require
Azure Container Registry. You can use other container registries, such as Docker Hub.

Azure Pipelines. Pipelines is part of Azure DevOps Services and runs automated builds, tests, and deployments.
You can also use third-party CI/CD solutions such as Jenkins.

Helm. Helm is as a package manager for Kubernetes — a way to bundle Kubernetes objects into a single unit that
you can publish, deploy, version, and update.

Azure Monitor. Azure Monitor collects and stores metrics and logs, including platform metrics for the Azure
services in the solution and application telemetry. Use this data to monitor the application, set up alerts and
dashboards, and perform root cause analysis of failures. Azure Monitor integrates with AKS to collect metrics from
controllers, nodes, and containers, as well as container logs and master node logs.

This reference architecture is focused on microservices architectures, although many of the recommended
practices will apply to other workloads running on AKS.

The Kubernetes Service object is a natural way to model microservices in Kubernetes. A microservice is a loosely
coupled, independently deployable unit of code. Microservices typically communicate through well-defined APIs,
and are discoverable through some form of service discovery. The Kubernetes Service object provides a set of
capabilities that match these requirements:

IP address. The Service object provides a static internal IP address for a group of pods (ReplicaSet). As pods
are created or moved around, the service is always reachable at this internal IP address.

Load balancing. Traffic sent to the service's IP address is load balanced to the pods.

Service discovery. Services are assigned internal DNS entries by the Kubernetes DNS service. That means
the API gateway can call a backend service using the DNS name. The same mechanism can be used for
service-to-service communication. The DNS entries are organized by namespace, so if your namespaces
correspond to bounded contexts, then the DNS name for a service will map naturally to the application
domain.

The following diagram show the conceptual relation between services and pods. The actual mapping to endpoint
IP addresses and ports is done by kube-proxy, the Kubernetes network proxy.

 API GatewayAPI Gateway

Data storageData storage

NamespacesNamespaces

An API gateway is a gateway that sits between external clients and the microservices. It acts as a reverse proxy,
routing requests from clients to microservices. It may also perform various cross-cutting tasks such as
authentication, SSL termination, and rate limiting.

Functionality provided by a gateway can be grouped as follows:

Gateway Routing: Routing client requests to the right backend services. This provides a single endpoint for
clients, and helps to decouple clients from services.

Gateway Aggregation: Aggregation of multiple requests into a single request, to reduce chattiness between
the client and the backend.

Gateway Offloading. A gateway can offload functionality from the backend services, such as SSL
termination, authentication, IP whitelisting, or client rate limiting (throttling).

API gateways are a general microservices design pattern. They can be implemented using a number of different
technologies. Probably the most common implementation is to deploy an edge router or reverse proxy, such as
Nginx, HAProxy, or Traefik, inside the cluster.

Other options include:

Azure Application Gateway and/or Azure API-Management, which are both managed services that reside
outside of the cluster. An Application Gateway Ingress Controller is currently in beta.

Azure Functions Proxies. Proxies can modify requests and responses and route requests based on URL.

The Kubernetes Ingress resource type abstracts the configuration settings for a proxy server. It works in
conjunction with an ingress controller, which provides the underlying implementation of the Ingress. There are
ingress controllers for Nginx, HAProxy, Traefik, and Application Gateway (preview), among others.

The ingress controller handles configuring the proxy server. Often these require complex configuration files, which
can be hard to tune if you aren't an expert, so the ingress controller is a nice abstraction. In addition, the Ingress
Controller has access to the Kubernetes API, so it can make intelligent decisions about routing and load balancing.
For example, the Nginx ingress controller bypasses the kube-proxy network proxy.

On the other hand, if you need complete control over the settings, you may want to bypass this abstraction and
configure the proxy server manually.

A reverse proxy server is a potential bottleneck or single point of failure, so always deploy at least two replicas for
high availability.

In a microservices architecture, services should not share data storage. Each service should own its own private
data in a separate logical storage, to avoid hidden dependencies among services. The reason is to avoid
unintentional coupling between services, which can happen when services share the same underlying data
schemas. Also, when services manage their own data stores, they can use the right data store for their particular
requirements. For more information, see Designing microservices: Data considerations.

Avoid storing persistent data in local cluster storage, because that ties the data to the node. Instead,

Use an external service such as Azure SQL Database or Cosmos DB, or

Mount a persistent volume using Azure Disks or Azure Files. Use Azure Files if the same volume needs to
be shared by multiple pods.

Use namespaces to organize services within the cluster. Every object in a Kubernetes cluster belongs to a
namespace. By default, when you create a new object, it goes into the default namespace. But it's a good practice

https://microservices.io/patterns/apigateway.html
https://docs.microsoft.com/azure/architecture/microservices/data-considerations

Scalability considerations

Pod autoscalingPod autoscaling

Cluster autoscalingCluster autoscaling

Availability considerations
Health probesHealth probes

to create namespaces that are more descriptive to help organize the resources in the cluster.

First, namespaces help prevent naming collisions. When multiple teams deploy microservices into the same
cluster, with possibly hundreds of microservices, it gets hard to manage if they all go into the same namespace. In
addition, namespaces allow you to:

Apply resource constraints to a namespace, so that the total set of pods assigned to that namespace cannot
exceed the resource quota of the namespace.

Apply policies at the namespace level, including RBAC and security policies.

For a microservices architecture, considering organizing the microservices into bounded contexts, and creating
namespaces for each bounded context. For example, all microservices related to the "Order Fulfillment" bounded
context could go into the same namespace. Alternatively, create a namespace for each development team.

Place utility services into their own separate namespace. For example, you might deploy Elasticsearch or
Prometheus for cluster monitoring, or Tiller for Helm.

Kubernetes supports scale-out at two levels:

Scale the number of pods allocated to a deployment.
Scale the nodes in the cluster, to increase the total compute resources available to the cluster.

Although you can scale out pods and nodes manually, we recommend using autoscaling, to minimize the chance
that services will become resource starved under high load. An autoscaling strategy must take both pods and
nodes into account. If you just scale out the pods, eventually you will reach the resource limits of the nodes.

The Horizontal Pod Autoscaler (HPA) scales pods based on observed CPU, memory, or custom metrics. To
configure horizontal pod scaling, you specify a target metric (for example, 70% of CPU), and the minimum and
maximum number of replicas. You should load test your services to derive these numbers.

A side-effect of autoscaling is that pods may be created or evicted more frequently, as scale-out and scale-in events
happen. To mitigate the effects of this:

Use readiness probes to let Kubernetes know when a new pod is ready to accept traffic.
Use pod disruption budgets to limit how many pods can be evicted from a service at a time.

The cluster autoscaler scales the number of nodes. If pods can't be scheduled because of resource constraints, the
cluster autoscaler will provision more nodes. (Note: Integration between AKS and the cluster autoscaler is
currently in preview.)

Whereas HPA looks at actual resources consumed or other metrics from running pods, the cluster autoscaler is
provisioning nodes for pods that aren't scheduled yet. Therefore, it looks at the requested resources, as specified in
the Kubernetes pod spec for a deployment. Use load testing to fine-tune these values.

You can't change the VM size after you create the cluster, so you should do some initial capacity planning to choose
an appropriate VM size for the agent nodes when you create the cluster.

Kubernetes defines two types of health probe that a pod can expose:

Resource constraintsResource constraints

Security considerations
Role based access control (RBAC)Role based access control (RBAC)

Readiness probe: Tells Kubernetes whether the pod is ready to accept requests.

Liveness probe: Tells Kubernetes whether a pod should be removed and a new instance started.

When thinking about probes, it's useful to recall how a service works in Kubernetes. A service has a label selector
that matches a set of (zero or more) pods. Kubernetes load balances traffic to the pods that match the selector.
Only pods that started successfully and are healthy receive traffic. If a container crashes, Kubernetes kills the pod
and schedules a replacement.

Sometimes, a pod may not be ready to receive traffic, even though the pod started successfully. For example, there
may be initialization tasks, where the application running in the container loads things into memory or reads
configuration data. To indicate that a pod is healthy but not ready to receive traffic, define a readiness probe.

Liveness probes handle the case where a pod is still running, but is unhealthy and should be recycled. For example,
suppose that a container is serving HTTP requests but hangs for some reason. The container doesn't crash, but it
has stopped serving any requests. If you define an HTTP liveness probe, the probe will stop responding and that
informs Kubernetes to restart the pod.

Here are some considerations when designing probes:

If your code has a long startup time, there is a danger that a liveness probe will report failure before the
startup completes. To prevent this, use the initialDelaySeconds setting, which delays the probe from
starting.

A liveness probe doesn't help unless restarting the pod is likely to restore it to a healthy state. You can use a
liveness probe to mitigate against memory leaks or unexpected deadlocks, but there's no point in restarting
a pod that's going to immediately fail again.

Sometimes readiness probes are used to check dependent services. For example, if a pod has a dependency
on a database, the liveness probe might check the database connection. However, this approach can create
unexpected problems. An external service might be temporarily unavailable for some reason. That will
cause the readiness probe to fail for all the pods in your service, causing all of them to be removed from
load balancing, and thus creating cascading failures upstream. A better approach is to implement retry
handling within your service, so that your service can recover correctly from transient failures.

Resource contention can affect the availability of a service. Define resource constraints for containers, so that a
single container cannot overwhelm the cluster resources (memory and CPU). For non-container resources, such as
threads or network connections, consider using the Bulkhead Pattern to isolate resources.

Use resource quotas to limit the total resources allowed for a namespace. That way, the front end can't starve the
backend services for resources or vice-versa.

Kubernetes and Azure both have mechanisms for role-based access control (RBAC):

Azure RBAC controls access to resources in Azure, including the ability to create new Azure resources.
Permissions can be assigned to users, groups, or service principals. (A service principal is a security identity
used by applications.)

Kubernetes RBAC controls permissions to the Kubernetes API. For example, creating pods and listing pods
are actions that can be authorized (or denied) to a user through RBAC. To assign Kubernetes permissions to
users, you create roles and role bindings:

A Role is a set of permissions that apply within a namespace. Permissions are defined as verbs (get,

https://docs.microsoft.com/azure/architecture/patterns/bulkhead

Secrets management and application credentialsSecrets management and application credentials

update, create, delete) on resources (pods, deployments, etc.).

A RoleBinding assigns users or groups to a Role.

There is also a ClusterRole object, which is like a Role but applies to the entire cluster, across all
namespaces. To assign users or groups to a ClusterRole, create a ClusterRoleBinding.

AKS integrates these two RBAC mechanisms. When you create an AKS cluster, you can configure it to use Azure
AD for user authentication. For details on how to set this up, see Integrate Azure Active Directory with Azure
Kubernetes Service.

Once this is configured, a user who wants to access the Kubernetes API (for example, through kubectl) must sign
in using their Azure AD credentials.

By default, an Azure AD user has no access to the cluster. To grant access, the cluster administrator creates
RoleBindings that refer to Azure AD users or groups. If a user doesn't have permissions for a particular operation,
it will fail.

If users have no access by default, how does the cluster admin have permission to create the role bindings in the
first place? An AKS cluster actually has two types of credentials for calling the Kubernetes API server: cluster user
and cluster admin. The cluster admin credentials grant full access to the cluster. The Azure CLI command
az aks get-credentials --admin downloads the cluster admin credentials and saves them into your kubeconfig file.

The cluster administrator can use this kubeconfig to create roles and role bindings.

Because the cluster admin credentials are so powerful, use Azure RBAC to restrict access to them:

The "Azure Kubernetes Service Cluster Admin Role" has permission to download the cluster admin
credentials. Only cluster administrators should be assigned to this role.

The "Azure Kubernetes Service Cluster User Role" has permission to download the cluster user credentials.
Non-admin users can be assigned to this role. This role does not give any particular permissions on
Kubernetes resources inside the cluster — it just allows a user to connect to the API server.

When you define your RBAC policies (both Kubernetes and Azure), think about the roles in your organization:

Who can create or delete an AKS cluster and download the admin credentials?
Who can administer a cluster?
Who can create or update resources within a namespace?

It's a good practice to scope Kubernetes RBAC permissions by namespace, using Roles and RoleBindings, rather
than ClusterRoles and ClusterRoleBindings.

Finally, there is the question of what permissions the AKS cluster has to create and manage Azure resources, such
as load balancers, networking, or storage. To authenticate itself with Azure APIs, the cluster uses an Azure AD
service principal. If you don't specify a service principal when you create the cluster, one is created automatically.
However, it's a good security practice to create the service principal first and assign the minimal RBAC permissions
to it. For more information, see Service principals with Azure Kubernetes Service.

Applications and services often need credentials that allow them to connect to external services such as Azure
Storage or SQL Database. The challenge is to keep these credentials safe and not leak them.

For Azure resources, one option is to use managed identities. The idea of a managed identity is that an application
or service has an identity stored in Azure AD, and uses this identity to authenticate with an Azure service. The
application or service has a Service Principal created for it in Azure AD, and authenticates using OAuth 2.0 tokens.
The executing process calls a localhost address to get the token. That way, you don't need to store any passwords
or connection strings. You can use managed identities in AKS by assigning identities to individual pods, using the
aad-pod-identity project.

https://docs.microsoft.com/azure/aks/aad-integration
https://docs.microsoft.com/azure/aks/kubernetes-service-principal
https://github.com/Azure/aad-pod-identity

Pod and container securityPod and container security

Deployment (CI/CD) considerations

Currently, not all Azure services support authentication using managed identities. For a list, see Azure services that
support Azure AD authentication.

Even with managed identities, you'll probably need to store some credentials or other application secrets, whether
for Azure services that don't support managed identities, third-party services, API keys, and so on. Here are some
options for storing secrets securely:

Azure Key Vault. In AKS, you can mount one or more secrets from Key Vault as a volume. The volume reads
the secrets from Key Vault. The pod can then read the secrets just like a regular volume. For more
information, see the Kubernetes-KeyVault-FlexVolume project on GitHub.

The pod authenticates itself by using either a pod identity (described above) or by using an Azure AD
Service Principal along with a client secret. Using pod identities is recommended because the client secret
isn't needed in that case.

HashiCorp Vault. Kubernetes applications can authenticate with HashiCorp Vault using Azure AD managed
identities. See HashiCorp Vault speaks Azure Active Directory. You can deploy Vault itself to Kubernetes, but
it's recommend to run it in a separate dedicated cluster from your application cluster.

Kubernetes secrets. Another option is simply to use Kubernetes secrets. This option is the easiest to
configure but has some challenges. Secrets are stored in etcd, which is a distributed key-value store. AKS
encrypts etcd at rest. Microsoft manages the encryption keys.

Using a system like HashiCorp Vault or Azure Key Vault provides several advantages, such as:

Centralized control of secrets.
Ensuring that all secrets are encrypted at rest.
Centralized key management.
Access control of secrets.
Auditing

This list is certainly not exhaustive, but here are some recommended practices for securing your pods and
containers:

Don't run containers in privileged mode. Privileged mode gives a container access to all devices on the host. You
can set Pod Security Policy to disallow containers from running in privileged mode.

When possible, avoid running processes as root inside containers. Containers do not provide complete isolation
from a security standpoint, so it's better to run a container process as a non-privileged user.

Store images in a trusted private registry, such as Azure Container Registry or Docker Trusted Registry. Use a
validating admission webhook in Kubernetes to ensure that pods can only pull images from the trusted registry.

Scan images for known vulnerabilities, using a scanning solution such as Twistlock and Aqua, which are available
through the Azure Marketplace.

Automate image patching using ACR Tasks, a feature of Azure Container Registry. A container image is built up
from layers. The base layers include the OS image and application framework images, such as ASP.NET Core or
Node.js. The base images are typically created upstream from the application developers, and are maintained by
other project maintainers. When these images are patched upstream, it's important to update, test, and redeploy
your own images, so that you don't leave any known security vulnerabilities. ACR Tasks can help to automate this
process.

Here are some goals of a robust CI/CD process for a microservices architecture:

https://docs.microsoft.com/azure/active-directory/managed-identities-azure-resources/services-support-msi
https://github.com/Azure/kubernetes-keyvault-flexvol
https://open.microsoft.com/2018/04/10/scaling-tips-hashicorp-vault-azure-active-directory/
https://github.com/Azure/kubernetes-kms#azure-kubernetes-service-aks

Isolation of environmentsIsolation of environments

HelmHelm

CI/CD workflowCI/CD workflow

 MONOREPO MULTIPLE REPOS

Advantages Code sharing
Easier to standardize code and tooling
Easier to refactor code
Discoverability - single view of the code

Clear ownership per team
Potentially fewer merge conflicts
Helps to enforce decoupling of
microservices

Each team can build and deploy the services that it owns independently, without affecting or disrupting
other teams.

Before a new version of a service is deployed to production, it gets deployed to dev/test/QA environments
for validation. Quality gates are enforced at each stage.

A new version of a service can be deployed side-by-side with the previous version.

Sufficient access control policies are in place.

You can trust the container images that are deployed to production.

You will have multiple environments where you deploy services, including environments for development, smoke
testing, integration testing, load testing, and finally production. These environments need some level of isolation. In
Kubernetes, you have a choice between physical isolation and logical isolation. Physical isolation means deploying
to separate clusters. Logical isolation makes use of namespaces and policies, as described earlier.

Our recommendation is to create a dedicated production cluster along with a separate cluster for your dev/test
environments. Use logical isolation to separate environments within the dev/test cluster. Services deployed to the
dev/test cluster should never have access to data stores that hold business data.

Consider using Helm to manage building and deploying services. Some of the features of Helm that help with
CI/CD include:

Organizing all of the Kubernetes objects for a particular microservice into a single Helm chart.
Deploying the chart as a single helm command, rather than a series of kubectl commands.
Tracking updates and revisions, using semantic versioning, along with the ability to roll back to a previous
version.
The use of templates to avoid duplicating information, such as labels and selectors, across many files.
Managing dependencies between charts.
Publishing charts to a Helm repository, such as Azure Container Registry, and integrating them with the build
pipeline.

For more information about using Container Registry as a Helm repository, see Use Azure Container Registry as a
Helm repository for your application charts.

Before creating a CI/CD workflow, you must know how the code base will be structured and managed.

Do teams work in separate respositories or in a monorepo (single respository)?
What is your branching strategy?
Who can push code to production? Is there a release manager role?

The monorepo approach has been gaining favor but there are advantages and disadvantages to both.

https://docs.microsoft.com/azure/container-registry/container-registry-helm-repos

Challenges Changes to shared code can affect
multiple microservices
Greater potential for merge conflicts
Tooling must scale to a large code base
Access control
More complex deployment process

Harder to share code
Harder to enforce coding standards
Dependency management
Diffuse code base, poor discoverability
Lack of shared infrastructure

 MONOREPO MULTIPLE REPOS

trigger:
 batch: true
 branches:
 include:
 - master
 - feature/*

 exclude:
 - feature/experimental/*

 paths:
 include:
 - /src/shipping/delivery/

In this section, we present a possible CI/CD workflow, based on the following assumptions:

The code repository is monorepo, with folders organized by microservice.
The team's branching strategy is based on trunk-based development.
The team uses Azure Pipelines to run the CI/CD process.
The team uses namespaces in Azure Container Registry to isolate images that are approved for production
from images that are still being tested.

In this example, a developer is working on a microservice called Delivery Service. (The name comes from the
reference implementation described here.) While developing a new feature, the developer checks code into a
feature branch.

Pushing commits to this branch tiggers a CI build for the microservice. By convention, feature branches are named
feature/* . The build definition file includes a trigger that filters by the branch name and the source path. Using

this approach, each team can have its own build pipeline.

At this point in the workflow, the CI build runs some minimal code verification:

1. Build code
2. Run unit tests

The idea here is to keep the build times short so the developer can get quick feedback. When the feature is ready
to merge into master, the developer opens a PR. This triggers another CI build that performs some additional
checks:

1. Build code
2. Run unit tests

https://trunkbaseddevelopment.com/
https://docs.microsoft.com/azure/devops/pipelines
https://docs.microsoft.com/azure/container-registry/container-registry-best-practices#repository-namespaces
https://docs.microsoft.com/azure/devops/pipelines/yaml-schema

NOTENOTE

3. Build the runtime container image
4. Run vulnerability scans on the image

In Azure Repos, you can define policies to protect branches. For example, the policy could require a successful CI build plus a
sign-off from an approver in order to merge into master.

At some point, the team is ready to deploy a new version of the Delivery service. To do so, the release manager
creates a branch from master with this naming pattern: release/<microservice name>/<semver> . For example,
release/delivery/v1.0.2 . This triggers a full CI build that runs all the previous steps plus:

1. Push the Docker image to Azure Container Registry. The image is tagged with the version number taken from
the branch name.

2. Run helm package to package the Helm chart
3. Push the Helm package to Container Registry by running az acr helm push .

Assuming this build succeeds, it triggers a deployment process using an Azure Pipelines release pipeline. This
pipeline

1. Run helm upgrade to deploy the Helm chart to a QA environment.
2. An approver signs off before the package moves to production. See Release deployment control using

approvals.
3. Re-tag the Docker image for the production namespace in Azure Container Registry. For example, if the current

tag is myrepo.azurecr.io/delivery:v1.0.2 , the production tag is myrepo.azurecr.io/prod/delivery:v1.0.2 .
4. Run helm upgrade to deploy the Helm chart to the production environment.

It's important to remember that even in a monorepo, these tasks can be scoped to individual microservices, so that
teams can deploy with high velocity. There are some manual steps in the process: Approving PRs, creating release
branches, and approving deployments into the production cluster. These steps are manual by policy — they could
be completely automated if the organization prefers.

https://docs.microsoft.com/azure/devops/repos/git/branch-policies
https://docs.microsoft.com/azure/devops/pipelines/release/what-is-release-management
https://docs.microsoft.com/azure/devops/pipelines/release/approvals/approvals

Microservices architecture on Azure Service Fabric
3/13/2019 • 22 minutes to read • Edit Online

NOTENOTE

Architecture

This reference architecture shows a microservices architecture deployed to Azure Service Fabric. It shows a basic
cluster configuration that can be the starting point for most deployments.

This article focuses on the Reliable Services programming model for Service Fabric. Using Service Fabric to deploy and
manage containers is beyond the scope of this article.

The architecture consists of the following components. For other terms, see Service Fabric terminology overview.

Service Fabric cluster. A network-connected set of virtual machines (VMs) into which your microservices are
deployed and managed.

Virtual machine scale sets. Virtual machine scale sets allow you to create and manage a group of identical, load
balanced, and autoscaling VMs. It also provides the fault and upgrade domains.

Nodes. The nodes are the VMs that belong to the Service Fabric cluster.

Node types. A node type represents a virtual machine scale set that deploys a collection of nodes. A Service
Fabric cluster has at least one node type. In a cluster with multiple node types, one must be declared the Primary
node type. The primary node type in the cluster runs the Service Fabric system services. These services provide the
platform capabilities of Service Fabric. The primary node type also acts as the seed nodes for the cluster, which are

https://github.com/mspnp/architecture-center/blob/master/docs/reference-architectures/microservices/service-fabric.md
https://docs.microsoft.com/azure/service-fabric/service-fabric-reliable-services-introduction
https://docs.microsoft.com/azure/service-fabric/service-fabric-containers-overview
https://docs.microsoft.com/azure/service-fabric/service-fabric-technical-overview
https://docs.microsoft.com/azure/service-fabric/service-fabric-cluster-capacity#primary-node-type
https://docs.microsoft.com/azure/service-fabric/service-fabric-technical-overview#system-services
https://docs.microsoft.com/azure/service-fabric/service-fabric-disaster-recovery#random-failures-leading-to-cluster-failures

Design considerations

NOTENOTE

the nodes that maintain the availability of the underlying cluster. Configure additional node types to run your
services.

Services. A service performs a standalone function that can start and run independently of other services.
Instances of services get deployed to nodes in the cluster. There are two varieties of service in Service Fabric:

Stateless service. A stateless service does not maintain state within the service. If state persistence is required,
then state is written to and retrieved from an external store, such as Azure Cosmos DB.
Stateful service. The service state is kept within the service itself. Most stateful services implement this
through Service Fabric’s Reliable Collections.

Service Fabric Explorer. Service Fabric Explorer is an open-source tool for inspecting and managing Service
Fabric clusters.

Azure Pipelines. Pipelines is part of Azure DevOps Services and runs automated builds, tests, and deployments.
You can also use third-party CI/CD solutions such as Jenkins.

Azure Monitor. Azure Monitor collects and stores metrics and logs, including platform metrics for the Azure
services in the solution and application telemetry. Use this data to monitor the application, set up alerts and
dashboards, and perform root cause analysis of failures. Azure Monitor integrates with Service Fabric to collect
metrics from controllers, nodes, and containers, as well as container logs and master node logs.

Azure Key Vault. Use Key Vault to store any application secrets used by the microservices, such as connection
strings.

Azure API Management. In this architecture, API Management acts as an API gateway that accepts requests
from clients and routes them to your services.

This reference architecture is focused on microservices architectures. A microservice is a small, independently
versioned unit of code. It is discoverable through service discovery mechanisms and can communicate with other
services over APIs. Each service is self-contained and should implement a single business capability. For more
information about how to decompose your application domain into microservices, see Using domain analysis to
model microservices.

Service Fabric provides an infrastructure to build, deploy, and upgrade microservices efficiently. It also provides
options for auto scaling, managing state, monitoring health, and restarting services in case of failure.

Service Fabric follows an application model where an application is a collection of microservices. The application is
described in an application manifest file that defines the different types of service contained in that application, and
pointers to the independent service packages. The application package also usually contains parameters that serve
as overrides for certain settings used by the services. Each service package has a manifest file that describes the
physical files and folders that are necessary to run that service, including binaries, configuration files, and read-
only data for that service. Services and applications are independently versioned and upgradable.

Optionally, the application manifest can describe services that are automatically provisioned when an instance of
the application is created. These are called default services. In this case, the application manifest also describes how
these services should be created, including the service’s name, instance count, security/isolation policy, and
placement constraints.

Avoid using default services if you want to control the life time of your services. Default services are created when the
application is created, and run as long as the application is running.

https://docs.microsoft.com/azure/service-fabric/service-fabric-cluster-capacity#non-primary-node-type
https://docs.microsoft.com/azure/service-fabric/service-fabric-concepts-state
https://docs.microsoft.com/azure/service-fabric/service-fabric-reliable-services-reliable-collections
https://docs.microsoft.com/azure/service-fabric/service-fabric-visualizing-your-cluster
https://docs.microsoft.com/azure/devops/pipelines/?view=azure-devops
https://docs.microsoft.com/azure/devops/index?view=azure-devops
https://docs.microsoft.com/azure/azure-monitor/
https://docs.microsoft.com/azure/key-vault/
https://docs.microsoft.com/azure/api-management/api-management-key-concepts
https://docs.microsoft.com/azure/service-fabric/service-fabric-application-and-service-manifests

Choose an application-to-service packaging modelChoose an application-to-service packaging model

Service Fabric programming modelsService Fabric programming models

API gatewayAPI gateway

For more information about understanding Service Fabric, see So you want to learn about Service Fabric?

A tenet of microservices is that each service can be independently deployed. In Service Fabric, if you group all of
your services into a single application package, and one service fails to upgrade, the entire application upgrade
gets rolled back, which prevents other service from being upgraded.

For that reason, in a microservices architecture, we recommend using multiple application packages. Put one or
more closely related service types into a single application type. If your team is responsible for a set of services
that run for the same duration and need to be updated at the same time, have the same lifecycle, or share
resources such as dependencies or configuration, then place those services types in the same application type.

When you add a microservice to a Service Fabric application, decide whether it has state or data that needs to be
made highly available and reliable. If so, can it store data externally or is the data contained as part of the service?
Choose a stateless service if you don’t need to store data or want to store data in external storage. If you want to
maintain state or data as part of the service (for example, you need that data to reside in memory close to the
code), or cannot tolerate a dependency on an external store, consider choosing a stateful service.

If you have existing code that you want to run on Service Fabric, you can run it as a guest executable, which is an
arbitrary executable that runs as a service. Alternatively, you can package the executable in a container that has all
the dependencies needed for deployment. Service Fabric models both containers and guest executables as
stateless services. For guidance about choosing a model, see Service Fabric programming model overview.

With guest executables, you are responsible of maintaining the environment in which it runs. For example,
suppose that a guest executable requires Python. If the executable is not self-contained, you need to make sure
that the required version of Python is pre-installed in the environment. Service Fabric does not manage the
environment. Azure offers multiple mechanisms to set up the environment, including custom virtual machine
images and extensions.

For more information, see:

Package an application
Package and deploy an existing executable to Service Fabric

An API gateway (ingress) sits between external clients and the microservices. It acts as a reverse proxy, routing
requests from clients to microservices. It may also perform various cross-cutting tasks such as authentication, SSL
termination, and rate limiting.

Azure API Management is recommended for most scenarios, but Træfik is a popular open-source alternative. Both
technology options are integrated with Service Fabric.

API Management exposes a public IP address and routes traffic to your services. It runs in a dedicated subnet
in the same virtual network as the Service Fabric cluster. can access services in a node type that is exposed
through a load balancer with a private IP address. This option is only available in the Premium and Developer
tiers of API Management. For production workloads, use the Premium tier. Pricing information is described in
API Management pricing. For more information, see Service Fabric with Azure API Management overview.
Træfik supports features such as routing, tracing, logs, and metrics. Træfik runs as a stateless service in the
Service Fabric cluster. Service versioning can be supported through routing. For information on how to set up
Træfik for service ingress and as the reverse proxy within the cluster, see Azure Service Fabric Provider. For
more information about using Træfik with Service Fabric, see Intelligent routing on Service Fabric with Træfik
(blog post).

Other API Managementment options include Azure Application Gateway and Azure Front Door. These services
can be used in conjunction with API Management to perform tasks such as routing, SSL termination, and firewall.

https://docs.microsoft.com/azure/service-fabric/service-fabric-content-roadmap
https://docs.microsoft.com/azure/service-fabric/service-fabric-choose-framework
https://docs.microsoft.com/azure/service-fabric/service-fabric-package-apps
https://docs.microsoft.com/azure/service-fabric/service-fabric-deploy-existing-app
https://docs.traefik.io/
https://azure.microsoft.com/pricing/details/api-management/
https://docs.microsoft.com/azure/service-fabric/service-fabric-api-management-overview
https://docs.traefik.io/configuration/backends/servicefabric/
https://blogs.msdn.microsoft.com/azureservicefabric/2018/04/05/intelligent-routing-on-service-fabric-with-traefik/
https://docs.microsoft.com/azure/application-gateway/
https://docs.microsoft.com/azure/frontdoor/

Interservice communicationInterservice communication

Scalability considerations

Initial cluster configuration for scalabilityInitial cluster configuration for scalability

Scaling nodesScaling nodes

To facilitate service-to-service communication, consider using HTTP as the communication protocol. As a baseline
for most scenarios, we recommend using the reverse proxy service for service discovery.

Communication protocol. In a microservices architecture, services need to communicate with each other with
minimum coupling at runtime. To enable language-agnostic communication, HTTP is an industry-standard with
a wide range of tools and HTTP servers that are available in different languages, all supported by Service
Fabric. Therefore, using HTTP instead of Service Fabric’s built in service remoting is recommended for most
workloads.
Service discovery. To communicate with other services within a cluster, a client service needs to resolve the
target service’s current location. In Service Fabric, services can move between nodes, causing the service
endpoints to change dynamically. To avoid connections to stale endpoints, Service Fabric’s Naming Service can
be used to retrieve updated endpoint information. However, Service Fabric also provides a built-in reverse
proxy service that abstracts the naming service. This option is easier to use and results in simpler code.

Other options for interservice communication include,

Træfik for advanced routing.
DNS for compatibility scenarios where a service expects to use DNS.
ServicePartitionClient<TCommunicationClient> class. The class caches service endpoints and can enable better
performance, as calls go directly between services without intermediaries or custom protocols.

Service Fabric supports scaling these cluster entities:

Scaling the number of nodes for each node type.
Scaling services.

This section is focused on autoscaling. You can choose to manually scale in situations where appropriate. For
example, a situation where manual intervention is required to set the number of instances.

When you create a Service Fabric cluster, provision the node types based on your security and scalability needs.
Each node type is mapped to a virtual machine scale set and can be scaled independently.

Create a node type for each group of services that have different scalability or resource requirements. Start by
provisioning a node type (which becomes the primary node type) for the Service Fabric system services. Then
create separate node types to run your public or front-end services, and other node types as necessary for your
backend and private or isolated services. Specify placement constraints so that the services are only deployed
to the intended node types.
Specify the durability tier for each node type. The durability tier represents the ability for Service Fabric to
influence virtual machine scale set updates and maintenance operations. For production workloads, choose the
Silver or higher durability tier. For information about each tier, see The durability characteristics of the cluster.
If using the Bronze durability tier, certain operations require manual steps. For node types with Bronze
durability tier additional steps are required during scale in. For more information on scaling operations, see this
guide.

Service Fabric supports autoscaling for scale-in and scale-out. Each node type can be configured for autoscaling
independently.

Each node type can have a maximum of 100 nodes. Start with a smaller set of nodes and add more nodes
depending on your load. If you require more than 100 nodes in a node type, you will need to add more node types.
For details, see Service Fabric cluster capacity planning considerations. A virtual machine scale set does not scale

https://docs.microsoft.com/azure/service-fabric/service-fabric-reverseproxy
https://docs.microsoft.com/azure/service-fabric/service-fabric-reverseproxy
https://docs.traefik.io/
https://docs.microsoft.com/azure/dns/
https://docs.microsoft.com/dotnet/api/microsoft.servicefabric.services.communication.client.servicepartitionclient-1?view=azure-dotnet
https://docs.microsoft.com/azure/service-fabric/service-fabric-cluster-capacity#primary-node-type
https://docs.microsoft.com/azure/service-fabric/service-fabric-cluster-resource-manager-advanced-placement-rules-placement-policies
https://docs.microsoft.com/azure/service-fabric/service-fabric-cluster-capacity#the-durability-characteristics-of-the-cluster
https://docs.microsoft.com/azure/service-fabric/service-fabric-cluster-scale-up-down
https://docs.microsoft.com/azure/service-fabric/service-fabric-cluster-capacity

Scaling servicesScaling services

Autoscaling for stateless servicesAutoscaling for stateless services

NOTENOTE

Scaling for stateful servicesScaling for stateful services

Using metrics to balance loadUsing metrics to balance load

instantaneously, so consider that factor when you set up autoscale rules.

To support automatic scale-in, configure the node type to have the Silver or Gold durability tier. This makes sure
that scaling in is delayed until Service Fabric is finished relocating services and that the virtual machine scale sets
inform Service Fabric that the VMs are removed, not just down temporarily.

For more information about scaling at the node/cluster level, see Scaling Azure Service Fabric clusters.

Stateless and stateful services apply different approaches to scaling.

Use the average partition load trigger. This trigger determines when the service is scaled in or out, based on a
load threshold value specified in the scaling policy. You can also set how often the trigger is checked. See
Average partition load trigger with instance-based scaling. This allows you to scale up to the number of
available nodes.
Set InstanceCount to -1 in the service manifest, which tells Service Fabric to run an instance of the service on
every node. This approach enables the service to scale dynamically as the cluster scales. As the number of
nodes in the cluster changes, Service Fabric automatically creates and deletes service instances to match.

In some cases, you might want to manually scale your service. For example, if you have a service that reads from Event Hubs,
you might want a dedicated instance to read from each event hub partition, to avoid concurrent access to the partition.

For a stateful service, scaling is controlled by the number of partitions, the size of each partition, and the number
of partitions/replicas running on a given machine.

If you are creating partitioned services, we recommend having a high number of partitions that are small in
size. If more nodes are added, Service Fabric distributes the workloads onto the new machines by default. For
example, if there are 5 nodes and 10 partitions, by default Service Fabric will place two primary replicas on each
node. If you scale out the nodes, you can achieve greater performance, because the work is evenly distributed
across more resources. For information about scenarios that take advantage of this strategy, see Scaling in
Service Fabric.
Adding or removing partitions is not well supported. Another option commonly used to scale is to dynamically
create or delete services or whole application instances. An example of that pattern is described in Scaling by
creating or removing new named services.

For more information, see:

Scale a Service Fabric cluster in or out using autoscale rules or manually
Scale a Service Fabric cluster programmatically
Scale a Service Fabric cluster out by adding a Virtual Machine Scale Set

Depending on how you design the partition, you might have nodes with replicas that get more traffic than others.
To avoid this situation, partition the service state so that it is distributed across all partitions. Use the range
partitioning scheme with a good hash algorithm. See Get started with partitioning .

Service Fabric uses metrics to know how to place and balance services within a cluster. You can specify a default
load for each metric associated with a service when that service is created. Service Fabric then takes that load into
account when placing the service, or whenever the service needs to move (for example, during upgrades) to try to
balance the nodes in the cluster.

The initially specified default load for a service will not change over the lifetime of the service. To capture changing

https://docs.microsoft.com/azure/service-fabric/service-fabric-cluster-scaling
https://docs.microsoft.com/azure/service-fabric/service-fabric-cluster-resource-manager-autoscaling#average-partition-load-trigger-with-instance-based-scaling
https://docs.microsoft.com/azure/service-fabric/service-fabric-concepts-scalability
https://docs.microsoft.com/azure/service-fabric/service-fabric-concepts-scalability#scaling-by-creating-or-removing-new-named-services
https://docs.microsoft.com/azure/service-fabric/service-fabric-cluster-scale-up-down
https://docs.microsoft.com/azure/service-fabric/service-fabric-cluster-programmatic-scaling
https://docs.microsoft.com/azure/service-fabric/virtual-machine-scale-set-scale-node-type-scale-out
https://docs.microsoft.com/azure/service-fabric/service-fabric-concepts-partitioning#get-started-with-partitioning

Availability considerations

Security considerations

Virtual networkVirtual network

Endpoints and interservice communicationEndpoints and interservice communication

metrics for a given service, we recommend that you monitor your service and then report the load dynamically.
This allows Service Fabric to adjust the allocation based on the reported load at a given time. Use the
IServicePartition.ReportLoad method to report custom metrics. For more information, see Dynamic load.

Place your services in a node type other than the primary node type. The Service Fabric system services are always
deployed to the primary node type. If your services are deployed to the primary node type, they might compete
with system services for resources and interfere with the system services. If a node type is expected to host stateful
services, make sure there are at least five node instances and you select the Silver or Gold Durability tier.

Consider constraining the resources of your services. See Resource governance mechanism.

Do not mix resource governed and resource non-governed services on the same node type. The non-governed
services might consume too many resources, affecting the resource governed services. Specify placement
constraints to make sure that those types of services do not run on the same set of nodes. See Specify resource
governance. (This is an example of the Bulkhead pattern.)
Specify the CPU cores and memory to reserve for a service instance. For information about usage and
limitations of resource governance policies, see Resource governance.

Make sure every service’s target instance or replica count is greater than 1 to avoid a single point of failure
(SPOF). The largest number that you can use as service instance or replica count equals the number nodes that to
which the service is constrained.

Make sure every stateful service has at least two active secondary replicas. Five replicas are recommended for
production workloads.

For more information, see Availability of Service Fabric services.

Here are some key points for securing your application on Service Fabric:

Consider defining subnet boundaries for each virtual machine scale set to control the flow of communication. Each
node type has its own virtual machine scale set in a subnet within the Service Fabric cluster's virtual network.
Network Security Groups (NSGs) can be added to the subnets to allow or reject network traffic. For example, with
front-end and back-end node types, you can add an NSG to the backend subnet to accept inbound traffic only the
front-end subnet.

When calling external Azure Services from the cluster, use Virtual Network service endpoints if the Azure service
supports it. Using a service endpoint secures the service to only the cluster’s Virtual Network. For example, if you
are using Cosmos DB to store data, configure the Cosmos DB account with a service endpoint to allow access only
from a specific subnet. See Access Azure Cosmos DB resources from virtual networks.

Do not create an unsecured Service Fabric cluster. If the cluster exposes management endpoints to the public
internet, anonymous users can connect to it. Unsecured clusters are not supported for production workloads. See:
Service Fabric cluster security scenarios.

To secure your interservice communications:

Consider enabling HTTPS endpoints in your ASP.NET Core or Java web services.
Establish a secure connection between the reverse proxy and services. For details, see Connect to a secure
service.

https://docs.microsoft.com/dotnet/api/system.fabric.iservicepartition.reportload?view=azure-dotnet
https://docs.microsoft.com/azure/service-fabric/service-fabric-cluster-resource-manager-metrics#dynamic-load
https://docs.microsoft.com/azure/service-fabric/service-fabric-resource-governance#resource-governance-mechanism
https://docs.microsoft.com/azure/service-fabric/service-fabric-cluster-resource-manager-advanced-placement-rules-placement-policies
https://docs.microsoft.com/azure/service-fabric/service-fabric-resource-governance#specify-resource-governance
https://docs.microsoft.com/azure/service-fabric/service-fabric-resource-governance
https://docs.microsoft.com/azure/service-fabric/service-fabric-availability-services
https://docs.microsoft.com/azure/virtual-network/virtual-network-service-endpoints-overview
https://docs.microsoft.com/azure/cosmos-db/vnet-service-endpoint
https://docs.microsoft.com/azure/service-fabric/service-fabric-cluster-security
https://docs.microsoft.com/azure/service-fabric/service-fabric-reverseproxy-configure-secure-communication

Secrets and certificatesSecrets and certificates

Monitoring considerations

Application metrics and logsApplication metrics and logs

If you are using an API gateway, you can offload authentication to the gateway. Make sure that the individual
services cannot be reached directly (without the API gateway) unless additional security is in place to authenticate
messages whether they come from the gateway.

Do not expose the Service Fabric reverse proxy publicly. Doing so causes all services that expose HTTP endpoints
to be addressable from outside the cluster, introducing security vulnerabilities and potentially exposing additional
information outside the cluster unnecessarily. If you want to access a service publicly, use an API gateway. Some
options are mentioned in the API gateway section.

Remote desktop is useful for diagnostic and troubleshooting, but make sure not to leave it open otherwise it
causes a security hole.

To access Key Vault secrets from a Service Fabric service, enable managed identity on the virtual machine scale set
that hosts the service. Sample code: Use Key Vault from App Service with Managed Service Identity.

Do not use client certificates to access Service Fabric Explorer. Instead, use Azure Active Directory (Azure AD).
Also see, Azure services that support Azure AD authentication .

Do not use self-signed certificates for production.

For more information about securing Service Fabric, see:

Azure Service Fabric security overview
Azure Service Fabric security best practices
Azure Service Fabric security checklist

Before you explore the monitoring options, we recommend you read this article about diagnosing common
scenarios with Service Fabric. You can think of monitoring data in these sets:

Application metrics and logs
Service Fabric health and event data
Infrastructure metrics and logs
Metrics and logs for dependent services

These are the two main options for analyzing that data:

Application Insights
Log Analytics

You can use Azure Monitor to set up dashboards for monitoring and to send alerts to operators. There are also
some third-party monitoring tools that are integrated with Service Fabric, such as Dynatrace. For details, see Azure
Service Fabric Monitoring Partners.

Application telemetry provides data about your service that can help you monitor the health of your service and
identify issues. To add traces and events in your service:

Microsoft.Extensions.Logging if you are developing your service with ASP.NET Core. For other frameworks,
use a logging library of your choice such as Serilog.
You can add your own instrumentation by using the TelemetryClient class in the SDK and view the data in
Application Insights. See Add custom instrumentation to your application.
Log ETW events by using EventSource. This option is available by default in a Visual Studio Service Fabric
solution.

https://docs.microsoft.com/azure/active-directory/managed-identities-azure-resources/services-support-msi#azure-virtual-machine-scale-sets
https://docs.microsoft.com/azure/active-directory/managed-identities-azure-resources/services-support-msi%23azure-services-that-support-azure-ad-authentication
https://docs.microsoft.com/azure/security/azure-service-fabric-security-overview
https://docs.microsoft.com/azure/security/azure-service-fabric-security-best-practices
https://docs.microsoft.com/azure/security/azure-service-fabric-security-checklist
https://docs.microsoft.com/azure/service-fabric/service-fabric-diagnostics-common-scenarios
https://docs.microsoft.com/azure/service-fabric/service-fabric-diagnostics-partners
https://docs.microsoft.com/azure/service-fabric/service-fabric-how-to-diagnostics-log#microsoftextensionslogging
https://docs.microsoft.com/dotnet/api/microsoft.applicationinsights.telemetryclient?view=azure-dotnet
https://docs.microsoft.com/azure/service-fabric/service-fabric-tutorial-monitoring-aspnet#add-custom-instrumentation-to-your-application
https://docs.microsoft.com/azure/service-fabric/service-fabric-diagnostics-event-generation-app#eventsource

Service Fabric health and event dataService Fabric health and event data

Infrastructure metrics and logsInfrastructure metrics and logs

To view the trace and event logs, use Application Insights as one of the sinks for structured logging so that your
service can visualize traces and events. Application Insights provides a lot of built-in telemetry: requests, traces,
events, exceptions, metrics, dependencies. For information about instrumenting your service for Application
Insights, see these articles:

Tutorial: Monitor and diagnose an ASP.NET Core application on Service Fabric using Application Insights.
Application Insights for ASP.NET Core
Application Insights .NET SDK
Application Insights SDK for Service Fabric

ASP.NET Core services use the ILogger interface for application logging. To make these application logs available
in Azure Monitor, send the ILogger events to Application Insights. For more information, see ILogger in an
ASP.NET Core application. Application Insights can add correlation properties to ILogger events, which is useful
for visualizing distributed tracing.

For more information, see:

Application logging
Add logging to your Service Fabric application

Service Fabric telemetry includes health metrics and events about the operation and performance of a Service
Fabric cluster and its entities: its nodes, applications, services, partitions, and replicas.

EventStore. A stateful system service that collects events related to the cluster and its entities. Service Fabric
uses EventStore to write Service Fabric events to provide information about your cluster and can be used for
status updates, troubleshooting, monitoring. It can also correlate events from different entities at a given time
to identify issues in the cluster. The service exposes those events through a REST API. For information about
how to query the EventStore APIs, see Query EventStore APIs for cluster events. You can view the events from
EventStore in Log Analytics by configuring your cluster with WAD extension.
HealthStore. Provides a snapshot of the current health of the cluster. A stateful service that aggregates all health
data reported by entities in a hierarchy. The data is visualized in Service Fabric Explorer. The HealthStore also
monitors application upgrades. You can use health queries in PowerShell, a .NET application, or REST APIs.
See, Introduction to Service Fabric health monitoring.
Consider implementing internal custom watchdog services. Those services can periodically report custom
health data such as faulty states of running services. For more information, see Custom health reports. You can
read the health reports using the Service Fabric explorer.

Infrastructure metrics help you to understand resource allocation in the cluster. Here are the main options for
collecting this information:

Windows Azure Diagnostics (WAD). Collect logs and metrics at the node level on Windows. You can use WAD
by configuring the IaaSDiagnostics VM extension on any virtual machine scale set that is mapped to a node
type to collect diagnostic events, such as Windows event logs, performance counters, ETW/manifests system
and operational events, and custom logs.
Log Analytics agent. Configure the MicrosoftMonitoringAgent VM extension to send Windows event logs,
performance counters, and custom logs to Log Analytics.

There is some overlap in the type of metrics collected through the preceding mechanisms, such as performance
counters. Where there is overlap, we recommend using the Log Analytics agent. Because there is no Azure storage
for the Log Analytics agent, there is low latency. Also, the performance counters in IaaSDiagnostics cannot be fed
into Log Analytics easily.

https://docs.microsoft.com/azure/service-fabric/service-fabric-diagnostics-event-analysis-appinsights
https://docs.microsoft.com/azure/service-fabric/service-fabric-tutorial-monitoring-aspnet
https://docs.microsoft.com/azure/application-insights/app-insights-asp-net-core
https://docs.microsoft.com/azure/application-insights/app-insights-api-custom-events-metrics
https://github.com/Microsoft/ApplicationInsights-ServiceFabric
https://docs.microsoft.com/aspnet/core/fundamentals/logging/?view=aspnetcore-2.2
https://github.com/Microsoft/ApplicationInsights-dotnet-logging/blob/develop/src/ILogger/Readme.md#aspnet-core-application
https://docs.microsoft.com/azure/service-fabric/service-fabric-diagnostics-event-generation-app
https://docs.microsoft.com/azure/azure-monitor/app/correlation
https://docs.microsoft.com/azure/service-fabric/service-fabric-diagnostics-eventstore
https://docs.microsoft.com/azure/service-fabric/service-fabric-diagnostics-event-generation-operational
https://docs.microsoft.com/azure/service-fabric/service-fabric-diagnostics-eventstore-query
https://docs.microsoft.com/azure/service-fabric/service-fabric-health-introduction
https://docs.microsoft.com/azure/service-fabric/service-fabric-visualizing-your-cluster
https://docs.microsoft.com/azure/service-fabric/service-fabric-health-introduction
https://docs.microsoft.com/azure/service-fabric/service-fabric-report-health

 Dependent service metricsDependent service metrics

Distributed tracingDistributed tracing

Alerts and DashboardsAlerts and Dashboards

For information about using VM extensions, see Azure virtual machine extensions and features.

To view the data, configure Log Analytics to view the data collected through WAD. For information about how to
configure Log Analytics to read events from a storage account, see Set up Log Analytics for a cluster.

You can also view performance logs and telemetry data related to a Service Fabric cluster, workloads, network
traffic, pending updates, and more. See Performance Monitoring with Log Analytics.

Service Map solution in Log Analytics provides information about the topology of the cluster (that is, the processes
running in each node). Send the data in the storage account to Application Insights. There might be some delay in
getting data into Application Insights. If you want to see the data real time, consider configuring Event Hub using
sinks and channels. For more information, see Event aggregation and collection using Windows Azure Diagnostics.

Application Insights Application Map provides the topology of the application by using HTTP dependency calls
made between services, with the installed Application Insights SDK.
Service Map solution in Log Analytics provides information about inbound and outbound traffic from/to
external services. In addition, Service Map integrates with other solutions such as updates or security.
Custom watchdogs can be used to report error conditions on external services. For example, the service could
report an error health report if it cannot access an external service or data storage (Azure Cosmos DB).

In microservices architecture, several services often participate to complete a task. The telemetry from each of
those services is correlated by using context fields (operation ID, request ID, and so forth) in a distributed trace. By
using Application Map in Application Insights, you can build the view of distributed logical operation and visualize
the entire service graph of your application. You can also use transaction diagnostics in Application Insight to
correlate server-side telemetry. For more information, see Unified cross-component transaction diagnostics.

Application Insights Application Map provides the topology of the application by using HTTP dependency calls
made between services, with the installed Application Insights SDK. It’s also important to correlate tasks that are
dispatched asynchronously using a queue. For details about sending correlation telemetry in a queue message, see
Queue instrumentation.

For more information, see:

Performing a query across multiple resources
Telemetry correlation in Application Insights

Application Insights and Log Analytics support an extensive query language (Kusto query language) that lets you
retrieve and analyze log data. Use the queries to create data sets and visualize it in diagnostics dashboards.

https://docs.microsoft.com/azure/virtual-machines/extensions/overview
https://docs.microsoft.com/azure/service-fabric/service-fabric-diagnostics-oms-setup
https://docs.microsoft.com/azure/service-fabric/service-fabric-diagnostics-oms-agent
https://docs.microsoft.com/azure/azure-monitor/insights/service-map
https://docs.microsoft.com/azure/monitoring-and-diagnostics/azure-diagnostics-configure-application-insights
https://docs.microsoft.com/azure/monitoring-and-diagnostics/azure-diagnostics-streaming-event-hubs
https://docs.microsoft.com/azure/service-fabric/service-fabric-diagnostics-event-aggregation-wad
https://docs.microsoft.com/azure/azure-monitor/app/app-map
https://docs.microsoft.com/azure/azure-monitor/insights/service-map
https://docs.microsoft.com/azure/azure-monitor/app/app-map
https://docs.microsoft.com/azure/application-insights/app-insights-transaction-diagnostics
https://docs.microsoft.com/azure/azure-monitor/app/app-map
https://docs.microsoft.com/azure/azure-monitor/app/custom-operations-tracking#queue-instrumentation
https://docs.microsoft.com/azure/azure-monitor/log-query/cross-workspace-query#performing-a-query-across-multiple-resources
https://docs.microsoft.com/azure/azure-monitor/app/correlation
https://docs.microsoft.com/azure/log-analytics/query-language/get-started-queries

Next steps

Use Azure Monitor alerts to notify sysadmins when certain conditions occur in specific resources. The notification
could be an email, Azure function, call a web hook, and so on. For more information, see Alerts in Azure Monitor.

Log search alert rules allow you to define and run a Kusto query against a Log Analytics workspace at regular
intervals. An alert is created if the query result matches a certain condition.

Using domain analysis to model microservices
Designing a microservices architecture

https://docs.microsoft.com/azure/azure-monitor/platform/alerts-overview
https://docs.microsoft.com/azure/azure-monitor/platform/alerts-unified-log

Implement a DMZ between Azure and your on-
premises datacenter
3/13/2019 • 12 minutes to read • Edit Online

NOTENOTE

Architecture

This reference architecture shows a secure hybrid network that extends an on-premises network to Azure. The
architecture implements a DMZ, also called a perimeter network, between the on-premises network and an
Azure virtual network (VNet). The DMZ includes network virtual appliances (NVAs) that implement security
functionality such as firewalls and packet inspection. All outgoing traffic from the VNet is force-tunneled to the
Internet through the on-premises network, so that it can be audited. Deploy this solution.

This scenario can also be accomplished using Azure Firewall, a cloud-based network security service.

Download a Visio file of this architecture.

This architecture requires a connection to your on-premises datacenter, using either a VPN gateway or an
ExpressRoute connection. Typical uses for this architecture include:

Hybrid applications where workloads run partly on-premises and partly in Azure.
Infrastructure that requires granular control over traffic entering an Azure VNet from an on-premises
datacenter.
Applications that must audit outgoing traffic. This is often a regulatory requirement of many commercial
systems and can help to prevent public disclosure of private information.

The architecture consists of the following components.

On-premises network. A private local-area network implemented in an organization.

Azure virtual network (VNet). The VNet hosts the application and other resources running in Azure.

Gateway. The gateway provides connectivity between the routers in the on-premises network and the
VNet.

Network virtual appliance (NVA). NVA is a generic term that describes a VM performing tasks such as
allowing or denying access as a firewall, optimizing wide area network (WAN) operations (including
network compression), custom routing, or other network functionality.

https://github.com/mspnp/architecture-center/blob/master/docs/reference-architectures/dmz/secure-vnet-hybrid.md
https://docs.microsoft.com/azure/firewall/
https://archcenter.blob.core.windows.net/cdn/dmz-reference-architectures.vsdx

Recommendations

Access control recommendationsAccess control recommendations

Resource group recommendationsResource group recommendations

Virtual network gateway recommendationsVirtual network gateway recommendations

NVA recommendationsNVA recommendations

NOTENOTE

Web tier, business tier, and data tier subnets. Subnets hosting the VMs and services that implement
an example 3-tier application running in the cloud. See Running Windows VMs for an N-tier architecture
on Azure for more information.

User defined routes (UDR). User defined routes define the flow of IP traffic within Azure VNets.

Depending on the requirements of your VPN connection, you can configure Border Gateway Protocol (BGP) routes
instead of using UDRs to implement the forwarding rules that direct traffic back through the on-premises network.

Management subnet. This subnet contains VMs that implement management and monitoring
capabilities for the components running in the VNet.

The following recommendations apply for most scenarios. Follow these recommendations unless you have a
specific requirement that overrides them.

Use Role-Based Access Control (RBAC) to manage the resources in your application. Consider creating the
following custom roles:

A DevOps role with permissions to administer the infrastructure for the application, deploy the application
components, and monitor and restart VMs.

A centralized IT administrator role to manage and monitor network resources.

A security IT administrator role to manage secure network resources such as the NVAs.

The DevOps and IT administrator roles should not have access to the NVA resources. This should be restricted to
the security IT administrator role.

Azure resources such as VMs, VNets, and load balancers can be easily managed by grouping them together into
resource groups. Assign RBAC roles to each resource group to restrict access.

We recommend creating the following resource groups:

A resource group containing the VNet (excluding the VMs), NSGs, and the gateway resources for connecting
to the on-premises network. Assign the centralized IT administrator role to this resource group.
A resource group containing the VMs for the NVAs (including the load balancer), the jumpbox and other
management VMs, and the UDR for the gateway subnet that forces all traffic through the NVAs. Assign the
security IT administrator role to this resource group.
Separate resource groups for each application tier that contain the load balancer and VMs. Note that this
resource group shouldn't include the subnets for each tier. Assign the DevOps role to this resource group.

On-premises traffic passes to the VNet through a virtual network gateway. We recommend an Azure VPN
gateway or an Azure ExpressRoute gateway.

NVAs provide different services for managing and monitoring network traffic. The Azure Marketplace offers
several third-party vendor NVAs that you can use. If none of these third-party NVAs meet your requirements,
you can create a custom NVA using VMs.

https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/virtual-machines-windows/n-tier
https://docs.microsoft.com/azure/virtual-network/virtual-networks-udr-overview
https://docs.microsoft.com/azure/active-directory/role-based-access-control-configure
https://docs.microsoft.com/azure/active-directory/role-based-access-control-custom-roles
https://azuremarketplace.microsoft.com/marketplace/apps/category/networking

NSG recommendationsNSG recommendations

Internet access recommendationsInternet access recommendations

NOTENOTE

Management subnet recommendationsManagement subnet recommendations

For example, the solution deployment for this reference architecture implements an NVA with the following
functionality on a VM:

Traffic is routed using IP forwarding on the NVA network interfaces (NICs).
Traffic is permitted to pass through the NVA only if it is appropriate to do so. Each NVA VM in the reference
architecture is a simple Linux router. Inbound traffic arrives on network interface eth0, and outbound traffic
matches rules defined by custom scripts dispatched through network interface eth1.
The NVAs can only be configured from the management subnet.
Traffic routed to the management subnet does not pass through the NVAs. Otherwise, if the NVAs fail, there
would be no route to the management subnet to fix them.
The VMs for the NVA are placed in an availability set behind a load balancer. The UDR in the gateway subnet
directs NVA requests to the load balancer.

Include a layer-7 NVA to terminate application connections at the NVA level and maintain affinity with the
backend tiers. This guarantees symmetric connectivity, in which response traffic from the backend tiers returns
through the NVA.

Another option to consider is connecting multiple NVAs in series, with each NVA performing a specialized
security task. This allows each security function to be managed on a per-NVA basis. For example, an NVA
implementing a firewall could be placed in series with an NVA running identity services. The tradeoff for ease of
management is the addition of extra network hops that may increase latency, so ensure that this doesn't affect
your application's performance.

The VPN gateway exposes a public IP address for the connection to the on-premises network. We recommend
creating a network security group (NSG) for the inbound NVA subnet, with rules to block all traffic not
originating from the on-premises network.

We also recommend NSGs for each subnet to provide a second level of protection against inbound traffic
bypassing an incorrectly configured or disabled NVA. For example, the web tier subnet in the reference
architecture implements an NSG with a rule to ignore all requests other than those received from the on-
premises network (192.168.0.0/16) or the VNet, and another rule that ignores all requests not made on port 80.

Force-tunnel all outbound Internet traffic through your on-premises network using the site-to-site VPN tunnel,
and route to the Internet using network address translation (NAT). This prevents accidental leakage of any
confidential information stored in your data tier and allows inspection and auditing of all outgoing traffic.

Don't completely block Internet traffic from the application tiers, as this will prevent these tiers from using Azure PaaS
services that rely on public IP addresses, such as VM diagnostics logging, downloading of VM extensions, and other
functionality. Azure diagnostics also requires that components can read and write to an Azure Storage account.

Verify that outbound internet traffic is force-tunneled correctly. If you're using a VPN connection with the routing
and remote access service on an on-premises server, use a tool such as WireShark or Microsoft Message
Analyzer.

The management subnet contains a jumpbox that performs management and monitoring functionality. Restrict
execution of all secure management tasks to the jumpbox.

Do not create a public IP address for the jumpbox. Instead, create one route to access the jumpbox through the
incoming gateway. Create NSG rules so the management subnet only responds to requests from the allowed

https://docs.microsoft.com/azure/virtual-network/virtual-networks-udr-overview#ip-forwarding
https://docs.microsoft.com/azure/virtual-machines/virtual-machines-windows-create-availability-set
https://azure.microsoft.com/en-gb/documentation/articles/vpn-gateway-forced-tunneling-rm/
https://technet.microsoft.com/library/dd469790(v=ws.11).aspx
https://www.wireshark.org/
https://www.microsoft.com/download/details.aspx?id=44226

Scalability considerations

Availability considerations

Manageability considerations

Security considerations

Routing all on-premises user requests through the NVARouting all on-premises user requests through the NVA

route.

The reference architecture uses a load balancer to direct on-premises network traffic to a pool of NVA devices,
which route the traffic. The NVAs are placed in an availability set. This design allows you to monitor the
throughput of the NVAs over time and add NVA devices in response to increases in load.

The standard SKU VPN gateway supports sustained throughput of up to 100 Mbps. The High Performance SKU
provides up to 200 Mbps. For higher bandwidths, consider upgrading to an ExpressRoute gateway. ExpressRoute
provides up to 10 Gbps bandwidth with lower latency than a VPN connection.

For more information about the scalability of Azure gateways, see the scalability consideration section in
Implementing a hybrid network architecture with Azure and on-premises VPN and Implementing a hybrid
network architecture with Azure ExpressRoute.

As mentioned, the reference architecture uses a pool of NVA devices behind a load balancer. The load balancer
uses a health probe to monitor each NVA and will remove any unresponsive NVAs from the pool.

If you're using Azure ExpressRoute to provide connectivity between the VNet and on-premises network,
configure a VPN gateway to provide failover if the ExpressRoute connection becomes unavailable.

For specific information on maintaining availability for VPN and ExpressRoute connections, see the availability
considerations in Implementing a hybrid network architecture with Azure and on-premises VPN and
Implementing a hybrid network architecture with Azure ExpressRoute.

All application and resource monitoring should be performed by the jumpbox in the management subnet.
Depending on your application requirements, you may need additional monitoring resources in the management
subnet. If so, these resources should be accessed through the jumpbox.

If gateway connectivity from your on-premises network to Azure is down, you can still reach the jumpbox by
deploying a public IP address, adding it to the jumpbox, and remoting in from the internet.

Each tier's subnet in the reference architecture is protected by NSG rules. You may need to create a rule to open
port 3389 for remote desktop protocol (RDP) access on Windows VMs or port 22 for secure shell (SSH) access
on Linux VMs. Other management and monitoring tools may require rules to open additional ports.

If you're using ExpressRoute to provide the connectivity between your on-premises datacenter and Azure, use the
Azure Connectivity Toolkit (AzureCT) to monitor and troubleshoot connection issues.

You can find additional information specifically aimed at monitoring and managing VPN and ExpressRoute
connections in the articles Implementing a hybrid network architecture with Azure and on-premises VPN and
Implementing a hybrid network architecture with Azure ExpressRoute.

This reference architecture implements multiple levels of security.

The UDR in the gateway subnet blocks all user requests other than those received from on-premises. The UDR
passes allowed requests to the NVAs in the private DMZ subnet, and these requests are passed on to the
application if they are allowed by the NVA rules. You can add other routes to the UDR, but make sure they don't
inadvertently bypass the NVAs or block administrative traffic intended for the management subnet.

https://docs.microsoft.com/azure/virtual-machines/virtual-machines-windows-create-availability-set
https://github.com/Azure/NetworkMonitoring/tree/master/AzureCT

Using NSGs to block/pass traffic between application tiersUsing NSGs to block/pass traffic between application tiers

DevOps accessDevOps access

Deploy the solution

PrerequisitesPrerequisites

Deploy resourcesDeploy resources

Connect the on-premises and Azure gatewaysConnect the on-premises and Azure gateways

The load balancer in front of the NVAs also acts as a security device by ignoring traffic on ports that are not open
in the load balancing rules. The load balancers in the reference architecture only listen for HTTP requests on port
80 and HTTPS requests on port 443. Document any additional rules that you add to the load balancers, and
monitor traffic to ensure there are no security issues.

Traffic between tiers is restricted by using NSGs. The business tier blocks all traffic that doesn't originate in the
web tier, and the data tier blocks all traffic that doesn't originate in the business tier. If you have a requirement to
expand the NSG rules to allow broader access to these tiers, weigh these requirements against the security risks.
Each new inbound pathway represents an opportunity for accidental or purposeful data leakage or application
damage.

Use RBAC to restrict the operations that DevOps can perform on each tier. When granting permissions, use the
principle of least privilege. Log all administrative operations and perform regular audits to ensure any
configuration changes were planned.

A deployment for a reference architecture that implements these recommendations is available on GitHub.

npm install -g @mspnp/azure-building-blocks

az login

1. Clone, fork, or download the zip file for the reference architectures GitHub repository.

2. Install Azure CLI 2.0.

3. Install the Azure building blocks npm package.

4. From a command prompt, bash prompt, or PowerShell prompt, sign into your Azure account as follows:

azbb -s <subscription_id> -g <resource_group_name> -l <region> -p onprem.json --deploy

azbb -s <subscription_id> -g <resource_group_name> -l <region> -p secure-vnet-hybrid.json --deploy

1. Navigate to the /dmz/secure-vnet-hybrid folder of the reference architectures GitHub repository.

2. Run the following command:

3. Run the following command:

In this step, you will connect the two local network gateways.

1. In the Azure Portal, navigate to the resource group that you created.

2. Find the resource named ra-vpn-vgw-pip and copy the IP address shown in the Overview blade.

3. Find the resource named onprem-vpn-lgw .

https://docs.microsoft.com/azure/active-directory/role-based-access-control-configure
https://msdn.microsoft.com/library/hdb58b2f(v=vs.110).aspx#Anchor_1
https://github.com/mspnp/reference-architectures/tree/master/dmz/secure-vnet-hybrid
https://github.com/mspnp/reference-architectures
https://docs.microsoft.com/cli/azure/install-azure-cli?view=azure-cli-latest
https://github.com/mspnp/template-building-blocks/wiki/Install-Azure-Building-Blocks

Verify that network traffic reaches the web tierVerify that network traffic reaches the web tier

Next steps

4. Click the Configuration blade. Under IP address, paste in the IP address from step 2.

5. Click Save and wait for the operation to complete. It can take about 5 minutes.

6. Find the resource named onprem-vpn-gateway1-pip . Copy the IP address shown in the Overview blade.

7. Find the resource named ra-vpn-lgw .

8. Click the Configuration blade. Under IP address, paste in the IP address from step 6.

9. Click Save and wait for the operation to complete.

10. To verify the connection, go to the Connections blade for each gateway. The status should be
Connected.

1. In the Azure Portal, navigate to the resource group that you created.

2. Find the resource named int-dmz-lb , which is the load balancer in front of the private DMZ. Copy the
private IP address from the Overview blade.

3. Find the VM named jb-vm1 . Click Connect and use Remote Desktop to connect to the VM. The user
name and password are specified in the onprem.json file.

4. From the Remote Desktop Session, open a web browser and navigate to the IP address from step 2. You
should see the default Apache2 server home page.

Learn how to implement a DMZ between Azure and the Internet.
Learn how to implement a highly available hybrid network architecture.
For more information about managing network security with Azure, see Microsoft cloud services and network
security.
For detailed information about protecting resources in Azure, see Getting started with Microsoft Azure
security.

https://docs.microsoft.com/azure/best-practices-network-security
https://docs.microsoft.com/azure/security/azure-security-getting-started

For additional details on addressing security concerns across an Azure gateway connection, see Implementing
a hybrid network architecture with Azure and on-premises VPN and Implementing a hybrid network
architecture with Azure ExpressRoute.
Troubleshoot network virtual appliance issues in Azure

https://docs.microsoft.com/azure/virtual-network/virtual-network-troubleshoot-nva

Implement a DMZ between Azure and the Internet
3/13/2019 • 5 minutes to read • Edit Online

NOTENOTE

Architecture

This reference architecture shows a secure hybrid network that extends an on-premises network to Azure and
also accepts Internet traffic. Deploy this solution.

This scenario can also be accomplished using Azure Firewall, a cloud-based network security service.

Download a Visio file of this architecture.

This reference architecture extends the architecture described in Implementing a DMZ between Azure and your
on-premises datacenter. It adds a public DMZ that handles Internet traffic, in addition to the private DMZ that
handles traffic from the on-premises network.

Typical uses for this architecture include:

Hybrid applications where workloads run partly on-premises and partly in Azure.
Azure infrastructure that routes incoming traffic from on-premises and the Internet.

The architecture consists of the following components.

Public IP address (PIP). The IP address of the public endpoint. External users connected to the Internet can
access the system through this address.
Network virtual appliance (NVA). This architecture includes a separate pool of NVAs for traffic originating
on the Internet.
Azure load balancer. All incoming requests from the Internet pass through the load balancer and are
distributed to the NVAs in the public DMZ.
Public DMZ inbound subnet. This subnet accepts requests from the Azure load balancer. Incoming requests
are passed to one of the NVAs in the public DMZ.

https://github.com/mspnp/architecture-center/blob/master/docs/reference-architectures/dmz/secure-vnet-dmz.md
https://docs.microsoft.com/azure/firewall/
https://archcenter.blob.core.windows.net/cdn/dmz-reference-architectures.vsdx

Recommendations

NVA recommendationsNVA recommendations

Public load balancer recommendationsPublic load balancer recommendations

Scalability considerations

Availability considerations

Manageability considerations

Security considerations

Public DMZ outbound subnet. Requests that are approved by the NVA pass through this subnet to the
internal load balancer for the web tier.

The following recommendations apply for most scenarios. Follow these recommendations unless you have a
specific requirement that overrides them.

Use one set of NVAs for traffic originating on the Internet, and another for traffic originating on-premises. Using
only one set of NVAs for both is a security risk, because it provides no security perimeter between the two sets of
network traffic. Using separate NVAs reduces the complexity of checking security rules, and makes it clear which
rules correspond to each incoming network request. One set of NVAs implements rules for Internet traffic only,
while another set of NVAs implement rules for on-premises traffic only.

Include a layer-7 NVA to terminate application connections at the NVA level and maintain compatibility with the
backend tiers. This guarantees symmetric connectivity where response traffic from the backend tiers returns
through the NVA.

For scalability and availability, deploy the public DMZ NVAs in an availability set and use an Internet facing load
balancer to distribute Internet requests across the NVAs in the availability set.

Configure the load balancer to accept requests only on the ports necessary for Internet traffic. For example,
restrict inbound HTTP requests to port 80 and inbound HTTPS requests to port 443.

Even if your architecture initially requires a single NVA in the public DMZ, we recommend putting a load
balancer in front of the public DMZ from the beginning. That will make it easier to scale to multiple NVAs in the
future, if needed.

The Internet facing load balancer requires each NVA in the public DMZ inbound subnet to implement a health
probe. A health probe that fails to respond on this endpoint is considered to be unavailable, and the load balancer
will direct requests to other NVAs in the same availability set. Note that if all NVAs fail to respond, your
application will fail, so it's important to have monitoring configured to alert DevOps when the number of healthy
NVA instances falls below a defined threshold.

All monitoring and management for the NVAs in the public DMZ should be performed by the jumpbox in the
management subnet. As discussed in Implementing a DMZ between Azure and your on-premises datacenter,
define a single network route from the on-premises network through the gateway to the jumpbox, in order to
restrict access.

If gateway connectivity from your on-premises network to Azure is down, you can still reach the jumpbox by
deploying a public IP address, adding it to the jumpbox, and logging in from the Internet.

This reference architecture implements multiple levels of security:

The Internet facing load balancer directs requests to the NVAs in the inbound public DMZ subnet, and only on

https://docs.microsoft.com/azure/virtual-machines/virtual-machines-windows-manage-availability
https://docs.microsoft.com/azure/load-balancer/load-balancer-Internet-overview
https://docs.microsoft.com/azure/load-balancer/load-balancer-custom-probe-overview

 Deploy the solution

PrerequisitesPrerequisites

Deploy resourcesDeploy resources

Connect the on-premises and Azure gatewaysConnect the on-premises and Azure gateways

the ports necessary for the application.
The NSG rules for the inbound and outbound public DMZ subnets prevent the NVAs from being
compromised, by blocking requests that fall outside of the NSG rules.
The NAT routing configuration for the NVAs directs incoming requests on port 80 and port 443 to the web
tier load balancer, but ignores requests on all other ports.

You should log all incoming requests on all ports. Regularly audit the logs, paying attention to requests that fall
outside of expected parameters, as these may indicate intrusion attempts.

A deployment for a reference architecture that implements these recommendations is available on GitHub.

npm install -g @mspnp/azure-building-blocks

az login

1. Clone, fork, or download the zip file for the reference architectures GitHub repository.

2. Install Azure CLI 2.0.

3. Install the Azure building blocks npm package.

4. From a command prompt, bash prompt, or PowerShell prompt, sign into your Azure account as follows:

azbb -s <subscription_id> -g <resource_group_name> -l <region> -p onprem.json --deploy

azbb -s <subscription_id> -g <resource_group_name> -l <region> -p secure-vnet-dmz.json --deploy

1. Navigate to the /dmz/secure-vnet-dmz folder of the reference architectures GitHub repository.

2. Run the following command:

3. Run the following command:

In this step, you will connect the two local network gateways.

1. In the Azure Portal, navigate to the resource group that you created.

2. Find the resource named ra-vpn-vgw-pip and copy the IP address shown in the Overview blade.

3. Find the resource named onprem-vpn-lgw .

4. Click the Configuration blade. Under IP address, paste in the IP address from step 2.

https://github.com/mspnp/reference-architectures/tree/master/dmz/secure-vnet-dmz
https://github.com/mspnp/reference-architectures
https://docs.microsoft.com/cli/azure/install-azure-cli?view=azure-cli-latest
https://github.com/mspnp/template-building-blocks/wiki/Install-Azure-Building-Blocks

Verify that network traffic reaches the web tierVerify that network traffic reaches the web tier

5. Click Save and wait for the operation to complete. It can take about 5 minutes.

6. Find the resource named onprem-vpn-gateway1-pip . Copy the IP address shown in the Overview blade.

7. Find the resource named ra-vpn-lgw .

8. Click the Configuration blade. Under IP address, paste in the IP address from step 6.

9. Click Save and wait for the operation to complete.

10. To verify the connection, go to the Connections blade for each gateway. The status should be Connected.

1. In the Azure Portal, navigate to the resource group that you created.

2. Find the resource named pub-dmz-lb , which is the load balancer in front of the public DMZ.

3. Copy the public IP addess from the Overview blade and open this address in a web browser. You should
see the default Apache2 server home page.

4. Find the resource named int-dmz-lb , which is the load balancer in front of the private DMZ. Copy the
private IP address from the Overview blade.

5. Find the VM named jb-vm1 . Click Connect and use Remote Desktop to connect to the VM. The user
name and password are specified in the onprem.json file.

6. From the Remote Desktop Session, open a web browser and navigate to the IP address from step 4. You
should see the default Apache2 server home page.

Deploy highly available network virtual appliances
3/13/2019 • 8 minutes to read • Edit Online

Architecture diagrams

SOLUTION BENEFITS CONSIDERATIONS

This article shows how to deploy a set of network virtual appliances (NVAs) for high availability in Azure. An NVA
is typically used to control the flow of network traffic from a perimeter network, also known as a DMZ, to other
networks or subnets. To learn about implementing a DMZ in Azure, see Microsoft cloud services and network
security. The article includes example architectures for ingress only, egress only, and both ingress and egress.

Prerequisites: This article assumes a basic understanding of Azure networking, Azure load balancers, and user-
defined routes (UDRs).

An NVA can be deployed to a DMZ in many different architectures. For example, the following figure illustrates
the use of a single NVA for ingress.

In this architecture, the NVA provides a secure network boundary by checking all inbound and outbound network
traffic and passing only the traffic that meets network security rules. However, the fact that all network traffic must
pass through the NVA means that the NVA is a single point of failure in the network. If the NVA fails, there is no
other path for network traffic and all the back-end subnets are unavailable.

To make an NVA highly available, deploy more than one NVA into an availability set.

The following architectures describe the resources and configuration necessary for highly available NVAs:

https://github.com/mspnp/architecture-center/blob/master/docs/reference-architectures/dmz/nva-ha.md
https://docs.microsoft.com/azure/best-practices-network-security
https://docs.microsoft.com/azure/load-balancer/load-balancer-overview/
https://docs.microsoft.com/azure/virtual-network/virtual-networks-udr-overview/
https://docs.microsoft.com/azure/virtual-network/virtual-network-scenario-udr-gw-nva/

Ingress with layer 7 NVAs All NVA nodes are active Requires an NVA that can terminate
connections and use SNAT
Requires a separate set of NVAs for
traffic coming from the Internet and
from Azure
Can only be used for traffic originating
outside Azure

Egress with layer 7 NVAs All NVA nodes are active Requires an NVA that can terminate
connections and implements source
network address translation (SNAT)

Ingress-Egress with layer 7 NVAs All nodes are active
Able to handle traffic originated in
Azure

Requires an NVA that can terminate
connections and use SNAT
Requires a separate set of NVAs for
traffic coming from the Internet and
from Azure

PIP-UDR switch Single set of NVAs for all traffic
Can handle all traffic (no limit on port
rules)

Active-passive
Requires a failover process

PIP-UDR without SNAT Single set of NVAs for all traffic
Can handle all traffic (no limit on port
rules)
Does not require configuring SNAT for
inbound requests

Active-passive
Requires a failover process
Probing and failover logic run outside
the virtual network

SOLUTION BENEFITS CONSIDERATIONS

Ingress with layer 7 NVAs
The following figure shows a high availability architecture that implements an ingress DMZ behind an internet-
facing load balancer. This architecture is designed to provide connectivity to Azure workloads for layer 7 traffic,
such as HTTP or HTTPS:

NOTENOTE

Egress with layer 7 NVAs

The benefit of this architecture is that all NVAs are active, and if one fails the load balancer directs network traffic
to the other NVA. Both NVAs route traffic to the internal load balancer so as long as one NVA is active, traffic
continues to flow. The NVAs are required to terminate SSL traffic intended for the web tier VMs. These NVAs
cannot be extended to handle on-premises traffic because on-premises traffic requires another dedicated set of
NVAs with their own network routes.

This architecture is used in the DMZ between Azure and your on-premises datacenter reference architecture and the DMZ
between Azure and the Internet reference architecture. Each of these reference architectures includes a deployment solution
that you can use. Follow the links for more information.

The previous architecture can be expanded to provide an egress DMZ for requests originating in the Azure
workload. The following architecture is designed to provide high availability of the NVAs in the DMZ for layer 7
traffic, such as HTTP or HTTPS:

NOTENOTE

Ingress-egress with layer 7 NVAs

In this architecture, all traffic originating in Azure is routed to an internal load balancer. The load balancer
distributes outgoing requests between a set of NVAs. These NVAs direct traffic to the Internet using their
individual public IP addresses.

This architecture is used in the DMZ between Azure and your on-premises datacenter reference architecture and the DMZ
between Azure and the Internet reference architecture. Each of these reference architectures includes a deployment solution
that you can use. Follow the links for more information.

In the two previous architectures, there was a separate DMZ for ingress and egress. The following architecture
demonstrates how to create a DMZ that can be used for both ingress and egress for layer 7 traffic, such as HTTP
or HTTPS:

NOTENOTE

PIP-UDR switch with layer 4 NVAs

In this architecture, the NVAs process incoming requests from the application gateway. The NVAs also process
outgoing requests from the workload VMs in the back-end pool of the load balancer. Because incoming traffic is
routed with an application gateway and outgoing traffic is routed with a load balancer, the NVAs are responsible
for maintaining session affinity. That is, the application gateway maintains a mapping of inbound and outbound
requests so it can forward the correct response to the original requestor. However, the internal load balancer does
not have access to the application gateway mappings, and uses its own logic to send responses to the NVAs. It's
possible the load balancer could send a response to an NVA that did not initially receive the request from the
application gateway. In this case, the NVAs must communicate and transfer the response between them so the
correct NVA can forward the response to the application gateway.

You can also solve the asymmetric routing issue by ensuring the NVAs perform inbound source network address translation
(SNAT). This would replace the original source IP of the requestor to one of the IP addresses of the NVA used on the inbound
flow. This ensures that you can use multiple NVAs at a time, while preserving the route symmetry.

The following architecture demonstrates an architecture with one active and one passive NVA. This architecture
handles both ingress and egress for layer 4 traffic:

TIPTIP

PIP-UDR NVAs without SNAT

A complete solution for this architecture is available on GitHub.

This architecture is similar to the first architecture discussed in this article. That architecture included a single NVA
accepting and filtering incoming layer 4 requests. This architecture adds a second passive NVA to provide high
availability. If the active NVA fails, the passive NVA is made active and the UDR and PIP are changed to point to
the NICs on the now active NVA. These changes to the UDR and PIP can either be done manually or using an
automated process. The automated process is typically daemon or other monitoring service running in Azure. It
queries a health probe on the active NVA and performs the UDR and PIP switch when it detects a failure of the
NVA.

The preceding figure shows an example ZooKeeper cluster providing a high availability daemon. Within the
ZooKeeper cluster, a quorum of nodes elects a leader. If the leader fails, the remaining nodes hold an election to
elect a new leader. For this architecture, the leader node executes the daemon that queries the health endpoint on
the NVA. If the NVA fails to respond to the health probe, the daemon activates the passive NVA. The daemon then
calls the Azure REST API to remove the PIP from the failed NVA and attaches it to newly activated NVA. The
daemon then modifies the UDR to point to the newly activated NVA's internal IP address.

Do not include the ZooKeeper nodes in a subnet that is only accessible using a route that includes the NVA.
Otherwise, the ZooKeeper nodes are inaccessible if the NVA fails. Should the daemon fail for any reason, you
won't be able to access any of the ZooKeeper nodes to diagnose the problem.

To see the complete solution including sample code, see the files in the GitHub repository.

This architecture uses two Azure virtual machines to host the NVA firewall in an active-passive configuration that
supports automated failover but does not require Source Network Address Translation (SNAT).

https://github.com/mspnp/ha-nva
https://zookeeper.apache.org/
https://github.com/mspnp/ha-nva

TIPTIP

Next steps

A complete solution for this architecture is available on GitHub.

This solution is designed for Azure customers who cannot configure SNAT for inbound requests on their NVA
firewalls. SNAT hides the original source client IP address. If you need to log the original IPs or used them within
other layered security components behind your NVAs, this solution offers a basic approach.

The failover of UDR table entries is automated by a next-hop address set to the IP address of an interface on the
active NVA firewall virtual machine. The automated failover logic is hosted in a function app that you create using
Azure Functions. The failover code runs as a serverless function inside Azure Functions. Deployment is convenient,
cost-effective, and easy to maintain and customize. In addition, the function app is hosted within Azure Functions,
so it has no dependencies on the virtual network. If changes to the virtual network impact the NVA firewalls, the
function app continues to run independently. Testing is more accurate as well, because it takes place outside the
virtual network using the same route as the inbound client requests.

To check the availability of the NVA firewall, the function app code probes it in one of two ways:

By monitoring the state of the Azure virtual machines hosting the NVA firewall.

By testing whether there is an open port through the firewall to the back-end web server. For this option,
the NVA must expose a socket via PIP for the function app code to test.

You choose the type of probe you want to use when you configure the function app. To see the complete solution
including sample code, see the files in the GitHub repository.

Learn how to implement a DMZ between Azure and your on-premises datacenter using layer-7 NVAs.
Learn how to implement a DMZ between Azure and the Internet using layer-7 NVAs.
Troubleshoot network virtual appliance issues in Azure

https://aka.ms/ha-nva-fo
https://docs.microsoft.com/azure/azure-functions/
https://aka.ms/ha-nva-fo
https://docs.microsoft.com/azure/virtual-network/virtual-network-troubleshoot-nva

Deploy SAP NetWeaver (Windows) for AnyDB on
Azure virtual machines
3/13/2019 • 13 minutes to read • Edit Online

NOTENOTE

Architecture

This reference architecture shows a set of proven practices for running SAP NetWeaver in a Windows
environment on Azure with high availability. The database is AnyDB, the SAP term for any supported DBMS
besides SAP HANA. This architecture is deployed with specific virtual machine (VM) sizes that can be changed to
accommodate your organization's needs.

Download a Visio file of this architecture.

Deploying this reference architecture requires appropriate licensing of SAP products and other non-Microsoft technologies.

The architecture consists of the following infrastructure and key software components.

Virtual network. The Azure Virtual Network service securely connects Azure resources to each other. In this
architecture, the virtual network connects to an on-premises environment through a VPN gateway deployed in the
hub of a hub-spoke. The spoke is the virtual network used for the SAP applications and database tier.

Subnets. The virtual network is subdivided into separate subnets for each tier: application (SAP NetWeaver),

https://github.com/mspnp/architecture-center/blob/master/docs/reference-architectures/sap/sap-netweaver.md
https://archcenter.blob.core.windows.net/cdn/sap-reference-architectures.vsdx

Recommendations

SAP Web Dispatcher poolSAP Web Dispatcher pool

Application servers poolApplication servers pool

SAP Central Services clusterSAP Central Services cluster

database, shared services (the jumpbox), and Active Directory.

Virtual machines. This architecture uses virtual machines for the application tier and database tier, grouped as
follows:

SAP NetWeaver. The application tier uses Windows virtual machines and runs SAP Central Services and SAP
application servers. The VMs that run Central Services are configured as a Windows Server Failover Cluster for
high availability, supported by SIOS DataKeeper Cluster Edition.
AnyDB. The database tier runs AnyDB as the source database, such as Microsoft SQL Server, Oracle, or IBM
DB2.
Jumpbox. Also called a bastion host. This is a secure virtual machine on the network that administrators use to
connect to the other virtual machines.
Windows Server Active Directory domain controllers. The domain controllers are used on all VMs and
users in the domain.

Load balancers. Azure Load Balancer instances are used to distribute traffic to virtual machines in the application
tier subnet. At the data tier, high availability may be achieved using built-in SAP load balancers, Azure Load
Balancer, or other mechanisms, depending on the DBMS. For more information, see Azure Virtual Machines
DBMS deployment for SAP NetWeaver.

Availability sets. Virtual machines for the SAP Web Dispatcher, SAP application server, and (A)SCS, roles are
grouped into separate availability sets, and at least two virtual machines are provisioned per role. This makes the
virtual machines eligible for a higher service level agreement (SLA).

NICs. Network interface cards (NICs) enable all communication of virtual machines on a virtual network.

Network security groups. To restrict incoming, outgoing, and intra-subnet traffic in the virtual network, you can
create network security groups (NSGs).

Gateway. A gateway extends your on-premises network to the Azure virtual network. ExpressRoute is the
recommended Azure service for creating private connections that do not go over the public Internet, but a Site-to-
Site connection can also be used.

Azure Storage. To provide persistent storage of a virtual machine's virtual hard disk (VHD), Azure Storage is
required. It is also used by Cloud Witness to implement a failover cluster operation.

Your requirements might differ from the architecture described here. Use these recommendations as a starting
point.

The Web Dispatcher component is used as a load balancer for SAP traffic among the SAP application servers. To
achieve high availability for the Web Dispatcher component, Azure Load Balancer is used to implement the parallel
Web Dispatcher setup. Web Dispatcher uses in a round-robin configuration for HTTP(S) traffic distribution among
the available Web Dispatchers in the balancers pool.

For details about running SAP NetWeaver in Azure VMs, see Azure Virtual Machines planning and
implementation for SAP NetWeaver.

To manage logon groups for ABAP application servers, the SMLG transaction is used. It uses the load balancing
function within the message server of the Central Services to distribute workload among SAP application servers
pool for SAPGUIs and RFC traffic. The application server connection to the highly available Central Services is
through the cluster virtual network name.

https://docs.microsoft.com/azure/load-balancer/load-balancer-overview
https://docs.microsoft.com/azure/virtual-machines/workloads/sap/dbms-guide
https://docs.microsoft.com/azure/virtual-machines/windows/tutorial-availability-sets
https://azure.microsoft.com/support/legal/sla/virtual-machines
https://docs.microsoft.com/azure/virtual-network/virtual-network-network-interface
https://docs.microsoft.com/azure/virtual-network/virtual-networks-nsg
https://docs.microsoft.com/azure/architecture/reference-architectures/hybrid-networking/expressroute
https://docs.microsoft.com/azure/vpn-gateway/vpn-gateway-howto-site-to-site-resource-manager-portal
https://docs.microsoft.com/azure/storage/storage-standard-storage
https://docs.microsoft.com/windows-server/failover-clustering/deploy-cloud-witness
https://docs.microsoft.com/azure/virtual-machines/workloads/sap/planning-guide

Availability setsAvailability sets

NICsNICs

Subnets and NSGsSubnets and NSGs

Load balancersLoad balancers

Azure StorageAzure Storage

This reference architecture runs Central Services on VMs in the application tier. The Central Services is a potential
single point of failure (SPOF) when deployed to a single VM — a typical deployment when high availability is not a
requirement. To implement a high availability solution, use either a shared disk cluster or a file share cluster.

To configure VMs for a shared disk cluster, use Windows Server Failover Cluster. Cloud Witness is recommended
as a quorum witness. To support the failover cluster environment, S IOS DataKeeper Cluster Edition performs the
cluster shared volume function by replicating independent disks owned by the cluster nodes. Azure does not
natively support shared disks and therefore requires solutions provided by SIOS.

For details, see "3. Important Update for SAP Customers Running ASCS on SIOS on Azure” at Running SAP
applications on the Microsoft platform.

Another way to handle clustering is to implement a file share cluster using Windows Server Failover Cluster. SAP
recently modified the Central Services deployment pattern to access the /sapmnt global directories via a UNC
path. This change removes the requirement for S IOS or other shared disk solutions on the Central Services VMs.
It is still recommended to ensure that the /sapmnt UNC share is highly available. This can be done on the Central
Services instance by using Windows Server Failover Cluster with Scale Out File Server (SOFS) and the Storage
Spaces Direct (S2D) feature in Windows Server 2016.

Availability sets distribute servers to different physical infrastructure and update groups to improve service
availability. Put virtual machines that perform the same role into an availability sets to help guard against
downtime caused by Azure infrastructure maintenance and to meet SLAs (SLAs). Two or more virtual machines
per availability set is recommended.

All virtual machines in a set must perform the same role. Do not mix servers of different roles in the same
availability set. For example, don't place a Central Services node in the same availability set with the application
server.

Traditional on-premises SAP deployments implement multiple network interface cards (NICs) per machine to
segregate administrative traffic from business traffic. On Azure, the virtual network is a software-defined network
that sends all traffic through the same network fabric. Therefore, the use of multiple NICs is unnecessary. However,
if your organization needs to segregate traffic, you can deploy multiple NICs per VM, connect each NIC to a
different subnet, and then use NSGs to enforce different access control policies.

This architecture subdivides the virtual network address space into subnets. This reference architecture focuses
primarily on the application tier subnet. Each subnet can be associated with a NSG that defines the access policies
for the subnet. Place application servers on a separate subnet so you can secure them more easily by managing
the subnet security policies, not the individual servers.

When a NSG is associated with a subnet, it applies to all the servers within the subnet. For more information about
using NSGs for fine-grained control over the servers in a subnet, see Filter network traffic with network security
groups.

SAP Web Dispatcher handles load balancing of HTTP(S) traffic to a pool of SAP application servers.

For traffic from SAP GUI clients connecting a SAP server via DIAG protocol or Remote Function Calls (RFC), the
Central Services message server balances the load through SAP application server logon groups, so no additional
load balancer is needed.

For all database server virtual machines, we recommend using Azure Premium Storage for consistent read/write
latency. For any single instance virtual machine using Premium Storage for all operating system disks and data

https://blogs.sap.com/2018/01/25/how-to-create-sap-resources-in-windows-failover-cluster/
https://docs.microsoft.com/windows-server/failover-clustering/deploy-cloud-witness
https://azuremarketplace.microsoft.com/marketplace/apps/sios_datakeeper.sios-datakeeper-8
https://blogs.msdn.microsoft.com/saponsqlserver/2017/05/04/sap-on-azure-general-update-for-customers-partners-april-2017/
https://blogs.sap.com/2018/03/19/migration-from-a-shared-disk-cluster-to-a-file-share-cluster/
https://blogs.msdn.microsoft.com/saponsqlserver/2017/08/10/high-available-ascs-for-windows-on-file-share-shared-disk-no-longer-required/
https://blogs.sap.com/2017/07/21/how-to-create-a-high-available-sapmnt-share/
https://blogs.msdn.microsoft.com/saponsqlserver/2017/11/14/file-server-with-sofs-and-s2d-as-an-alternative-to-cluster-shared-disk-for-clustering-of-an-sap-ascs-instance-in-azure-is-generally-available/
https://blogs.sap.com/2018/03/07/your-sap-on-azure-part-5-ascs-high-availability-with-storage-spaces-direct/
https://azure.microsoft.com/support/legal/sla/virtual-machines
https://azure.microsoft.com/blog/multiple-vm-nics-and-network-virtual-appliances-in-azure
https://help.sap.com/doc/saphelp_nw73ehp1/7.31.19/en-US/48/8fe37933114e6fe10000000a421937/frameset.htm
https://wiki.scn.sap.com/wiki/display/SI/ABAP+Logon+Group+based+Load+Balancing

Performance considerations

Scalability considerations

Availability considerations

Application tierApplication tier

disks, see SLA for Virtual Machines. Also, for production SAP systems, we recommend using Premium Azure
Managed Disks in all cases. For reliability, Managed Disks are used to manage the VHD files for the disks.
Managed disks ensure that the disks for virtual machines within an availability set are isolated to avoid single
points of failure.

For SAP application servers, including the Central Services virtual machines, you can use Azure Standard Storage
to reduce cost, because application execution takes place in memory and disks are used for logging only. However,
at this time, Standard Storage is only certified for unmanaged storage. Since application servers do not host any
data, you can also use the smaller P4 and P6 Premium Storage disks to help minimize cost.

Azure Storage is also used by Cloud Witness to maintain quorum with a device in a remote Azure region away
from the primary region where the cluster resides.

For the backup data store, we recommend using Azure coolaccess tier and archive access tier storage. These
storage tiers are cost-effective ways to store long-lived data that is infrequently accessed.

SAP application servers carry on constant communications with the database servers. For performance-critical
applications running on any database platforms, including SAP HANA, consider enabling Write Accelerator to
improve log write latency. To optimize inter-server communications, use the Accelerated Network. Note that these
accelerators are available only for certain VM series.

To achieve high IOPS and disk bandwidth throughput, the common practices in storage volume performance
optimization apply to Azure storage layout. For example, combining multiple disks together to create a striped disk
volume improves IO performance. Enabling the read cache on storage content that changes infrequently enhances
the speed of data retrieval.

For SAP on SQL, the Top 10 Key Considerations for Deploying SAP Applications on Azure blog offers excellent
advice on optimizing Azure storage for SAP workloads on SQL Server.

At the SAP application layer, Azure offers a wide range of virtual machine sizes for scaling up and scaling out. For
an inclusive list, see SAP note 1928533 - SAP Applications on Azure: Supported Products and Azure VM Types.
(SAP Service Marketplace account required for access). SAP application servers and the Central Services clusters
can scale up/down or scale out by adding more instances. The AnyDB database can scale up/down but does not
scale out. The SAP database container for AnyDB does not support sharding.

Resource redundancy is the general theme in highly available infrastructure solutions. For enterprises that have a
less stringent SLA, single-instance Azure VMs offer an uptime SLA. For more information, see Azure Service Level
Agreement.

In this distributed installation of the SAP application, the base installation is replicated to achieve high availability.
For each layer of the architecture, the high availability design varies.

High availability for SAP Web Dispatcher is achieved with redundant instances. See SAP Web Dispatcher in the
SAP Documentation.

High availability of the Central Services is implemented with Windows Server Failover Cluster. When deployed on
Azure, the cluster storage for the failover cluster can be configured using two approaches: either a clustered shared
volume or a file share.

https://azure.microsoft.com/support/legal/sla/virtual-machines
https://docs.microsoft.com/azure/storage/storage-managed-disks-overview
https://docs.microsoft.com/windows-server/failover-clustering/deploy-cloud-witness
https://docs.microsoft.com/azure/storage/storage-blob-storage-tiers
https://docs.microsoft.com/azure/storage/storage-blob-storage-tiers
https://docs.microsoft.com/azure/virtual-machines/linux/how-to-enable-write-accelerator
https://azure.microsoft.com/blog/linux-and-windows-networking-performance-enhancements-accelerated-networking/
https://docs.microsoft.com/azure/virtual-machines/windows/premium-storage-performance
https://blogs.msdn.microsoft.com/saponsqlserver/2015/05/25/top-10-key-considerations-for-deploying-sap-applications-on-azure/
https://launchpad.support.sap.com/#/notes/1928533
https://azure.microsoft.com/support/legal/sla/
https://help.sap.com/doc/saphelp_nw70ehp2/7.02.16/en-us/48/8fe37933114e6fe10000000a421937/frameset.htm

Database tierDatabase tier

Disaster recovery considerations

Manageability considerations

Since shared disks are not possible on Azure, S IOS Datakeeper is used to replicate the content of independent
disks attached to the cluster nodes and to abstract the drives as a cluster shared volume for the cluster manager.
For implementation details, see Clustering SAP ASCS on Azure.

Another option is to use a file share served up by the Scale Out Fileserver (SOFS). SOFS offers resilient file shares
you can use as a cluster shared volume for the Windows cluster. A SOFS cluster can be shared among multiple
Central Services nodes. As of this writing, SOFS is used only for high availability design, because the SOFS cluster
does not extend across regions to provide disaster recovery support.

High availability for the SAP application servers is achieved by load balancing traffic within a pool of application
servers. See SAP certifications and configurations running on Microsoft Azure.

This reference architecture assumes the source database is running on AnyDB — that is, a DBMS such as SQL
Server, SAP ASE, IBM DB2, or Oracle. The database tier's native replication feature provides either manual or
automatic failover between replicated nodes.

For implementation details about specific database systems, see Azure Virtual Machines DBMS deployment for
SAP NetWeaver.

For disaster recovery (DR), you must be able to fail over to a secondary region. Each tier uses a different strategy
to provide disaster recovery (DR) protection.

Application servers tier. SAP application servers do not contain business data. On Azure, a simple DR
strategy is to create SAP application servers in the secondary region, then shut them down. Upon any
configuration changes or kernel updates on the primary application server, the same changes must be
copied to the virtual machines in the secondary region. For example, the kernel executables copied to the
DR virtual machines. For automatic replication of application servers to a secondary region, Azure Site
Recovery is the recommended solution.

Central Services. This component of the SAP application stack also does not persist business data. You can
build a VM in the disaster recovery region to run the Central Services role. The only content from the
primary Central Services node to synchronize is the /sapmnt share content. Also, if configuration changes
or kernel updates take place on the primary Central Services servers, they must be repeated on the VM in
the disaster recovery region running Central Services. To synchronize the two servers, you can use either
Azure Site Recovery to replicate the cluster nodes or simply use a regularly scheduled copy job to copy
/sapmnt to the disaster recovery region. For details about this simple replication method's build, copy, and
test failover process, download SAP NetWeaver: Building a Hyper-V and Microsoft Azure–based Disaster
Recovery Solution, and refer to "4.3. SAP SPOF layer (ASCS)."

Database tier. DR is best implemented with the database's own integrated replication technology. In the
case of SQL Server, for example, we recommend using AlwaysOn Availability Group to establish a replica in
a remote region, replicating transactions asynchronously with manual failover. Asynchronous replication
avoids an impact to the performance of interactive workloads at the primary site. Manual failover offers the
opportunity for a person to evaluate the DR impact and decide if operating from the DR site is justified.

To use Azure Site Recovery to automatically build out a fully replicated production site of your original, you must
run customized deployment scripts. Site Recovery first deploys the VMs in availability sets, then runs scripts to add
resources such as load balancers.

Azure provides several functions for monitoring and diagnostics of the overall infrastructure. Also, enhanced
monitoring of Azure virtual machines is handled by Azure Operations Management Suite (OMS).

https://blogs.msdn.microsoft.com/saponsqlserver/2015/05/20/clustering-sap-ascs-instance-using-windows-server-failover-cluster-on-microsoft-azure-with-sios-datakeeper-and-azure-internal-load-balancer/
https://blogs.msdn.microsoft.com/saponsqlserver/2017/11/14/file-server-with-sofs-and-s2d-as-an-alternative-to-cluster-shared-disk-for-clustering-of-an-sap-ascs-instance-in-azure-is-generally-available/
https://docs.microsoft.com/azure/virtual-machines/workloads/sap/sap-certifications
https://docs.microsoft.com/azure/virtual-machines/workloads/sap/dbms-guide
https://docs.microsoft.com/azure/site-recovery/site-recovery-overview
https://download.microsoft.com/download/9/5/6/956FEDC3-702D-4EFB-A7D3-2DB7505566B6/SAP NetWeaver - Building an Azure based Disaster Recovery Solution V1_5 .docx
https://docs.microsoft.com/azure/site-recovery/site-recovery-runbook-automation
https://docs.microsoft.com/azure/architecture/best-practices/monitoring

Security considerations

Communities

Related resources

To provide SAP-based monitoring of resources and service performance of the SAP infrastructure, the Azure SAP
Enhanced Monitoring extension is used. This extension feeds Azure monitoring statistics into the SAP application
for operating system monitoring and DBA Cockpit functions.

SAP has its own Users Management Engine (UME) to control role-based access and authorization within the SAP
application. For details, see SAP NetWeaver Application Server for ABAP Security Guide and SAP NetWeaver
Application Server Java Security Guide.

For additional network security, consider implementing a network DMZ, which uses a network virtual appliance to
create a firewall in front of the subnet for Web Dispatcher.

For infrastructure security, data is encrypted in transit and at rest. The "Security considerations” section of the SAP
NetWeaver on Azure Virtual Machines (VMs) – Planning and Implementation Guide begins to address network
security. The guide also specifies the network ports you must open on the firewalls to allow application
communication.

To encrypt Windows virtual machine disks, you can use Azure Disk Encryption. It uses the BitLocker feature of
Windows to provide volume encryption for the operating system and the data disks. The solution also works with
Azure Key Vault to help you control and manage the disk-encryption keys and secrets in your key vault
subscription. Data on the virtual machine disks are encrypted at rest in your Azure storage.

Communities can answer questions and help you set up a successful deployment. Consider the following:

Running SAP Applications on the Microsoft Platform Blog
Azure Community Support
SAP Community
Stack Overflow

You may wish to review the following Azure example scenarios that demonstrate specific solutions using some of
the same technologies:

Running SAP production workloads using an Oracle Database on Azure
Dev/test environments for SAP workloads on Azure

https://docs.microsoft.com/azure/virtual-machines/workloads/sap/deployment-guide#detailed-tasks-for-sap-software-deployment
https://help.sap.com/viewer/864321b9b3dd487d94c70f6a007b0397/7.4.19
https://help.sap.com/doc/saphelp_snc_uiaddon_10/1.0/en-US/57/d8bfcf38f66f48b95ce1f52b3f5184/frameset.htm
https://docs.microsoft.com/azure/virtual-machines/workloads/sap/planning-guide
https://docs.microsoft.com/azure/security/azure-security-disk-encryption
https://blogs.msdn.microsoft.com/saponsqlserver/2017/05/04/sap-on-azure-general-update-for-customers-partners-april-2017/
https://azure.microsoft.com/support/community/
https://www.sap.com/community.html
https://stackoverflow.com/tags/sap/
https://docs.microsoft.com/azure/architecture/example-scenario
https://docs.microsoft.com/azure/architecture/example-scenario/apps/sap-production
https://docs.microsoft.com/azure/architecture/example-scenario/apps/sap-dev-test

SAP S/4HANA for Linux virtual machines on Azure
3/13/2019 • 14 minutes to read • Edit Online

NOTENOTE

Architecture

This reference architecture shows a set of proven practices for running S/4HANA in a high availability
environment that supports disaster recovery on Azure. This architecture is deployed with specific virtual machine
(VM) sizes that can be changed to accommodate your organization's needs.

Download a Visio file of this architecture.

Deploying this reference architecture requires appropriate licensing of SAP products and other non-Microsoft technologies.

This reference architecture describes a enterprise-grade, production-level system. To suit your business needs, this
configuration can be reduced to a single virtual machine. However, the following components are required:

Virtual network. The Azure Virtual Network service securely connects Azure resources to each other. In this
architecture, the virtual network connects to an on-premises environment through a gateway deployed in the hub
of a hub-spoke topology. The spoke is the virtual network used for the SAP applications.

Subnets. The virtual network is subdivided into separate subnets for each tier : gateway, application, database, and
shared services.

Virtual machines. This architecture uses virtual machines running Linux for the application tier and database tier,
grouped as follows:

Application tier. Includes the Fiori Front-end Server pool, SAP Web Dispatcher pool, application server pool,

https://github.com/mspnp/architecture-center/blob/master/docs/reference-architectures/sap/sap-s4hana.md
https://archcenter.blob.core.windows.net/cdn/sap-reference-architectures.vsdx
https://docs.microsoft.com/azure/virtual-network/virtual-networks-overview
https://docs.microsoft.com/azure/virtual-network/virtual-network-manage-subnet

Recommendations

Virtual machinesVirtual machines

SAP Web Dispatcher poolSAP Web Dispatcher pool

Fiori Front-end ServerFiori Front-end Server

and SAP Central Services cluster. For high availability of Central Services on Azure Linux virtual machines, a
highly available Network File System (NFS) service is required.
NFS cluster. This architecture uses an NFS server running on a Linux cluster to store data shared between
SAP systems. This centralized cluster can be shared across multiple SAP systems. For high availability of the
NFS service, the appropriate High Availability Extension for the selected Linux distribution is used.
SAP HANA. The database tier uses two or more Linux virtual machines in a cluster to achieve high availability.
HANA System Replication (HSR) is used to replicate contents between primary and secondary HANA systems.
Linux clustering is used to detect system failures and facilitate automatic failover. A storage-based or cloud-
based fencing mechanism can be used to ensure the failed system is isolated or shut down to avoid the cluster
split-brain condition.
Jumpbox. Also called a bastion host. This is a secure virtual machine on the network that administrators use to
connect to the other virtual machines. It can run Windows or Linux. Use a Windows jumpbox for web browsing
convenience when using HANA Cockpit or HANA Studio management tools.

Load balancers. Both built-in SAP load balancers and Azure Load Balancer are used to achieve HA. Azure Load
Balancer instances are used to distribute traffic to virtual machines in the application tier subnet.

Availability sets. Virtual machines for all pools and clusters (Web Dispatcher, SAP application servers, Central
Services, NFS, and HANA) are grouped into separate availability sets, and at least two virtual machines are
provisioned per role. This makes the virtual machines eligible for a higher service level agreement (SLA).

NICs. Network interface cards (NICs) enable all communication of virtual machines on a virtual network.

Network security groups. To restrict incoming, outgoing, and intra-subnet traffic in the virtual network, network
security groups (NSGs) are used.

Gateway. A gateway extends your on-premises network to the Azure virtual network. ExpressRoute is the
recommended Azure service for creating private connections that do not go over the public Internet, but a Site-to-
Site connection can also be used.

Azure Storage. To provide persistent storage of a virtual machine's virtual hard disk (VHD), Azure Storage is
required.

This architecture describes a small production-level enterprise deployment. Your deployment will differ based on
your business requirements. Use these recommendations as a starting point.

In application server pools and clusters, adjust the number of virtual machines based on your requirements. The
Azure Virtual Machines planning and implementation guide includes details about running SAP NetWeaver on
virtual machines, but the information applies to SAP S/4HANA as well.

For details about SAP support for Azure virtual machine types and throughput metrics (SAPS), see SAP Note
1928533.

The Web Dispatcher component is used as a load balancer for SAP traffic among the SAP application servers. To
achieve high availability for the Web Dispatcher component, Azure Load Balancer is used to implement the parallel
Web Dispatcher setup in a round-robin configuration for HTTP(S) traffic distribution among the available Web
Dispatchers in the balancers back-end pool.

The Fiori Front-end Server uses a NetWeaver Gateway. For small deployments, it can be loaded on the Fiori
server. For large deployments, a separate server for the NetWeaver Gateway may be deployed in front of the Fiori
Front-end Server pool.

https://docs.microsoft.com/azure/virtual-machines/workloads/sap/high-availability-guide-suse-nfs
https://docs.microsoft.com/azure/load-balancer/load-balancer-overview
https://docs.microsoft.com/azure/virtual-machines/windows/tutorial-availability-sets
https://azure.microsoft.com/support/legal/sla/virtual-machines
https://docs.microsoft.com/azure/virtual-network/virtual-network-network-interface
https://docs.microsoft.com/azure/virtual-network/virtual-networks-nsg
https://docs.microsoft.com/azure/architecture/reference-architectures/hybrid-networking/expressroute
https://docs.microsoft.com/azure/vpn-gateway/vpn-gateway-howto-site-to-site-resource-manager-portal
https://docs.microsoft.com/azure/storage/
https://docs.microsoft.com/azure/virtual-machines/workloads/sap/planning-guide
https://launchpad.support.sap.com/#/notes/1928533
https://help.sap.com/doc/saphelp_gateway20sp12/2.0/en-US/76/08828d832e4aa78748e9f82204a864/content.htm?no_cache=true

Application servers poolApplication servers pool

SAP Central Services clusterSAP Central Services cluster

NFS clusterNFS cluster

Availability setsAvailability sets

NICsNICs

Subnets and NSGsSubnets and NSGs

Load balancersLoad balancers

Azure StorageAzure Storage

To manage logon groups for ABAP application servers, the SMLG transaction is used. It uses the load balancing
function within the message server of the Central Services to distribute workload among SAP application servers
pool for SAPGUIs and RFC traffic. The application server connection to the highly available Central Services is
through the cluster virtual network name. This avoids the need to change the application server profile for Central
Services connectivity after a local failover.

Central Services can be deployed to a single virtual machine when high availability is not a requirement. However,
the single virtual machine becomes a potential single point of failure (SPOF) for the SAP environment. For a
highly available Central Services deployment, a highly available NFS cluster and a highly available Central
Services cluster are used.

DRBD (Distributed Replicated Block Device) is used for replication between the nodes of the NFS cluster.

Availability sets distribute servers to different physical infrastructure and update groups to improve service
availability. Put virtual machines that perform the same role into an availability sets to help guard against
downtime caused by Azure infrastructure maintenance and to meet SLAs. Two or more virtual machines per
availability set is recommended.

All virtual machines in a set must perform the same role. Do not mix servers of different roles in the same
availability set. For example, don't place a ASCS node in the same availability set with the application server.

Traditional on-premises SAP landscapes implement multiple network interface cards (NICs) per machine to
segregate administrative traffic from business traffic. On Azure, the virtual network is a software-defined network
that sends all traffic through the same network fabric. Therefore, the use of multiple NICs is unnecessary. However,
if your organization needs to segregate traffic, you can deploy multiple NICs per VM, connect each NIC to a
different subnet, and then use NSGs to enforce different access control policies.

This architecture subdivides the virtual network address space into subnets. Each subnet can be associated with a
NSG that defines the access policies for the subnet. Place application servers on a separate subnet so you can
secure them more easily by managing the subnet security policies, not the individual servers.

When a NSG is associated with a subnet, it then applies to all the servers within the subnet. For more information
about using NSGs for fine-grained control over the servers in a subnet, see Filter network traffic with network
security groups.

See also Planning and design for VPN Gateway.

SAP Web Dispatcher handles load balancing of HTTP(S) traffic including Fiori style applications to a pool of SAP
application servers.

For traffic from SAP GUI clients connecting a SAP server via DIAG or Remote Function Calls (RFC), the Central
Service message server balances the load through SAP application server logon groups, so no additional load
balancer is needed.

We recommend using Azure Premium Storage for the database server virtual machines. Premium storage
provides consistent read/write latency. For details about using Premium Storage for the operating system disks
and data disks of a single-instance virtual machine, see SLA for Virtual Machines.

https://azure.microsoft.com/support/legal/sla/virtual-machines
https://azure.microsoft.com/blog/multiple-vm-nics-and-network-virtual-appliances-in-azure/
https://docs.microsoft.com/azure/vpn-gateway/vpn-gateway-plan-design
https://help.sap.com/doc/saphelp_nw73ehp1/7.31.19/en-US/48/8fe37933114e6fe10000000a421937/frameset.htm
https://wiki.scn.sap.com/wiki/display/SI/ABAP+Logon+Group+based+Load+Balancing
https://azure.microsoft.com/support/legal/sla/virtual-machines/

Performance considerations

Scalability considerations

Availability considerations

Application tierApplication tier

For all production SAP systems, we recommend using Premium Azure Managed Disks. Managed Disks are used
to manage the VHD files for the disks, adding reliability. They also ensure that the disks for virtual machines within
an availability set are isolated to avoid single points of failure.

For SAP application servers, including the Central Services virtual machines, you can use Azure Standard Storage
to reduce cost, because application execution takes place in memory and uses disks for logging only. However, at
this time, Standard Storage is only certified for unmanaged storage. Since application servers do not host any data,
you can also use the smaller P4 and P6 Premium Storage disks to help minimize cost.

For the backup data store, we recommend using Azure cool access tier storage and/or archive access tier storage.
These storage tiers are cost-effective ways to store long-lived data that is less frequently accessed.

SAP application servers carry on constant communications with the database servers. For the HANA database
virtual machines, consider enabling Write Accelerator to improve log write latency. To optimize inter-server
communications, use the Accelerated Network. Note that these accelerators are available only for certain VM
series.

To achieve high IOPS and disk bandwidth throughput, the common practices in storage volume performance
optimization apply to Azure storage layout. For example, combining multiple disks together to create a striped disk
volume improves IO performance. Enabling the read cache on storage content that changes infrequently enhances
the speed of data retrieval. For details about performance requirements, see SAP note 1943937 - Hardware
Configuration Check Tool (SAP Service Marketplace account required for access).

At the SAP application layer, Azure offers a wide range of virtual machine sizes for scaling up and scaling out. For
an inclusive list, see SAP Note 1928533 - SAP Applications on Azure: Supported Products and Azure VM types
(SAP Service Marketplace account required for access). As we continue to certify more virtual machines types, you
can scale up or down with the same cloud deployment.

At the database layer, this architecture runs HANA on VMs. If your workload exceeds the maximum VM size,
Microsoft also offers Azure Large Instances for SAP HANA. These physical servers are co-located in a Microsoft
Azure certified datacenter and as of this writing, provide up to 20 TB of memory capacity for a single instance.
Multi-node configuration is also possible with a total memory capacity of up to 60 TB.

Resource redundancy is the general theme in highly available infrastructure solutions. For enterprises that have a
less stringent SLA, single-instance Azure VMs offer an uptime SLA. For more information, see Azure Service Level
Agreement.

In this distributed installation of the SAP application, the base installation is replicated to achieve high availability.
For each layer of the architecture, the high availability design varies.

Web Dispatcher. High availability is achieved with redundant Web Dispatcher instances. See SAP Web
Dispatcher in the SAP documentation.
Fiori servers. High availability is achieved by load balancing traffic within a pool of servers.
Central Services. For high availability of Central Services on Azure Linux virtual machines, the appropriate High
Availability Extension for the selected Linux distribution is used, and the highly available NFS cluster hosts
DRBD storage.
Application servers. High availability is achieved by load balancing traffic within a pool of application servers.

https://docs.microsoft.com/azure/storage/storage-managed-disks-overview
https://docs.microsoft.com/azure/storage/storage-blob-storage-tiers
https://docs.microsoft.com/azure/virtual-machines/linux/how-to-enable-write-accelerator
https://azure.microsoft.com/blog/linux-and-windows-networking-performance-enhancements-accelerated-networking/
https://docs.microsoft.com/azure/virtual-machines/linux/premium-storage-performance
https://launchpad.support.sap.com/#/notes/1943937
https://launchpad.support.sap.com/#/notes/1928533
https://docs.microsoft.com/azure/virtual-machines/workloads/sap/hana-overview-architecture
https://azure.microsoft.com/support/legal/sla/
https://help.sap.com/doc/saphelp_nw70ehp2/7.02.16/en-us/48/8fe37933114e6fe10000000a421937/frameset.htm

Database tierDatabase tier

Disaster recovery considerationsDisaster recovery considerations

Manageability considerations

Identity managementIdentity management

This reference architecture depicts a highly available SAP HANA database system consisting of two Azure virtual
machines. The database tier's native system replication feature provides either manual or automatic failover
between replicated nodes:

For manual failover, deploy more than one HANA instance and use HANA System Replication (HSR).
For automatic failover, use both HSR and Linux High Availability Extension (HAE) for your Linux distribution.
Linux HAE provides the cluster services to the HANA resources, detecting failure events and orchestrating the
failover of errant services to the healthy node.

See SAP certifications and configurations running on Microsoft Azure.

Each tier uses a different strategy to provide disaster recovery (DR) protection.

Application servers tier. SAP application servers do not contain business data. On Azure, a simple DR
strategy is to create SAP application servers in the secondary region, then shut them down. Upon any
configuration changes or kernel updates on the primary application server, the same changes must be
applied to the virtual machines in the secondary region. For example, copy the SAP kernel executables to
the DR virtual machines. For automatic replication of application servers to a secondary region, Azure Site
Recovery is the recommended solution. As of the writing of this paper, ASR doesn't yet support the
replication of the Accelerated Network configuration setting in Azure VMs.

Central Services. This component of the SAP application stack also does not persist business data. You can
build a VM in the secondary region to run the Central Services role. The only content from the primary
Central Services node to synchronize is the /sapmnt share content. Also, if configuration changes or kernel
updates take place on the primary Central Services servers, they must be repeated on the VM in the
secondary region running Central Services. To synchronize the two servers, you can use either Azure Site
Recovery, to replicate the cluster nodes, or simply use a regularly scheduled copy job to copy /sapmnt to the
DR side. For details about the build, copy, and test failover process, download SAP NetWeaver: Building a
Hyper-V and Microsoft Azure–based Disaster Recovery Solution, and refer to section 4.3, "SAP SPOF layer
(ASCS)." This paper applies to NetWeaver running on Windows, but you can create the equivalent
configuration for Linux. For Central Services, use Azure Site Recovery to replicate the cluster nodes and
storage. For Linux, create a three node geo-cluster using a High Availability Extension.

SAP database tier. Use HSR for HANA-supported replication. In addition to a local, two-node high
availability setup, HSR supports multi-tier replication where a third node in a separate Azure region acts as
a foreign entity, not part of the cluster, and registers to the secondary replica of the clustered HSR pair as its
replication target. This form a replication daisy chain. The failover to the DR node is a manual process.

To use Azure Site Recovery to automatically build a fully replicated production site of your original, you must run
customized deployment scripts. Site Recovery first deploys the virtual machines in availability sets, then runs
scripts to add resources such as load balancers.

SAP HANA has a backup feature that makes use of the underlying Azure infrastructure. To back up the SAP
HANA database running on Azure virtual machines, both the SAP HANA snapshot and Azure storage snapshot
are used to ensure the backup files' consistency. For details, see Backup guide for SAP HANA on Azure Virtual
Machines and the Azure Backup service FAQ. Only HANA single container deployments support Azure storage
snapshot.

Control access to resources by using a centralized identity management system at all levels:

https://docs.microsoft.com/azure/virtual-machines/workloads/sap/sap-certifications
https://docs.microsoft.com/azure/site-recovery/site-recovery-overview
https://download.microsoft.com/download/9/5/6/956FEDC3-702D-4EFB-A7D3-2DB7505566B6/SAP NetWeaver - Building an Azure based Disaster Recovery Solution V1_5 .docx
https://docs.microsoft.com/en-us/azure/site-recovery/site-recovery-overview
https://docs.microsoft.com/azure/site-recovery/site-recovery-runbook-automation
https://docs.microsoft.com/azure/virtual-machines/workloads/sap/sap-hana-backup-guide
https://docs.microsoft.com/azure/backup/backup-azure-backup-faq

MonitoringMonitoring

Security considerations

NOTENOTE

Communities

Related resources

Provide access to Azure resources through role-based access control (RBAC).
Grant access to Azure VMs through LDAP, Azure Active Directory, Kerberos, or another system.
Support access within the apps themselves through the services that SAP provides, or use OAuth 2.0 and Azure
Active Directory.

Azure provides several functions for monitoring and diagnostics of the overall infrastructure. Also, enhanced
monitoring of Azure virtual machines (Linux or Windows) is handled by Azure Operations Management Suite
(OMS).

To provide SAP-based monitoring of resources and service performance of the SAP infrastructure, the Azure SAP
Enhanced Monitoring extension is used. This extension feeds Azure monitoring statistics into the SAP application
for operating system monitoring and DBA Cockpit functions. SAP enhanced monitoring is a mandatory
prerequisite to run SAP on Azure. For details, see SAP Note 2191498 – "SAP on Linux with Azure: Enhanced
Monitoring."

SAP has its own Users Management Engine (UME) to control role-based access and authorization within the SAP
application. For details, see SAP HANA Security — An Overview (SAP Service Marketplace account required for
access.)

For additional network security, consider implementing a Network DMZ, which uses a network virtual appliance to
create a firewall in front of the subnet for Web Dispatcher and Fiori Front-End Server pools.

For infrastructure security, data is encrypted in transit and at rest. The "Security considerations" section of the SAP
NetWeaver on Azure Virtual Machines–Planning and Implementation Guide begins to address network security
and applies to S/4HANA. The guide also specifies the network ports you must open on the firewalls to allow
application communication.

To encrypt Linux IaaS virtual machine disks, you can use Azure Disk Encryption. It uses the DM-Crypt feature of
Linux to provide volume encryption for the operating system and the data disks. The solution also works with
Azure Key Vault to help you control and manage the disk-encryption keys and secrets in your key vault
subscription. Data on the virtual machine disks are encrypted at rest in your Azure storage.

For SAP HANA data-at-rest encryption, we recommend using the SAP HANA native encryption technology.

Do not use the HANA data-at-rest encryption with Azure Disk Encryption on the same server. For HANA, use only HANA
data encryption.

Communities can answer questions and help you set up a successful deployment. Consider the following:

Running SAP Applications on the Microsoft Platform Blog
Azure Community Support
SAP Community
Stack Overflow

You may wish to review the following Azure example scenarios that demonstrate specific solutions using some of

https://docs.microsoft.com/azure/active-directory/role-based-access-control-what-is
https://docs.microsoft.com/azure/active-directory/develop/active-directory-protocols-oauth-code
https://docs.microsoft.com/azure/architecture/best-practices/monitoring
https://docs.microsoft.com/azure/virtual-machines/workloads/sap/deployment-guide#d98edcd3-f2a1-49f7-b26a-07448ceb60ca
https://launchpad.support.sap.com/#/notes/2191498
https://archive.sap.com/documents/docs/DOC-62943
https://docs.microsoft.com/azure/architecture/reference-architectures/dmz/secure-vnet-hybrid
https://docs.microsoft.com/azure/virtual-machines/workloads/sap/planning-guide
https://docs.microsoft.com/azure/security/azure-security-disk-encryption
https://blogs.msdn.microsoft.com/saponsqlserver/2017/05/04/sap-on-azure-general-update-for-customers-partners-april-2017/
https://azure.microsoft.com/support/community/
https://www.sap.com/community.html
https://stackoverflow.com/tags/sap/
https://docs.microsoft.com/azure/architecture/example-scenario

the same technologies:

Running SAP production workloads using an Oracle Database on Azure
Dev/test environments for SAP workloads on Azure

https://docs.microsoft.com/azure/architecture/example-scenario/apps/sap-production
https://docs.microsoft.com/azure/architecture/example-scenario/apps/sap-dev-test

Run SAP HANA on Azure Large Instances
3/13/2019 • 10 minutes to read • Edit Online

NOTENOTE

Architecture

This reference architecture shows a set of proven practices for running SAP HANA on Azure (Large Instances)
with high availability and disaster recovery (DR). Called HANA Large Instances, this offering is deployed on
physical servers in Azure regions.

Download a Visio file of this architecture.

Deploying this reference architecture requires appropriate licensing of SAP products and other non-Microsoft technologies.

This architecture consists of the following infrastructure components.

Virtual network. The Azure Virtual Network service securely connects Azure resources to each other and
is subdivided into separate subnets for each layer. SAP application layers are deployed on Azure virual
machines (VMs) to connect to the HANA database layer residing on large instances.

Virtual machines. Virtual machines are used in the SAP application layer and shared services layer. The
latter includes a jumpbox used by administrators to set up HANA Large Instances and to provide access to

https://github.com/mspnp/architecture-center/blob/master/docs/reference-architectures/sap/hana-large-instances.md
https://archcenter.blob.core.windows.net/cdn/sap-reference-architectures.vsdx
https://docs.microsoft.com/azure/virtual-network/virtual-networks-overview
https://docs.microsoft.com/azure/virtual-network/virtual-network-manage-subnet

Recommendations

HANA Large Instances computeHANA Large Instances compute

other virtual machines.

HANA Large Instance. A physical server certified to meet SAP HANA Tailored Datacenter Integration
(TDI) standards runs SAP HANA. This architecture uses two HANA Large Instances: a primary and a
secondary compute unit. High availability at the data layer is provided through HANA System Replication
(HSR).

High Availability Pair. A group of HANA Large Instances blades are managed together to provide
application redundancy and reliability.

MSEE (Microsoft Enterprise Edge). MSEE is a connection point from a connectivity provider or your
network edge through an ExpressRoute circuit.

Network interface cards (NICs). To enable communication, the HANA Large Instance server provides
four virtual NICs by default. This architecture requires one NIC for client communication, a second NIC for
the node-to-node connectivity needed by HSR, a third NIC for HANA Large Instance storage, and a fourth
for iSCSI used in high availability clustering.

Network File System (NFS) storage. The NFS server supports the network file share that provides secure
data persistence for HANA Large Instance.

ExpressRoute. ExpressRoute is the recommended Azure networking service for creating private
connections between an on-premises network and Azure virtual networks that do not go over the public
Internet. Azure VMs connect to HANA Large Instances using another ExpressRoute connection. The
ExpressRoute connection between the Azure virtual network and the HANA Large Instances is set up as
part of the Microsoft offering.

Gateway. The ExpressRoute Gateway is used to connect the Azure virtual network used for the SAP
application layer to the HANA Large Instance network. Use the High Performance or Ultra Performance
SKU.

Disaster recovery (DR). Upon request, storage replication is supported and will be configured from the
primary to the DR site located in another region.

Requirements can vary, so use these recommendations as a starting point.

Large Instances are physical servers based on the Intel EX E7 CPU architecture and configured in a large instance
stamp — that is, a specific set of servers or blades. A compute unit equals one server or blade, and a stamp is
made up of multiple servers or blades. Within a large instance stamp, servers are not shared and are dedicated to
running one customer’s deployment of SAP HANA.

A variety of SKUs are available for HANA Large Instances, supporting up to 20 TB single instance (60 TB scale-
out) of memory for S/4HANA or other SAP HANA workloads. Two classes of servers are offered:

Type I class: S72, S72m, S144, S144m, S192, and S192m

Type II class: S384, S384m, S384xm, S576m, S768m, and S960m

For example, the S72 SKU comes with 768 GB RAM, 3 terabytes (TB) of storage, and 2 Intel Xeon processors (E7-
8890 v3) with 36 cores. Choose a SKU that fulfills the sizing requirements you determined in your architecture and
design sessions. Always ensure that your sizing applies to the correct SKU. Capabilities and deployment
requirements vary by type, and availability varies by region. You can also step up from one SKU to a larger SKU.

Microsoft helps establish the large instance setup, but it is your responsibility to verify the operating system’s
configuration settings. Make sure to review the most current SAP Notes for your exact Linux release.

https://docs.microsoft.com/azure/virtual-machines/workloads/sap/hana-overview-architecture
https://docs.microsoft.com/azure/virtual-machines/workloads/sap/high-availability-guide-suse-nfs
https://docs.microsoft.com/azure/architecture/reference-architectures/hybrid-networking/expressroute
https://docs.microsoft.com/azure/expressroute/expressroute-about-virtual-network-gateways
https://docs.microsoft.com/azure/virtual-machines/workloads/sap/hana-overview-high-availability-disaster-recovery
https://docs.microsoft.com/azure/virtual-machines/workloads/sap/hana-overview-architecture
https://docs.microsoft.com/azure/virtual-machines/workloads/sap/hana-overview-architecture
https://docs.microsoft.com/azure/virtual-machines/workloads/sap/hana-installation
https://azure.microsoft.com/global-infrastructure/services/

StorageStorage

NetworkingNetworking

Scalability considerations

Storage layout is implemented according to the recommendation of the TDI for SAP HANA. HANA Large
Instances come with a specific storage configuration for the standard TDI specifications. However, you can
purchase additional storage in 1 TB increments.

To support the requirements of mission-critical environments including fast recovery, NFS is used and not direct
attached storage. The NFS storage server for HANA Large Instances is hosted in a multi-tenant environment,
where tenants are segregated and secured using compute, network, and storage isolation.

To support high availability at the primary site, use different storage layouts. For example, in a multi-host scale-out,
the storage is shared. Another high availability option is application-based replication such as HSR. For DR,
however, a snapshot-based storage replication is used.

This architecture uses both virtual and physical networks. The virtual network is part of Azure IaaS and connects to
a discrete HANA Large Instances physical network through ExpressRoute circuits. A cross-premises gateway
connects your workloads in the Azure virtual network to your on-premises sites.

HANA Large Instances networks are isolated from each other for security. Instances residing in different regions
do not communicate with each other, except for the dedicated storage replication. However, to use HSR, inter-
region communications are required. IP routing tables or proxies can be used to enable cross-regions HSR.

All Azure virtual networks that connect to HANA Large Instances in one region can be cross-connected via
ExpressRoute to HANA Large Instances in a secondary region.

ExpressRoute for HANA Large Instances is included by default during provisioning. For setup, a specific network
layout is needed, including required CIDR address ranges and domain routing. For details, see SAP HANA (large
instances) infrastructure and connectivity on Azure.

To scale up or down, you can choose from many sizes of servers that are available for HANA Large Instances. They
are categorized as Type I and Type II and tailored for different workloads. Choose a size that can grow with your
workload for the next three years. One-year commitments are also available.

A multi-host scale-out deployment is generally used for BW/4HANA deployments as a kind of database
partitioning strategy. To scale out, plan the placement of HANA tables prior to installation. From an infrastructure
standpoint, multiple hosts are connected to a shared storage volume, enabling quick takeover by standby hosts in
case one of the compute worker nodes in the HANA system fails.

S/4HANA and SAP Business Suite on HANA on a single blade can be scaled up to 20 TB with a single HANA
Large Instances instance.

For greenfield scenarios, the SAP Quick Sizer is available to calculate memory requirements of the
implementation of SAP software on top of HANA. Memory requirements for HANA increase as data volume
grows. Use your system’s current memory consumption as the basis for predicting future consumption, and then
map your demand into one of the HANA Large Instances sizes.

If you already have SAP deployments, SAP provides reports you can use to check the data used by existing
systems and calculate memory requirements for a HANA instance. For example, see the following SAP Notes:

SAP Note 1793345 - Sizing for SAP Suite on HANA
SAP Note 1872170 - Suite on HANA and S/4 HANA sizing report
SAP Note 2121330 - FAQ: SAP BW on HANA Sizing Report
SAP Note 1736976 - Sizing Report for BW on HANA
SAP Note 2296290 - New Sizing Report for BW on HANA

https://docs.microsoft.com/azure/architecture/reference-architectures/hybrid-networking/expressroute
https://blogs.msdn.microsoft.com/saponsqlserver/2018/02/10/setting-up-hana-system-replication-on-azure-hana-large-instances/
https://docs.microsoft.com/azure/virtual-machines/workloads/sap/hana-overview-high-availability-disaster-recovery#network-considerations-for-disaster-recovery-with-hana-large-instances
https://docs.microsoft.com/azure/virtual-machines/workloads/sap/hana-overview-infrastructure-connectivity
https://docs.microsoft.com/azure/virtual-machines/workloads/sap/hana-overview-architecture
https://service.sap.com/quicksizing
https://launchpad.support.sap.com/#/notes/1793345
https://launchpad.support.sap.com/#/notes/1872170
https://launchpad.support.sap.com/#/notes/2121330
https://launchpad.support.sap.com/#/notes/1736976
https://launchpad.support.sap.com/#/notes/2296290

Availability considerations

Disaster recovery considerations

NOTENOTE

Backup considerations

Resource redundancy is the general theme in highly available infrastructure solutions. For enterprises that have a
less stringent SLA, single-instance Azure VMs offer an uptime SLA. For more information, see Azure Service Level
Agreement.

Work with SAP, your system integrator, or Microsoft to properly architect and implement a high availability and
disaster-recovery strategy. This architecture follows the Azure service-level agreement (SLA) for HANA on Azure
(Large Instances). To assess your availability requirements, consider any single points of failure, the desired level of
uptime for services, and these common metrics:

Recovery Time Objective (RTO) means the duration of time in which the HANA Large Instances server is
unavailable.

Recovery Point Objective (RPO) means the maximum tolerable period in which customer data might be lost
due to a failure.

For high availability, deploy more than one instance in a HA Pair and use HSR in a synchronous mode to minimize
data loss and downtime. In addition to a local, two-node high availability setup, HSR supports multi-tier
replication, where a third node in a separate Azure region registers to the secondary replica of the clustered HSR
pair as its replication target. This forms a replication daisy chain. The failover to the DR node is a manual process.

When you set up HANA Large Instances HSR with automatic failover, you can request the Microsoft Service
Management team to set up a STONITH device for your existing servers.

This architecture supports disaster recovery between HANA Large Instances in different Azure regions. There are
two ways to support DR with HANA Large Instances:

Storage replication. The primary storage contents are constantly replicated to the remote DR storage
systems that are available on the designated DR HANA Large Instances server. In storage replication, the
HANA database is not loaded into memory. This DR option is simpler from an administration perspective.
To determine if this is a suitable strategy, consider the database load time against the availability SLA.
Storage replication also enables you to perform point-in-time recovery. If multi-purpose (cost-optimized)
DR is set up, you must purchase additional storage of the same size at the DR location. Microsoft provides
self-services storage snapshot and failover scripts for HANA failover as part of the HANA Large Instances
offering.

Multi-tier HSR with a third replica in the DR region (where the HANA database is loaded onto memory).
This option supports a faster recovery time but does not support a point-in-time recovery. HSR requires a
secondary system. HANA system replication for the DR site is handled through proxies such as nginx or IP
tables.

You can optimize this reference architecture for costs by running in a single-instance environment. This cost-optimized
scenario is suitable for non-production HANA workloads.

Based on your business requirements, choose from several options available for backup and recovery.

https://azure.microsoft.com/support/legal/sla/
https://docs.microsoft.com/azure/virtual-machines/workloads/sap/hana-overview-high-availability-disaster-recovery?toc=%2fazure%2fvirtual-machines%2flinux%2ftoc.json
https://azure.microsoft.com/support/legal/sla/virtual-machines
https://docs.microsoft.com/azure/virtual-machines/workloads/sap/ha-setup-with-stonith
https://docs.microsoft.com/azure/virtual-machines/workloads/sap/hana-overview-high-availability-disaster-recovery#network-considerations-for-disaster-recovery-with-hana-large-instances
https://docs.microsoft.com/azure/virtual-machines/workloads/sap/hana-overview-high-availability-disaster-recovery
https://blogs.sap.com/2016/07/19/new-whitepaper-for-high-availability-for-sap-hana-cost-optimized-scenario/
https://docs.microsoft.com/azure/virtual-machines/workloads/sap/hana-overview-high-availability-disaster-recovery#backup-and-restore

BACKUP OPTION PROS CONS

HANA backup Native to SAP. Built-in consistency
check.

Long backup and recovery times.
Storage space consumption.

HANA snapshot Native to SAP. Rapid backup and
restore.

Storage snapshot Included with HANA Large Instances.
Optimized DR for HANA Large
Instances. Boot volume backup
support.

Maximum 254 snapshots per volume.

Log backup Required for point in time recovery.

Other backup tools Redundant backup location. Additional licensing costs.

Manageability considerations

Security considerations

Communities

Monitor HANA Large Instances resources such as CPU, memory, network bandwidth, and storage space using
SAP HANA Studio, SAP HANA Cockpit, SAP Solution Manager, and other native Linux tools. HANA Large
Instances does not come with built-in monitoring tools. Microsoft offers resources to help you troubleshoot and
monitor according to your organization’s requirements, and the Microsoft support team can assist you in
troubleshooting technical issues.

If you need more computing capability, you must get a larger SKU.

By default, HANA Large Instances use storage encryption based on TDE (transparent data encryption) for
the data at rest.

Data in transit between HANA Large Instances and the virtual machines is not encrypted. To encrypt the
data transfer, enable the application-specific encryption. See SAP Note 2159014 - FAQ: SAP HANA
Security.

Isolation provides security between the tenants in the multi-tenant HANA Large Instance environment.
Tenants are isolated using their own VLAN.

Azure network security best practices provide helpful guidance.

As with any deployment, operating system hardening is recommended.

For physical security, access to Azure datacenters is limited to authorized personnel only. No customers can
access the physical servers.

For more information, see SAP HANA Security — An Overview.(A SAP Service Marketplace account is required
for access.)

Communities can answer questions and help you set up a successful deployment. Consider the following:

Running SAP Applications on the Microsoft Platform Blog
Azure Community Support
SAP Community

https://docs.microsoft.com/azure/virtual-machines/workloads/sap/troubleshooting-monitoring
https://launchpad.support.sap.com/#/notes/2159014
https://docs.microsoft.com/azure/security/azure-security-network-security-best-practices
https://docs.microsoft.com/azure/security/azure-security-iaas
https://archive.sap.com/documents/docs/DOC-62943
https://blogs.msdn.microsoft.com/saponsqlserver/2017/05/04/sap-on-azure-general-update-for-customers-partners-april-2017/
https://azure.microsoft.com/support/forums/
https://www.sap.com/community.html

Related resources

Stack Overflow SAP

You may wish to review the following Azure example scenarios that demonstrate specific solutions using some of
the same technologies:

Running SAP production workloads using an Oracle Database on Azure
Dev/test environments for SAP workloads on Azure

https://stackoverflow.com/tags/sap/info
https://docs.microsoft.com/azure/architecture/example-scenario
https://docs.microsoft.com/azure/architecture/example-scenario/apps/sap-production
https://docs.microsoft.com/azure/architecture/example-scenario/apps/sap-dev-test

Serverless web application on Azure
3/13/2019 • 16 minutes to read • Edit Online

Architecture

This reference architecture shows a serverless web application. The application serves static content from Azure
Blob Storage, and implements an API using Azure Functions. The API reads data from Cosmos DB and returns the
results to the web app. A reference implementation for this architecture is available on GitHub.

The term serverless has two distinct but related meanings:

Backend as a service (BaaS). Backend cloud services, such as databases and storage, provide APIs that enable
client applications to connect directly to these services.
Functions as a service (FaaS). In this model, a "function" is a piece of code that is deployed to the cloud and
runs inside a hosting environment that completely abstracts the servers that run the code.

Both definitions have in common the idea that developers and DevOps personnel don't need to deploy, configure,
or manage servers. This reference architecture focuses on FaaS using Azure Functions, although serving web
content from Azure Blob Storage is an example of BaaS. Some important characteristics of FaaS are:

1. Compute resources are allocated dynamically as needed by the platform.
2. Consumption-based pricing: You are charged only for the compute resources used to execute your code.
3. The compute resources scale on demand based on traffic, without the developer needing to do any

configuration.

Functions are executed when an external trigger occurs, such as an HTTP request or a message arriving on a
queue. This makes an event-driven architecture style natural for serverless architectures. To coordinate work
between components in the architecture, consider using message brokers or pub/sub patterns. For help choosing
between messaging technologies in Azure, see Choose between Azure services that deliver messages.

The architecture consists of the following components:

Blob Storage. Static web content, such as HTML, CSS, and JavaScript files, are stored in Azure Blob Storage and
served to clients by using static website hosting. All dynamic interaction happens through JavaScript code making
calls to the backend APIs. There is no server-side code to render the web page. Static website hosting supports
index documents and custom 404 error pages.

https://github.com/mspnp/architecture-center/blob/master/docs/reference-architectures/serverless/web-app.md
https://azure.microsoft.com/solutions/serverless/
https://github.com/mspnp/serverless-reference-implementation
https://docs.microsoft.com/azure/event-grid/compare-messaging-services
https://docs.microsoft.com/azure/storage/blobs/storage-blob-static-website

NOTENOTE

Recommendations
Function App plansFunction App plans

Static website hosting is currently in preview.

CDN . Use Azure Content Delivery Network (CDN) to cache content for lower latency and faster delivery of
content, as well as providing an HTTPS endpoint.

Function Apps. Azure Functions is a serverless compute option. It uses an event-driven model, where a piece of
code (a "function") is invoked by a trigger. In this architecture, the function is invoked when a client makes an HTTP
request. The request is always routed through an API gateway, described below.

API Management. API Management provides a API gateway that sits in front of the HTTP function. You can use
API Management to publish and manage APIs used by client applications. Using a gateway helps to decouple the
front-end application from the back-end APIs. For example, API Management can rewrite URLs, transform
requests before they reach the backend, set request or response headers, and so forth.

API Management can also be used to implement cross-cutting concerns such as:

Enforcing usage quotas and rate limits
Validating OAuth tokens for authentication
Enabling cross-origin requests (CORS)
Caching responses
Monitoring and logging requests

If you don't need all of the functionality provided by API Management, another option is to use Functions Proxies.
This feature of Azure Functions lets you define a single API surface for multiple function apps, by creating routes
to back-end functions. Function proxies can also perform limited transformations on the HTTP request and
response. However, they don't provide the same rich policy-based capabilities of API Management.

Cosmos DB. Cosmos DB is a multi-model database service. For this scenario, the function application fetches
documents from Cosmos DB in response to HTTP GET requests from the client.

Azure Active Directory (Azure AD). Users sign into the web application by using their Azure AD credentials.
Azure AD returns an access token for the API, which the web application uses to authenticate API requests (see
Authentication).

Azure Monitor. Monitor collects performance metrics about the Azure services deployed in the solution. By
visualizing these in a dashboard, you can get visibility into the health of the solution. It also collected application
logs.

Azure Pipelines. Pipelines is a continuous integration (CI) and continuous delivery (CD) service that builds, tests,
and deploys the application.

Azure Functions supports two hosting models. With the consumption plan, compute power is automatically
allocated when your code is running. With the App Service plan, a set of VMs are allocated for your code. The
App Service plan defines the number of VMs and the VM size.

Note that the App Service plan is not strictly serverless, according to the definition given above. The programming
model is the same, however — the same function code can run in both a consumption plan and an App Service
plan.

Here are some factors to consider when choosing which type of plan to use:

https://azure.microsoft.com/blog/azure-storage-static-web-hosting-public-preview/
https://azure.microsoft.com/services/cdn/
https://docs.microsoft.com/azure/azure-functions/functions-overview
https://docs.microsoft.com/azure/api-management/api-management-key-concepts
https://docs.microsoft.com/azure/azure-functions/functions-proxies
https://docs.microsoft.com/azure/cosmos-db/introduction
https://docs.microsoft.com/azure/azure-monitor/overview
https://docs.microsoft.com/azure/devops/pipelines/index

Function App boundariesFunction App boundaries

Function bindingsFunction bindings

Cold start. With the consumption plan, a function that hasn't been invoked recently will incur some additional
latency the next time it runs. This additional latency is due to allocating and preparing the runtime environment.
It is usually on the order of seconds but depends on several factors, including the number of dependencies that
need to be loaded. For more information, see Understanding Serverless Cold Start. Cold start is usually more
of a concern for interactive workloads (HTTP triggers) than asynchronous message-driven workloads (queue or
event hubs triggers), because the additional latency is directly observed by users.
Timeout period. In the consumption plan, a function execution times out after a configurable period of time
(to a maximum of 10 minutes)
Virtual network isolation. Using an App Service plan allows functions to run inside of an App Service
Environment, which is a dedicated and isolated hosting environment.
Pricing model. The consumption plan is billed by the number of executions and resource consumption
(memory × execution time). The App Service plan is billed hourly based on VM instance SKU. Often, the
consumption plan can be cheaper than an App Service plan, because you pay only for the compute resources
that you use. This is especially true if your traffic experiences peaks and troughs. However, if an application
experiences constant high-volume throughput, an App Service plan may cost less than the consumption plan.
Scaling. A big advantage of the consumption model is that it scales dynamically as needed, based on the
incoming traffic. While this scaling occurs quickly, there is still a ramp-up period. For some workloads, you
might want to deliberately overprovision the VMs, so that you can handle bursts of traffic with zero ramp-up
time. In that case, consider an App Service plan.

A function app hosts the execution of one or more functions. You can use a function app to group several functions
together as a logical unit. Within a function app, the functions share the same application settings, hosting plan,
and deployment lifecycle. Each function app has its own hostname.

Use function apps to group functions that share the same lifecycle and settings. Functions that don't share the
same lifecycle should be hosted in different function apps.

Consider taking a microservices approach, where each function app represents one microservice, possibly
consisting of several related functions. In a microservices architecture, services should have loose coupling and
high functional cohesion. Loosely coupled means you can change one service without requiring other services to
be updated at the same time. Cohesive means a service has a single, well-defined purpose. For more discussion of
these ideas, see Designing microservices: Domain analysis.

Use Functions bindings when possible. Bindings provide a declarative way to connect your code to data and
integrate with other Azure services. An input binding populates an input parameter from an external data source.
An output binding sends the function's return value to a data sink, such as a queue or database.

For example, the GetStatus function in the reference implementation uses the Cosmos DB input binding. This
binding is configured to look up a document in Cosmos DB, using query parameters that are taken from the query
string in the HTTP request. If the document is found, it is passed to the function as a parameter.

https://blogs.msdn.microsoft.com/appserviceteam/2018/02/07/understanding-serverless-cold-start/
https://docs.microsoft.com/azure/azure-functions/functions-scale#consumption-plan
https://docs.microsoft.com/azure/app-service/environment/intro
https://docs.microsoft.com/azure/azure-functions/functions-triggers-bindings
https://docs.microsoft.com/azure/azure-functions/functions-bindings-cosmosdb-v2#input

[FunctionName("GetStatusFunction")]
public static Task<IActionResult> Run(
 [HttpTrigger(AuthorizationLevel.Function, "get", Route = null)] HttpRequest req,
 [CosmosDB(
 databaseName: "%COSMOSDB_DATABASE_NAME%",
 collectionName: "%COSMOSDB_DATABASE_COL%",
 ConnectionStringSetting = "COSMOSDB_CONNECTION_STRING",
 Id = "{Query.deviceId}",
 PartitionKey = "{Query.deviceId}")] dynamic deviceStatus,
 ILogger log)
{
 ...
}

Scalability considerations

Disaster recovery considerations

Security considerations
AuthenticationAuthentication

By using bindings, you don't need to write code that talks directly to the service, which makes the function code
simpler and also abstracts the details of the data source or sink. In some cases, however, you may need more
complex logic than the binding provides. In that case, use the Azure client SDKs directly.

Functions. For the consumption plan, the HTTP trigger scales based on the traffic. There is a limit to the number
of concurrent function instances, but each instance can process more than one request at a time. For an App
Service plan, the HTTP trigger scales according to the number of VM instances, which can be a fixed value or can
autoscale based on a set of autoscaling rules. For information, see Azure Functions scale and hosting.

Cosmos DB. Throughput capacity for Cosmos DB is measured in Request Units (RU). A 1-RU throughput
corresponds to the throughput need to GET a 1KB document. In order to scale a Cosmos DB container past
10,000 RU, you must specify a partition key when you create the container and include the partition key in every
document that you create. For more information about partition keys, see Partition and scale in Azure Cosmos DB.

API Management. API Management can scale out and supports rule-based autoscaling. Note that the scaling
process takes at least 20 minutes. If your traffic is bursty, you should provision for the maximum burst traffic that
you expect. However, autoscaling is useful for handling hourly or daily variations in traffic. For more information,
see Automatically scale an Azure API Management instance.

The deployment shown here resides in a single Azure region. For a more resilient approach to disaster-recovery,
take advantage of the geo-distribution features in the various services:

API Management supports multi-region deployment, which can be used to distribute a single API
Management instance across any number of Azure regions. For more information, see How to deploy an
Azure API Management service instance to multiple Azure regions.

Use Traffic Manager to route HTTP requests to the primary region. If the Function App running in that
region becomes unavailable, Traffic Manager can fail over to a secondary region.

Cosmos DB supports multiple master regions, which enables writes to any region that you add to your
Cosmos DB account. If you don't enable multi-master, you can still fail over the primary write region. The
Cosmos DB client SDKs and the Azure Function bindings automatically handle the failover, so you don't
need to update any application configuration settings.

The GetStatus API in the reference implementation uses Azure AD to authenticate requests. Azure AD supports

https://docs.microsoft.com/azure/azure-functions/functions-scale
https://docs.microsoft.com/azure/cosmos-db/request-units
https://docs.microsoft.com/azure/cosmos-db/partition-data
https://docs.microsoft.com/azure/cosmos-db/partition-data
https://docs.microsoft.com/azure/api-management/api-management-howto-autoscale
https://docs.microsoft.com/azure/api-management/api-management-howto-deploy-multi-region
https://docs.microsoft.com/azure/traffic-manager/traffic-manager-overview
https://docs.microsoft.com/azure/cosmos-db/distribute-data-globally

AuthorizationAuthorization

the OpenID Connect protocol, which is an authentication protocol built on top of the OAuth 2 protocol.

In this architecture, the client application is a single-page application (SPA) that runs in the browser. This type of
client application cannot keep a client secret or an authorization code hidden, so the implicit grant flow is
appropriate. (See Which OAuth 2.0 flow should I use?). Here's the overall flow:

1. The user clicks the "Sign in" link in the web application.
2. The browser is redirected the Azure AD sign in page.
3. The user signs in.
4. Azure AD redirects back to the client application, including an access token in the URL fragment.
5. When the web application calls the API, it includes the access token in the Authentication header. The

application ID is sent as the audience ('aud') claim in the access token.
6. The backend API validates the access token.

To configure authentication:

Register an application in your Azure AD tenant. This generates an application ID, which the client includes
with the login URL.

Enable Azure AD authentication inside the Function App. For more information, see Authentication and
authorization in Azure App Service.

Add the validate-jwt policy to API Management to pre-authorize the request by validating the access token.

For more details, see the GitHub readme.

It's recommended to create separate app registrations in Azure AD for the client application and the backend API.
Grant the client application permission to call the API. This approach gives you the flexibility to define multiple
APIs and clients and control the permissions for each.

Within an API, use scopes to give applications fine-grained control over what permissions they request from a
user. For example, an API might have Read and Write scopes, and a particular client app might ask the user to
authorize Read permissions only.

In many applications, the backend API must check whether a user has permission to perform a given action. It's
recommended to use claims-based authorization, where information about the user is conveyed by the identity
provider (in this case, Azure AD) and used to make authorization decisions.

Some claims are provided inside the ID token that Azure AD returns to the client. You can get these claims from
within the function app by examining the X-MS-CLIENT-PRINCIPAL header in the request. For other claims, use
Microsoft Graph to query Azure AD (requires user consent during sign-in).

For example, when you register an application in Azure AD, you can define a set of application roles in the
application's registration manifest. When a user signs into the application, Azure AD includes a "roles" claim for
each role that the user has been granted (including roles that are inherited through group membership).

In the reference implementation, the function checks whether the authenticated user is a member of the
GetStatus application role. If not, the function returns an HTTP Unauthorized (401) response.

https://auth0.com/docs/api-auth/which-oauth-flow-to-use
https://docs.microsoft.com/azure/app-service/app-service-authentication-overview
https://docs.microsoft.com/azure/api-management/api-management-access-restriction-policies#ValidateJWT
https://github.com/mspnp/serverless-reference-implementation/blob/master/README.md
https://docs.microsoft.com/azure/active-directory/develop/v2-permissions-and-consent
https://en.wikipedia.org/wiki/Claims-based_identity
https://developer.microsoft.com/graph/docs/concepts/overview

[FunctionName("GetStatusFunction")]
public static Task<IActionResult> Run(
 [HttpTrigger(AuthorizationLevel.Function, "get", "post", Route = null)] HttpRequest req,
 [CosmosDB(
 databaseName: "%COSMOSDB_DATABASE_NAME%",
 collectionName: "%COSMOSDB_DATABASE_COL%",
 ConnectionStringSetting = "COSMOSDB_CONNECTION_STRING",
 Id = "{Query.deviceId}",
 PartitionKey = "{Query.deviceId}")] dynamic deviceStatus,
 ILogger log)
{
 log.LogInformation("Processing GetStatus request.");

 return req.HandleIfAuthorizedForRoles(new[] { GetDeviceStatusRoleName },
 async () =>
 {
 string deviceId = req.Query["deviceId"];
 if (deviceId == null)
 {
 return new BadRequestObjectResult("Missing DeviceId");
 }

 return await Task.FromResult<IActionResult>(deviceStatus != null
 ? (ActionResult)new OkObjectResult(deviceStatus)
 : new NotFoundResult());
 },
 log);
}

CORSCORS

<cors allow-credentials="true">
 <allowed-origins>
 <origin>[Website URL]</origin>
 </allowed-origins>
 <allowed-methods>
 <method>GET</method>
 </allowed-methods>
 <allowed-headers>
 <header>*</header>
 </allowed-headers>
</cors>

In this code example, HandleIfAuthorizedForRoles is an extension method that checks for the role claim and
returns HTTP 401 if the claim isn't found. You can find the source code here. Notice that
HandleIfAuthorizedForRoles takes an ILogger parameter. You should log unauthorized requests so that you have

an audit trail and can diagnose issues if needed. At the same time, avoid leaking any detailed information inside
the HTTP 401 response.

In this reference architecture, the web application and the API do not share the same origin. That means when the
application calls the API, it is a cross-origin request. Browser security prevents a web page from making AJAX
requests to another domain. This restriction is called the same-origin policy and prevents a malicious site from
reading sensitive data from another site. To enable a cross-origin request, add a Cross-Origin Resource Sharing
(CORS) policy to the API Management gateway:

In this example, the allow-credentials attribute is true. This authorizes the browser to send credentials (including
cookies) with the request. Otherwise, by default the browser does not send credentials with a cross-origin request.

https://github.com/mspnp/serverless-reference-implementation/blob/master/src/DroneStatus/dotnet/DroneStatusFunctionApp/HttpRequestAuthorizationExtensions.cs
https://docs.microsoft.com/azure/api-management/api-management-cross-domain-policies

NOTENOTE

Enforce HTTPSEnforce HTTPS

Lock down the function appLock down the function app

Protect application secretsProtect application secrets

Be very careful about setting allow-credentials to true, because it means a website can send the user's credentials to your
API on the user's behalf, without the user being aware. You must trust the allowed origin.

For maximum security, require HTTPS throughout the request pipeline:

{
 "apiVersion": "2018-01-01",
 "type": "apis",
 "name": "dronedeliveryapi",
 "dependsOn": [
 "[concat('Microsoft.ApiManagement/service/', variables('apiManagementServiceName'))]"
],
 "properties": {
 "displayName": "Drone Delivery API",
 "description": "Drone Delivery API",
 "path": "api",
 "protocols": ["HTTPS"]
 },
 ...
}

CDN . Azure CDN supports HTTPS on the *.azureedge.net subdomain by default. To enable HTTPS in the
CDN for custom domain names, see Tutorial: Configure HTTPS on an Azure CDN custom domain.

Static website hosting. Enable the "Secure transfer required" option on the Storage account. When this
option is enabled, the storage account only allows requests from secure HTTPS connections.

API Management. Configure the APIs to use HTTPS protocol only. You can configure this in the Azure
portal or through a Resource Manager template:

Azure Functions. Enable the "HTTPS Only" setting.

All calls to the function should go through the API gateway. You can achieve this as follows:

Configure the function app to require a function key. The API Management gateway will include the
function key when it calls the function app. This prevents clients from calling the function directly, bypassing
the gateway.

The API Management gateway has a static IP address. Restrict the Azure Function to allow only calls from
that static IP address. For more information, see Azure App Service Static IP Restrictions. (This feature is
available for Standard tier services only.)

Don't store application secrets, such as database credentials, in your code or configuration files. Instead, use App
settings, which are stored encrypted in Azure. For more information, see Security in Azure App Service and Azure
Functions.

Alternatively, you can store application secrets in Key Vault. This allows you to centralize the storage of secrets,
control their distribution, and monitor how and when secrets are being accessed. For more information, see
Configure an Azure web application to read a secret from Key Vault. However, note that Functions triggers and
bindings load their configuration settings from app settings. There is no built-in way to configure the triggers and
bindings to use Key Vault secrets.

https://docs.microsoft.com/azure/cdn/cdn-custom-ssl
https://docs.microsoft.com/azure/storage/common/storage-require-secure-transfer
https://docs.microsoft.com/azure/app-service/app-service-web-tutorial-custom-ssl#enforce-https
https://docs.microsoft.com/azure/api-management/api-management-faq#is-the-api-management-gateway-ip-address-constant-can-i-use-it-in-firewall-rules
https://docs.microsoft.com/azure/app-service/app-service-ip-restrictions
https://docs.microsoft.com/azure/app-service/app-service-security
https://docs.microsoft.com/azure/key-vault/tutorial-web-application-keyvault

DevOps considerations
DeploymentDeployment

API versioningAPI versioning

Deploy the solution

To deploy the function app, we recommend using package files ("Run from package"). Using this approach, you
upload a zip file to a Blob Storage container and the Functions runtime mounts the zip file as a read-only file
system. This is an atomic operation, which reduces the chance that a failed deployment will leave the application in
an inconsistent state. It can also improve cold start times, especially for Node.js apps, because all of the files are
swapped at once.

An API is a contract between a service and clients. In this architecture, the API contract is defined at the API
Management layer. API Management supports two distinct but complementary versioning concepts:

Versions allow API consumers to choose an API version based on their needs, such as v1 versus v2.

Revisions allow API administrators to make non-breaking changes in an API and deploy those changes,
along with a change log to inform API consumers about the changes.

If you make a breaking change in an API, publish a new version in API Management. Deploy the new version side-
by-side with the original version, in a separate Function App. This lets you migrate existing clients to the new API
without breaking client applications. Eventually, you can deprecate the previous version. API Management
supports several versioning schemes: URL path, HTTP header, or query string. For more information about API
versioning in general, see Versioning a RESTful web API.

For updates that are not breaking API changes, deploy the new version to a staging slot in the same Function App.
Verify the deployment succeeded and then swap the staged version with the production version. Publish a revision
in API Management.

To deploy this reference architecture, view the GitHub readme.

https://docs.microsoft.com/azure/azure-functions/run-functions-from-deployment-package
https://docs.microsoft.com/azure/api-management/api-management-get-started-publish-versions
https://docs.microsoft.com/azure/api-management/api-management-get-started-publish-versions#choose-a-versioning-scheme
https://github.com/mspnp/serverless-reference-implementation/blob/master/README.md

Serverless event processing using Azure Functions
3/13/2019 • 5 minutes to read • Edit Online

Architecture

NOTENOTE

This reference architecture shows a serverless, event-driven architecture that ingests a stream of data, processes
the data, and writes the results to a back-end database. A reference implementation for this architecture is available
on GitHub.

Event Hubs ingests the data stream. Event Hubs is designed for high-throughput data streaming scenarios.

For IoT scenarios, we recommend IoT Hub. IoT Hub has a built-in endpoint that’s compatible with the Azure Event Hubs API,
so you can use either service in this architecture with no major changes in the backend processing. For more information, see
Connecting IoT Devices to Azure: IoT Hub and Event Hubs.

Function App. Azure Functions is a serverless compute option. It uses an event-driven model, where a piece of
code (a “function”) is invoked by a trigger. In this architecture, when events arrive at Event Hubs, they trigger a
function that processes the events and writes the results to storage.

Function Apps are suitable for processing individual records from Event Hubs. For more complex stream
processing scenarios, consider Apache Spark using Azure Databricks, or Azure Stream Analytics.

Cosmos DB. Cosmos DB is a multi-model database service. For this scenario, the event-processing function stores
JSON records, using the Cosmos DB SQL API.

Queue storage. Queue storage is used for dead letter messages. If an error occurs while processing an event, the
function stores the event data in a dead letter queue for later processing. For more information, see Resiliency
Considerations.

Azure Monitor. Monitor collects performance metrics about the Azure services deployed in the solution. By
visualizing these in a dashboard, you can get visibility into the health of the solution.

Azure Pipelines. Pipelines is a continuous integration (CI) and continuous delivery (CD) service that builds, tests,
and deploys the application.

https://github.com/mspnp/architecture-center/blob/master/docs/reference-architectures/serverless/event-processing.md
https://azure.microsoft.com/solutions/serverless/
https://github.com/mspnp/serverless-reference-implementation
https://docs.microsoft.com/azure/event-hubs/
https://docs.microsoft.com/azure/iot-hub/iot-hub-compare-event-hubs
https://docs.microsoft.com/azure/azure-functions/functions-overview
https://docs.microsoft.com/azure/cosmos-db/introduction
https://docs.microsoft.com/azure/cosmos-db/sql-api-introduction
https://docs.microsoft.com/azure/storage/queues/storage-queues-introduction
https://docs.microsoft.com/azure/azure-monitor/overview
https://docs.microsoft.com/azure/devops/pipelines/index

Scalability considerations
Event HubsEvent Hubs

Cosmos DBCosmos DB

Resiliency considerations

The throughput capacity of Event Hubs is measured in throughput units. You can autoscale an event hub by
enabling auto-inflate, which automatically scales the throughput units based on traffic, up to a configured
maximum.

The Event Hub trigger in the function app scales according to the number of partitions in the event hub. Each
partition is assigned one function instance at a time. To maximize throughput, receive the events in a batch, instead
of one at a time.

Throughput capacity for Cosmos DB is measured in Request Units (RU). In order to scale a Cosmos DB container
past 10,000 RU, you must specify a partition key when you create the container, and include the partition key in
every document that you create.

Here are some characteristics of a good partition key:

The key value space is large.
There will be an even distribution of reads/writes per key value, avoiding hot keys.
The maximum data stored for any single key value will not exceed the maximum physical partition size (10 GB).
The partition key for a document won't change. You can't update the partition key on an existing document.

In the scenario for this reference architecture, the function stores exactly one document per device that is sending
data. The function continually updates the documents with latest device status, using an upsert operation. Device
ID is a good partition key for this scenario, because writes will be evenly distributed across the keys, and the size of
each partition will be strictly bounded, because there is a single document for each key value. For more
information about partition keys, see Partition and scale in Azure Cosmos DB.

When using the Event Hubs trigger with Functions, catch exceptions within your processing loop. If an unhandled
exception occurs, the Functions runtime does not retry the messages. If a message cannot be processed, put the
message into a dead letter queue. Use an out-of-band process to examine the messages and determine corrective
action.

The following code shows how the ingestion function catches exceptions and puts unprocessed messages onto a
dead letter queue.

https://docs.microsoft.com/azure/event-hubs/event-hubs-features#throughput-units
https://docs.microsoft.com/azure/event-hubs/event-hubs-auto-inflate
https://docs.microsoft.com/azure/azure-functions/functions-bindings-event-hubs
https://docs.microsoft.com/azure/cosmos-db/request-units
https://docs.microsoft.com/azure/cosmos-db/partition-data
https://docs.microsoft.com/azure/cosmos-db/partition-data

[FunctionName("RawTelemetryFunction")]
[StorageAccount("DeadLetterStorage")]
public static async Task RunAsync(
 [EventHubTrigger("%EventHubName%", Connection = "EventHubConnection", ConsumerGroup
="%EventHubConsumerGroup%")]EventData[] messages,
 [Queue("deadletterqueue")] IAsyncCollector<DeadLetterMessage> deadLetterMessages,
 ILogger logger)
{
 foreach (var message in messages)
 {
 DeviceState deviceState = null;

 try
 {
 deviceState = telemetryProcessor.Deserialize(message.Body.Array, logger);
 }
 catch (Exception ex)
 {
 logger.LogError(ex, "Error deserializing message", message.SystemProperties.PartitionKey,
message.SystemProperties.SequenceNumber);
 await deadLetterMessages.AddAsync(new DeadLetterMessage { Issue = ex.Message, EventData = message
});
 }

 try
 {
 await stateChangeProcessor.UpdateState(deviceState, logger);
 }
 catch (Exception ex)
 {
 logger.LogError(ex, "Error updating status document", deviceState);
 await deadLetterMessages.AddAsync(new DeadLetterMessage { Issue = ex.Message, EventData = message,
DeviceState = deviceState });
 }
 }
}

public class DeadLetterMessage
{
 public string Issue { get; set; }
 public EventData EventData { get; set; }
 public DeviceState DeviceState { get; set; }
}

Disaster recovery considerations

Notice that the function uses the Queue storage output binding to put items in the queue.

The code shown above also logs exceptions to Application Insights. You can use the partition key and sequence
number to correlate dead letter messages with the exceptions in the logs.

Messages in the dead letter queue should have enough information so that you can understand the context of
error. In this example, the DeadLetterMessage class contains the exception message, the original event data, and the
deserialized event message (if available).

Use Azure Monitor to monitor the event hub. If you see there is input but no output, it means that messages are
not being processed. In that case, go into Log Analytics and look for exceptions or other errors.

The deployment shown here resides in a single Azure region. For a more resilient approach to disaster-recovery,
take advantage of geo-distribution features in the various services:

Event Hubs. Create two Event Hubs namespaces, a primary (active) namespace and a secondary (passive)

https://docs.microsoft.com/azure/azure-functions/functions-bindings-storage-queue#output
https://docs.microsoft.com/azure/azure-monitor/overview
https://docs.microsoft.com/azure/log-analytics/log-analytics-queries

Deploy the solution

namespace. Messages are automatically routed to the active namespace unless you fail over to the
secondary namespace. For more information, see Azure Event Hubs Geo-disaster recovery.

Function App. Deploy a second function app that is waiting to read from the secondary Event Hubs
namespace. This function writes to a secondary storage account for dead letter queue.

Cosmos DB. Cosmos DB supports multiple master regions, which enables writes to any region that you
add to your Cosmos DB account. If you don’t enable multi-master, you can still fail over the primary write
region. The Cosmos DB client SDKs and the Azure Function bindings automatically handle the failover, so
you don’t need to update any application configuration settings.

Azure Storage. Use RA-GRS storage for the dead letter queue. This creates a read-only replica in another
region. If the primary region becomes unavailable, you can read the items currently in the queue. In
addition, provision another storage account in the secondary region that the function can write to after a
fail-over.

To deploy this reference architecture, view the GitHub readme.

https://docs.microsoft.com/azure/event-hubs/event-hubs-geo-dr
https://docs.microsoft.com/azure/cosmos-db/distribute-data-globally
https://docs.microsoft.com/azure/storage/common/storage-redundancy-grs
https://github.com/mspnp/serverless-reference-implementation/blob/master/README.md

Run a Linux virtual machine on Azure
3/13/2019 • 8 minutes to read • Edit Online

Resource group

Virtual machine

Provisioning a virtual machine (VM) in Azure requires some additional components besides the VM itself,
including networking and storage resources. This article shows best practices for running a Linux VM on Azure.

A resource group is a logical container that holds related Azure resources. In general, group resources based on
their lifetime and who will manage them.

Put closely associated resources that share the same lifecycle into the same resource group. Resource groups allow
you to deploy and monitor resources as a group and track billing costs by resource group. You can also delete
resources as a set, which is useful for test deployments. Assign meaningful resource names to simplify locating a
specific resource and understanding its role. For more information, see Recommended Naming Conventions for
Azure Resources.

You can provision a VM from a list of published images, or from a custom managed image or virtual hard disk
(VHD) file uploaded to Azure Blob storage. Azure supports running various popular Linux distributions, including
CentOS, Debian, Red Hat Enterprise, Ubuntu, and FreeBSD. For more information, see Azure and Linux.

Azure offers many different virtual machine sizes. For more information, see Sizes for virtual machines in Azure. If
you are moving an existing workload to Azure, start with the VM size that's the closest match to your on-premises
servers. Then measure the performance of your actual workload in terms of CPU, memory, and disk input/output
operations per second (IOPS), and adjust the size as needed.

Generally, choose an Azure region that is closest to your internal users or customers. Not all VM sizes are available

https://github.com/mspnp/architecture-center/blob/master/docs/reference-architectures/n-tier/linux-vm.md
https://docs.microsoft.com/azure/azure-resource-manager/resource-group-overview
https://docs.microsoft.com/azure/azure-resource-manager/resource-group-overview
https://docs.microsoft.com/azure/virtual-machines/virtual-machines-linux-azure-overview
https://docs.microsoft.com/azure/virtual-machines/virtual-machines-linux-sizes

az vm list-sizes --location <location>

Disks

Create a partition.
sudo fdisk /dev/sdc # Enter 'n' to partition, 'w' to write the change.

Create a file system.
sudo mkfs -t ext3 /dev/sdc1

Mount the drive.
sudo mkdir /data1
sudo mount /dev/sdc1 /data1

Network

in all regions. For more information, see Services by region. For a list of the VM sizes available in a specific region,
run the following command from the Azure command-line interface (CLI):

For information about choosing a published VM image, see Find Linux VM images.

For best disk I/O performance, we recommend Premium Storage, which stores data on solid-state drives (SSDs).
Cost is based on the capacity of the provisioned disk. IOPS and throughput (that is, data transfer rate) also depend
on disk size, so when you provision a disk, consider all three factors (capacity, IOPS, and throughput).

We also recommend using Managed Disks. Managed disks simplify disk management by handling the storage for
you. Managed disks do not require a storage account. You simply specify the size and type of disk and it is
deployed as a highly available resource

The OS disk is a VHD stored in Azure Storage, so it persists even when the host machine is down. For Linux VMs,
the OS disk is /dev/sda1 . We also recommend creating one or more data disks, which are persistent VHDs used
for application data.

When you create a VHD, it is unformatted. Log into the VM to format the disk. In the Linux shell, data disks are
displayed as /dev/sdc , /dev/sdd , and so on. You can run lsblk to list the block devices, including the disks. To
use a data disk, create a partition and file system, and mount the disk. For example:

When you add a data disk, a logical unit number (LUN) ID is assigned to the disk. Optionally, you can specify the
LUN ID — for example, if you're replacing a disk and want to retain the same LUN ID, or you have an application
that looks for a specific LUN ID. However, remember that LUN IDs must be unique for each disk.

You may want to change the I/O scheduler to optimize for performance on SSDs because the disks for VMs with
premium storage accounts are SSDs. A common recommendation is to use the NOOP scheduler for SSDs, but
you should use a tool such as iostat to monitor disk I/O performance for your workload.

The VM is created with a temporary disk. This disk is stored on a physical drive on the host machine. It is not saved
in Azure Storage and may be deleted during reboots and other VM lifecycle events. Use this disk only for
temporary data, such as page or swap files. For Linux VMs, the temporary disk is /dev/sdb1 and is mounted at
/mnt/resource or /mnt .

The networking components include the following resources:

Virtual network. Every VM is deployed into a virtual network that can be segmented into multiple subnets.

Network interface (NIC). The NIC enables the VM to communicate with the virtual network. If you need
multiple NICs for your VM, be aware that a maximum number of NICs is defined for each VM size.

https://azure.microsoft.com/regions/#services
https://docs.microsoft.com/azure/virtual-machines/virtual-machines-linux-cli-ps-findimage
https://docs.microsoft.com/azure/virtual-machines/linux/premium-storage
https://docs.microsoft.com/azure/storage/storage-managed-disks-overview
https://docs.microsoft.com/azure/storage/storage-introduction
https://docs.microsoft.com/azure/virtual-machines/virtual-machines-linux-about-disks-vhds
https://en.wikipedia.org/wiki/Iostat
https://docs.microsoft.com/azure/virtual-machines/virtual-machines-linux-sizes

Operations

Security considerations

Public IP address. A public IP address is needed to communicate with the VM — for example, via remote
desktop (RDP). The public IP address can be dynamic or static. The default is dynamic.

Reserve a static IP address if you need a fixed IP address that won't change — for example, if you need to
create a DNS 'A' record or add the IP address to a safe list.

You can also create a fully qualified domain name (FQDN) for the IP address. You can then register a
CNAME record in DNS that points to the FQDN. For more information, see Create a fully qualified domain
name in the Azure portal.

Network security group (NSG). Network security groups are used to allow or deny network traffic to
VMs. NSGs can be associated either with subnets or with individual VM instances.

All NSGs contain a set of default rules, including a rule that blocks all inbound Internet traffic. The default rules
cannot be deleted, but other rules can override them. To enable Internet traffic, create rules that allow inbound
traffic to specific ports — for example, port 80 for HTTP. To enable SSH, add an NSG rule that allows inbound
traffic to TCP port 22.

SSH. Before you create a Linux VM, generate a 2048-bit RSA public-private key pair. Use the public key file when
you create the VM. For more information, see How to Use SSH with Linux and Mac on Azure.

Diagnostics. Enable monitoring and diagnostics, including basic health metrics, diagnostics infrastructure logs,
and boot diagnostics. Boot diagnostics can help you diagnose boot failure if your VM gets into a non-bootable
state. Create an Azure Storage account to store the logs. A standard locally redundant storage (LRS) account is
sufficient for diagnostic logs. For more information, see Enable monitoring and diagnostics.

Availability. Your VM may be affected by planned maintenance or unplanned downtime. You can use VM reboot
logs to determine whether a VM reboot was caused by planned maintenance. For higher availability, deploy
multiple VMs in an availability set. This configuration provides a higher service level agreement (SLA).

Backups To protect against accidental data loss, use the Azure Backup service to back up your VMs to geo-
redundant storage. Azure Backup provides application-consistent backups.

Stopping a VM. Azure makes a distinction between "stopped" and "deallocated" states. You are charged when the
VM status is stopped, but not when the VM is deallocated. In the Azure portal, the Stop button deallocates the VM.
If you shut down through the OS while logged in, the VM is stopped but not deallocated, so you will still be
charged.

Deleting a VM. If you delete a VM, the VHDs are not deleted. That means you can safely delete the VM without
losing data. However, you will still be charged for storage. To delete the VHD, delete the file from Blob storage. To
prevent accidental deletion, use a resource lock to lock the entire resource group or lock individual resources, such
as a VM.

Use Azure Security Center to get a central view of the security state of your Azure resources. Security Center
monitors potential security issues and provides a comprehensive picture of the security health of your deployment.
Security Center is configured per Azure subscription. Enable security data collection as described in Onboard your
Azure subscription to Security Center Standard. When data collection is enabled, Security Center automatically
scans any VMs created under that subscription.

Patch management. If enabled, Security Center checks whether any security and critical updates are missing. Use
Group Policy settings on the VM to enable automatic system updates.

Antimalware. If enabled, Security Center checks whether antimalware software is installed. You can also use

https://docs.microsoft.com/azure/virtual-network/virtual-networks-reserved-public-ip
https://en.wikipedia.org/wiki/CNAME_record
https://docs.microsoft.com/azure/virtual-machines/virtual-machines-linux-portal-create-fqdn
https://docs.microsoft.com/azure/virtual-network/virtual-networks-nsg
https://docs.microsoft.com/azure/virtual-network/virtual-networks-nsg#default-rules
https://docs.microsoft.com/azure/virtual-machines/virtual-machines-linux-mac-create-ssh-keys
https://azure.microsoft.com/blog/boot-diagnostics-for-virtual-machines-v2/
https://docs.microsoft.com/azure/monitoring-and-diagnostics/insights-how-to-use-diagnostics
https://docs.microsoft.com/azure/virtual-machines/virtual-machines-linux-planned-maintenance
https://docs.microsoft.com/azure/virtual-machines/virtual-machines-linux-manage-availability
https://azure.microsoft.com/blog/viewing-vm-reboot-logs/
https://docs.microsoft.com/azure/virtual-machines/linux/manage-availability#configure-multiple-virtual-machines-in-an-availability-set-for-redundancy
https://azure.microsoft.com/support/legal/sla/virtual-machines
https://docs.microsoft.com/azure/backup/
https://docs.microsoft.com/azure/storage/storage-introduction
https://docs.microsoft.com/azure/resource-group-lock-resources
https://docs.microsoft.com/azure/security-center/security-center-intro
https://docs.microsoft.com/azure/security-center/security-center-get-started
https://docs.microsoft.com/windows-server/administration/windows-server-update-services/deploy/4-configure-group-policy-settings-for-automatic-updates

NOTENOTE

Next steps

Security Center to install antimalware software from inside the Azure portal.

Access control. Use role-based access control (RBAC) to control access to Azure resources. RBAC lets you assign
authorization roles to members of your DevOps team. For example, the Reader role can view Azure resources but
not create, manage, or delete them. Some permissions are specific to an Azure resource type. For example, the
Virtual Machine Contributor role can restart or deallocate a VM, reset the administrator password, create a new
VM, and so on. Other built-in RBAC roles that may be useful for this architecture include DevTest Labs User and
Network Contributor.

RBAC does not limit the actions that a user logged into a VM can perform. Those permissions are determined by the account
type on the guest OS.

Audit logs. Use audit logs to see provisioning actions and other VM events.

Data encryption. Use Azure Disk Encryption if you need to encrypt the OS and data disks.

To provision a Linux VM, see Create and Manage Linux VMs with the Azure CLI
For a complete N-tier architecture on Linux VMs, see Linux N-tier application in Azure with Apache Cassandra.

https://docs.microsoft.com/azure/active-directory/role-based-access-control-what-is
https://docs.microsoft.com/azure/active-directory/role-based-access-built-in-roles
https://docs.microsoft.com/azure/active-directory/role-based-access-built-in-roles#devtest-labs-user
https://docs.microsoft.com/azure/active-directory/role-based-access-built-in-roles#network-contributor
https://azure.microsoft.com/blog/analyze-azure-audit-logs-in-powerbi-more/
https://docs.microsoft.com/azure/security/azure-security-disk-encryption
https://docs.microsoft.com/azure/virtual-machines/linux/tutorial-manage-vm

Run a Windows virtual machine on Azure
3/13/2019 • 6 minutes to read • Edit Online

Resource group

Virtual machine

Provisioning a virtual machine (VM) in Azure requires some additional components besides the VM itself,
including networking and storage resources. This article shows best practices for running a Windows VM on
Azure.

A resource group is a logical container that holds related Azure resources. In general, group resources based on
their lifetime and who will manage them.

Put closely associated resources that share the same lifecycle into the same resource group. Resource groups allow
you to deploy and monitor resources as a group and track billing costs by resource group. You can also delete
resources as a set, which is very useful for test deployments. Assign meaningful resource names to simplify
locating a specific resource and understanding its role. For more information, see Recommended Naming
Conventions for Azure Resources.

You can provision a VM from a list of published images, or from a custom managed image or virtual hard disk
(VHD) file uploaded to Azure Blob storage.

Azure offers many different virtual machine sizes. For more information, see Sizes for virtual machines in Azure. If
you are moving an existing workload to Azure, start with the VM size that's the closest match to your on-premises
servers. Then measure the performance of your actual workload in terms of CPU, memory, and disk input/output
operations per second (IOPS), and adjust the size as needed.

Generally, choose an Azure region that is closest to your internal users or customers. Not all VM sizes are available

https://github.com/mspnp/architecture-center/blob/master/docs/reference-architectures/n-tier/windows-vm.md
https://docs.microsoft.com/azure/azure-resource-manager/resource-group-overview
https://docs.microsoft.com/azure/azure-resource-manager/resource-group-overview
https://docs.microsoft.com/azure/virtual-machines/virtual-machines-windows-sizes

az vm list-sizes --location <location>

Disks

Network

Operations

in all regions. For more information, see Services by region. For a list of the VM sizes available in a specific region,
run the following command from the Azure command-line interface (CLI):

For information about choosing a published VM image, see Find Windows VM images.

For best disk I/O performance, we recommend Premium Storage, which stores data on solid-state drives (SSDs).
Cost is based on the capacity of the provisioned disk. IOPS and throughput also depend on disk size, so when you
provision a disk, consider all three factors (capacity, IOPS, and throughput).

We also recommend using Managed Disks. Managed disks simplify disk management by handling the storage for
you. Managed disks do not require a storage account. You simply specify the size and type of disk and it is
deployed as a highly available resource

The OS disk is a VHD stored in Azure Storage, so it persists even when the host machine is down. We also
recommend creating one or more data disks, which are persistent VHDs used for application data. When possible,
install applications on a data disk, not the OS disk. Some legacy applications might need to install components on
the C: drive; in that case, you can resize the OS disk using PowerShell.

The VM is also created with a temporary disk (the D: drive on Windows). This disk is stored on a physical drive
on the host machine. It is not saved in Azure Storage and may be deleted during reboots and other VM lifecycle
events. Use this disk only for temporary data, such as page or swap files.

The networking components include the following resources:

Virtual network. Every VM is deployed into a virtual network that can be segmented into multiple subnets.

Network interface (NIC). The NIC enables the VM to communicate with the virtual network. If you need
multiple NICs for your VM, be aware that a maximum number of NICs is defined for each VM size.

Public IP address. A public IP address is needed to communicate with the VM — for example, via remote
desktop (RDP). The public IP address can be dynamic or static. The default is dynamic.

Reserve a static IP address if you need a fixed IP address that won't change — for example, if you need to
create a DNS 'A' record or add the IP address to a safe list.

You can also create a fully qualified domain name (FQDN) for the IP address. You can then register a
CNAME record in DNS that points to the FQDN. For more information, see Create a fully qualified domain
name in the Azure portal.

Network security group (NSG). Network security groups are used to allow or deny network traffic to
VMs. NSGs can be associated either with subnets or with individual VM instances.

All NSGs contain a set of default rules, including a rule that blocks all inbound Internet traffic. The default rules
cannot be deleted, but other rules can override them. To enable Internet traffic, create rules that allow inbound
traffic to specific ports — for example, port 80 for HTTP. To enable RDP, add an NSG rule that allows inbound
traffic to TCP port 3389.

Diagnostics. Enable monitoring and diagnostics, including basic health metrics, diagnostics infrastructure logs,

https://azure.microsoft.com/regions/#services
https://docs.microsoft.com/azure/virtual-machines/virtual-machines-windows-cli-ps-findimage
https://docs.microsoft.com/azure/virtual-machines/windows/premium-storage
https://docs.microsoft.com/azure/storage/storage-managed-disks-overview
https://docs.microsoft.com/azure/storage/storage-introduction
https://docs.microsoft.com/azure/virtual-machines/virtual-machines-windows-about-disks-vhds
https://docs.microsoft.com/azure/virtual-machines/virtual-machines-windows-expand-os-disk
https://docs.microsoft.com/azure/virtual-machines/virtual-machines-windows-sizes
https://docs.microsoft.com/azure/virtual-network/virtual-networks-reserved-public-ip
https://en.wikipedia.org/wiki/CNAME_record
https://docs.microsoft.com/azure/virtual-machines/virtual-machines-windows-portal-create-fqdn
https://docs.microsoft.com/azure/virtual-network/virtual-networks-nsg
https://docs.microsoft.com/azure/virtual-network/virtual-networks-nsg#default-rules

Security considerations

NOTENOTE

Next steps

and boot diagnostics. Boot diagnostics can help you diagnose boot failure if your VM gets into a non-bootable
state. Create an Azure Storage account to store the logs. A standard locally redundant storage (LRS) account is
sufficient for diagnostic logs. For more information, see Enable monitoring and diagnostics.

Availability. Your VM may be affected by planned maintenance or unplanned downtime. You can use VM reboot
logs to determine whether a VM reboot was caused by planned maintenance. For higher availability, deploy
multiple VMs in an availability set. This configuration provides a higher service level agreement (SLA).

Backups To protect against accidental data loss, use the Azure Backup service to back up your VMs to geo-
redundant storage. Azure Backup provides application-consistent backups.

Stopping a VM. Azure makes a distinction between "stopped" and "deallocated" states. You are charged when the
VM status is stopped, but not when the VM is deallocated. In the Azure portal, the Stop button deallocates the VM.
If you shut down through the OS while logged in, the VM is stopped but not deallocated, so you will still be
charged.

Deleting a VM. If you delete a VM, the VHDs are not deleted. That means you can safely delete the VM without
losing data. However, you will still be charged for storage. To delete the VHD, delete the file from Blob storage. To
prevent accidental deletion, use a resource lock to lock the entire resource group or lock individual resources, such
as a VM.

Use Azure Security Center to get a central view of the security state of your Azure resources. Security Center
monitors potential security issues and provides a comprehensive picture of the security health of your deployment.
Security Center is configured per Azure subscription. Enable security data collection as described in Onboard your
Azure subscription to Security Center Standard. When data collection is enabled, Security Center automatically
scans any VMs created under that subscription.

Patch management. If enabled, Security Center checks whether any security and critical updates are missing. Use
Group Policy settings on the VM to enable automatic system updates.

Antimalware. If enabled, Security Center checks whether antimalware software is installed. You can also use
Security Center to install antimalware software from inside the Azure portal.

Access control. Use role-based access control (RBAC) to control access to Azure resources. RBAC lets you assign
authorization roles to members of your DevOps team. For example, the Reader role can view Azure resources but
not create, manage, or delete them. Some permissions are specific to an Azure resource type. For example, the
Virtual Machine Contributor role can restart or deallocate a VM, reset the administrator password, create a new
VM, and so on. Other built-in RBAC roles that may be useful for this architecture include DevTest Labs User and
Network Contributor.

RBAC does not limit the actions that a user logged into a VM can perform. Those permissions are determined by the account
type on the guest OS.

Audit logs. Use audit logs to see provisioning actions and other VM events.

Data encryption. Use Azure Disk Encryption if you need to encrypt the OS and data disks.

To provision a Windows VM, see Create and Manage Windows VMs with Azure PowerShell
For a complete N-tier architecture on Windows VMs, see Windows N-tier application on Azure with SQL
Server.

https://azure.microsoft.com/blog/boot-diagnostics-for-virtual-machines-v2/
https://docs.microsoft.com/azure/monitoring-and-diagnostics/insights-how-to-use-diagnostics
https://docs.microsoft.com/azure/virtual-machines/virtual-machines-windows-planned-maintenance
https://docs.microsoft.com/azure/virtual-machines/virtual-machines-windows-manage-availability
https://azure.microsoft.com/blog/viewing-vm-reboot-logs/
https://docs.microsoft.com/azure/virtual-machines/windows/manage-availability#configure-multiple-virtual-machines-in-an-availability-set-for-redundancy
https://azure.microsoft.com/support/legal/sla/virtual-machines
https://docs.microsoft.com/azure/backup/
https://docs.microsoft.com/azure/storage/storage-introduction
https://docs.microsoft.com/azure/resource-group-lock-resources
https://docs.microsoft.com/azure/security-center/security-center-intro
https://docs.microsoft.com/azure/security-center/security-center-get-started
https://docs.microsoft.com/windows-server/administration/windows-server-update-services/deploy/4-configure-group-policy-settings-for-automatic-updates
https://docs.microsoft.com/azure/active-directory/role-based-access-control-what-is
https://docs.microsoft.com/azure/active-directory/role-based-access-built-in-roles
https://docs.microsoft.com/azure/active-directory/role-based-access-built-in-roles#devtest-labs-user
https://docs.microsoft.com/azure/active-directory/role-based-access-built-in-roles#network-contributor
https://azure.microsoft.com/blog/analyze-azure-audit-logs-in-powerbi-more/
https://docs.microsoft.com/azure/security/azure-security-disk-encryption
https://docs.microsoft.com/azure/virtual-machines/windows/tutorial-manage-vm

Run a Jenkins server on Azure
3/13/2019 • 12 minutes to read • Edit Online

Architecture

This reference architecture shows how to deploy and operate a scalable, enterprise-grade Jenkins server on Azure
secured with single sign-on (SSO). The architecture also uses Azure Monitor to monitor the state of the Jenkins
server. Deploy this solution.

Download a Visio file that contains this architecture diagram.

This architecture supports disaster recovery with Azure services but does not cover more advanced scale-out
scenarios involving multiple masters or high availability (HA) with no downtime. For general insights about the
various Azure components, including a step-by-step tutorial about building out a CI/CD pipeline on Azure, see
Jenkins on Azure.

The focus of this document is on the core Azure operations needed to support Jenkins, including the use of Azure
Storage to maintain build artifacts, the security items needed for SSO, other services that can be integrated, and
scalability for the pipeline. The architecture is designed to work with an existing source control repository. For
example, a common scenario is to start Jenkins jobs based on GitHub commits.

The architecture consists of the following components:

Resource group. A resource group is used to group Azure assets so they can be managed by lifetime,
owner, and other criteria. Use resource groups to deploy and monitor Azure assets as a group and track
billing costs by resource group. You can also delete resources as a set, which is very useful for test
deployments.

Jenkins server. A virtual machine is deployed to run Jenkins as an automation server and serve as Jenkins
Master. This reference architecture uses the solution template for Jenkins on Azure, installed on a Linux
(Ubuntu 16.04 LTS) virtual machine on Azure. Other Jenkins offerings are available in the Azure
Marketplace.

https://github.com/mspnp/architecture-center/blob/master/docs/reference-architectures/jenkins/index.md
https://archcenter.blob.core.windows.net/cdn/Jenkins-architecture.vsdx
https://docs.microsoft.com/azure/jenkins/
https://docs.microsoft.com/azure/azure-resource-manager/resource-group-overview
https://azuremarketplace.microsoft.com/marketplace/apps/azure-oss.jenkins?tab=Overview
https://azure.microsoft.com/blog/announcing-the-solution-template-for-jenkins-on-azure/

Recommendations

Azure ADAzure AD

StorageStorage

NOTENOTE
Nginx is installed on the VM to act as a reverse proxy to Jenkins. You can configure Nginx to enable SSL for the
Jenkins server.

Virtual network. A virtual network connects Azure resources to each other and provides logical isolation.
In this architecture, the Jenkins server runs in a virtual network.

Subnets. The Jenkins server is isolated in a subnet to make it easier to manage and segregate network
traffic without affecting performance.

NSGs. Use network security groups (NSGs) to restrict network traffic from the Internet to the subnet of a
virtual network.

Managed disks. A managed disk is a persistent virtual hard disk (VHD) used for application storage and
also to maintain the state of the Jenkins server and provide disaster recovery. Data disks are stored in Azure
Storage. For high performance, premium storage is recommended.

Azure Blob Storage. The Windows Azure Storage plugin uses Azure Blob Storage to store the build
artifacts that are created and shared with other Jenkins builds.

Azure Active Directory (Azure AD). Azure AD supports user authentication, allowing you to set up SSO.
Azure AD service principals define the policy and permissions for each role authorization in the workflow,
using role-based access control (RBAC). Each service principal is associated with a Jenkins job.

Azure Key Vault. To manage secrets and cryptographic keys used to provision Azure resources when
secrets are required, this architecture uses Key Vault. For added help storing secrets associated with the
application in the pipeline, see also the Azure Credentials plugin for Jenkins.

Azure monitoring services. This service monitors the Azure virtual machine hosting Jenkins. This
deployment monitors the virtual machine status and CPU utilization and sends alerts.

The following recommendations apply for most scenarios. Follow these recommendations unless you have a
specific requirement that overrides them.

The Azure AD tenant for your Azure subscription is used to enable SSO for Jenkins users and set up service
principals that enable Jenkins jobs to access Azure resources.

SSO authentication and authorization are implemented by the Azure AD plugin installed on the Jenkins server.
SSO allows you to authenticate using your organization credentials from Azure AD when logging on to the
Jenkins server. When configuring the Azure AD plugin, you can specify the level of a user’s authorized access to
the Jenkins server.

To provide Jenkins jobs with access to Azure resources, an Azure AD administrator creates service principals.
These grant applications — in this case, the Jenkins jobs — authenticated, authorized access to Azure resources.

RBAC further defines and controls access to Azure resources for users or service principals through their assigned
role. Both built-in and custom roles are supported. Roles also help secure the pipeline and ensure that a user’s or
agent’s responsibilities are assigned and authorized correctly. In addition, RBAC can be set up to limit access to
Azure assets. For example, a user can be limited to working with only the assets in a particular resource group.

Use the Jenkins Windows Azure Storage plugin, which is installed from the Azure Marketplace, to store build

https://docs.microsoft.com/azure/virtual-network/virtual-networks-overview
https://docs.microsoft.com/azure/virtual-network/virtual-network-manage-subnet
https://docs.microsoft.com/azure/virtual-network/virtual-networks-nsg
https://docs.microsoft.com/azure/virtual-machines/linux/managed-disks-overview
https://docs.microsoft.com/azure/virtual-machines/linux/premium-storage
https://plugins.jenkins.io/windows-azure-storage
https://docs.microsoft.com/azure/active-directory/
https://docs.microsoft.com/azure/active-directory/develop/active-directory-application-objects
https://docs.microsoft.com/azure/active-directory/role-based-access-control-what-is
https://docs.microsoft.com/azure/key-vault/
https://plugins.jenkins.io/azure-credentials
https://docs.microsoft.com/azure/monitoring-and-diagnostics/
https://docs.microsoft.com/azure/active-directory/
https://docs.microsoft.com/azure/active-directory/develop/active-directory-application-objects
https://docs.microsoft.com/azure/active-directory/develop/active-directory-integrating-applications
https://docs.microsoft.com/azure/active-directory/role-based-access-control-what-is
https://wiki.jenkins.io/display/JENKINS/Windows+Azure+Storage+Plugin

Jenkins Azure pluginsJenkins Azure plugins

Scalability considerations

Scaling the Jenkins serverScaling the Jenkins server

artifacts that can be shared with other builds and tests. An Azure Storage account must be configured before this
plugin can be used by the Jenkins jobs.

The solution template for Jenkins on Azure installs several Azure plugins. The Azure DevOps Team builds and
maintains the solution template and the following plugins, which work with other Jenkins offerings in Azure
Marketplace as well as any Jenkins master set up on premises:

Azure AD plugin allows the Jenkins server to support SSO for users based on Azure AD.

Azure VM Agents plugin uses an Azure Resource Manager template to create Jenkins agents in Azure
virtual machines.

Azure Credentials plugin allows you to store Azure service principal credentials in Jenkins.

Windows Azure Storage plugin uploads build artifacts to, or downloads build dependencies from, Azure
Blob storage.

We also recommend reviewing the growing list of all available Azure plugins that work with Azure resources. To
see all the latest list, visit Jenkins Plugin Index and search for Azure. For example, the following plugins are
available for deployment:

Azure Container Agents helps you to run a container as an agent in Jenkins.

Kubernetes Continuous Deploy deploys resource configurations to a Kubernetes cluster.

Azure Container Service deploys configurations to Azure Container Service with Kubernetes, DC/OS with
Marathon, or Docker Swarm.

Azure Functions deploys your project to Azure Function.

Azure App Service deploys to Azure App Service.

Jenkins can scale to support very large workloads. For elastic builds, do not run builds on the Jenkins master
server. Instead, offload build tasks to Jenkins agents, which can be elastically scaled in and out as need. Consider
two options for scaling agents:

Use the Azure VM Agents plugin to create Jenkins agents that run in Azure VMs. This plugin enables elastic
scale-out for agents and can use distinct types of virtual machines. You can select a different base image
from Azure Marketplace or use a custom image. For details about how the Jenkins agents scale, see
Architecting for Scale in the Jenkins documentation.

Use the Azure Container Agents plugin to run a container as an agent in either Azure Container Service
with Kubernetes, or Azure Container Instances.

Virtual machines generally cost more to scale than containers. To use containers for scaling, however, your build
process must run with containers.

Also, use Azure Storage to share build artifacts that may be used in the next stage of the pipeline by other build
agents.

You can scale the Jenkins server VM up or down by changing the VM size. The solution template for Jenkins on
Azure specifies the DS2 v2 size (with two CPUs, 7 GB) by default. This size handles a small to medium team
workload. Change the VM size by choosing a different option when building out the server.

Selecting the correct server size depends on the size of the expected workload. The Jenkins community maintains

https://plugins.jenkins.io/azure-ad
https://plugins.jenkins.io/azure-vm-agents
https://plugins.jenkins.io/azure-credentials
https://plugins.jenkins.io/windows-azure-storage
https://docs.microsoft.com/azure/storage/common/storage-java-jenkins-continuous-integration-solution
https://plugins.jenkins.io
https://aka.ms/azcontaineragent
https://aka.ms/azjenkinsk8s
https://aka.ms/azjenkinsacs
https://aka.ms/azjenkinsfunctions
https://plugins.jenkins.io/azure-app-service
https://wiki.jenkins.io/display/JENKINS/Azure+VM+Agents+plugin
https://jenkins.io/doc/book/architecting-for-scale/
https://aka.ms/azcontaineragent
https://docs.microsoft.com/azure/container-service/kubernetes/
https://docs.microsoft.com/azure/container-instances/
https://azuremarketplace.microsoft.com/marketplace/apps/azure-oss.jenkins?tab=Overview

Availability considerations

Security considerations

a selection guide to help identify the configuration that best meets your requirements. Azure offers many sizes for
Linux VMs to meet any requirements. For more information about scaling the Jenkins master, refer to the Jenkins
community of best practices, which also includes details about scaling Jenkins master.

Availability in the context of a Jenkins server means being able to recover any state information associated with
your workflow, such as test results, libraries you have created, or other artifacts. Critical workflow state or artifacts
must be maintained to recover the workflow if the Jenkins server goes down. To assess your availability
requirements, consider two common metrics:

Recovery Time Objective (RTO) specifies how long you can go without Jenkins.

Recovery Point Objective (RPO) indicates how much data you can afford to lose if a disruption in service
affects Jenkins.

In practice, RTO and RPO imply redundancy and backup. Availability is not a question of hardware recovery —
that is part of Azure — but rather ensuring you maintain the state of your Jenkins server. Microsoft offers a service
level agreement (SLA) for single VM instances. If this SLA doesn't meet your uptime requirements, make sure you
have a plan for disaster recovery, or consider using a multi-master Jenkins server deployment (not covered in this
document).

Consider using the disaster recovery scripts in step 7 of the deployment to create an Azure Storage account with
managed disks to store the Jenkins server state. If Jenkins goes down, it can be restored to the state stored in this
separate storage account.

Use the following approaches to help lock down security on a basic Jenkins server, since in its basic state, it is not
secure.

NOTENOTE

Set up a secure way to log into the Jenkins server. This architecture uses HTTP and has a public IP, but
HTTP is not secure by default. Consider setting up HTTPS on the Nginx server being used for a secure
logon.

When adding SSL to your server, create an NSG rule for the Jenkins subnet to open port 443. For more information,
see How to open ports to a virtual machine with the Azure portal .

Ensure that the Jenkins configuration prevents cross site request forgery (Manage Jenkins > Configure
Global Security). This is the default for Microsoft Jenkins Server.

Configure read-only access to the Jenkins dashboard by using the Matrix Authorization Strategy Plugin.

Install the Azure Credentials plugin to use Key Vault to handle secrets for the Azure assets, the agents in the
pipeline, and third-party components.

Use RBAC to restrict the access of the service principal to the minimum required to run the jobs. This helps
limit the scope of damage from a rogue job.

Jenkins jobs often require secrets to access Azure services that require authorization, such as Azure Container
Service. Use Key Vault along with the Azure Credential plugin to manage these secrets securely. Use Key Vault to
store service principal credentials, passwords, tokens, and other secrets.

To get a central view of the security state of your Azure resources, use Azure Security Center. Security Center
monitors potential security issues and provides a comprehensive picture of the security health of your deployment.

https://jenkins.io/doc/book/hardware-recommendations/
https://docs.microsoft.com/azure/virtual-machines/linux/sizes?toc=%2fazure%2fvirtual-machines%2flinux%2ftoc.json
https://jenkins.io/doc/book/architecting-for-scale/
https://azure.microsoft.com/support/legal/sla/virtual-machines/
https://jenkins.io/doc/book/architecting-for-scale/
https://github.com/Azure/jenkins/tree/master/disaster_recovery
https://www.digitalocean.com/community/tutorials/how-to-create-an-ssl-certificate-on-nginx-for-ubuntu-14-04
https://docs.microsoft.com/azure/virtual-machines/windows/nsg-quickstart-portal
https://plugins.jenkins.io/matrix-auth
https://plugins.jenkins.io/azure-credentials
https://docs.microsoft.com/azure/key-vault/
https://plugins.jenkins.io/azure-credentials
https://docs.microsoft.com/azure/security-center/security-center-intro

Manageability considerations

Communities

Deploy the solution

PrerequisitesPrerequisites

Step 1: Deploy the Jenkins serverStep 1: Deploy the Jenkins server

Step 2: Set up SSOStep 2: Set up SSO

Security Center is configured per Azure subscription. Enable security data collection as described in the Azure
Security Center quick start guide. When data collection is enabled, Security Center automatically scans any virtual
machines created under that subscription.

The Jenkins server has its own user management system, and the Jenkins community provides best practices for
securing a Jenkins instance on Azure. The solution template for Jenkins on Azure implements these best practices.

Use resource groups to organize the Azure resources that are deployed. Deploy production environments and
development/test environments in separate resource groups, so that you can monitor each environment’s
resources and roll up billing costs by resource group. You can also delete resources as a set, which is very useful
for test deployments.

Azure provides several features for monitoring and diagnostics of the overall infrastructure. To monitor CPU
usage, this architecture deploys Azure Monitor. For example, you can use Azure Monitor to monitor CPU
utilization, and send a notification if CPU usage exceeds 80 percent. (High CPU usage indicates that you might
want to scale up the Jenkins server VM.) You can also notify a designated user if the VM fails or becomes
unavailable.

Communities can answer questions and help you set up a successful deployment. Consider the following:

Jenkins Community Blog
Azure Forum
Stack Overflow Jenkins

For more best practices from the Jenkins community, visit Jenkins best practices.

To deploy this architecture, follow the steps below to install the solution template for Jenkins on Azure, then install
the scripts that set up monitoring and disaster recovery in the steps below.

This reference architecture requires an Azure subscription.
To create an Azure service principal, you must have admin rights to the Azure AD tenant that is associated with
the deployed Jenkins server.
These instructions assume that the Jenkins administrator is also an Azure user with at least Contributor
privileges.

1. Open the Azure Marketplace image for Jenkins in your web browser and select GET IT NOW from the left
side of the page.

2. Review the pricing details and select Continue, then select Create to configure the Jenkins server in the
Azure portal.

For detailed instructions, see Create a Jenkins server on an Azure Linux VM from the Azure portal . For this
reference architecture, it is sufficient to get the server up and running with the admin logon. Then you can
provision it to use various other services.

The step is run by the Jenkins administrator, who must also have a user account in the subscription’s Azure AD

https://docs.microsoft.com/azure/security-center/security-center-get-started
https://jenkins.io/blog/2017/04/20/secure-jenkins-on-azure/
https://docs.microsoft.com/azure/architecture/best-practices/monitoring
https://jenkins.io/node/
https://azure.microsoft.com/support/forums/
https://stackoverflow.com/tags/jenkins/info
https://wiki.jenkins.io/display/JENKINS/Jenkins+Best+Practices
https://azuremarketplace.microsoft.com/marketplace/apps/azure-oss.jenkins?tab=Overview
https://azuremarketplace.microsoft.com/marketplace/apps/azure-oss.jenkins?tab=Overview
https://docs.microsoft.com/azure/jenkins/install-jenkins-solution-template

Step 3: Provision Jenkins server with Azure VM Agent pluginStep 3: Provision Jenkins server with Azure VM Agent plugin

Step 4: Provision Jenkins server with Azure StorageStep 4: Provision Jenkins server with Azure Storage

Step 5: Provision Jenkins server with Azure Credential pluginStep 5: Provision Jenkins server with Azure Credential plugin

Step 6: Provision Jenkins server for monitoring by the Azure Monitor ServiceStep 6: Provision Jenkins server for monitoring by the Azure Monitor Service

Step 7: Provision Jenkins server with Managed Disks for disaster recoveryStep 7: Provision Jenkins server with Managed Disks for disaster recovery

directory and must be assigned the Contributor role.

Use the Azure AD Plugin from the Jenkins Update Center in the Jenkins server and follow the instructions to set
up SSO.

The step is run by the Jenkins administrator to set up the Azure VM Agent plugin, which is already installed.

Follow these steps to configure the plugin. For a tutorial about setting up service principals for the plugin, see
Scale your Jenkins deployments to meet demand with Azure VM agents.

The step is run by the Jenkins administrator, who sets up the Windows Azure Storage Plugin, which is already
installed.

Follow these steps to configure the plugin.

The step is run by the Jenkins administrator to set up the Azure Credential plugin, which is already installed.

Follow these steps to configure the plugin.

To set up monitoring for your Jenkins server, follow the instructions in Create metric alerts in Azure Monitor for
Azure services.

The Microsoft Jenkins product group has created disaster recovery scripts that build a managed disk used to save
the Jenkins state. If the server goes down, it can be restored to its latest state.

Download and run the disaster recovery scripts from GitHub.

You may wish to review the following Azure example scenario that demonstrates specific solutions using some of
the same technologies:

CI/CD pipeline for container-based workloads

https://plugins.jenkins.io/azure-ad
https://plugins.jenkins.io/azure-vm-agents
https://docs.microsoft.com/azure/jenkins/jenkins-azure-vm-agents
https://plugins.jenkins.io/windows-azure-storage
https://plugins.jenkins.io/azure-credentials
https://docs.microsoft.com/azure/monitoring-and-diagnostics/insights-alerts-portal
https://github.com/Azure/jenkins/tree/master/disaster_recovery
https://docs.microsoft.com/azure/architecture/example-scenario
https://docs.microsoft.com/azure/architecture/example-scenario/apps/devops-with-aks

Windows N-tier application on Azure with SQL
Server
3/13/2019 • 12 minutes to read • Edit Online

Architecture

This reference architecture shows how to deploy VMs and a virtual network configured for an N-tier application,
using SQL Server on Windows for the data tier. Deploy this solution.

Download a Visio file of this architecture.

The architecture has the following components:

Resource group. Resource groups are used to group resources so they can be managed by lifetime, owner,
or other criteria.

Virtual network (VNet) and subnets. Every Azure VM is deployed into a VNet that can be segmented
into subnets. Create a separate subnet for each tier.

Application gateway. Azure Application Gateway is a layer 7 load balancer. In this architecture, it routes
HTTP requests to the web front end. Application Gateway also provides a web application firewall (WAF)
that protects the application from common exploits and vulnerabilities.

NSGs. Use network security groups (NSGs) to restrict network traffic within the VNet. For example, in the
three-tier architecture shown here, the database tier does not accept traffic from the web front end, only
from the business tier and the management subnet.

DDoS Protection. Although the Azure platform provides basic protection against distributed denial of
service (DDoS) attacks, we recommend using DDoS Protection Standard, which has enhanced DDoS
mitigation features. See Security considerations.

Virtual machines. For recommendations on configuring VMs, see Run a Windows VM on Azure and Run
a Linux VM on Azure.

Availability sets. Create an availability set for each tier, and provision at least two VMs in each tier, which

https://github.com/mspnp/architecture-center/blob/master/docs/reference-architectures/n-tier/n-tier-sql-server.md
https://archcenter.blob.core.windows.net/cdn/vm-reference-architectures.vsdx
https://docs.microsoft.com/azure/azure-resource-manager/resource-group-overview
https://docs.microsoft.com/azure/application-gateway/
https://docs.microsoft.com/azure/application-gateway/waf-overview
https://docs.microsoft.com/azure/virtual-network/virtual-networks-nsg
https://docs.microsoft.com/azure/virtual-network/ddos-protection-overview
https://docs.microsoft.com/azure/virtual-machines/virtual-machines-windows-manage-availability#configure-each-application-tier-into-separate-availability-sets

Recommendations

VNet / SubnetsVNet / Subnets

Load balancersLoad balancers

makes the VMs eligible for a higher service level agreement (SLA).

Load balancers. Use Azure Load Balancer to distribute network traffic from the web tier to the business
tier, and from the business tier to SQL Server.

Public IP address. A public IP address is needed for the application to receive Internet traffic.

Jumpbox. Also called a bastion host. A secure VM on the network that administrators use to connect to the
other VMs. The jumpbox has an NSG that allows remote traffic only from public IP addresses on a safe list.
The NSG should permit remote desktop (RDP) traffic.

SQL Server Always On Availability Group. Provides high availability at the data tier, by enabling
replication and failover. It uses Windows Server Failover Cluster (WSFC) technology for failover.

Active Directory Domain Services (AD DS) Servers. The computer objects for the failover cluster and
its associated clustered roles are created in Active Directory Domain Services (AD DS).

Cloud Witness. A failover cluster requires more than half of its nodes to be running, which is known as
having quorum. If the cluster has just two nodes, a network partition could cause each node to think it's the
master node. In that case, you need a witness to break ties and establish quorum. A witness is a resource
such as a shared disk that can act as a tie breaker to establish quorum. Cloud Witness is a type of witness
that uses Azure Blob Storage. To learn more about the concept of quorum, see Understanding cluster and
pool quorum. For more information about Cloud Witness, see Deploy a Cloud Witness for a Failover
Cluster.

Azure DNS. Azure DNS is a hosting service for DNS domains. It provides name resolution using
Microsoft Azure infrastructure. By hosting your domains in Azure, you can manage your DNS records
using the same credentials, APIs, tools, and billing as your other Azure services.

Your requirements might differ from the architecture described here. Use these recommendations as a starting
point.

When you create the VNet, determine how many IP addresses your resources in each subnet require. Specify a
subnet mask and a VNet address range large enough for the required IP addresses, using CIDR notation. Use an
address space that falls within the standard private IP address blocks, which are 10.0.0.0/8, 172.16.0.0/12, and
192.168.0.0/16.

Choose an address range that does not overlap with your on-premises network, in case you need to set up a
gateway between the VNet and your on-premises network later. Once you create the VNet, you can't change the
address range.

Design subnets with functionality and security requirements in mind. All VMs within the same tier or role should
go into the same subnet, which can be a security boundary. For more information about designing VNets and
subnets, see Plan and design Azure Virtual Networks.

Don't expose the VMs directly to the Internet, but instead give each VM a private IP address. Clients connect using
the public IP address associated with the Application Gateway.

Define load balancer rules to direct network traffic to the VMs. For example, to enable HTTP traffic, map port 80
from the front-end configuration to port 80 on the back-end address pool. When a client sends an HTTP request
to port 80, the load balancer selects a back-end IP address by using a hashing algorithm that includes the source
IP address. Client requests are distributed across all the VMs in the back-end address pool.

https://azure.microsoft.com/support/legal/sla/virtual-machines
https://docs.microsoft.com/azure/load-balancer/
https://en.wikipedia.org/wiki/Bastion_host
https://docs.microsoft.com/windows-server/storage/storage-spaces/understand-quorum
https://docs.microsoft.com/windows-server/failover-clustering/deploy-cloud-witness
https://docs.microsoft.com/azure/dns/dns-overview
https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing
https://en.wikipedia.org/wiki/Private_network#Private_IPv4_address_spaces
https://docs.microsoft.com/azure/virtual-network/virtual-network-vnet-plan-design-arm
https://docs.microsoft.com/azure/load-balancer/load-balancer-overview#load-balancer-features

Network security groupsNetwork security groups

SQL Server Always On Availability GroupsSQL Server Always On Availability Groups

JumpboxJumpbox

Use NSG rules to restrict traffic between tiers. In the three-tier architecture shown above, the web tier does not
communicate directly with the database tier. To enforce this, the database tier should block incoming traffic from
the web tier subnet.

1. Deny all inbound traffic from the VNet. (Use the VIRTUAL_NETWORK tag in the rule.)
2. Allow inbound traffic from the business tier subnet.
3. Allow inbound traffic from the database tier subnet itself. This rule allows communication between the

database VMs, which is needed for database replication and failover.
4. Allow RDP traffic (port 3389) from the jumpbox subnet. This rule lets administrators connect to the database

tier from the jumpbox.

Create rules 2 – 4 with higher priority than the first rule, so they override it.

We recommend Always On Availability Groups for SQL Server high availability. Prior to Windows Server 2016,
Always On Availability Groups require a domain controller, and all nodes in the availability group must be in the
same AD domain.

Other tiers connect to the database through an availability group listener. The listener enables a SQL client to
connect without knowing the name of the physical instance of SQL Server. VMs that access the database must be
joined to the domain. The client (in this case, another tier) uses DNS to resolve the listener's virtual network name
into IP addresses.

Configure the SQL Server Always On Availability Group as follows:

NOTENOTE

1. Create a Windows Server Failover Clustering (WSFC) cluster, a SQL Server Always On Availability Group,
and a primary replica. For more information, see Getting Started with Always On Availability Groups.

2. Create an internal load balancer with a static private IP address.

3. Create an availability group listener, and map the listener's DNS name to the IP address of an internal load
balancer.

4. Create a load balancer rule for the SQL Server listening port (TCP port 1433 by default). The load balancer
rule must enable floating IP, also called Direct Server Return. This causes the VM to reply directly to the
client, which enables a direct connection to the primary replica.

When floating IP is enabled, the front-end port number must be the same as the back-end port number in the load
balancer rule.

When a SQL client tries to connect, the load balancer routes the connection request to the primary replica. If there
is a failover to another replica, the load balancer automatically routes new requests to a new primary replica. For
more information, see Configure an ILB listener for SQL Server Always On Availability Groups.

During a failover, existing client connections are closed. After the failover completes, new connections will be
routed to the new primary replica.

If your application makes significantly more reads than writes, you can offload some of the read-only queries to a
secondary replica. See Using a Listener to Connect to a Read-Only Secondary Replica (Read-Only Routing).

Test your deployment by forcing a manual failover of the availability group.

Don't allow RDP access from the public Internet to the VMs that run the application workload. Instead, all RDP

https://msdn.microsoft.com/library/hh510230.aspx
https://msdn.microsoft.com/library/hh213417.aspx
https://msdn.microsoft.com/library/gg509118.aspx
https://docs.microsoft.com/azure/virtual-machines/windows/sql/virtual-machines-windows-portal-sql-alwayson-int-listener
https://technet.microsoft.com/library/hh213417.aspx#ConnectToSecondary
https://msdn.microsoft.com/library/ff877957.aspx

Scalability considerations

TIPTIP

Availability considerations

access to these VMs must come through the jumpbox. An administrator logs into the jumpbox, and then logs into
the other VM from the jumpbox. The jumpbox allows RDP traffic from the Internet, but only from known, safe IP
addresses.

The jumpbox has minimal performance requirements, so select a small VM size. Create a public IP address for the
jumpbox. Place the jumpbox in the same VNet as the other VMs, but in a separate management subnet.

To secure the jumpbox, add an NSG rule that allows RDP connections only from a safe set of public IP addresses.
Configure the NSGs for the other subnets to allow RDP traffic from the management subnet.

For the web and business tiers, consider using virtual machine scale sets, instead of deploying separate VMs into
an availability set. A scale set makes it easy to deploy and manage a set of identical VMs, and autoscale the VMs
based on performance metrics. As the load on the VMs increases, additional VMs are automatically added to the
load balancer. Consider scale sets if you need to quickly scale out VMs, or need to autoscale.

There are two basic ways to configure VMs deployed in a scale set:

Use extensions to configure the VM after it's deployed. With this approach, new VM instances may take
longer to start up than a VM with no extensions.

Deploy a managed disk with a custom disk image. This option may be quicker to deploy. However, it
requires you to keep the image up-to-date.

For more information, see Design considerations for scale sets.

When using any autoscale solution, test it with production-level workloads well in advance.

Each Azure subscription has default limits in place, including a maximum number of VMs per region. You can
increase the limit by filing a support request. For more information, see Azure subscription and service limits,
quotas, and constraints.

If you don't use virtual machine scale sets, put VMs for the same tier into an availability set. Create at least two
VMs in the availability set to support the availability SLA for Azure VMs. For more information, see Manage the
availability of virtual machines. Scale sets automatically use placement groups, which act as an implicit availability
set.

The load balancer uses health probes to monitor the availability of VM instances. If a probe can't reach an instance
within a timeout period, the load balancer stops sending traffic to that VM. However, the load balancer will
continue to probe, and if the VM becomes available again, the load balancer resumes sending traffic to that VM.

Here are some recommendations on load balancer health probes:

Probes can test either HTTP or TCP. If your VMs run an HTTP server, create an HTTP probe. Otherwise create
a TCP probe.
For an HTTP probe, specify the path to an HTTP endpoint. The probe checks for an HTTP 200 response from
this path. This path can be the root path ("/"), or a health-monitoring endpoint that implements some custom
logic to check the health of the application. The endpoint must allow anonymous HTTP requests.
The probe is sent from a known IP address, 168.63.129.16. Don't block traffic to or from this IP address in any
firewall policies or NSG rules.
Use health probe logs to view the status of the health probes. Enable logging in the Azure portal for each load

https://docs.microsoft.com/azure/virtual-network/virtual-network-ip-addresses-overview-arm
https://docs.microsoft.com/azure/virtual-machine-scale-sets/virtual-machine-scale-sets-overview
https://docs.microsoft.com/azure/storage/storage-managed-disks-overview
https://docs.microsoft.com/azure/virtual-machine-scale-sets/virtual-machine-scale-sets-design-overview
https://docs.microsoft.com/azure/azure-subscription-service-limits
https://azure.microsoft.com/support/legal/sla/virtual-machines
https://docs.microsoft.com/azure/virtual-machines/virtual-machines-windows-manage-availability
https://docs.microsoft.com/azure/load-balancer/load-balancer-overview#load-balancer-features
https://docs.microsoft.com/azure/virtual-network/virtual-networks-nsg#special-rules
https://docs.microsoft.com/azure/load-balancer/load-balancer-monitor-log

Security considerations

Deploy the solution

PrerequisitesPrerequisites

Deployment stepsDeployment steps

balancer. Logs are written to Azure Blob storage. The logs show how many VMs aren't getting network traffic
because of failed probe responses.

If you need higher availability than the Azure SLA for VMs provides, consider replication the application across
two regions, using Azure Traffic Manager for failover. For more information, see Multi-region N-tier application
for high availability.

Virtual networks are a traffic isolation boundary in Azure. VMs in one VNet can't communicate directly with VMs
in a different VNet. VMs within the same VNet can communicate, unless you create network security groups
(NSGs) to restrict traffic. For more information, see Microsoft cloud services and network security.

DMZ . Consider adding a network virtual appliance (NVA) to create a DMZ between the Internet and the Azure
virtual network. NVA is a generic term for a virtual appliance that can perform network-related tasks, such as
firewall, packet inspection, auditing, and custom routing. For more information, see Implementing a DMZ between
Azure and the Internet.

Encryption. Encrypt sensitive data at rest and use Azure Key Vault to manage the database encryption keys. Key
Vault can store encryption keys in hardware security modules (HSMs). For more information, see Configure Azure
Key Vault Integration for SQL Server on Azure VMs. It's also recommended to store application secrets, such as
database connection strings, in Key Vault.

DDoS protection. The Azure platform provides basic DDoS protection by default. This basic protection is
targeted at protecting the Azure infrastructure as a whole. Although basic DDoS protection is automatically
enabled, we recommend using DDoS Protection Standard. Standard protection uses adaptive tuning, based on
your application's network traffic patterns, to detect threats. This allows it to apply mitigations against DDoS
attacks that might go unnoticed by the infrastructure-wide DDoS policies. Standard protection also provides
alerting, telemetry, and analytics through Azure Monitor. For more information, see Azure DDoS Protection: Best
practices and reference architectures.

A deployment for this reference architecture is available on GitHub. The entire deployment can take up to two
hours, which includes running the scripts to configure AD DS, the Windows Server failover cluster, and the SQL
Server availability group.

npm install -g @mspnp/azure-building-blocks

az login

1. Clone, fork, or download the zip file for the reference architectures GitHub repository.

2. Install Azure CLI 2.0.

3. Install the Azure building blocks npm package.

4. From a command prompt, bash prompt, or PowerShell prompt, sign into your Azure account as follows:

1. Run the following command to create a resource group.

https://azure.microsoft.com/support/legal/sla/virtual-machines
https://docs.microsoft.com/azure/virtual-network/virtual-networks-nsg
https://docs.microsoft.com/azure/best-practices-network-security
https://azure.microsoft.com/services/key-vault
https://docs.microsoft.com/azure/virtual-machines/virtual-machines-windows-ps-sql-keyvault
https://docs.microsoft.com/azure/virtual-network/ddos-protection-overview
https://docs.microsoft.com/azure/security/azure-ddos-best-practices
https://github.com/mspnp/reference-architectures/tree/master/virtual-machines/n-tier-windows
https://github.com/mspnp/reference-architectures
https://docs.microsoft.com/cli/azure/install-azure-cli?view=azure-cli-latest
https://github.com/mspnp/template-building-blocks/wiki/Install-Azure-Building-Blocks

az group create --location <location> --name <resource-group-name>

az storage account create --location <location> \
 --name <storage-account-name> \
 --resource-group <resource-group-name> \
 --sku Standard_LRS

"witnessStorageBlobEndPoint": "https://[replace-with-storageaccountname].blob.core.windows.net",

az storage account keys list \
 --account-name <storage-account-name> \
 --resource-group <resource-group-name>

[
{
 "keyName": "key1",
 "permissions": "Full",
 "value": "..."
},
{
 "keyName": "key2",
 "permissions": "Full",
 "value": "..."
}
]

"witnessStorageAccountKey": "[replace-with-storagekey]"

NOTENOTE

2. Run the following command to create a Storage account for the Cloud Witness.

3. Navigate to the virtual-machines\n-tier-windows folder of the reference architectures GitHub repository.

4. Open the n-tier-windows.json file.

5. Search for all instances of "witnessStorageBlobEndPoint" and replace the placeholder text with the name of
the Storage account from step 2.

6. Run the following command to list the account keys for the storage account.

The output should look like the following. Copy the value of key1 .

7. In the n-tier-windows.json file, search for all instances of "witnessStorageAccountKey" and paste in the
account key.

8. In the n-tier-windows.json file, search for all instances of [replace-with-password] and
[replace-with-sql-password] replace them with a strong password. Save the file.

If you change the administrator user name, you must also update the extensions blocks in the JSON file.

9. Run the following command to deploy the architecture.

Next steps

azbb -s <your subscription_id> -g <resource_group_name> -l <location> -p n-tier-windows.json --deploy

For more information on deploying this sample reference architecture using Azure Building Blocks, visit the
GitHub repository.

Microsoft Learn module: Tour the N-tier architecture style

https://github.com/mspnp/template-building-blocks
https://docs.microsoft.com/learn/modules/n-tier-architecture/

Run an N-tier application in multiple Azure regions
for high availability
3/13/2019 • 9 minutes to read • Edit Online

Architecture

This reference architecture shows a set of proven practices for running an N-tier application in multiple Azure
regions, in order to achieve availability and a robust disaster recovery infrastructure.

Download a Visio file of this architecture.

This architecture builds on the one shown in N-tier application with SQL Server.

Primary and secondary regions. Use two regions to achieve higher availability. One is the primary
region. The other region is for failover.

Azure Traffic Manager. Traffic Manager routes incoming requests to one of the regions. During normal
operations, it routes requests to the primary region. If that region becomes unavailable, Traffic Manager
fails over to the secondary region. For more information, see the section Traffic Manager configuration.

Resource groups. Create separate resource groups for the primary region, the secondary region, and for
Traffic Manager. This gives you the flexibility to manage each region as a single collection of resources. For
example, you could redeploy one region, without taking down the other one. Link the resource groups, so
that you can run a query to list all the resources for the application.

VNets. Create a separate VNet for each region. Make sure the address spaces do not overlap.

SQL Server Always On Availability Group. If you are using SQL Server, we recommend SQL Always

https://github.com/mspnp/architecture-center/blob/master/docs/reference-architectures/n-tier/multi-region-sql-server.md
https://archcenter.blob.core.windows.net/cdn/vm-reference-architectures.vsdx
https://azure.microsoft.com/services/traffic-manager
https://docs.microsoft.com/azure/azure-resource-manager/resource-group-overview
https://docs.microsoft.com/azure/resource-group-link-resources
https://msdn.microsoft.com/library/hh510230.aspx

Recommendations

Regional pairingRegional pairing

Traffic Manager configurationTraffic Manager configuration

NOTENOTE

On Availability Groups for high availability. Create a single availability group that includes the SQL Server
instances in both regions.

Also consider Azure SQL Database, which provides a relational database as a cloud service. With SQL Database, you
don't need to configure an availability group or manage failover.

VPN Gateways. Create a VPN gateway in each VNet, and configure a VNet-to-VNet connection, to enable
network traffic between the two VNets. This is required for the SQL Always On Availability Group.

A multi-region architecture can provide higher availability than deploying to a single region. If a regional outage
affects the primary region, you can use Traffic Manager to fail over to the secondary region. This architecture can
also help if an individual subsystem of the application fails.

There are several general approaches to achieving high availability across regions:

Active/passive with hot standby. Traffic goes to one region, while the other waits on hot standby. Hot standby
means the VMs in the secondary region are allocated and running at all times.
Active/passive with cold standby. Traffic goes to one region, while the other waits on cold standby. Cold standby
means the VMs in the secondary region are not allocated until needed for failover. This approach costs less to
run, but will generally take longer to come online during a failure.
Active/active. Both regions are active, and requests are load balanced between them. If one region becomes
unavailable, it is taken out of rotation.

This reference architecture focuses on active/passive with hot standby, using Traffic Manager for failover. Note that
you could deploy a small number of VMs for hot standby and then scale out as needed.

Each Azure region is paired with another region within the same geography. In general, choose regions from the
same regional pair (for example, East US 2 and US Central). Benefits of doing so include:

If there is a broad outage, recovery of at least one region out of every pair is prioritized.
Planned Azure system updates are rolled out to paired regions sequentially, to minimize possible downtime.
Pairs reside within the same geography, to meet data residency requirements.

However, make sure that both regions support all of the Azure services needed for your application (see Services
by region). For more information about regional pairs, see Business continuity and disaster recovery (BCDR):
Azure Paired Regions.

Consider the following points when configuring Traffic Manager:

Routing. Traffic Manager supports several routing algorithms. For the scenario described in this article, use
priority routing (formerly called failover routing). With this setting, Traffic Manager sends all requests to the
primary region, unless the primary region becomes unreachable. At that point, it automatically fails over to the
secondary region. See Configure Failover routing method.
Health probe. Traffic Manager uses an HTTP (or HTTPS) probe to monitor the availability of each region. The
probe checks for an HTTP 200 response for a specified URL path. As a best practice, create an endpoint that
reports the overall health of the application, and use this endpoint for the health probe. Otherwise, the probe
might report a healthy endpoint when critical parts of the application are actually failing. For more information,
see Health Endpoint Monitoring pattern.

https://docs.microsoft.com/azure/sql-database/
https://docs.microsoft.com/azure/vpn-gateway/vpn-gateway-about-vpngateways
https://docs.microsoft.com/azure/vpn-gateway/vpn-gateway-vnet-vnet-rm-ps
https://azure.microsoft.com/services/traffic-manager
https://azure.microsoft.com/regions/#services
https://docs.microsoft.com/azure/best-practices-availability-paired-regions
https://docs.microsoft.com/azure/traffic-manager/traffic-manager-routing-methods
https://docs.microsoft.com/azure/traffic-manager/traffic-manager-configure-failover-routing-method
https://docs.microsoft.com/azure/traffic-manager/traffic-manager-monitoring
https://msdn.microsoft.com/library/dn589789.aspx

az network traffic-manager endpoint update --resource-group <resource-group> --profile-name <profile>
 --name <endpoint-name> --type azureEndpoints --priority 3

az network traffic-manager endpoint update --resource-group <resource-group> --profile-name <profile>
 --name <endpoint-name> --type azureEndpoints --endpoint-status Disabled

Configure SQL Server Always On Availability GroupsConfigure SQL Server Always On Availability Groups

When Traffic Manager fails over there is a period of time when clients cannot reach the application. The duration is
affected by the following factors:

The health probe must detect that the primary region has become unreachable.
DNS servers must update the cached DNS records for the IP address, which depends on the DNS time-to-live
(TTL). The default TTL is 300 seconds (5 minutes), but you can configure this value when you create the Traffic
Manager profile.

For details, see About Traffic Manager Monitoring.

If Traffic Manager fails over, we recommend performing a manual failback rather than implementing an automatic
failback. Otherwise, you can create a situation where the application flips back and forth between regions. Verify
that all application subsystems are healthy before failing back.

Note that Traffic Manager automatically fails back by default. To prevent this, manually lower the priority of the
primary region after a failover event. For example, suppose the primary region is priority 1 and the secondary is
priority 2. After a failover, set the primary region to priority 3, to prevent automatic failback. When you are ready
to switch back, update the priority to 1.

The following Azure CLI command updates the priority:

Another approach is to temporarily disable the endpoint until you are ready to fail back:

Depending on the cause of a failover, you might need to redeploy the resources within a region. Before failing
back, perform an operational readiness test. The test should verify things like:

VMs are configured correctly. (All required software is installed, IIS is running, and so on.)
Application subsystems are healthy.
Functional testing. (For example, the database tier is reachable from the web tier.)

Prior to Windows Server 2016, SQL Server Always On Availability Groups require a domain controller, and all
nodes in the availability group must be in the same Active Directory (AD) domain.

To configure the availability group:

az network vnet update --resource-group <resource-group> --name <vnet-name> --dns-servers
"10.0.0.4,10.0.0.6,172.16.0.4,172.16.0.6"

At a minimum, place two domain controllers in each region.

Give each domain controller a static IP address.

Create a VNet-to-VNet connection to enable communication between the VNets.

For each VNet, add the IP addresses of the domain controllers (from both regions) to the DNS server list.
You can use the following CLI command. For more information, see Change DNS servers.

Create a Windows Server Failover Clustering (WSFC) cluster that includes the SQL Server instances in
both regions.

https://docs.microsoft.com/azure/traffic-manager/traffic-manager-monitoring
https://docs.microsoft.com/cli/azure/
https://docs.microsoft.com/azure/virtual-network/manage-virtual-network#change-dns-servers
https://msdn.microsoft.com/library/hh270278.aspx

Availability considerations

Manageability considerations

Create a SQL Server Always On Availability Group that includes the SQL Server instances in both the
primary and secondary regions. See Extending Always On Availability Group to Remote Azure Datacenter
(PowerShell) for the steps.

NOTENOTE

Put the primary replica in the primary region.

Put one or more secondary replicas in the primary region. Configure these to use synchronous
commit with automatic failover.

Put one or more secondary replicas in the secondary region. Configure these to use asynchronous
commit, for performance reasons. (Otherwise, all T-SQL transactions have to wait on a round trip
over the network to the secondary region.)

Asynchronous commit replicas do not support automatic failover.

With a complex N-tier app, you may not need to replicate the entire application in the secondary region. Instead,
you might just replicate a critical subsystem that is needed to support business continuity.

Traffic Manager is a possible failure point in the system. If the Traffic Manager service fails, clients cannot access
your application during the downtime. Review the Traffic Manager SLA, and determine whether using Traffic
Manager alone meets your business requirements for high availability. If not, consider adding another traffic
management solution as a failback. If the Azure Traffic Manager service fails, change your CNAME records in
DNS to point to the other traffic management service. (This step must be performed manually, and your
application will be unavailable until the DNS changes are propagated.)

For the SQL Server cluster, there are two failover scenarios to consider:

WARNINGWARNING

All of the SQL Server database replicas in the primary region fail. For example, this could happen during a
regional outage. In that case, you must manually fail over the availability group, even though Traffic
Manager automatically fails over on the front end. Follow the steps in Perform a Forced Manual Failover of
a SQL Server Availability Group, which describes how to perform a forced failover by using SQL Server
Management Studio, Transact-SQL, or PowerShell in SQL Server 2016.

With forced failover, there is a risk of data loss. Once the primary region is back online, take a snapshot of the
database and use tablediff to find the differences.

Traffic Manager fails over to the secondary region, but the primary SQL Server database replica is still
available. For example, the front-end tier might fail, without affecting the SQL Server VMs. In that case,
Internet traffic is routed to the secondary region, and that region can still connect to the primary replica.
However, there will be increased latency, because the SQL Server connections are going across regions. In
this situation, you should perform a manual failover as follows:

1. Temporarily switch a SQL Server database replica in the secondary region to synchronous commit. This
ensures there won't be data loss during the failover.

2. Fail over to that replica.
3. When you fail back to the primary region, restore the asynchronous commit setting.

https://techcommunity.microsoft.com/t5/DataCAT/Extending-AlwaysOn-Availability-Group-to-Remote-Azure-Datacenter/ba-p/305217
https://azure.microsoft.com/support/legal/sla/traffic-manager
https://msdn.microsoft.com/library/ff877957.aspx
https://msdn.microsoft.com/library/ms162843.aspx

Related resources

When you update your deployment, update one region at a time to reduce the chance of a global failure from an
incorrect configuration or an error in the application.

Test the resiliency of the system to failures. Here are some common failure scenarios to test:

Shut down VM instances.
Pressure resources such as CPU and memory.
Disconnect/delay network.
Crash processes.
Expire certificates.
Simulate hardware faults.
Shut down the DNS service on the domain controllers.

Measure the recovery times and verify they meet your business requirements. Test combinations of failure modes,
as well.

You may wish to review the following Azure example scenarios that demonstrate specific solutions using some of
the same technologies:

Multitier web application built for high availability and disaster recovery on Azure
Building secure web applications with Windows virtual machines on Azure

https://docs.microsoft.com/azure/architecture/example-scenario
https://docs.microsoft.com/azure/architecture/example-scenario/infrastructure/multi-tier-app-disaster-recovery
https://docs.microsoft.com/azure/architecture/example-scenario/infrastructure/regulated-multitier-app

Linux N-tier application in Azure with Apache
Cassandra
3/13/2019 • 10 minutes to read • Edit Online

Architecture

This reference architecture shows how to deploy virtual machines (VMs) and a virtual network configured for an
N-tier application, using Apache Cassandra on Linux for the data tier. Deploy this solution.

Download a Visio file of this architecture.

The architecture has the following components:

Resource group. Resource groups are used to group resources so they can be managed by lifetime, owner,
or other criteria.

Virtual network (VNet) and subnets. Every Azure VM is deployed into a VNet that can be segmented
into subnets. Create a separate subnet for each tier.

NSGs. Use network security groups (NSGs) to restrict network traffic within the VNet. For example, in the
three-tier architecture shown here, the database tier accepts traffic from the business tier and the
management subnet, but not the web front end.

DDoS Protection. Although the Azure platform provides basic protection against distributed denial of
service (DDoS) attacks, we recommend using DDoS Protection Standard, which has enhanced DDoS
mitigation features. See Security considerations.

Virtual machines. For recommendations on configuring VMs, see Run a Windows VM on Azure and Run
a Linux VM on Azure.

Availability sets. Create an availability set for each tier, and provision at least two VMs in each tier, which
makes the VMs eligible for a higher service level agreement (SLA).

Azure load balancers. The load balancers distribute incoming Internet requests to the VM instances. Use a
public load balancer to distribute incoming Internet traffic to the web tier, and an internal load balancer to

https://github.com/mspnp/architecture-center/blob/master/docs/reference-architectures/n-tier/n-tier-cassandra.md
https://archcenter.blob.core.windows.net/cdn/vm-reference-architectures.vsdx
https://docs.microsoft.com/azure/azure-resource-manager/resource-group-overview
https://docs.microsoft.com/azure/virtual-network/virtual-networks-nsg
https://docs.microsoft.com/azure/virtual-network/ddos-protection-overview
https://docs.microsoft.com/azure/virtual-machines/virtual-machines-linux-manage-availability
https://azure.microsoft.com/support/legal/sla/virtual-machines
https://docs.microsoft.com/azure/load-balancer/load-balancer-get-started-internet-arm-cli
https://docs.microsoft.com/azure/load-balancer/load-balancer-internet-overview
https://docs.microsoft.com/azure/load-balancer/load-balancer-internal-overview

Recommendations

VNet / SubnetsVNet / Subnets

Load balancersLoad balancers

Network security groupsNetwork security groups

distribute network traffic from the web tier to the business tier.

Public IP address. A public IP address is needed for the public load balancer to receive Internet traffic.

Jumpbox. Also called a bastion host. A secure VM on the network that administrators use to connect to the
other VMs. The jumpbox has an NSG that allows remote traffic only from public IP addresses on a safe list.
The NSG should allow ssh traffic.

Apache Cassandra database. Provides high availability at the data tier, by enabling replication and
failover.

Azure DNS. Azure DNS is a hosting service for DNS domains. It provides name resolution using
Microsoft Azure infrastructure. By hosting your domains in Azure, you can manage your DNS records
using the same credentials, APIs, tools, and billing as your other Azure services.

Your requirements might differ from the architecture described here. Use these recommendations as a starting
point.

When you create the VNet, determine how many IP addresses your resources in each subnet require. Specify a
subnet mask and a VNet address range large enough for the required IP addresses, using CIDR notation. Use an
address space that falls within the standard private IP address blocks, which are 10.0.0.0/8, 172.16.0.0/12, and
192.168.0.0/16.

Choose an address range that doesn't overlap with your on-premises network, in case you need to set up a
gateway between the VNet and your on-premises network later. Once you create the VNet, you can't change the
address range.

Design subnets with functionality and security requirements in mind. All VMs within the same tier or role should
go into the same subnet, which can be a security boundary. For more information about designing VNets and
subnets, see Plan and design Azure Virtual Networks.

Do not expose the VMs directly to the Internet. Instead, give each VM a private IP address. Clients connect using
the IP address of the public load balancer.

Define load balancer rules to direct network traffic to the VMs. For example, to enable HTTP traffic, create a rule
that maps port 80 from the front-end configuration to port 80 on the back-end address pool. When a client sends
an HTTP request to port 80, the load balancer selects a back-end IP address by using a hashing algorithm that
includes the source IP address. Client requests are distributed across all the VMs.

Use NSG rules to restrict traffic between tiers. For example, in the three-tier architecture shown above, the web
tier does not communicate directly with the database tier. To enforce this, the database tier should block incoming
traffic from the web tier subnet.

1. Deny all inbound traffic from the VNet. (Use the VIRTUAL_NETWORK tag in the rule.)
2. Allow inbound traffic from the business tier subnet.
3. Allow inbound traffic from the database tier subnet itself. This rule allows communication between the

database VMs, which is needed for database replication and failover.
4. Allow ssh traffic (port 22) from the jumpbox subnet. This rule lets administrators connect to the database tier

from the jumpbox.

Create rules 2 – 4 with higher priority than the first rule, so they override it.

https://en.wikipedia.org/wiki/Bastion_host
https://docs.microsoft.com/azure/dns/dns-overview
https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing
https://en.wikipedia.org/wiki/Private_network#Private_IPv4_address_spaces
https://docs.microsoft.com/azure/virtual-network/virtual-network-vnet-plan-design-arm
https://docs.microsoft.com/azure/load-balancer/load-balancer-overview#load-balancer-features

CassandraCassandra

JumpboxJumpbox

Scalability considerations

TIPTIP

We recommend DataStax Enterprise for production use, but these recommendations apply to any Cassandra
edition. For more information on running DataStax in Azure, see DataStax Enterprise Deployment Guide for
Azure.

Put the VMs for a Cassandra cluster in an availability set to ensure that the Cassandra replicas are distributed
across multiple fault domains and upgrade domains. For more information about fault domains and upgrade
domains, see Manage the availability of virtual machines.

Configure three fault domains (the maximum) per availability set and 18 upgrade domains per availability set. This
provides the maximum number of upgrade domains that can still be distributed evenly across the fault domains.

Configure nodes in rack-aware mode. Map fault domains to racks in the cassandra-rackdc.properties file.

You don't need a load balancer in front of the cluster. The client connects directly to a node in the cluster.

For high availability, deploy Cassandra in more than one Azure region. Nodes within each region are configured in
rack-aware mode with fault and upgrade domains, for resiliency inside the region.

Don't allow ssh access from the public Internet to the VMs that run the application workload. Instead, all ssh
access to these VMs must come through the jumpbox. An administrator logs into the jumpbox, and then logs into
the other VM from the jumpbox. The jumpbox allows ssh traffic from the Internet, but only from known, safe IP
addresses.

The jumpbox has minimal performance requirements, so select a small VM size. Create a public IP address for the
jumpbox. Place the jumpbox in the same VNet as the other VMs, but in a separate management subnet.

To secure the jumpbox, add an NSG rule that allows ssh connections only from a safe set of public IP addresses.
Configure the NSGs for the other subnets to allow ssh traffic from the management subnet.

For the web and business tiers, consider using virtual machine scale sets, instead of deploying separate VMs into
an availability set. A scale set makes it easy to deploy and manage a set of identical VMs, and autoscale the VMs
based on performance metrics. As the load on the VMs increases, additional VMs are automatically added to the
load balancer. Consider scale sets if you need to quickly scale out VMs, or need to autoscale.

There are two basic ways to configure VMs deployed in a scale set:

Use extensions to configure the VM after it's deployed. With this approach, new VM instances may take
longer to start up than a VM with no extensions.

Deploy a managed disk with a custom disk image. This option may be quicker to deploy. However, it
requires you to keep the image up-to-date.

For more information, see Design considerations for scale sets.

When using any autoscale solution, test it with production-level workloads well in advance.

Each Azure subscription has default limits in place, including a maximum number of VMs per region. You can
increase the limit by filing a support request. For more information, see Azure subscription and service limits,
quotas, and constraints.

https://www.datastax.com/products/datastax-enterprise
https://academy.datastax.com/resources/deployment-guide-azure
https://docs.microsoft.com/azure/virtual-machines/virtual-machines-linux-manage-availability
https://docs.microsoft.com/azure/virtual-network/virtual-network-ip-addresses-overview-arm
https://docs.microsoft.com/azure/virtual-machine-scale-sets/virtual-machine-scale-sets-overview
https://docs.microsoft.com/azure/storage/storage-managed-disks-overview
https://docs.microsoft.com/azure/virtual-machine-scale-sets/virtual-machine-scale-sets-design-overview
https://docs.microsoft.com/azure/azure-subscription-service-limits

Availability considerations

Security considerations

If you don't use virtual machine scale sets, put VMs for the same tier into an availability set. Create at least two
VMs in the availability set to support the availability SLA for Azure VMs. For more information, see Manage the
availability of virtual machines. Scale sets automatically use placement groups, which act as an implicit availability
set.

The load balancer uses health probes to monitor the availability of VM instances. If a probe can't reach an instance
within a timeout period, the load balancer stops sending traffic to that VM. The load balancer will continue to
probe, and if the VM becomes available again, the load balancer resumes sending traffic to that VM.

Here are some recommendations on load balancer health probes:

Probes can test either HTTP or TCP. If your VMs run an HTTP server, create an HTTP probe. Otherwise create a
TCP probe.
For an HTTP probe, specify the path to an HTTP endpoint. The probe checks for an HTTP 200 response from
this path. This can be the root path ("/"), or a health-monitoring endpoint that implements some custom logic to
check the health of the application. The endpoint must allow anonymous HTTP requests.
The probe is sent from a known IP address, 168.63.129.16. Make sure you don't block traffic to or from this IP
address in any firewall policies or NSG rules.
Use health probe logs to view the status of the health probes. Enable logging in the Azure portal for each load
balancer. Logs are written to Azure Blob storage. The logs show how many VMs aren't getting network traffic
because of failed probe responses.

For the Cassandra cluster, the failover scenarios depend on the consistency levels used by the application and the
number of replicas. For consistency levels and usage in Cassandra, see Configuring data consistency and
Cassandra: How many nodes are talked to with Quorum? Data availability in Cassandra is determined by the
consistency level used by the application and the replication mechanism. For replication in Cassandra, see Data
Replication in NoSQL Databases Explained.

Virtual networks are a traffic isolation boundary in Azure. VMs in one VNet can't communicate directly with VMs
in a different VNet. VMs within the same VNet can communicate, unless you create network security groups
(NSGs) to restrict traffic. For more information, see Microsoft cloud services and network security.

For incoming Internet traffic, the load balancer rules define which traffic can reach the back end. However, load
balancer rules don't support IP safe lists, so if you want to add certain public IP addresses to a safe list, add an
NSG to the subnet.

DMZ . Consider adding a network virtual appliance (NVA) to create a DMZ between the Internet and the Azure
virtual network. NVA is a generic term for a virtual appliance that can perform network-related tasks, such as
firewall, packet inspection, auditing, and custom routing. For more information, see Implementing a DMZ between
Azure and the Internet.

Encryption. Encrypt sensitive data at rest and use Azure Key Vault to manage the database encryption keys. Key
Vault can store encryption keys in hardware security modules (HSMs). It's also recommended to store application
secrets, such as database connection strings, in Key Vault.

DDoS protection. The Azure platform provides basic DDoS protection by default. This basic protection is
targeted at protecting the Azure infrastructure as a whole. Although basic DDoS protection is automatically
enabled, we recommend using DDoS Protection Standard. Standard protection uses adaptive tuning, based on
your application's network traffic patterns, to detect threats. This allows it to apply mitigations against DDoS
attacks that might go unnoticed by the infrastructure-wide DDoS policies. Standard protection also provides
alerting, telemetry, and analytics through Azure Monitor. For more information, see Azure DDoS Protection: Best

https://azure.microsoft.com/support/legal/sla/virtual-machines
https://docs.microsoft.com/azure/virtual-machines/virtual-machines-windows-manage-availability
https://docs.microsoft.com/azure/load-balancer/load-balancer-overview#load-balancer-features
https://docs.microsoft.com/azure/virtual-network/virtual-networks-nsg#special-rules
https://docs.microsoft.com/azure/load-balancer/load-balancer-monitor-log
https://docs.datastax.com/en/cassandra/2.0/cassandra/dml/dml_config_consistency_c.html
https://medium.com/@foundev/cassandra-how-many-nodes-are-talked-to-with-quorum-also-should-i-use-it-98074e75d7d5#.b4pb4alb2
https://academy.datastax.com/planet-cassandra/data-replication-in-nosql-databases-explained
https://docs.microsoft.com/azure/virtual-network/virtual-networks-nsg
https://docs.microsoft.com/azure/best-practices-network-security
https://azure.microsoft.com/services/key-vault
https://docs.microsoft.com/azure/virtual-network/ddos-protection-overview
https://docs.microsoft.com/azure/security/azure-ddos-best-practices

 Deploy the solution

PrerequisitesPrerequisites

Deploy the solution using azbbDeploy the solution using azbb

Next steps

practices and reference architectures.

A deployment for this reference architecture is available on GitHub.

npm install -g @mspnp/azure-building-blocks

az login

1. Clone, fork, or download the zip file for the reference architectures GitHub repository.

2. Install Azure CLI 2.0.

3. Install the Azure building blocks npm package.

4. From a command prompt, bash prompt, or PowerShell prompt, sign into your Azure account as follows:

To deploy the Linux VMs for an N-tier application reference architecture, follow these steps:

azbb -s <your subscription_id> -g <your resource_group_name> -l <azure region> -p n-tier-linux.json --
deploy

1. Navigate to the virtual-machines\n-tier-linux folder for the repository you cloned in step 1 of the
prerequisites above.

2. The parameter file specifies a default administrator user name and password for each VM in the
deployment. Change these before you deploy the reference architecture. Open the n-tier-linux.json file
and replace each adminUsername and adminPassword field with your new settings. Save the file.

3. Deploy the reference architecture using the azbb tool as shown below.

For more information on deploying this sample reference architecture using Azure Building Blocks, visit the
GitHub repository.

Microsoft Learn module: Tour the N-tier architecture style

https://github.com/mspnp/reference-architectures/tree/master/virtual-machines/n-tier-linux
https://github.com/mspnp/reference-architectures
https://docs.microsoft.com/cli/azure/install-azure-cli?view=azure-cli-latest
https://github.com/mspnp/template-building-blocks/wiki/Install-Azure-Building-Blocks
https://github.com/mspnp/template-building-blocks
https://docs.microsoft.com/learn/modules/n-tier-architecture/

Run a highly available SharePoint Server 2016 farm in
Azure
3/13/2019 • 13 minutes to read • Edit Online

Architecture

This reference architecture shows proven practices for deploying a highly available SharePoint Server 2016 farm
on Azure, using MinRole topology and SQL Server Always On availability groups. The SharePoint farm is
deployed in a secured virtual network with no Internet-facing endpoint or presence. Deploy this solution.

Download a Visio file of this architecture.

This architecture builds on the one shown in Run Windows VMs for an N-tier application. It deploys a SharePoint
Server 2016 farm with high availability inside an Azure virtual network (VNet). This architecture is suitable for a
test or production environment, a SharePoint hybrid infrastructure with Office 365, or as the basis for a disaster
recovery scenario.

The architecture consists of the following components:

Resource groups. A resource group is a container that holds related Azure resources. One resource group
is used for the SharePoint servers, and another resource group is used for infrastructure components that
are independent of VMs, such as the virtual network and load balancers.

Virtual network (VNet). The VMs are deployed in a VNet with a unique intranet address space. The VNet
is further subdivided into subnets.

Virtual machines (VMs). The VMs are deployed into the VNet, and private static IP addresses are

https://github.com/mspnp/architecture-center/blob/master/docs/reference-architectures/sharepoint/index.md
https://archcenter.blob.core.windows.net/cdn/Sharepoint-2016.vsdx
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/virtual-machines-windows/n-tier
https://docs.microsoft.com/azure/azure-resource-manager/resource-group-overview

Recommendations

Resource group recommendationsResource group recommendations

Virtual network and subnet recommendationsVirtual network and subnet recommendations

assigned to all of the VMs. Static IP addresses are recommended for the VMs running SQL Server and
SharePoint Server 2016, to avoid issues with IP address caching and changes of addresses after a restart.

Availability sets. Place the VMs for each SharePoint role into separate availability sets, and provision at
least two virtual machines (VMs) for each role. This makes the VMs eligible for a higher service level
agreement (SLA).

Internal load balancer. The load balancer distributes SharePoint request traffic from the on-premises
network to the front-end web servers of the SharePoint farm.

Network security groups (NSGs). For each subnet that contains virtual machines, a network security
group is created. Use NSGs to restrict network traffic within the VNet, in order to isolate subnets.

Gateway. The gateway provides a connection between your on-premises network and the Azure virtual
network. Your connection can use ExpressRoute or site-to-site VPN. For more information, see Connect an
on-premises network to Azure.

Windows Server Active Directory (AD) domain controllers. This reference architecture deploys
Windows Server AD domain controllers. These domain controllers run in the Azure VNet and have a trust
relationship with the on-premises Windows Server AD forest. Client web requests for SharePoint farm
resources are authenticated in the VNet rather than sending that authentication traffic across the gateway
connection to the on-premises network. In DNS, intranet A or CNAME records are created so that intranet
users can resolve the name of the SharePoint farm to the private IP address of the internal load balancer.

SharePoint Server 2016 also supports using Azure Active Directory Domain Services. Azure AD Domain
Services provides managed domain services, so that you don't need to deploy and manage domain
controllers in Azure.

SQL Server Always On Availability Group. For high availability of the SQL Server database, we
recommend SQL Server Always On Availability Groups. Two virtual machines are used for SQL Server.
One contains the primary database replica and the other contains the secondary replica.

Majority node VM. This VM allows the failover cluster to establish quorum. For more information, see
Understanding Quorum Configurations in a Failover Cluster.

SharePoint servers. The SharePoint servers perform the web front-end, caching, application, and search
roles.

Jumpbox. Also called a bastion host. This is a secure VM on the network that administrators use to connect
to the other VMs. The jumpbox has an NSG that allows remote traffic only from public IP addresses on a
safe list. The NSG should permit remote desktop (RDP) traffic.

Your requirements might differ from the architecture described here. Use these recommendations as a starting
point.

We recommend separating resource groups according to the server role, and having a separate resource group for
infrastructure components that are global resources. In this architecture, the SharePoint resources form one group,
while the SQL Server and other utility assets form another.

Use one subnet for each SharePoint role, plus a subnet for the gateway and one for the jumpbox.

The gateway subnet must be named GatewaySubnet. Assign the gateway subnet address space from the last part
of the virtual network address space. For more information, see Connect an on-premises network to Azure using a

https://docs.microsoft.com/azure/virtual-machines/windows/manage-availability
https://docs.microsoft.com/azure/load-balancer/load-balancer-internal-overview
https://docs.microsoft.com/azure/virtual-network/virtual-networks-nsg
https://docs.microsoft.com/azure/active-directory-domain-services/
https://docs.microsoft.com/sql/database-engine/availability-groups/windows/always-on-availability-groups-sql-server
https://technet.microsoft.com/library/cc731739(v=ws.11).aspx
https://en.wikipedia.org/wiki/Bastion_host

VM recommendationsVM recommendations

NSG recommendationsNSG recommendations

Storage recommendationsStorage recommendations

NOTENOTE

SharePoint Server recommendationsSharePoint Server recommendations

VPN gateway.

This architecture requires a minimum of 44 cores:

8 SharePoint servers on Standard_DS3_v2 (4 cores each) = 32 cores
2 Active Directory domain controllers on Standard_DS1_v2 (1 core each) = 2 cores
2 SQL Server VMs on Standard_DS3_v2 = 8 cores
1 majority node on Standard_DS1_v2 = 1 core
1 management server on Standard_DS1_v2 = 1 core

Make sure your Azure subscription has enough VM core quota for the deployment, or the deployment will fail. See
Azure subscription and service limits, quotas, and constraints.

For all SharePoint roles except the Search Indexer, we recommended using the Standard_DS3_v2 VM size. The
Search Indexer should be at least the Standard_DS13_v2 size. For testing, the parameter files for this reference
architecture specify the smaller DS3_v2 size for the Search Indexer role. For a production deployment, update the
parameter files to use the DS13 size or larger. For more information, see Hardware and software requirements for
SharePoint Server 2016.

For the SQL Server VMs, we recommend a minimum of 4 cores and 8 GB RAM. The parameter files for this
reference architecture specify the DS3_v2 size. For a production deployment, you might need to specify a larger
VM size. For more information, see Storage and SQL Server capacity planning and configuration (SharePoint
Server).

We recommend having one NSG for each subnet that contains VMs, to enable subnet isolation. If you want to
configure subnet isolation, add NSG rules that define the allowed or denied inbound or outbound traffic for each
subnet. For more information, see Filter network traffic with network security groups.

Do not assign an NSG to the gateway subnet, or the gateway will stop functioning.

The storage configuration of the VMs in the farm should match the appropriate best practices used for on-
premises deployments. SharePoint servers should have a separate disk for logs. SharePoint servers hosting search
index roles require additional disk space for the search index to be stored. For SQL Server, the standard practice is
to separate data and logs. Add more disks for database backup storage, and use a separate disk for tempdb.

For best reliability, we recommend using Azure Managed Disks. Managed disks ensure that the disks for VMs
within an availability set are isolated to avoid single points of failure.

Currently the Resource Manager template for this reference architecture does not use managed disks. We are planning to
update the template to use managed disks.

Use Premium managed disks for all SharePoint and SQL Server VMs. You can use Standard managed disks for
the majority node server, the domain controllers, and the management server.

Before configuring the SharePoint farm, make sure you have one Windows Server Active Directory service
account per service. For this architecture, you need at a minimum the following domain-level accounts to isolate
privilege per role:

SQL Server Service account

https://docs.microsoft.com/azure/azure-subscription-service-limits
https://docs.microsoft.com/azure/virtual-machines/windows/sizes-general
https://docs.microsoft.com/azure/virtual-machines/windows/sizes-memory
https://technet.microsoft.com/library/cc262485(v=office.16).aspx
https://docs.microsoft.com/sharepoint/administration/storage-and-sql-server-capacity-planning-and-configuration#estimate-memory-requirements
https://docs.microsoft.com/azure/virtual-network/virtual-networks-nsg
https://docs.microsoft.com/sql/relational-databases/databases/tempdb-database
https://docs.microsoft.com/azure/storage/storage-managed-disks-overview

Hybrid workloadsHybrid workloads

SQL Server Always On Availability GroupsSQL Server Always On Availability Groups

Scalability considerations

Setup User account
Server Farm account
Search Service account
Content Access account
Web App Pool accounts
Service App Pool accounts
Cache Super User account
Cache Super Reader account

To meet the support requirement for disk throughput of 200 MB per second minimum, make sure to plan the
Search architecture. See Plan enterprise search architecture in SharePoint Server 2013. Also follow the guidelines
in Best practices for crawling in SharePoint Server 2016.

In addition, store the search component data on a separate storage volume or partition with high performance. To
reduce load and improve throughput, configure the object cache user accounts, which are required in this
architecture. Split the Windows Server operating system files, the SharePoint Server 2016 program files, and
diagnostics logs across three separate storage volumes or partitions with normal performance.

For more information about these recommendations, see Initial deployment administrative and service accounts in
SharePoint Server 2016.

This reference architecture deploys a SharePoint Server 2016 farm that can be used as a SharePoint hybrid
environment — that is, extending SharePoint Server 2016 to Office 365 SharePoint Online. If you have Office
Online Server, see Office Web Apps and Office Online Server supportability in Azure.

The default service applications in this deployment are designed to support hybrid workloads. All SharePoint
Server 2016 and Office 365 hybrid workloads can be deployed to this farm without changes to the SharePoint
infrastructure, with one exception: The Cloud Hybrid Search Service Application must not be deployed onto
servers hosting an existing search topology. Therefore, one or more search-role-based VMs must be added to the
farm to support this hybrid scenario.

This architecture uses SQL Server virtual machines because SharePoint Server 2016 cannot use Azure SQL
Database. To support high availability in SQL Server, we recommend using Always On Availability Groups, which
specify a set of databases that fail over together, making them highly-available and recoverable. In this reference
architecture, the databases are created during deployment, but you must manually enable Always On Availability
Groups and add the SharePoint databases to an availability group. For more information, see Create the
availability group and add the SharePoint databases.

We also recommend adding a listener IP address to the cluster, which is the private IP address of the internal load
balancer for the SQL Server virtual machines.

For recommended VM sizes and other performance recommendations for SQL Server running in Azure, see
Performance best practices for SQL Server in Azure Virtual Machines. Also follow the recommendations in Best
practices for SQL Server in a SharePoint Server 2016 farm.

We recommend that the majority node server reside on a separate computer from the replication partners. The
server enables the secondary replication partner server in a high-safety mode session to recognize whether to
initiate an automatic failover. Unlike the two partners, the majority node server doesn't serve the database but
rather supports automatic failover.

To scale up the existing servers, simply change the VM size.

https://technet.microsoft.com/library/dn342836.aspx
https://technet.microsoft.com/library/dn535606(v=office.16).aspx
https://technet.microsoft.com/library/ee662513(v=office.16).aspx
https://aka.ms/sphybrid
https://support.microsoft.com/help/3199955/office-web-apps-and-office-online-server-supportability-in-azure
https://docs.microsoft.com/SharePoint/administration/sharepoint-intranet-farm-in-azure-phase-5-create-the-availability-group-and-add
https://docs.microsoft.com/azure/virtual-machines/windows/sql/virtual-machines-windows-sql-performance
https://technet.microsoft.com/library/hh292622(v=office.16).aspx

Availability considerations

Manageability considerations

Security considerations

Deploy the solution

With the MinRoles capability in SharePoint Server 2016, you can scale out servers based on the server's role and
also remove servers from a role. When you add servers to a role, you can specify any of the single roles or one of
the combined roles. If you add servers to the Search role, however, you must also reconfigure the search topology
using PowerShell. You can also convert roles using MinRoles. For more information, see Managing a MinRole
Server Farm in SharePoint Server 2016.

Note that SharePoint Server 2016 doesn't support using virtual machine scale sets for auto-scaling.

This reference architecture supports high availability within an Azure region, because each role has at least two
VMs deployed in an availability set.

To protect against a regional failure, create a separate disaster recovery farm in a different Azure region. Your
recovery time objectives (RTOs) and recovery point objectives (RPOs) will determine the setup requirements. For
details, see Choose a disaster recovery strategy for SharePoint 2016. The secondary region should be a paired
region with the primary region. In the event of a broad outage, recovery of one region is prioritized out of every
pair. For more information, see Business continuity and disaster recovery (BCDR): Azure Paired Regions.

To operate and maintain servers, server farms, and sites, follow the recommended practices for SharePoint
operations. For more information, see Operations for SharePoint Server 2016.

The tasks to consider when managing SQL Server in a SharePoint environment may differ from the ones typically
considered for a database application. A best practice is to fully back up all SQL databases weekly with incremental
nightly backups. Back up transaction logs every 15 minutes. Another practice is to implement SQL Server
maintenance tasks on the databases while disabling the built-in SharePoint ones. For more information, see
Storage and SQL Server capacity planning and configuration.

The domain-level service accounts used to run SharePoint Server 2016 require Windows Server AD domain
controllers for domain-join and authentication processes. Azure Active Directory Domain Services can't be used
for this purpose. To extend the Windows Server AD identity infrastructure already in place in the intranet, this
architecture uses two Windows Server AD replica domain controllers of an existing on-premises Windows Server
AD forest.

In addition, it's always wise to plan for security hardening. Other recommendations include:

Add rules to NSGs to isolate subnets and roles.
Don't assign public IP addresses to VMs.
For intrusion detection and analysis of payloads, consider using a network virtual appliance in front of the
front-end web servers instead of an internal Azure load balancer.
As an option, use IPsec policies for encryption of cleartext traffic between servers. If you are also doing subnet
isolation, update your network security group rules to allow IPsec traffic.
Install anti-malware agents for the VMs.

A deployment for this reference architecture is available on GitHub. The entire deployment can take several hours
to complete.

The deployment creates the following resource groups in your subscription:

https://technet.microsoft.com/library/mt346114(v=office.16).aspx
https://technet.microsoft.com/library/mt743705(v=office.16).aspx
https://technet.microsoft.com/library/ff628971(v=office.16).aspx
https://docs.microsoft.com/azure/best-practices-availability-paired-regions
https://technet.microsoft.com/library/cc262289(v=office.16).aspx
https://technet.microsoft.com/library/cc298801(v=office.16).aspx
https://github.com/mspnp/reference-architectures

PrerequisitesPrerequisites

Deployment stepsDeployment steps

ra-onprem-sp2016-rg
ra-sp2016-network-rg

The template parameter files refer to these names, so if you change them, update the parameter files to match.

The parameter files include a hard-coded password in various places. Change these values before you deploy.

npm install -g @mspnp/azure-building-blocks

az login

1. Clone, fork, or download the zip file for the reference architectures GitHub repository.

2. Install Azure CLI 2.0.

3. Install the Azure building blocks npm package.

4. From a command prompt, bash prompt, or PowerShell prompt, sign into your Azure account as follows:

azbb -s <subscription_id> -g ra-onprem-sp2016-rg -l <location> -p onprem.json --deploy

azbb -s <subscription_id> -g ra-onprem-sp2016-rg -l <location> -p connections.json --deploy

azbb -s <subscription_id> -g ra-onprem-sp2016-rg -l <location> -p azure1.json --deploy

azbb -s <subscription_id> -g ra-onprem-sp2016-rg -l <location> -p azure2-cluster.json --deploy

azbb -s <subscription_id> -g ra-onprem-sp2016-rg -l <location> -p azure3.json --deploy

1. Run the following command to deploy a simulated on-premises network.

2. Run the following command to deploy the Azure VNet and the VPN gateway.

3. Run the following command to deploy the jumpbox, AD domain controllers, and SQL Server VMs.

4. Run the following command to create the failover cluster and the availability group.

5. Run the following command to deploy the remaining VMs.

At this point, verify that you can make a TCP connection from the web front end to the load balancer for the SQL
Server Always On availability group. To do so, perform the following steps:

1. Use the Azure portal to find the VM named ra-sp-jb-vm1 in the ra-sp2016-network-rg resource group. This
is the jumpbox VM.

2. Click Connect to open a remote desktop session to the VM. Use the password that you specified in the
azure1.json parameter file.

3. From the Remote Desktop session, log into 10.0.5.4. This is the IP address of the VM named ra-sp-app-vm1 .

https://github.com/mspnp/reference-architectures
https://docs.microsoft.com/cli/azure/install-azure-cli?view=azure-cli-latest
https://github.com/mspnp/template-building-blocks/wiki/Install-Azure-Building-Blocks

ComputerName : 10.0.3.100
RemoteAddress : 10.0.3.100
RemotePort : 1433
InterfaceAlias : Ethernet 3
SourceAddress : 10.0.0.132
TcpTestSucceeded : True

Validate the deploymentValidate the deployment

Test-NetConnection 10.0.3.100 -Port 1433

4. Open a PowerShell console in the VM, and use the Test-NetConnection cmdlet to verify that you can
connect to the load balancer.

The output should look similar to the following:

If it fails, use the Azure Portal to restart the VM named ra-sp-sql-vm2 . After the VM restarts, run the
Test-NetConnection command again. You may need to wait about a minute after the VM restarts for the

connection to succeed.

Now complete the deployment as follows.

azbb -s <subscription_id> -g ra-onprem-sp2016-rg -l <location> -p azure4-sharepoint-server.json --deploy

azbb -s <subscription_id> -g ra-onprem-sp2016-rg -l <location> -p azure5-sharepoint-farm.json --deploy

azbb -s <subscription_id> -g ra-onprem-sp2016-rg -l <location> -p azure6-security.json --deploy

1. Run the following command to deploy the SharePoint farm primary node.

2. Run the following command to deploy the SharePoint cache, search, and web.

3. Run the following command to create the NSG rules.

1. In the Azure portal, navigate to the ra-onprem-sp2016-rg resource group.

2. In the list of resources, select the VM resource named ra-onpr-u-vm1 .

3. Connect to the VM, as described in Connect to virtual machine. The user name is \onpremuser .

4. When the remote connection to the VM is established, open a browser in the VM and navigate to
http://portal.contoso.local .

5. In the Windows Security box, log on to the SharePoint portal using contoso.local\testuser for the user
name.

This logon tunnels from the Fabrikam.com domain used by the on-premises network to the contoso.local domain
used by the SharePoint portal. When the SharePoint site opens, you'll see the root demo site.

Contributors to this reference architecture — Joe Davies, Bob Fox, Neil Hodgkinson, Paul Stork

https://portal.azure.com
https://docs.microsoft.com/azure/virtual-machines/windows/quick-create-portal#connect-to-virtual-machine

Run a basic web application in Azure
3/13/2019 • 11 minutes to read • Edit Online

Architecture

NOTENOTE

This reference architecture shows proven practices for a web application that uses Azure App Service and Azure
SQL Database. Deploy this solution.

Download a Visio file of this architecture.

This architecture does not focus on application development, and does not assume any particular application framework.
The goal is to understand how various Azure services fit together.

The architecture has the following components:

Resource group. A resource group is a logical container for Azure resources.

App Service app. Azure App Service is a fully managed platform for creating and deploying cloud
applications.

App Service plan. An App Service plan provides the managed virtual machines (VMs) that host your app.
All apps associated with a plan run on the same VM instances.

Deployment slots. A deployment slot lets you stage a deployment and then swap it with the production
deployment. That way, you avoid deploying directly into production. See the Manageability section for
specific recommendations.

IP address. The App Service app has a public IP address and a domain name. The domain name is a
subdomain of azurewebsites.net , such as contoso.azurewebsites.net .

https://github.com/mspnp/architecture-center/blob/master/docs/reference-architectures/app-service-web-app/basic-web-app.md
https://docs.microsoft.com/azure/app-service/
https://docs.microsoft.com/azure/sql-database/
https://archcenter.blob.core.windows.net/cdn/app-service-reference-architectures.vsdx
https://docs.microsoft.com/azure/azure-resource-manager/resource-group-overview
https://docs.microsoft.com/azure/app-service/
https://docs.microsoft.com/azure/app-service/azure-web-sites-web-hosting-plans-in-depth-overview
https://docs.microsoft.com/azure/app-service-web/web-sites-staged-publishing

Recommendations

App Service planApp Service plan

SQL DatabaseSQL Database

RegionRegion

Scalability considerations

Scaling the App Service appScaling the App Service app

Azure DNS. Azure DNS is a hosting service for DNS domains, providing name resolution using
Microsoft Azure infrastructure. By hosting your domains in Azure, you can manage your DNS records
using the same credentials, APIs, tools, and billing as your other Azure services. To use a custom domain
name (such as contoso.com) create DNS records that map the custom domain name to the IP address. For
more information, see Configure a custom domain name in Azure App Service.

Azure SQL Database. SQL Database is a relational database-as-a-service in the cloud. SQL Database
shares its code base with the Microsoft SQL Server database engine. Depending on your application
requirements, you can also use Azure Database for MySQL or Azure Database for PostgreSQL. These are
fully managed database services, based on the open source MySQL Server and Postgres database
engines, respectively.

Logical server. In Azure SQL Database, a logical server hosts your databases. You can create multiple
databases per logical server.

Azure Storage. Create an Azure storage account with a blob container to store diagnostic logs.

Azure Active Directory (Azure AD). Use Azure AD or another identity provider for authentication.

Your requirements might differ from the architecture described here. Use the recommendations in this section as
a starting point.

Use the Standard or Premium tiers, because they support scale out, autoscale, and secure sockets layer (SSL).
Each tier supports several instance sizes that differ by number of cores and memory. You can change the tier or
instance size after you create a plan. For more information about App Service plans, see App Service Pricing.

You are charged for the instances in the App Service plan, even if the app is stopped. Make sure to delete plans
that you aren't using (for example, test deployments).

Use the V12 version of SQL Database. SQL Database supports Basic, Standard, and Premium service tiers, with
multiple performance levels within each tier measured in Database Transaction Units (DTUs). Perform capacity
planning and choose a tier and performance level that meets your requirements.

Provision the App Service plan and the SQL Database in the same region to minimize network latency. Generally,
choose the region closest to your users.

The resource group also has a region, which specifies where deployment metadata is stored. Put the resource
group and its resources in the same region. This can improve availability during deployment.

A major benefit of Azure App Service is the ability to scale your application based on load. Here are some
considerations to keep in mind when planning to scale your application.

There are two ways to scale an App Service app:

Scale up, which means changing the instance size. The instance size determines the memory, number of
cores, and storage on each VM instance. You can scale up manually by changing the instance size or the
plan tier.

Scale out, which means adding instances to handle increased load. Each pricing tier has a maximum

https://docs.microsoft.com/azure/dns/dns-overview
https://docs.microsoft.com/azure/app-service-web/web-sites-custom-domain-name
https://docs.microsoft.com/azure/sql-database/
https://docs.microsoft.com/azure/mysql
https://docs.microsoft.com/azure/postgresql
https://azure.microsoft.com/pricing/details/app-service/
https://docs.microsoft.com/azure/sql-database/sql-database-features
https://docs.microsoft.com/azure/sql-database/sql-database-service-tiers
https://docs.microsoft.com/azure/sql-database/sql-database-service-tiers

Scaling SQL DatabaseScaling SQL Database

Availability considerations

NOTENOTE

BackupsBackups

number of instances.

You can scale out manually by changing the instance count, or use autoscaling to have Azure automatically
add or remove instances based on a schedule and/or performance metrics. Each scale operation happens
quickly—typically within seconds.

To enable autoscaling, create an autoscale profile that defines the minimum and maximum number of
instances. Profiles can be scheduled. For example, you might create separate profiles for weekdays and
weekends. Optionally, a profile contains rules for when to add or remove instances. (Example: Add two
instances if CPU usage is above 70% for 5 minutes.)

Recommendations for scaling a web app:

As much as possible, avoid scaling up and down, because it may trigger an application restart. Instead, select a
tier and size that meet your performance requirements under typical load and then scale out the instances to
handle changes in traffic volume.
Enable autoscaling. If your application has a predictable, regular workload, create profiles to schedule the
instance counts ahead of time. If the workload is not predictable, use rule-based autoscaling to react to
changes in load as they occur. You can combine both approaches.
CPU usage is generally a good metric for autoscale rules. However, you should load test your application,
identify potential bottlenecks, and base your autoscale rules on that data.
Autoscale rules include a cool-down period, which is the interval to wait after a scale action has completed
before starting a new scale action. The cool-down period lets the system stabilize before scaling again. Set a
shorter cool-down period for adding instances, and a longer cool-down period for removing instances. For
example, set 5 minutes to add an instance, but 60 minutes to remove an instance. It's better to add new
instances quickly under heavy load to handle the additional traffic, and then gradually scale back.

If you need a higher service tier or performance level for SQL Database, you can scale up individual databases
with no application downtime. For more information, see SQL Database options and performance: Understand
what's available in each service tier.

At the time of writing, the service level agreement (SLA) for App Service is 99.95% and the SLA for SQL
Database is 99.99% for Basic, Standard, and Premium tiers.

The App Service SLA applies to both single and multiple instances.

In the event of data loss, SQL Database provides point-in-time restore and geo-restore. These features are
available in all tiers and are automatically enabled. You don't need to schedule or manage the backups.

Use point-in-time restore to recover from human error by returning the database to an earlier point in time.
Use geo-restore to recover from a service outage by restoring a database from a geo-redundant backup.

For more information, see Cloud business continuity and database disaster recovery with SQL Database.

App Service provides a backup and restore feature for your application files. However, be aware that the backed-
up files include app settings in plain text and these may include secrets, such as connection strings. Avoid using
the App Service backup feature to back up your SQL databases because it exports the database to a SQL .bacpac
file, consuming DTUs. Instead, use SQL Database point-in-time restore described above.

https://docs.microsoft.com/azure/app-service-web/web-sites-scale
https://docs.microsoft.com/azure/sql-database/sql-database-service-tiers#scaling-up-or-scaling-down-a-single-database
https://docs.microsoft.com/azure/sql-database/sql-database-business-continuity#recover-a-database-after-a-user-or-application-error
https://docs.microsoft.com/azure/sql-database/sql-database-business-continuity#recover-a-database-to-another-region-from-an-azure-regional-data-center-outage
https://docs.microsoft.com/azure/sql-database/sql-database-business-continuity
https://docs.microsoft.com/azure/app-service-web/web-sites-backup
https://docs.microsoft.com/azure/sql-database/sql-database-service-tiers

 Manageability considerations

DeploymentDeployment

ConfigurationConfiguration

Create separate resource groups for production, development, and test environments. This makes it easier to
manage deployments, delete test deployments, and assign access rights.

When assigning resources to resource groups, consider the following:

Lifecycle. In general, put resources with the same lifecycle into the same resource group.
Access. You can use role-based access control (RBAC) to apply access policies to the resources in a group.
Billing. You can view the rolled-up costs for the resource group.

For more information, see Azure Resource Manager overview.

Deployment involves two steps:

1. Provisioning the Azure resources. We recommend that you use Azure Resource Manager templates for this
step. Templates make it easier to automate deployments via PowerShell or the Azure command line interface
(CLI).

2. Deploying the application (code, binaries, and content files). You have several options, including deploying
from a local Git repository, using Visual Studio, or continuous deployment from cloud-based source control.
See Deploy your app to Azure App Service.

An App Service app always has one deployment slot named production , which represents the live production
site. We recommend creating a staging slot for deploying updates. The benefits of using a staging slot include:

You can verify the deployment succeeded, before swapping it into production.
Deploying to a staging slot ensures that all instances are warmed up before being swapped into production.
Many applications have a significant warmup and cold-start time.

We also recommend creating a third slot to hold the last-known-good deployment. After you swap staging and
production, move the previous production deployment (which is now in staging) into the last-known-good slot.
That way, if you discover a problem later, you can quickly revert to the last-known-good version.

If you revert to a previous version, make sure any database schema changes are backward compatible.

Don't use slots on your production deployment for testing because all apps within the same App Service plan
share the same VM instances. For example, load tests might degrade the live production site. Instead, create
separate App Service plans for production and test. By putting test deployments into a separate plan, you isolate
them from the production version.

Store configuration settings as app settings. Define the app settings in your Resource Manager templates, or
using PowerShell. At runtime, app settings are available to the application as environment variables.

Never check passwords, access keys, or connection strings into source control. Instead, pass these as parameters
to a deployment script that stores these values as app settings.

https://docs.microsoft.com/azure/active-directory/role-based-access-control-what-is
https://docs.microsoft.com/azure/azure-resource-manager/resource-group-overview
https://docs.microsoft.com/azure/azure-resource-manager/resource-group-overview#resource-groups
https://docs.microsoft.com/azure/app-service-web/web-sites-deploy
https://docs.microsoft.com/azure/app-service-web/web-sites-configure

Diagnostics and monitoringDiagnostics and monitoring

Security considerations

SQL Database auditingSQL Database auditing

Deployment slotsDeployment slots

LoggingLogging

SSLSSL

AuthenticationAuthentication

When you swap a deployment slot, the app settings are swapped by default. If you need different settings for
production and staging, you can create app settings that stick to a slot and don't get swapped.

Enable diagnostics logging, including application logging and web server logging. Configure logging to use Blob
storage. For performance reasons, create a separate storage account for diagnostic logs. Don't use the same
storage account for logs and application data. For more detailed guidance on logging, see Monitoring and
diagnostics guidance.

Use a service such as New Relic or Application Insights to monitor application performance and behavior under
load. Be aware of the data rate limits for Application Insights.

Perform load testing, using a tool such as Azure DevOps or Visual Studio Team Foundation Server. For a general
overview of performance analysis in cloud applications, see Performance Analysis Primer.

Tips for troubleshooting your application:

Use the troubleshoot blade in the Azure portal to find solutions to common problems.
Enable log streaming to see logging information in near-real time.
The Kudu dashboard has several tools for monitoring and debugging your application. For more information,
see Azure Websites online tools you should know about (blog post). You can reach the Kudu dashboard from
the Azure portal. Open the blade for your app and click Tools, then click Kudu.
If you use Visual Studio, see the article Troubleshoot a web app in Azure App Service using Visual Studio for
debugging and troubleshooting tips.

This section lists security considerations that are specific to the Azure services described in this article. It's not a
complete list of security best practices. For some additional security considerations, see Secure an app in Azure
App Service.

Auditing can help you maintain regulatory compliance and get insight into discrepancies and irregularities that
could indicate business concerns or suspected security violations. See Get started with SQL database auditing.

Each deployment slot has a public IP address. Secure the nonproduction slots using Azure Active Directory login
so that only members of your development and DevOps teams can reach those endpoints.

Logs should never record users' passwords or other information that might be used to commit identity fraud.
Scrub those details from the data before storing it.

An App Service app includes an SSL endpoint on a subdomain of azurewebsites.net at no additional cost. The
SSL endpoint includes a wildcard certificate for the *.azurewebsites.net domain. If you use a custom domain
name, you must provide a certificate that matches the custom domain. The simplest approach is to buy a
certificate directly through the Azure portal. You can also import certificates from other certificate authorities. For
more information, see Buy and Configure an SSL Certificate for your Azure App Service.

As a security best practice, your app should enforce HTTPS by redirecting HTTP requests. You can implement this
inside your application or use a URL rewrite rule as described in Enable HTTPS for an app in Azure App Service.

We recommend authenticating through an identity provider (IDP), such as Azure AD, Facebook, Google, or

https://docs.microsoft.com/azure/app-service-web/web-sites-enable-diagnostic-log
https://newrelic.com/
https://docs.microsoft.com/azure/application-insights/app-insights-overview
https://docs.microsoft.com/azure/application-insights/app-insights-pricing
https://docs.microsoft.com/azure/devops/
https://docs.microsoft.com/tfs/index
https://github.com/mspnp/performance-optimization/blob/master/Performance-Analysis-Primer.md
https://azure.microsoft.com/updates/self-service-troubleshooting-for-app-service-web-apps-customers/
https://docs.microsoft.com/azure/app-service-web/web-sites-enable-diagnostic-log#streamlogs
https://azure.microsoft.com/blog/windows-azure-websites-online-tools-you-should-know-about/
https://azure.microsoft.com/blog/windows-azure-websites-online-tools-you-should-know-about/
https://docs.microsoft.com/azure/app-service-web/web-sites-dotnet-troubleshoot-visual-studio
https://docs.microsoft.com/azure/app-service-web/web-sites-security
https://docs.microsoft.com/azure/sql-database/sql-database-auditing-get-started
https://docs.microsoft.com/azure/app-service-mobile/app-service-mobile-how-to-configure-active-directory-authentication
https://docs.microsoft.com/azure/app-service-web/web-sites-purchase-ssl-web-site
https://docs.microsoft.com/azure/app-service-web/web-sites-configure-ssl-certificate#bkmk_enforce

 Deploy the solution

New-AzureRmResourceGroup -Name <resource-group-name> -Location "West US"

$parameters = @{"appName"="<app-name>";"environment"="dev";"locationShort"="uw";"databaseName"="app-
db";"administratorLogin"="<admin>";"administratorLoginPassword"="<password>"}

New-AzureRmResourceGroupDeployment -Name <deployment-name> -ResourceGroupName <resource-group-name> -
TemplateFile .\PaaS-Basic.json -TemplateParameterObject $parameters

Twitter. Use OAuth 2 or OpenID Connect (OIDC) for the authentication flow. Azure AD provides functionality to
manage users and groups, create application roles, integrate your on-premises identities, and consume backend
services such as Office 365 and Skype for Business.

Avoid having the application manage user logins and credentials directly, as it creates a potential attack surface.
At a minimum, you would need to have email confirmation, password recovery, and multi-factor authentication;
validate password strength; and store password hashes securely. The large identity providers handle all of those
things for you, and are constantly monitoring and improving their security practices.

Consider using App Service authentication to implement the OAuth/OIDC authentication flow. The benefits of
App Service authentication include:

Easy to configure.
No code is required for simple authentication scenarios.
Supports delegated authorization using OAuth access tokens to consume resources on behalf of the user.
Provides a built-in token cache.

Some limitations of App Service authentication:

Limited customization options.
Delegated authorization is restricted to one backend resource per login session.
If you use more than one IDP, there is no built-in mechanism for home realm discovery.
For multi-tenant scenarios, the application must implement the logic to validate the token issuer.

An example Resource Manager template for this architecture is available on GitHub.

To deploy the template using PowerShell, run the following commands:

For more information, see Deploy resources with Azure Resource Manager templates.

https://docs.microsoft.com/azure/app-service-api/app-service-api-authentication
https://github.com/mspnp/reference-architectures/tree/master/managed-web-app/basic-web-app/Paas-Basic/Templates
https://docs.microsoft.com/azure/resource-group-template-deploy

Improve scalability in an Azure web application
3/13/2019 • 5 minutes to read • Edit Online

Architecture

This reference architecture shows proven practices for improving scalability and performance in an Azure App
Service web application.

Download a Visio file of this architecture.

This architecture builds on the one shown in Basic web application. It includes the following components:

Resource group. A resource group is a logical container for Azure resources.
Web app. A typical modern application might include both a website and one or more RESTful web APIs. A
web API might be consumed by browser clients through AJAX, by native client applications, or by server-side
applications. For considerations on designing web APIs, see API design guidance.
Function App. Use Function Apps to run background tasks. Functions are invoked by a trigger, such as a timer
event or a message being placed on queue. For long-running stateful tasks, use Durable Functions.
Queue. In the architecture shown here, the application queues background tasks by putting a message onto an
Azure Queue storage queue. The message triggers a function app. Alternatively, you can use Service Bus
queues. For a comparison, see Azure Queues and Service Bus queues - compared and contrasted.
Cache. Store semi-static data in Azure Redis Cache.
CDN . Use Azure Content Delivery Network (CDN) to cache publicly available content for lower latency and
faster delivery of content.
Data storage. Use Azure SQL Database for relational data. For non-relational data, consider Cosmos DB.
Azure Search. Use Azure Search to add search functionality such as search suggestions, fuzzy search, and
language-specific search. Azure Search is typically used in conjunction with another data store, especially if the
primary data store requires strict consistency. In this approach, store authoritative data in the other data store
and the search index in Azure Search. Azure Search can also be used to consolidate a single search index from
multiple data stores.
Azure DNS. Azure DNS is a hosting service for DNS domains, providing name resolution using Microsoft
Azure infrastructure. By hosting your domains in Azure, you can manage your DNS records using the same
credentials, APIs, tools, and billing as your other Azure services.

https://github.com/mspnp/architecture-center/blob/master/docs/reference-architectures/app-service-web-app/scalable-web-app.md
https://archcenter.blob.core.windows.net/cdn/app-service-reference-architectures.vsdx
https://docs.microsoft.com/azure/azure-resource-manager/resource-group-overview#resource-groups
https://docs.microsoft.com/azure/app-service-web/app-service-web-overview
https://docs.microsoft.com/azure/azure-functions/functions-overview
https://docs.microsoft.com/azure/azure-functions/durable-functions-overview
https://docs.microsoft.com/azure/storage/storage-dotnet-how-to-use-queues
https://docs.microsoft.com/azure/service-bus-messaging/service-bus-azure-and-service-bus-queues-compared-contrasted
https://azure.microsoft.com/services/cache/
https://azure.microsoft.com/services/cdn/
https://docs.microsoft.com/azure/sql-database/
https://docs.microsoft.com/azure/cosmos-db/
https://docs.microsoft.com/azure/search
https://docs.microsoft.com/azure/dns/dns-overview

Recommendations

App Service appsApp Service apps

NOTENOTE

CacheCache

CDNCDN

NOTENOTE

StorageStorage

WHAT YOU WANT TO STORE EXAMPLE RECOMMENDED STORAGE

Files Images, documents, PDFs Azure Blob Storage

Key/Value pairs User profile data looked up by user ID Azure Table storage

Application gateway. Application Gateway is a layer 7 load balancer. In this architecture, it routes HTTP
requests to the web front end. Application Gateway also provides a web application firewall (WAF) that
protects the application from common exploits and vulnerabilities.

Your requirements might differ from the architecture described here. Use the recommendations in this section as a
starting point.

We recommend creating the web application and the web API as separate App Service apps. This design lets you
run them in separate App Service plans so they can be scaled independently. If you don't need that level of
scalability initially, you can deploy the apps into the same plan and move them into separate plans later if
necessary.

For the Basic, Standard, and Premium plans, you are billed for the VM instances in the plan, not per app. See App Service
Pricing

You can improve performance and scalability by using Azure Redis Cache to cache some data. Consider using
Redis Cache for:

Semi-static transaction data.
Session state.
HTML output. This can be useful in applications that render complex HTML output.

For more detailed guidance on designing a caching strategy, see Caching guidance.

Use Azure CDN to cache static content. The main benefit of a CDN is to reduce latency for users, because content
is cached at an edge server that is geographically close to the user. CDN can also reduce load on the application,
because that traffic is not being handled by the application.

If your app consists mostly of static pages, consider using CDN to cache the entire app. Otherwise, put static
content such as images, CSS, and HTML files, into Azure Storage and use CDN to cache those files.

Azure CDN cannot serve content that requires authentication.

For more detailed guidance, see Content Delivery Network (CDN) guidance.

Modern applications often process large amounts of data. In order to scale for the cloud, it's important to choose
the right storage type. Here are some baseline recommendations.

https://docs.microsoft.com/azure/application-gateway/
https://docs.microsoft.com/azure/application-gateway/waf-overview
https://azure.microsoft.com/pricing/details/app-service/
https://azure.microsoft.com/services/cache/
https://azure.microsoft.com/services/cdn/
https://docs.microsoft.com/azure/app-service-web/cdn-websites-with-cdn
https://docs.microsoft.com/azure/cdn/cdn-create-a-storage-account-with-cdn

Short messages intended to trigger
further processing

Order requests Azure Queue storage, Service Bus
queue, or Service Bus topic

Non-relational data with a flexible
schema requiring basic querying

Product catalog Document database, such as Azure
Cosmos DB, MongoDB, or Apache
CouchDB

Relational data requiring richer query
support, strict schema, and/or strong
consistency

Product inventory Azure SQL Database

WHAT YOU WANT TO STORE EXAMPLE RECOMMENDED STORAGE

Scalability considerations

App Service appApp Service app

SQL DatabaseSQL Database

Azure SearchAzure Search

Security considerations

Cross-Origin Resource Sharing (CORS)Cross-Origin Resource Sharing (CORS)

NOTENOTE

See Choose the right data store.

A major benefit of Azure App Service is the ability to scale your application based on load. Here are some
considerations to keep in mind when planning to scale your application.

If your solution includes several App Service apps, consider deploying them to separate App Service plans. This
approach enables you to scale them independently because they run on separate instances.

Similarly, consider putting a function app into its own plan so that background tasks don't run on the same
instances that handle HTTP requests. If background tasks run intermittently, consider using a consumption plan,
which is billed based on the number of executions, rather than hourly.

Increase scalability of a SQL database by sharding the database. Sharding refers to partitioning the database
horizontally. Sharding allows you to scale out the database horizontally using Elastic Database tools. Potential
benefits of sharding include:

Better transaction throughput.
Queries can run faster over a subset of the data.

Azure Search removes the overhead of performing complex data searches from the primary data store, and it can
scale to handle load. See Scale resource levels for query and indexing workloads in Azure Search.

This section lists security considerations that are specific to the Azure services described in this article. It's not a
complete list of security best practices. For some additional security considerations, see Secure an app in Azure
App Service.

If you create a website and web API as separate apps, the website cannot make client-side AJAX calls to the API
unless you enable CORS.

Browser security prevents a web page from making AJAX requests to another domain. This restriction is called the same-
origin policy, and prevents a malicious site from reading sentitive data from another site. CORS is a W3C standard that
allows a server to relax the same-origin policy and allow some cross-origin requests while rejecting others.

https://docs.microsoft.com/azure/azure-functions/functions-scale#consumption-plan
https://docs.microsoft.com/azure/sql-database/sql-database-elastic-scale-introduction
https://docs.microsoft.com/azure/search/search-capacity-planning
https://docs.microsoft.com/azure/app-service-web/web-sites-security

SQL Database encryptionSQL Database encryption

App Services has built-in support for CORS, without needing to write any application code. See Consume an API
app from JavaScript using CORS. Add the website to the list of allowed origins for the API.

Use Transparent Data Encryption if you need to encrypt data at rest in the database. This feature performs real-
time encryption and decryption of an entire database (including backups and transaction log files) and requires no
changes to the application. Encryption does add some latency, so it's a good practice to separate the data that must
be secure into its own database and enable encryption only for that database.

https://docs.microsoft.com/azure/app-service-api/app-service-api-cors-consume-javascript
https://msdn.microsoft.com/library/dn948096.aspx

Run a web application in multiple Azure regions for
high availability
3/13/2019 • 8 minutes to read • Edit Online

Architecture

This reference architecture shows how to run an Azure App Service application in multiple regions to achieve high
availability.

Download a Visio file of this architecture.

This architecture builds on the one shown in Improve scalability in a web application. The main differences are:

Primary and secondary regions. This architecture uses two regions to achieve higher availability. The
application is deployed to each region. During normal operations, network traffic is routed to the primary
region. If the primary region becomes unavailable, traffic is routed to the secondary region.
Azure DNS. Azure DNS is a hosting service for DNS domains, providing name resolution using Microsoft
Azure infrastructure. By hosting your domains in Azure, you can manage your DNS records using the same
credentials, APIs, tools, and billing as your other Azure services.
Azure Traffic Manager. Traffic Manager routes incoming requests to the primary region. If the application
running that region becomes unavailable, Traffic Manager fails over to the secondary region.
Geo-replication of SQL Database and Cosmos DB.

A multi-region architecture can provide higher availability than deploying to a single region. If a regional outage
affects the primary region, you can use Traffic Manager to fail over to the secondary region. This architecture can
also help if an individual subsystem of the application fails.

There are several general approaches to achieving high availability across regions:

Active/passive with hot standby. Traffic goes to one region, while the other waits on hot standby. Hot standby
means the VMs in the secondary region are allocated and running at all times.
Active/passive with cold standby. Traffic goes to one region, while the other waits on cold standby. Cold standby

https://github.com/mspnp/architecture-center/blob/master/docs/reference-architectures/app-service-web-app/multi-region.md
https://archcenter.blob.core.windows.net/cdn/app-service-reference-architectures.vsdx
https://docs.microsoft.com/azure/dns/dns-overview
https://azure.microsoft.com/services/traffic-manager
https://azure.microsoft.com/services/traffic-manager

Recommendations

Regional pairingRegional pairing

Resource groupsResource groups

Traffic Manager configurationTraffic Manager configuration

SQL DatabaseSQL Database

Cosmos DBCosmos DB

means the VMs in the secondary region are not allocated until needed for failover. This approach costs less to
run, but will generally take longer to come online during a failure.
Active/active. Both regions are active, and requests are load balanced between them. If one region becomes
unavailable, it is taken out of rotation.

This reference architecture focuses on active/passive with hot standby, using Traffic Manager for failover.

Your requirements might differ from the architecture described here. Use the recommendations in this section as a
starting point.

Each Azure region is paired with another region within the same geography. In general, choose regions from the
same regional pair (for example, East US 2 and Central US). Benefits of doing so include:

If there is a broad outage, recovery of at least one region out of every pair is prioritized.
Planned Azure system updates are rolled out to paired regions sequentially to minimize possible downtime.
In most cases, regional pairs reside within the same geography to meet data residency requirements.

However, make sure that both regions support all of the Azure services needed for your application. See Services
by region. For more information about regional pairs, see Business continuity and disaster recovery (BCDR): Azure
Paired Regions.

Consider placing the primary region, secondary region, and Traffic Manager into separate resource groups. This
lets you manage the resources deployed to each region as a single collection.

Routing. Traffic Manager supports several routing algorithms. For the scenario described in this article, use
priority routing (formerly called failover routing). With this setting, Traffic Manager sends all requests to the
primary region unless the endpoint for that region becomes unreachable. At that point, it automatically fails over
to the secondary region. See Configure Failover routing method.

Health probe. Traffic Manager uses an HTTP (or HTTPS) probe to monitor the availability of each endpoint. The
probe gives Traffic Manager a pass/fail test for failing over to the secondary region. It works by sending a request
to a specified URL path. If it gets a non-200 response within a timeout period, the probe fails. After four failed
requests, Traffic Manager marks the endpoint as degraded and fails over to the other endpoint. For details, see
Traffic Manager endpoint monitoring and failover.

As a best practice, create a health probe endpoint that reports the overall health of the application and use this
endpoint for the health probe. The endpoint should check critical dependencies such as the App Service apps,
storage queue, and SQL Database. Otherwise, the probe might report a healthy endpoint when critical parts of the
application are actually failing.

On the other hand, don't use the health probe to check lower priority services. For example, if an email service
goes down the application can switch to a second provider or just send emails later. This is not a high enough
priority to cause the application to fail over. For more information, see the Health Endpoint Monitoring pattern.

Use Active Geo-Replication to create a readable secondary replica in a different region. You can have up to four
readable secondary replicas. Fail over to a secondary database if your primary database fails or needs to be taken
offline. Active Geo-Replication can be configured for any database in any elastic database pool.

https://azure.microsoft.com/regions/#services
https://docs.microsoft.com/azure/best-practices-availability-paired-regions
https://docs.microsoft.com/azure/azure-resource-manager/resource-group-overview#resource-groups
https://docs.microsoft.com/azure/traffic-manager/traffic-manager-routing-methods
https://docs.microsoft.com/azure/traffic-manager/traffic-manager-configure-failover-routing-method
https://docs.microsoft.com/azure/traffic-manager/traffic-manager-monitoring
https://msdn.microsoft.com/library/dn589789.aspx
https://docs.microsoft.com/azure/sql-database/sql-database-geo-replication-overview

NOTENOTE

StorageStorage

Availability considerations - Traffic Manager

Availability Considerations - SQL Database

Availability Considerations - Storage

Cosmos DB supports geo-replication across regions with multi-master (multiple write regions). Alternatively, you
can designate one region as the writable region and the others as read-only replicas. If there is a regional outage,
you can fail over by selecting another region to be the write region. The client SDK automatically sends write
requests to the current write region, so you don't need to update the client configuration after a failover. For more
information, see Global data distribution with Azure Cosmos DB.

All of the replicas belong to the same resource group.

For Azure Storage, use read-access geo-redundant storage (RA-GRS). With RA-GRS storage, the data is replicated
to a secondary region. You have read-only access to the data in the secondary region through a separate endpoint.
If there is a regional outage or disaster, the Azure Storage team might decide to perform a geo-failover to the
secondary region. There is no customer action required for this failover.

For Queue storage, create a backup queue in the secondary region. During failover, the app can use the backup
queue until the primary region becomes available again. That way, the application can still process new requests.

Traffic Manager automatically fails over if the primary region becomes unavailable. When Traffic Manager fails
over, there is a period of time when clients cannot reach the application. The duration is affected by the following
factors:

The health probe must detect that the primary data center has become unreachable.
Domain name service (DNS) servers must update the cached DNS records for the IP address, which depends
on the DNS time-to-live (TTL). The default TTL is 300 seconds (5 minutes), but you can configure this value
when you create the Traffic Manager profile.

For details, see About Traffic Manager Monitoring.

Traffic Manager is a possible failure point in the system. If the service fails, clients cannot access your application
during the downtime. Review the Traffic Manager service level agreement (SLA) and determine whether using
Traffic Manager alone meets your business requirements for high availability. If not, consider adding another traffic
management solution as a fallback. If the Azure Traffic Manager service fails, change your canonical name
(CNAME) records in DNS to point to the other traffic management service. This step must be performed manually,
and your application will be unavailable until the DNS changes are propagated.

The recovery point objective (RPO) and estimated recovery time (ERT) for SQL Database are documented in
Overview of business continuity with Azure SQL Database.

RA-GRS storage provides durable storage, but it's important to understand what can happen during an outage:

If a storage outage occurs, there will be a period of time when you don't have write-access to the data. You
can still read from the secondary endpoint during the outage.

If a regional outage or disaster affects the primary location and the data there cannot be recovered, the
Azure Storage team may decide to perform a geo-failover to the secondary region.

Data replication to the secondary region is performed asynchronously. Therefore, if a geo-failover is

https://docs.microsoft.com/azure/cosmos-db/distribute-data-globally
https://docs.microsoft.com/azure/storage/storage-redundancy#read-access-geo-redundant-storage
https://docs.microsoft.com/azure/traffic-manager/traffic-manager-monitoring
https://azure.microsoft.com/support/legal/sla/traffic-manager
https://docs.microsoft.com/azure/sql-database/sql-database-business-continuity#sql-database-features-that-you-can-use-to-provide-business-continuity

Manageability Considerations - Traffic Manager

PowerShellPowerShell

$endpoint = Get-AzureRmTrafficManagerEndpoint -Name <endpoint> -ProfileName <profile> -ResourceGroupName
<resource-group> -Type AzureEndpoints
$endpoint.Priority = 3
Set-AzureRmTrafficManagerEndpoint -TrafficManagerEndpoint $endpoint

Azure CLIAzure CLI

az network traffic-manager endpoint update --resource-group <resource-group> --profile-name <profile> \
 --name <endpoint-name> --type azureEndpoints --priority 3

Manageability Considerations - SQL Database

performed, some data loss is possible if the data can't be recovered from the primary region.

Transient failures, such as a network outage, will not trigger a storage failover. Design your application to be
resilient to transient failures. Possible mitigations:

Read from the secondary region.
Temporarily switch to another storage account for new write operations (for example, to queue
messages).
Copy data from the secondary region to another storage account.
Provide reduced functionality until the system fails back.

For more information, see What to do if an Azure Storage outage occurs.

If Traffic Manager fails over, we recommend performing a manual failback rather than implementing an automatic
failback. Otherwise, you can create a situation where the application flips back and forth between regions. Verify
that all application subsystems are healthy before failing back.

Note that Traffic Manager automatically fails back by default. To prevent this, manually lower the priority of the
primary region after a failover event. For example, suppose the primary region is priority 1 and the secondary is
priority 2. After a failover, set the primary region to priority 3, to prevent automatic failback. When you are ready to
switch back, update the priority to 1.

The following commands update the priority.

For more information, see Azure Traffic Manager Cmdlets.

If the primary database fails, perform a manual failover to the secondary database. See Restore an Azure SQL
Database or failover to a secondary. The secondary database remains read-only until you fail over.

https://docs.microsoft.com/azure/storage/storage-disaster-recovery-guidance
https://docs.microsoft.com/powershell/module/azurerm.trafficmanager
https://docs.microsoft.com/azure/sql-database/sql-database-disaster-recovery

Web application monitoring on Azure
3/13/2019 • 7 minutes to read • Edit Online

Relevant use cases

Architecture

Azure platform as a service (PaaS) offerings manage compute resources for you and affect how you monitor
deployments. Azure includes multiple monitoring services, each of which performs a specific role. Together, these
services deliver a comprehensive solution for collecting, analyzing, and acting on telemetry from your applications
and the Azure resources they consume.

This scenario addresses the monitoring services you can use and describes a dataflow model for use with multiple
data sources. When it comes to monitoring, many tools and services work with Azure deployments. In this
scenario, we choose readily available services precisely because they are easy to consume. Other monitoring
options are discussed later in this article.

Other relevant use cases include:

Instrumenting a web application for monitoring telemetry.
Collecting front-end and back-end telemetry for an application deployed on Azure.
Monitoring metrics and quotas associated with services on Azure.

This scenario uses a managed Azure environment to host an application and data tier. The data flows through the
scenario as follows:

1. A user interacts with the application.
2. The browser and app service emit telemetry.
3. Application Insights collects and analyzes application health, performance, and usage data.
4. Developers and administrators can review health, performance, and usage information.
5. Azure SQL Database emits telemetry.
6. Azure Monitor collects and analyzes infrastructure metrics and quotas.
7. Log Analytics collects and analyzes logs and metrics.

https://github.com/mspnp/architecture-center/blob/master/docs/reference-architectures/app-service-web-app/app-monitoring.md

ComponentsComponents

Considerations

AlternativesAlternatives

8. Developers and administrators can review health, performance, and usage information.

Azure App Service is a PaaS service for building and hosting apps in managed virtual machines. The underlying
compute infrastructures on which your apps run is managed for you. App Service provides monitoring of
resource usage quotas and app metrics, logging of diagnostic information, and alerts based on metrics. Even
better, you can use Application Insights to create availability tests for testing your application from different
regions.
Application Insights is an extensible Application Performance Management (APM) service for developers and
supports multiple platforms. It monitors the application, detects application anomalies such as poor
performance and failures, and sends telemetry to the Azure portal. Application Insights can also be used for
logging, distributed tracing, and custom application metrics.
Azure Monitor provides base-level infrastructure metrics and logs for most services in Azure. You can interact
with the metrics in several ways, including charting them in Azure portal, accessing them through the REST
API, or querying them using PowerShell or CLI. Azure Monitor also offers its data directly into Log Analytics
and other services, where you can query and combine it with data from other sources on premises or in the
cloud.
Log Analytics helps correlate the usage and performance data collected by Application Insights with
configuration and performance data across the Azure resources that support the app. This scenario uses the
Azure Log Analytics agent to push SQL Server audit logs into Log Analytics. You can write queries and view
data in the Log Analytics blade of the Azure portal.

A recommended practice is adding Application Insights to your code during development using the Application
Insights SDKs, and customizing per application. These open-source SDKs are available for most application
frameworks. To enrich and control the data you collect, incorporate the use of the SDKs both for testing and
production deployments into your development process. The main requirement is for the app to have a direct or
indirect line of sight to the Applications Insights ingestion endpoint hosted with an Internet-facing address. You
can then add telemetry or enrich an existing telemetry collection.

Runtime monitoring is another easy way to get started. The telemetry that is collected must be controlled through
configuration files. For example, you can include runtime methods that enable tools such as Application Insights
Status Monitor to deploy the SDKs into the correct folder and add the right configurations to begin monitoring.

Like Application Insights, Log Analytics provides tools for analyzing data across sources, creating complex queries,
and sending proactive alerts on specified conditions. You can also view telemetry in the Azure portal. Log Analytics
adds value to existing monitoring services such as Azure Monitor and can also monitor on-premises
environments.

Both Application Insights and Log Analytics use Azure Log Analytics Query Language. You can also use cross-
resource queries to analyze the telemetry gathered by Application Insights and Log Analytics in a single query.

Azure Monitor, Application Insights, and Log Analytics all send alerts. For example, Azure Monitor alerts on
platform-level metrics such as CPU utilization, while Application Insights alerts on application-level metrics such
as server response time. Azure Monitor alerts on new events in the Azure Activity Log, while Log Analytics can
issue alerts about metrics or event data for the services configured to use it. Unified alerts in Azure Monitor is a
new, unified alerting experience in Azure that uses a different taxonomy.

This article describes conveniently available monitoring options with popular features, but you have many choices,
including the option to create your own logging mechanisms. A recommended practice is to add monitoring
services as you build out tiers in a solution. Here are some possible extensions and alternatives:

https://docs.microsoft.com/azure/app-service/
https://docs.microsoft.com/azure/application-insights/app-insights-monitor-web-app-availability
https://docs.microsoft.com/azure/application-insights/app-insights-overview
https://docs.microsoft.com/azure/monitoring-and-diagnostics/monitoring-overview-azure-monitor
https://docs.microsoft.com/azure/monitoring-and-diagnostics/monitoring-supported-metrics
https://docs.microsoft.com/azure/log-analytics/log-analytics-azure-storage
https://docs.microsoft.com/azure/log-analytics/log-analytics-overview
https://blogs.msdn.microsoft.com/sqlsecurity/2017/12/28/azure-log-analytics-oms-agent-now-collects-sql-server-audit-logs/
https://docs.microsoft.com/azure/application-insights/app-insights-asp-net
https://azure.microsoft.com/updates/application-insights-status-monitor-and-sdk-updated/
https://docs.microsoft.com/azure/log-analytics/log-analytics-dashboards
https://docs.microsoft.com/azure/log-analytics/log-analytics-alerts
https://docs.microsoft.com/azure/log-analytics/log-analytics-tutorial-dashboards
https://docs.microsoft.com/azure/monitoring-and-diagnostics/monitoring-overview-azure-monitor
https://docs.loganalytics.io/docs/Learn
https://azure.microsoft.com/blog/query-across-resources
https://docs.microsoft.com/azure/monitoring-and-diagnostics/monitoring-overview-alerts
https://docs.microsoft.com/azure/monitoring-and-diagnostics/monitoring-overview-unified-alerts

Scalability and availabilityScalability and availability

SecuritySecurity

Pricing

Consolidate Azure Monitor and Application Insights metrics in Grafana using the Azure Monitor Data Source
For Grafana.
Data Dog features a connector for Azure Monitor
Automate monitoring functions using Azure Automation.
Add communication with ITSM solutions.
Extend Log Analytics with a management solution.

This scenario focuses on PaaS solutions for monitoring in large part because they conveniently handle availability
and scalability for you and are backed by service-level agreements (SLAs). For example, App Services provides a
guaranteed SLA for its availability.

Application Insights has limits on how many requests can be processed per second. If you exceed the request limit,
you may experience message throttling. To prevent throttling, implement filtering or sampling to reduce the data
rate

High availability considerations for the app you run, however, are the developer's responsibility. For information
about scale, for example, see the Scalability considerations section in the basic web application reference
architecture. After an app is deployed, you can set up tests to monitor its availability using Application Insights.

Sensitive information and compliance requirements affect data collection, retention, and storage. Learn more
about how Application Insights and Log Analytics handle telemetry.

The following security considerations may also apply:

Develop a plan to handle personal information if developers are allowed to collect their own data or enrich
existing telemetry.
Consider data retention. For example, Application Insights retains telemetry data for 90 days. Archive data you
want access to for longer periods using Microsoft Power BI, Continuous Export, or the REST API. Storage rates
apply.
Limit access to Azure resources to control access to data and who can view telemetry from a specific
application. To help lock down access to monitoring telemetry, see Resources, roles, and access control in
Application Insights.
Consider whether to control read/write access in application code to prevent users from adding version or tag
markers that limit data ingestion from the application. With Application Insights, there is no control over
individual data items once they are sent to a resource, so if a user has access to any data, they have access to all
data in an individual resource.
Add governance mechanisms to enforce policy or cost controls over Azure resources if needed. For example,
use Log Analytics for security-related monitoring such as policies and role-based access control, or use Azure
Policy to create, assign and, manage policy definitions.
To monitor potential security issues and get a central view of the security state of your Azure resources,
consider using Azure Security Center.

Monitoring charges can add up quickly, so consider pricing up front, understand what you are monitoring, and
check the associated fees for each service. Azure Monitor provides basic metrics at no cost, while monitoring costs
for Application Insights and Log Analytics are based on the amount of data ingested and the number of tests you
run.

To help you get started, use the pricing calculator to estimate costs. To see how the pricing would change for your
particular use case, change the various options to match your expected deployment.

https://grafana.com/plugins/grafana-azure-monitor-datasource
https://www.datadoghq.com/blog/azure-monitoring-enhancements/
https://docs.microsoft.com/azure/automation/automation-intro
https://azure.microsoft.com/blog/itsm-connector-for-azure-is-now-generally-available/
https://docs.microsoft.com/azure/monitoring/monitoring-solutions
https://azure.microsoft.com/support/legal/sla/app-service/v1_4/
https://docs.microsoft.com/azure/azure-subscription-service-limits#application-insights-limits
https://docs.microsoft.com/azure/application-insights/app-insights-api-filtering-sampling
https://docs.microsoft.com/azure/application-insights/app-insights-sampling
https://docs.microsoft.com/azure/application-insights/app-insights-monitor-web-app-availability
https://docs.microsoft.com/azure/application-insights/app-insights-overview
https://docs.microsoft.com/azure/log-analytics/log-analytics-overview
https://docs.microsoft.com/azure/application-insights/app-insights-resources-roles-access-control
https://docs.microsoft.com/azure/security/governance-in-azure
https://docs.microsoft.com/azure/azure-policy/azure-policy-introduction
https://docs.microsoft.com/azure/security-center/security-center-intro
https://docs.microsoft.com/azure/monitoring-and-diagnostics/monitoring-supported-metrics
https://azure.microsoft.com/pricing/details/application-insights/
https://docs.microsoft.com/azure/log-analytics/log-analytics-overview
https://azure.microsoft.com/pricing/calculator/#log-analyticsc126d8c1-ec9c-4e5b-9b51-4db95d06a9b1

Next steps

Related resources

Telemetry from Application Insights is sent to the Azure portal during debugging and after you have published
your app. For testing purposes and to avoid charges, a limited volume of telemetry is instrumented. To add more
indicators, you can raise the telemetry limit. For more granular control, see Sampling in Application Insights.

After deployment, you can watch a Live Metrics Stream of performance indicators. This data is not stored — you
are viewing real-time metrics — but the telemetry can be collected and analyzed later. There is no charge for Live
Stream data.

Log Analytics is billed per gigabyte (GB) of data ingested into the service. The first 5 GB of data ingested to the
Azure Log Analytics service every month is offered free, and the data is retained at no charge for first 31 days in
your Log Analytics workspace.

Check out these resources designed to help you get started with your own monitoring solution:

Basic web application reference architecture

Start monitoring your ASP.NET Web Application

Collect data about Azure Virtual Machines

Monitoring Azure applications and resources

Find and diagnose run-time exceptions with Azure Application Insights

https://docs.microsoft.com/azure/application-insights/app-insights-sampling
https://docs.microsoft.com/azure/application-insights/app-insights-live-stream
https://docs.microsoft.com/azure/architecture/reference-architectures/app-service-web-app/basic-web-app#scalability-considerations
https://docs.microsoft.com/azure/application-insights/quick-monitor-portal
https://docs.microsoft.com/azure/log-analytics/log-analytics-quick-collect-azurevm
https://docs.microsoft.com/azure/monitoring-and-diagnostics/monitoring-overview
https://docs.microsoft.com/azure/application-insights/app-insights-tutorial-runtime-exceptions

Examples of microservices architectures

Build a microservices application

Operate microservices in production

Microservices are a popular architectural style for building applications that are resilient, highly scalable, independently
deployable, and able to evolve quickly. But a successful microservices architecture requires a different approach to
designing and building applications.

What are microservices?What are microservices?

Microservices architecture styleMicroservices architecture style

How do microservices differ from other architectures, and when should you use them?

High-level overview of the microservices architecture style

Use Service Fabric to decompose monolithic applicationsUse Service Fabric to decompose monolithic applications

Scalable order processing on AzureScalable order processing on Azure

An iterative approach to decomposing an ASP.NET web site into microservices.

Order processing using a functional programming model implemented via microservices.

Use domain analysis to model microservicesUse domain analysis to model microservices

Reference architecture for Azure Kubernetes Services (AKS)Reference architecture for Azure Kubernetes Services (AKS)

Reference architecture for Azure Service FabricReference architecture for Azure Service Fabric

Design a microservices architectureDesign a microservices architecture

Design patternsDesign patterns

To avoid some common pitfalls when designing microservices, use domain analysis to define your microservice
boundaries.

This reference architecture shows a basic AKS configuration that can be the starting point for most deployments.

This reference architecture shows recommended configuration that can be the starting point for most deployments.

These articles dive deep into how to build a microservices application, based on a reference implementation that uses
Azure Kubernetes Services (AKS).

A set of useful design patterns for microservices.

Logging and monitoringLogging and monitoring

Continuous integration and deploymentContinuous integration and deployment

The distributed nature of microservices architectures makes logging and monitoring especially critical.

Continuous integration and continuous delivery (CI/CD) are key to achieving success with microservices.

Introduction to microservices architectures
3/13/2019 • 4 minutes to read • Edit Online

Why build microservices?

A microservices architecture consists of a collection of small, autonomous services. Each service is self-contained
and should implement a single business capability. Here are some of the defining characteristics of microservices:

In a microservices architecture, services are small, independent, and loosely coupled.
A microservice is small enough that a single small team of developers can write and maintain it.
Services can be deployed independently. A team can update an existing service without rebuilding and
redeploying the entire application.
Services are responsible for persisting their own data or external state. This differs from the traditional model,
where a separate data layer handles data persistence.
Services communicate with each other by using well-defined APIs. Internal implementation details of each
service are hidden from other services.
Services don't need to share the same technology stack, libraries, or frameworks.

Remote
Service

Client

CDN

Service

Service

Service

Service

Microservices

Management Service
Discovery

API
Gateway

Static
Content

Identity
Provider

Microservices can provide a number of useful benefits:

Agility. Because microservices are deployed independently, it's easier to manage bug fixes and feature
releases. You can update a service without redeploying the entire application, and roll back an update if
something goes wrong. In many traditional applications, if a bug is found in one part of the application, it
can block the entire release process; as a result, new features may be held up waiting for a bug fix to be
integrated, tested, and published.

Small code, small teams. A microservice should be small enough that a single feature team can build,
test, and deploy it. Small code bases are easier to understand. In a large monolithic application, there is a
tendency over time for code dependencies to become tangled, so that adding a new feature requires
touching code in a lot of places. By not sharing code or data stores, a microservices architecture minimizes
dependencies, and that makes it easier to add new features. Small team sizes also promote greater agility.
The "two-pizza rule" says that a team should be small enough that two pizzas can feed the team. Obviously
that's not an exact metric and depends on team appetites! But the point is that large groups tend be less

https://github.com/mspnp/architecture-center/blob/master/docs/microservices/introduction.md

When should I build microservices?

Challenges

productive, because communication is slower, management overhead goes up, and agility diminishes.

Mix of technologies. Teams can pick the technology that best fits their service, using a mix of technology
stacks as appropriate.

Resiliency. If an individual microservice becomes unavailable, it won't disrupt the entire application, as long
as any upstream microservices are designed to handle faults correctly (for example, by implementing circuit
breaking).

Scalability. A microservices architecture allows each microservice to be scaled independently of the others.
That lets you scale out subsystems that require more resources, without scaling out the entire application. If
you deploy services inside containers, you can also pack a higher density of microservices onto a single
host, which allows for more efficient utilization of resources.

Data isolation. It is much easier to perform schema updates, because only a single microservice is
impacted. In a monolithic application, schema updates can become very challenging, because different parts
of the application may all touch the same data, making any alterations to the schema risky.

Consider a microservices architecture for:

Large applications that require a high release velocity.
Complex applications that need to be highly scalable.
Applications with rich domains or many subdomains.
An organization that consists of small development teams.

The benefits of microservices don't come for free. Here are some of the challenges to consider before embarking
on a microservices architecture.

Complexity. A microservices application has more moving parts than the equivalent monolithic
application. Each service is simpler, but the entire system as a whole is more complex.

Development and testing. Writing a small service that relies on other dependent services requires a
different approach than a writing a traditional monolithic or layered application. Existing tools are not
always designed to work with service dependencies. Refactoring across service boundaries can be difficult.
It is also challenging to test service dependencies, especially when the application is evolving quickly.

Lack of governance. The decentralized approach to building microservices has advantages, but it can also
lead to problems. You may end up with so many different languages and frameworks that the application
becomes hard to maintain. It may be useful to put some project-wide standards in place, without overly
restricting teams' flexibility. This especially applies to cross-cutting functionality such as logging.

Network congestion and latency. The use of many small, granular services can result in more
interservice communication. Also, if the chain of service dependencies gets too long (service A calls B, which
calls C...), the additional latency can become a problem. You will need to design APIs carefully. Avoid overly
chatty APIs, think about serialization formats, and look for places to use asynchronous communication
patterns.

Data integrity. With each microservice responsible for its own data persistence. As a result, data
consistency can be a challenge. Embrace eventual consistency where possible.

Management. To be successful with microservices requires a mature DevOps culture. Correlated logging
across services can be challenging. Typically, logging must correlate multiple service calls for a single user
operation.

Next steps

Versioning. Updates to a service must not break services that depend on it. Multiple services could be
updated at any given time, so without careful design, you might have problems with backward or forward
compatibility.

Skillset. Microservices are highly distributed systems. Carefully evaluate whether the team has the skills
and experience to be successful.

One of the biggest challenges with microservices is to create the right service boundaries. The articles under
Modeling microservices show a domain-driven approach to this problem.

Using domain analysis to model microservices
3/13/2019 • 8 minutes to read • Edit Online

Introduction

One of the biggest challenges of microservices is to define the boundaries of individual services. The general rule
is that a service should do "one thing" — but putting that rule into practice requires careful thought. There is no
mechanical process that will produce the "right" design. You have to think deeply about your business domain,
requirements, and goals. Otherwise, you can end up with a haphazard design that exhibits some undesirable
characteristics, such as hidden dependencies between services, tight coupling, or poorly designed interfaces. This
article shows a domain-driven approach to designing microservices.

This article uses a drone delivery service as a running example. You can read more about the scenario and the
corresponding reference implementation here.

Microservices should be designed around business capabilities, not horizontal layers such as data access or
messaging. In addition, they should have loose coupling and high functional cohesion. Microservices are loosely
coupled if you can change one service without requiring other services to be updated at the same time. A
microservice is cohesive if it has a single, well-defined purpose, such as managing user accounts or tracking
delivery history. A service should encapsulate domain knowledge and abstract that knowledge from clients. For
example, a client should be able to schedule a drone without knowing the details of the scheduling algorithm or
how the drone fleet is managed.

Domain-driven design (DDD) provides a framework that can get you most of the way to a set of well-designed
microservices. DDD has two distinct phases, strategic and tactical. In strategic DDD, you are defining the large-
scale structure of the system. Strategic DDD helps to ensure that your architecture remains focused on business
capabilities. Tactical DDD provides a set of design patterns that you can use to create the domain model. These
patterns include entities, aggregates, and domain services. These tactical patterns will help you to design
microservices that are both loosely coupled and cohesive.

In this article and the next, we'll walk through the following steps, applying them to the Drone Delivery
application:

1. Start by analyzing the business domain to understand the application's functional requirements. The
output of this step is an informal description of the domain, which can be refined into a more formal set of
domain models.

2. Next, define the bounded contexts of the domain. Each bounded context contains a domain model that
represents a particular subdomain of the larger application.

3. Within a bounded context, apply tactical DDD patterns to define entities, aggregates, and domain services.

4. Use the results from the previous step to identify the microservices in your application.

In this article, we cover the first three steps, which are primarily concerned with DDD. In the next article, we'll
identify the microservices. However, it's important to remember that DDD is an iterative, ongoing process.
Service boundaries aren't fixed in stone. As an application evolves, you may decide to break apart a service into

https://github.com/mspnp/architecture-center/blob/master/docs/microservices/model/domain-analysis.md

NOTENOTE

Scenario: Drone delivery

Analyze the domain

Example: Drone delivery application

several smaller services.

This article doesn't show a complete and comprehensive domain analysis. We deliberately kept the example brief, to
illustrate the main points. For more background on DDD, we recommend Eric Evans' Domain-Driven Design, the book that
first introduced the term. Another good reference is Implementing Domain-Driven Design by Vaughn Vernon.

Fabrikam, Inc. is starting a drone delivery service. The company manages a fleet of drone aircraft. Businesses
register with the service, and users can request a drone to pick up goods for delivery. When a customer schedules
a pickup, a backend system assigns a drone and notifies the user with an estimated delivery time. While the
delivery is in progress, the customer can track the location of the drone, with a continuously updated ETA.

This scenario involves a fairly complicated domain. Some of the business concerns include scheduling drones,
tracking packages, managing user accounts, and storing and analyzing historical data. Moreover, Fabrikam wants
to get to market quickly and then iterate quickly, adding new functionality and capabilities. The application needs
to operate at cloud scale, with a high service level objective (SLO). Fabrikam also expects that different parts of
the system will have very different requirements for data storage and querying. All of these considerations lead
Fabrikam to choose a microservices architecture for the Drone Delivery application.

Using a DDD approach will help you to design microservices so that every service forms a natural fit to a
functional business requirement. It can help you to avoid the trap of letting organizational boundaries or
technology choices dictate your design.

Before writing any code, you need a bird's eye view of the system that you are creating. DDD starts by modeling
the business domain and creating a domain model. The domain model is an abstract model of the business
domain. It distills and organizes domain knowledge, and provides a common language for developers and
domain experts.

Start by mapping all of the business functions and their connections. This will likely be a collaborative effort that
involves domain experts, software architects, and other stakeholders. You don't need to use any particular
formalism. Sketch a diagram or draw on whiteboard.

As you fill in the diagram, you may start to identify discrete subdomains. Which functions are closely related?
Which functions are core to the business, and which provide ancillary services? What is the dependency graph?
During this initial phase, you aren't concerned with technologies or implementation details. That said, you should
note the place where the application will need to integrate with external systems, such as CRM, payment
processing, or billing systems.

After some initial domain analysis, the Fabrikam team came up with a rough sketch that depicts the Drone
Delivery domain.

Shipping is placed in the center of the diagram, because it's core to the business. Everything else in the
diagram exists to enable this functionality.
Drone management is also core to the business. Functionality that is closely related to drone management
includes drone repair and using predictive analysis to predict when drones need servicing and
maintenance.

NOTENOTE

Define bounded contexts

ETA analysis provides time estimates for pickup and delivery.
Third-party transportation will enable the application to schedule alternative transportation methods if a
package cannot be shipped entirely by drone.
Drone sharing is a possible extension of the core business. The company may have excess drone capacity
during certain hours, and could rent out drones that would otherwise be idle. This feature will not be in the
initial release.
Video surveillance is another area that the company might expand into later.
User accounts, Invoicing, and Call center are subdomains that support the core business.

Notice that at this point in the process, we haven't made any decisions about implementation or technologies.
Some of the subsystems may involve external software systems or third-party services. Even so, the application
needs to interact with these systems and services, so it's important to include them in the domain model.

When an application depends on an external system, there is a risk that the external system's data schema or API will leak
into your application, ultimately compromising the architectural design. This is particularly true with legacy systems that
may not follow modern best practices, and may use convoluted data schemas or obsolete APIs. In that case, it's important
to have a well-defined boundary between these external systems and the application. Consider using the Strangler pattern
or the Anti-Corruption Layer pattern for this purpose.

The domain model will include representations of real things in the world — users, drones, packages, and so
forth. But that doesn't mean that every part of the system needs to use the same representations for the same
things.

For example, subsystems that handle drone repair and predictive analysis will need to represent many physical
characteristics drones, such as their maintenance history, mileage, age, model number, performance
characteristics, and so on. But when it's time to schedule a delivery, we don't care about those things. The
scheduling subsystem only needs to know whether a drone is available, and the ETA for pickup and delivery.

If we tried to create a single model for both of these subsystems, it would be unnecessarily complex. It would also
become harder for the model to evolve over time, because any changes will need to satisfy multiple teams
working on separate subsystems. Therefore, it's often better to design separate models that represent the same
real-world entity (in this case, a drone) in two different contexts. Each model contains only the features and
attributes that are relevant within its particular context.

This is where the DDD concept of bounded contexts comes into play. A bounded context is simply the boundary
within a domain where a particular domain model applies. Looking at the previous diagram, we can group
functionality according to whether various functions will share a single domain model.

Bounded contexts are not necessarily isolated from one another. In this diagram, the solid lines connecting the
bounded contexts represent places where two bounded contexts interact. For example, Shipping depends on User
Accounts to get information about customers, and on Drone Management to schedule drones from the fleet.

In the book Domain Driven Design, Eric Evans describes several patterns for maintaining the integrity of a
domain model when it interacts with another bounded context. One of the main principles of microservices is that
services communicate through well-defined APIs. This approach corresponds to two patterns that Evans calls
Open Host Service and Published Language. The idea of Open Host Service is that a subsystem defines a formal
protocol (API) for other subsystems to communicate with it. Published Language extends this idea by publishing
the API in a form that other teams can use to write clients. In the article Designing APIs for microservices, we
discuss using OpenAPI Specification (formerly known as Swagger) to define language-agnostic interface

https://www.openapis.org/specification/repo

Next steps

descriptions for REST APIs, expressed in JSON or YAML format.

For the rest of this journey, we will focus on the Shipping bounded context.

After completing a domain analysis, the next step is to apply tactical DDD, to define your domain models with
more precision.

Tactical DDD

Using tactical DDD to design microservices
3/13/2019 • 5 minutes to read • Edit Online

Overview of the tactical patterns

During the strategic phase of DDD, you are mapping out the business domain and defining bounded contexts for
your domain models. Tactical DDD is when you define your domain models with more precision. The tactical
patterns are applied within a single bounded context. In a microservices architecture, we are particularly interested
in the entity and aggregate patterns. Applying these patterns will help us to identify natural boundaries for the
services in our application (see the next article in this series). As a general principle, a microservice should be no
smaller than an aggregate, and no larger than a bounded context. First, we'll review the tactical patterns. Then we'll
apply them to the Shipping bounded context in the Drone Delivery application.

This section provides a brief summary of the tactical DDD patterns, so if you are already familiar with DDD, you
can probably skip this section. The patterns are described in more detail in chapters 5 – 6 of Eric Evans' book, and
in Implementing Domain-Driven Design by Vaughn Vernon.

Entities. An entity is an object with a unique identity that persists over time. For example, in a banking application,
customers and accounts would be entities.

An entity has a unique identifier in the system, which can be used to look up or retrieve the entity. That doesn't
mean the identifier is always exposed directly to users. It could be a GUID or a primary key in a database.
An identity may span multiple bounded contexts, and may endure beyond the lifetime of the application. For
example, bank account numbers or government-issued IDs are not tied to the lifetime of a particular
application.
The attributes of an entity may change over time. For example, a person's name or address might change, but
they are still the same person.
An entity can hold references to other entities.

Value objects. A value object has no identity. It is defined only by the values of its attributes. Value objects are also
immutable. To update a value object, you always create a new instance to replace the old one. Value objects can
have methods that encapsulate domain logic, but those methods should have no side-effects on the object's state.
Typical examples of value objects include colors, dates and times, and currency values.

Aggregates. An aggregate defines a consistency boundary around one or more entities. Exactly one entity in an
aggregate is the root. Lookup is done using the root entity's identifier. Any other entities in the aggregate are
children of the root, and are referenced by following pointers from the root.

The purpose of an aggregate is to model transactional invariants. Things in the real world have complex webs of
relationships. Customers create orders, orders contain products, products have suppliers, and so on. If the

https://github.com/mspnp/architecture-center/blob/master/docs/microservices/model/tactical-ddd.md

NOTENOTE

NOTENOTE

Drone delivery: Applying the patterns

application modifies several related objects, how does it guarantee consistency? How do we keep track of
invariants and enforce them?

Traditional applications have often used database transactions to enforce consistency. In a distributed application,
however, that's often not feasible. A single business transaction may span multiple data stores, or may be long
running, or may involve third-party services. Ultimately it's up to the application, not the data layer, to enforce the
invariants required for the domain. That's what aggregates are meant to model.

An aggregate might consist of a single entity, without child entities. What makes it an aggregate is the transactional
boundary.

Domain and application services. In DDD terminology, a service is an object that implements some logic
without holding any state. Evans distinguishes between domain services, which encapsulate domain logic, and
application services, which provide technical functionality, such as user authentication or sending an SMS message.
Domain services are often used to model behavior that spans multiple entities.

The term service is overloaded in software development. The definition here is not directly related to microservices.

Domain events. Domain events can be used to notify other parts of the system when something happens. As the
name suggests, domain events should mean something within the domain. For example, "a record was inserted
into a table" is not a domain event. "A delivery was cancelled" is a domain event. Domain events are especially
relevant in a microservices architecture. Because microservices are distributed and don't share data stores, domain
events provide a way for microservices to coordinate with each other. The article Interservice communication
discusses asynchronous messaging in more detail.

There are a few other DDD patterns not listed here, including factories, repositories, and modules. These can be
useful patterns for when you are implementing a microservice, but they are less relevant when designing the
boundaries between microservice.

We start with the scenarios that the Shipping bounded context must handle.

A customer can request a drone to pick up goods from a business that is registered with the drone delivery
service.
The sender generates a tag (barcode or RFID) to put on the package.
A drone will pick up and deliver a package from the source location to the destination location.
When a customer schedules a delivery, the system provides an ETA based on route information, weather
conditions, and historical data.
When the drone is in flight, a user can track the current location and the latest ETA.
Until a drone has picked up the package, the customer can cancel a delivery.
The customer is notified when the delivery is completed.
The sender can request delivery confirmation from the customer, in the form of a signature or finger print.
Users can look up the history of a completed delivery.

From these scenarios, the development team identified the following entities.

Delivery
Package

Next steps

Drone
Account
Confirmation
Notification
Tag

The first four, Delivery, Package, Drone, and Account, are all aggregates that represent transactional consistency
boundaries. Confirmations and Notifications are child entities of Deliveries, and Tags are child entities of Packages.

The value objects in this design include Location, ETA, PackageWeight, and PackageSize.

To illustrate, here is a UML diagram of the Delivery aggregate. Notice that it holds references to other aggregates,
including Account, Package, and Drone.

There are two domain events:

While a drone is in flight, the Drone entity sends DroneStatus events that describe the drone's location and
status (in-flight, landed).

The Delivery entity sends DeliveryTracking events whenever the stage of a delivery changes. These include
DeliveryCreated, DeliveryRescheduled, DeliveryHeadedToDropoff, and DeliveryCompleted.

Notice that these events describe things that are meaningful within the domain model. They describe something
about the domain, and aren't tied to a particular programming language construct.

The development team identified one more area of functionality, which doesn't fit neatly into any of the entities
described so far. Some part of the system must coordinate all of the steps involved in scheduling or updating a
delivery. Therefore, the development team added two domain services to the design: a Scheduler that
coordinates the steps, and a Supervisor that monitors the status of each step, in order to detect whether any steps
have failed or timed out. This is a variation of the Scheduler Agent Supervisor pattern.

The next step is to define the boundaries for each microservice.

Identify microservice boundaries

Identifying microservice boundaries
3/13/2019 • 5 minutes to read • Edit Online

From domain model to microservices

What is the right size for a microservice? You often hear something to the effect of, "not too big and not too small"
— and while that's certainly correct, it's not very helpful in practice. But if you start from a carefully designed
domain model, it's much easier to reason about microservices.

This article uses a drone delivery service as a running example. You can read more about the scenario and the
corresponding reference implementation here.

In the previous article, we defined a set of bounded contexts for a Drone Delivery application. Then we looked
more closely at one of these bounded contexts, the Shipping bounded context, and identified a set of entities,
aggregates, and domain services for that bounded context.

Now we're ready to go from domain model to application design. Here's an approach that you can use to derive
microservices from the domain model.

1. Start with a bounded context. In general, the functionality in a microservice should not span more than one
bounded context. By definition, a bounded context marks the boundary of a particular domain model. If you
find that a microservice mixes different domain models together, that's a sign that you may need to go back
and refine your domain analysis.

2. Next, look at the aggregates in your domain model. Aggregates are often good candidates for
microservices. A well-designed aggregate exhibits many of the characteristics of a well-designed
microservice, such as:

An aggregate is derived from business requirements, rather than technical concerns such as data access
or messaging.
An aggregate should have high functional cohesion.
An aggregate is a boundary of persistence.
Aggregates should be loosely coupled.

3. Domain services are also good candidates for microservices. Domain services are stateless operations

https://github.com/mspnp/architecture-center/blob/master/docs/microservices/model/microservice-boundaries.md

Example: Defining microservices for the Drone Delivery application

across multiple aggregates. A typical example is a workflow that involves several microservices. We'll see an
example of this in the Drone Delivery application.

4. Finally, consider non-functional requirements. Look at factors such as team size, data types, technologies,
scalability requirements, availability requirements, and security requirements. These factors may lead you to
further decompose a microservice into two or more smaller services, or do the opposite and combine
several microservices into one.

After you identify the microservices in your application, validate your design against the following criteria:

Each service has a single responsibility.
There are no chatty calls between services. If splitting functionality into two services causes them to be overly
chatty, it may be a symptom that these functions belong in the same service.
Each service is small enough that it can be built by a small team working independently.
There are no inter-dependencies that will require two or more services to be deployed in lock-step. It should
always be possible to deploy a service without redeploying any other services.
Services are not tightly coupled, and can evolve independently.
Your service boundaries will not create problems with data consistency or integrity. Sometimes it's important to
maintain data consistency by putting functionality into a single microservice. That said, consider whether you
really need strong consistency. There are strategies for addressing eventual consistency in a distributed system,
and the benefits of decomposing services often outweigh the challenges of managing eventual consistency.

Above all, it's important to be pragmatic, and remember that domain-driven design is an iterative process. When
in doubt, start with more coarse-grained microservices. Splitting a microservice into two smaller services is easier
than refactoring functionality across several existing microservices.

Recall that the development team had identified the four aggregates — Delivery, Package, Drone, and Account —
and two domain services, Scheduler and Supervisor.

Delivery and Package are obvious candidates for microservices. The Scheduler and Supervisor coordinate the
activities performed by other microservices, so it makes sense to implement these domain services as
microservices.

Drone and Account are interesting because they belong to other bounded contexts. One option is for the
Scheduler to call the Drone and Account bounded contexts directly. Another option is to create Drone and Account
microservices inside the Shipping bounded context. These microservices would mediate between the bounded
contexts, by exposing APIs or data schemas that are more suited to the Shipping context.

The details of the Drone and Account bounded contexts are beyond the scope of this guidance, so we created
mock services for them in our reference implementation. But here are some factors to consider in this situation:

What is the network overhead of calling directly into the other bounded context?

Is the data schema for the other bounded context suitable for this context, or is it better to have a schema
that's tailored to this bounded context?

Is the other bounded context a legacy system? If so, you might create a service that acts as an anti-
corruption layer to translate between the legacy system and the modern application.

What is the team structure? Is it easy to communicate with the team that's responsible for the other
bounded context? If not, creating a service that mediates between the two contexts can help to mitigate the
cost of cross-team communication.

So far, we haven't considered any non-functional requirements. Thinking about the application's throughput
requirements, the development team decided to create a separate Ingestion microservice that is responsible for

Next steps

ingesting client requests. This microservice will implement load leveling by putting incoming requests into a buffer
for processing. The Scheduler will read the requests from the buffer and execute the workflow.

Non-functional requirements led the team to create one additional service. All of the services so far have been
about the process of scheduling and delivering packages in real time. But the system also needs to store the
history of every delivery in long-term storage for data analysis. The team considered making this the
responsibility of the Delivery service. However, the data storage requirements are quite different for historical
analysis versus in-flight operations (see Data considerations). Therefore, the team decided to create a separate
Delivery History service, which will listen for DeliveryTracking events from the Delivery service and write the
events into long-term storage.

The following diagram shows the design at this point:

At this point, you should have a clear understanding of the purpose and functionality of each microservice in your
design. Now you can architect the system.

Design a microservices architecture

Designing a microservices architecture
3/13/2019 • 2 minutes to read • Edit Online

Prerequisites

Reference implementation

Scenario

Microservices have become a popular architectural style for building cloud applications that are resilient, highly
scalable, independently deployable, and able to evolve quickly. To be more than just a buzzword, however,
microservices require a different approach to designing and building applications.

In this set of articles, we explore how to build and run a microservices architecture on Azure. Topics include:

Interservice communication
API design
API gateways
Data considerations
Design patterns

Before reading these articles, you might start with the following:

Introduction to microservices architectures. Understand the benefits and challenges of microservices, and
when to use this style of architecture.
Using domain analysis to model microservices. Learn a domain-driven approach to modeling microservices.

To illustrate best practices for a microservices architecture, we created a reference implementation that we call the
Drone Delivery application. This implementation runs on Kubernetes using Azure Kubernetes Service (AKS). You
can find the reference implementation on GitHub.

Fabrikam, Inc. is starting a drone delivery service. The company manages a fleet of drone aircraft. Businesses
register with the service, and users can request a drone to pick up goods for delivery. When a customer schedules

https://github.com/mspnp/architecture-center/blob/master/docs/microservices/design/index.md
https://github.com/mspnp/microservices-reference-implementation

NOTENOTE

Next steps

a pickup, a backend system assigns a drone and notifies the user with an estimated delivery time. While the
delivery is in progress, the customer can track the location of the drone, with a continuously updated ETA.

This scenario involves a fairly complicated domain. Some of the business concerns include scheduling drones,
tracking packages, managing user accounts, and storing and analyzing historical data. Moreover, Fabrikam wants
to get to market quickly and then iterate quickly, adding new functionality and capabilities. The application needs
to operate at cloud scale, with a high service level objective (SLO). Fabrikam also expects that different parts of
the system will have very different requirements for data storage and querying. All of these considerations lead
Fabrikam to choose a microservices architecture for the Drone Delivery application.

For help in choosing between a microservices architecture and other architectural styles, see the Azure Application
Architecture Guide.

Our reference implementation uses Kubernetes with Azure Kubernetes Service (AKS). However, many of the
high-level architectural decisions and challenges will apply to any container orchestrator, including Azure Service
Fabric.

Choose a compute option

https://docs.microsoft.com/azure/aks/
https://docs.microsoft.com/azure/service-fabric/

Choosing a compute option for microservices
3/13/2019 • 4 minutes to read • Edit Online

Service orchestrators

Containers

The term compute refers to the hosting model for the computing resources that your application runs on. For a
microservices architecture, two approaches are especially popular :

A service orchestrator that manages services running on dedicated nodes (VMs).
A serverless architecture using functions as a service (FaaS).

While these aren't the only options, they are both proven approaches to building microservices. An application
might include both approaches.

An orchestrator handles tasks related to deploying and managing a set of services. These tasks include placing
services on nodes, monitoring the health of services, restarting unhealthy services, load balancing network traffic
across service instances, service discovery, scaling the number of instances of a service, and applying configuration
updates. Popular orchestrators include Kubernetes, Service Fabric, DC/OS, and Docker Swarm.

On the Azure platform, consider the following options:

NOTENOTE

Azure Kubernetes Service (AKS) is a managed Kubernetes service. AKS provisions Kubernetes and exposes
the Kubernetes API endpoints, but hosts and manages the Kubernetes control plane, performing automated
upgrades, automated patching, autoscaling, and other management tasks. You can think of AKS as being
"Kubernetes APIs as a service."

Service Fabric is a distributed systems platform for packaging, deploying, and managing microservices.
Microservices can be deployed to Service Fabric as containers, as binary executables, or as Reliable Services.
Using the Reliable Services programming model, services can directly use Service Fabric programming
APIs to query the system, report health, receive notifications about configuration and code changes, and
discover other services. A key differentiation with Service Fabric is its strong focus on building stateful
services using Reliable Collections.

Azure Container Service (ACS) is an Azure service that lets you deploy a production-ready DC/OS, Docker
Swarm, or Kubernetes cluster.

Although ACS supports Kubernetes, we recommended using AKS to run Kubernetes on Azure. AKS provides
enhanced management capabilities and cost benefits.

Sometimes people talk about containers and microservices as if they were the same thing. While that's not true —
you don't need containers to build microservices — containers do have some benefits that are particularly relevant
to microservices, such as:

Portability. A container image is a standalone package that runs without needing to install libraries or
other dependencies. That makes them easy to deploy. Containers can be started and stopped quickly, so you
can spin up new instances to handle more load or to recover from node failures.

Density. Containers are lightweight compared with running a virtual machine, because they share OS

https://github.com/mspnp/architecture-center/blob/master/docs/microservices/design/compute-options.md
https://docs.microsoft.com/azure/aks/
https://docs.microsoft.com/azure/service-fabric/
https://docs.microsoft.com/azure/service-fabric/service-fabric-reliable-services-introduction
https://docs.microsoft.com/azure/service-fabric/service-fabric-reliable-services-reliable-collections
https://docs.microsoft.com/azure/container-service/

Serverless (Functions as a Service)

Orchestrator or serverless?

Next steps

resources. That makes it possible to pack multiple containers onto a single node, which is especially useful
when the application consists of many small services.

Resource isolation. You can limit the amount of memory and CPU that is available to a container, which
can help to ensure that a runaway process doesn't exhaust the host resources. See the Bulkhead pattern for
more information.

With a serverless architecture, you don't manage the VMs or the virtual network infrastructure. Instead, you
deploy code and the hosting service handles putting that code onto a VM and executing it. This approach tends to
favor small granular functions that are coordinated using event-based triggers. For example, a message being
placed onto a queue might trigger a function that reads from the queue and processes the message.

Azure Functions is a serverless compute service that supports various function triggers, including HTTP requests,
Service Bus queues, and Event Hubs events. For a complete list, see Azure Functions triggers and bindings
concepts. Also consider Azure Event Grid, which is a managed event routing service in Azure.

Here are some factors to consider when choosing between an orchestrator approach and a serverless approach.

Manageability A serverless application is easy to manage, because the platform manages all the of compute
resources for you. While an orchestrator abstracts some aspects of managing and configuring a cluster, it does not
completely hide the underlying VMs. With an orchestrator, you will need to think about issues such as load
balancing, CPU and memory usage, and networking.

Flexibility and control. An orchestrator gives you a great deal of control over configuring and managing your
services and the cluster. The tradeoff is additional complexity. With a serverless architecture, you give up some
degree of control because these details are abstracted.

Portability. All of the orchestrators listed here (Kubernetes, DC/OS, Docker Swarm, and Service Fabric) can run
on-premises or in multiple public clouds.

Application integration. It can be challenging to build a complex application using a serverless architecture. One
option in Azure is to use Azure Logic Apps to coordinate a set of Azure Functions. For an example of this approach,
see Create a function that integrates with Azure Logic Apps.

Cost. With an orchestrator, you pay for the VMs that are running in the cluster. With a serverless application, you
pay only for the actual compute resources consumed. In both cases, you need to factor in the cost of any additional
services, such as storage, databases, and messaging services.

Scalability. Azure Functions scales automatically to meet demand, based on the number of incoming events. With
an orchestrator, you can scale out by increasing the number of service instances running in the cluster. You can also
scale by adding additional VMs to the cluster.

Our reference implementation primarily uses Kubernetes, but we did use Azure Functions for one service, namely
the Delivery History service. Azure Functions was a good fit for this particular service, because it's is an event-
driven workload. By using an Event Hubs trigger to invoke the function, the service needed a minimal amount of
code. Also, the Delivery History service is not part of the main workflow, so running it outside of the Kubernetes
cluster doesn't affect the end-to-end latency of user-initiated operations.

Interservice communication

https://azure.microsoft.com/solutions/serverless/
https://docs.microsoft.com/azure/azure-functions/
https://docs.microsoft.com/azure/azure-functions/functions-triggers-bindings
https://docs.microsoft.com/azure/event-grid/
https://docs.microsoft.com/azure/logic-apps/
https://docs.microsoft.com/azure/azure-functions/functions-twitter-email

Designing interservice communication for
microservices
3/13/2019 • 10 minutes to read • Edit Online

Challenges

Communication between microservices must be efficient and robust. With lots of small services interacting to
complete a single transaction, this can be a challenge. In this article, we look at the tradeoffs between
asynchronous messaging versus synchronous APIs. Then we look at some of the challenges in designing resilient
interservice communication, and the role that a service mesh can play.

Here are some of the main challenges arising from service-to-service communication. Service meshes, described
later in this article, are designed to handle many of these challenges.

Resiliency. There may be dozens or even hundreds of instances of any given microservice. An instance can fail
for any number of reasons. There can be a node-level failure, such as a hardware failure or a VM reboot. An
instance might crash, or be overwhelmed with requests and unable to process any new requests. Any of these
events can cause a network call to fail. There are two design patterns that can help make service-to-service
network calls more resilient:

Retry. A network call may fail because of a transient fault that goes away by itself. Rather than fail outright,
the caller should typically retry the operation a certain number of times, or until a configured time-out
period elapses. However, if an operation is not idempotent, retries can cause unintended side effects. The
original call might succeed, but the caller never gets a response. If the caller retries, the operation may be
invoked twice. Generally, it's not safe to retry POST or PATCH methods, because these are not guaranteed
to be idempotent.

Circuit Breaker. Too many failed requests can cause a bottleneck, as pending requests accumulate in the
queue. These blocked requests might hold critical system resources such as memory, threads, database
connections, and so on, which can cause cascading failures. The Circuit Breaker pattern can prevent a
service from repeatedly trying an operation that is likely to fail.

Load balancing. When service "A" calls service "B", the request must reach a running instance of service "B". In
Kubernetes, the Service resource type provides a stable IP address for a group of pods. Network traffic to the
service's IP address gets forwarded to a pod by means of iptable rules. By default, a random pod is chosen. A
service mesh (see below) can provide more intelligent load balancing algorithms based on observed latency or
other metrics.

Distributed tracing. A single transaction may span multiple services. That can make it hard to monitor the
overall performance and health of the system. Even if every service generates logs and metrics, without some way
to tie them together, they are of limited use. The article Logging and monitoring talks more about distributed
tracing, but we mention it here as a challenge.

Service versioning. When a team deploys a new version of a service, they must avoid breaking any other
services or external clients that depend on it. In addition, you might want to run multiple versions of a service
side-by-side, and route requests to a particular version. See API Versioning for more discussion of this issue.

TLS encryption and mutual TLS authentication. For security reasons, you may want to encrypt traffic
between services with TLS, and use mutual TLS authentication to authenticate callers.

https://github.com/mspnp/architecture-center/blob/master/docs/microservices/design/interservice-communication.md

Synchronous versus asynchronous messaging
There are two basic messaging patterns that microservices can use to communicate with other microservices.

1. Synchronous communication. In this pattern, a service calls an API that another service exposes, using a
protocol such as HTTP or gRPC. This option is a synchronous messaging pattern because the caller waits
for a response from the receiver.

2. Asynchronous message passing. In this pattern, a service sends message without waiting for a response,
and one or more services process the message asynchronously.

It's important to distinguish between asynchronous I/O and an asynchronous protocol. Asynchronous I/O means
the calling thread is not blocked while the I/O completes. That's important for performance, but is an
implementation detail in terms of the architecture. An asynchronous protocol means the sender doesn't wait for a
response. HTTP is a synchronous protocol, even though an HTTP client may use asynchronous I/O when it sends
a request.

There are tradeoffs to each pattern. Request/response is a well-understood paradigm, so designing an API may
feel more natural than designing a messaging system. However, asynchronous messaging has some advantages
that can be very useful in a microservices architecture:

Reduced coupling. The message sender does not need to know about the consumer.

Multiple subscribers. Using a pub/sub model, multiple consumers can subscribe to receive events. See
Event-driven architecture style.

Failure isolation. If the consumer fails, the sender can still send messages. The messages will be picked up
when the consumer recovers. This ability is especially useful in a microservices architecture, because each
service has its own lifecycle. A service could become unavailable or be replaced with a newer version at any
given time. Asynchronous messaging can handle intermittent downtime. Synchronous APIs, on the other
hand, require the downstream service to be available or the operation fails.

Responsiveness. An upstream service can reply faster if it does not wait on downstream services. This is
especially useful in a microservices architecture. If there is a chain of service dependencies (service A calls
B, which calls C, and so on), waiting on synchronous calls can add unacceptable amounts of latency.

Load leveling. A queue can act as a buffer to level the workload, so that receivers can process messages at
their own rate.

Workflows. Queues can be used to manage a workflow, by check-pointing the message after each step in
the workflow.

However, there are also some challenges to using asynchronous messaging effectively.

Coupling with the messaging infrastructure. Using a particular messaging infrastructure may cause
tight coupling with that infrastructure. It will be difficult to switch to another messaging infrastructure later.

Latency. End-to-end latency for an operation may become high if the message queues fill up.

Cost. At high throughputs, the monetary cost of the messaging infrastructure could be significant.

Complexity. Handling asynchronous messaging is not a trivial task. For example, you must handle
duplicated messages, either by de-duplicating or by making operations idempotent. It's also hard to
implement request-response semantics using asynchronous messaging. To send a response, you need
another queue, plus a way to correlate request and response messages.

Throughput. If messages require queue semantics, the queue can become a bottleneck in the system. Each
message requires at least one queue operation and one dequeue operation. Moreover, queue semantics
generally require some kind of locking inside the messaging infrastructure. If the queue is a managed

Drone Delivery: Choosing the messaging patterns

service, there may be additional latency, because the queue is external to the cluster's virtual network. You
can mitigate these issues by batching messages, but that complicates the code. If the messages don't
require queue semantics, you might be able to use an event stream instead of a queue. For more
information, see Event-driven architectural style.

With these considerations in mind, the development team made the following design choices for the Drone
Delivery application

The Ingestion service exposes a public REST API that client applications use to schedule, update, or cancel
deliveries.

The Ingestion service uses Event Hubs to send asynchronous messages to the Scheduler service.
Asynchronous messages are necessary to implement the load-leveling that is required for ingestion.

The Account, Delivery, Package, Drone, and Third-party Transport services all expose internal REST APIs.
The Scheduler service calls these APIs to carry out a user request. One reason to use synchronous APIs is
that the Scheduler needs to get a response from each of the downstream services. A failure in any of the
downstream services means the entire operation failed. However, a potential issue is the amount of latency
that is introduced by calling the backend services.

If any downstream service has a non-transient failure, the entire transaction should be marked as failed. To
handle this case, the Scheduler service sends an asynchronous message to the Supervisor, so that the
Supervisor can schedule compensating transactions.

The Delivery service exposes a public API that clients can use to get the status of a delivery. In the article
API gateway, we discuss how an API gateway can hide the underlying services from the client, so the client
doesn't need to know which services expose which APIs.

While a drone is in flight, the Drone service sends events that contain the drone's current location and
status. The Delivery service listens to these events in order to track the status of a delivery.

When the status of a delivery changes, the Delivery service sends a delivery status event, such as
DeliveryCreated or DeliveryCompleted . Any service can subscribe to these events. In the current design,

the Delivery service is the only subscriber, but there might be other subscribers later. For example, the
events might go to a real-time analytics service. And because the Scheduler doesn't have to wait for a
response, adding more subscribers doesn't affect the main workflow path.

Using a service mesh

NOTENOTE

Notice that delivery status events are derived from drone location events. For example, when a drone reaches a
delivery location and drops off a package, the Delivery service translates this into a DeliveryCompleted event. This
is an example of thinking in terms of domain models. As described earlier, Drone Management belongs in a
separate bounded context. The drone events convey the physical location of a drone. The delivery events, on the
other hand, represent changes in the status of a delivery, which is a different business entity.

A service mesh is a software layer that handles service-to-service communication. Service meshes are designed to
address many of the concerns listed in the previous section, and to move responsibility for these concerns away
from the microservices themselves and into a shared layer. The service mesh acts as a proxy that intercepts
network communication between microservices in the cluster.

Service mesh is an example of the Ambassador pattern — a helper service that sends network requests on behalf of the
application.

Right now, the main options for a service mesh in Kubernetes are linkerd and Istio. Both of these technologies are
evolving rapidly. However, some features that both linkerd and Istio have in common include:

Load balancing at the session level, based on observed latencies or number of outstanding requests. This
can improve performance over the layer-4 load balancing that is provided by Kubernetes.

Layer-7 routing based on URL path, Host header, API version, or other application-level rules.

Retry of failed requests. A service mesh understands HTTP error codes, and can automatically retry failed
requests. You can configure that maximum number of retries, along with a timeout period in order to
bound the maximum latency.

Circuit breaking. If an instance consistently fails requests, the service mesh will temporarily mark it as
unavailable. After a backoff period, it will try the instance again. You can configure the circuit breaker based
on various criteria, such as the number of consecutive failures,

Service mesh captures metrics about interservice calls, such as the request volume, latency, error and
success rates, and response sizes. The service mesh also enables distributed tracing by adding correlation

https://linkerd.io/
https://istio.io/

Next steps

information for each hop in a request.

Mutual TLS Authentication for service-to-service calls.

Do you need a service mesh? The value they add to a distributed system is certainly compelling. If you don't have
a service mesh, you will need to consider each of the challenges mentioned at the beginning of the article. You can
solve problems like retry, circuit breaker, and distributed tracing without a service mesh, but a service mesh moves
these concerns out of the individual services and into a dedicated layer. On the other hand, service meshes are a
relatively new technology that is still maturing. Deploying a service mesh adds complexity to the setup and
configuration of the cluster. There may be performance implications, because requests now get routed through the
service mesh proxy, and because extra services are now running on every node in the cluster. You should do
thorough performance and load testing before deploying a service mesh in production.

For microservices that talk directly to each other, it's important to create well-designed APIs.

API design

Designing APIs for microservices
3/13/2019 • 10 minutes to read • Edit Online

Considerations

Good API design is important in a microservices architecture, because all data exchange between services
happens either through messages or API calls. APIs must be efficient to avoid creating chatty I/O. Because
services are designed by teams working independently, APIs must have well-defined semantics and versioning
schemes, so that updates don't break other services.

It's important to distinguish between two types of API:

Public APIs that client applications call.
Backend APIs that are used for interservice communication.

These two use cases have somewhat different requirements. A public API must be compatible with client
applications, typically browser applications or native mobile applications. Most of the time, that means the public
API will use REST over HTTP. For the backend APIs, however, you need to take network performance into
account. Depending on the granularity of your services, interservice communication can result in a lot of network
traffic. Services can quickly become I/O bound. For that reason, considerations such as serialization speed and
payload size become more important. Some popular alternatives to using REST over HTTP include gRPC, Apache
Avro, and Apache Thrift. These protocols support binary serialization and are generally more efficient than HTTP.

Here are some things to think about when choosing how to implement an API.

REST versus RPC. Consider the tradeoffs between using a REST-style interface versus an RPC-style interface.

REST models resources, which can be a natural way express your domain model. It defines a uniform
interface based on HTTP verbs, which encourages evolvability. It has well-defined semantics in terms of
idempotency, side effects, and response codes. And it enforces stateless communication, which improves
scalability.

RPC is more oriented around operations or commands. Because RPC interfaces look like local method
calls, it may lead you to design overly chatty APIs. However, that doesn't mean RPC must be chatty. It just
means you need to use care when designing the interface.

https://github.com/mspnp/architecture-center/blob/master/docs/microservices/design/api-design.md

RESTful API design

For a RESTful interface, the most common choice is REST over HTTP using JSON. For an RPC-style interface,
there are several popular frameworks, including gRPC, Apache Avro, and Apache Thrift.

Efficiency. Consider efficiency in terms of speed, memory, and payload size. Typically a gRPC-based interface is
faster than REST over HTTP.

Interface definition language (IDL). An IDL is used to define the methods, parameters, and return values of an
API. An IDL can be used to generate client code, serialization code, and API documentation. IDLs can also be
consumed by API testing tools such as Postman. Frameworks such as gRPC, Avro, and Thrift define their own IDL
specifications. REST over HTTP does not have a standard IDL format, but a common choice is OpenAPI (formerly
Swagger). You can also create an HTTP REST API without using a formal definition language, but then you lose
the benefits of code generation and testing.

Serialization. How are objects serialized over the wire? Options include text-based formats (primarily JSON) and
binary formats such as protocol buffer. Binary formats are generally faster than text-based formats. However,
JSON has advantages in terms of interoperability, because most languages and frameworks support JSON
serialization. Some serialization formats require a fixed schema, and some require compiling a schema definition
file. In that case, you'll need to incorporate this step into your build process.

Framework and language support. HTTP is supported in nearly every framework and language. gRPC, Avro,
and Thrift all have libraries for C++, C#, Java, and Python. Thrift and gRPC also support Go.

Compatibility and interoperability. If you choose a protocol like gRPC, you may need a protocol translation
layer between the public API and the back end. A gateway can perform that function. If you are using a service
mesh, consider which protocols are compatible with the service mesh. For example, linkerd has built-in support
for HTTP, Thrift, and gRPC.

Our baseline recommendation is to choose REST over HTTP unless you need the performance benefits of a
binary protocol. REST over HTTP requires no special libraries. It creates minimal coupling, because callers don't
need a client stub to communicate with the service. There is rich ecosystems of tools to support schema
definitions, testing, and monitoring of RESTful HTTP endpoints. Finally, HTTP is compatible with browser clients,
so you don't need a protocol translation layer between the client and the backend.

However, if you choose REST over HTTP, you should do performance and load testing early in the development
process, to validate whether it performs well enough for your scenario.

There are many resources for designing RESTful APIs. Here are some that you might find helpful:

API design

API implementation

Microsoft REST API Guidelines

Here are some specific considerations to keep in mind.

Watch out for APIs that leak internal implementation details or simply mirror an internal database schema.
The API should model the domain. It's a contract between services, and ideally should only change when
new functionality is added, not just because you refactored some code or normalized a database table.

Different types of client, such as mobile application and desktop web browser, may require different
payload sizes or interaction patterns. Consider using the Backends for Frontends pattern to create separate
backends for each client, that expose an optimal interface for that client.

For operations with side effects, consider making them idempotent and implementing them as PUT
methods. That will enable safe retries and can improve resiliency. The article Interservice communication

https://github.com/Microsoft/api-guidelines

Mapping REST to DDD patterns

export class Location {
 readonly latitude: number;
 readonly longitude: number;

 constructor(latitude: number, longitude: number) {
 if (latitude < -90 || latitude > 90) {
 throw new RangeError('latitude must be between -90 and 90');
 }
 if (longitude < -180 || longitude > 180) {
 throw new RangeError('longitude must be between -180 and 180');
 }
 this.latitude = latitude;
 this.longitude = longitude;
 }
}

discuss this issue in more detail.

HTTP methods can have asynchronous semantics, where the method returns a response immediately, but
the service carries out the operation asynchronously. In that case, the method should return an HTTP 202
response code, which indicates the request was accepted for processing, but the processing is not yet
completed.

Patterns such as entity, aggregate, and value object are designed to place certain constraints on the objects in your
domain model. In many discussions of DDD, the patterns are modeled using object-oriented (OO) language
concepts like constructors or property getters and setters. For example, value objects are supposed to be
immutable. In an OO programming language, you would enforce this by assigning the values in the constructor
and making the properties read-only:

These sorts of coding practices are particularly important when building a traditional monolithic application. With
a large code base, many subsystems might use the Location object, so it's important for the object to enforce
correct behavior.

Another example is the Repository pattern, which ensures that other parts of the application do not make direct
reads or writes to the data store:

In a microservices architecture, however, services don't share the same code base and don't share data stores.
Instead, they communicate through APIs. Consider the case where the Scheduler service requests information
about a drone from the Drone service. The Drone service has its internal model of a drone, expressed through
code. But the Scheduler doesn't see that. Instead, it gets back a representation of the drone entity — perhaps a
JSON object in an HTTP response.

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

DDD CONCEPT REST EQUIVALENT EXAMPLE

Aggregate Resource { "1":1234, "status":"pending"...
}

Identity URL https://delivery-
service/deliveries/1

Child entities Links { "href":
"/deliveries/1/confirmation" }

Update value objects PUT or PATCH PUT https://delivery-
service/deliveries/1/dropoff

The Scheduler service can't modify the Drone service's internal models, or write to the Drone service's data store.
That means the code that implements the Drone service has a smaller exposed surface area, compared with code
in a traditional monolith. If the Drone service defines a Location class, the scope of that class is limited — no other
service will directly consume the class.

For these reasons, this guidance doesn't focus much on coding practices as they relate to the tactical DDD
patterns. But it turns out that you can also model many of the DDD patterns through REST APIs.

For example:

Aggregates map naturally to resources in REST. For example, the Delivery aggregate would be exposed as
a resource by the Delivery API.

Aggregates are consistency boundaries. Operations on aggregates should never leave an aggregate in an
inconsistent state. Therefore, you should avoid creating APIs that allow a client to manipulate the internal
state of an aggregate. Instead, favor coarse-grained APIs that expose aggregates as resources.

Entities have unique identities. In REST, resources have unique identifiers in the form of URLs. Create
resource URLs that correspond to an entity's domain identity. The mapping from URL to domain identity
may be opaque to client.

Child entities of an aggregate can be reached by navigating from the root entity. If you follow HATEOAS
principles, child entities can be reached via links in the representation of the parent entity.

Because value objects are immutable, updates are performed by replacing the entire value object. In REST,
implement updates through PUT or PATCH requests.

A repository lets clients query, add, or remove objects in a collection, abstracting the details of the
underlying data store. In REST, a collection can be a distinct resource, with methods for querying the
collection or adding new entities to the collection.

When you design your APIs, think about how they express the domain model, not just the data inside the model,
but also the business operations and the constraints on the data.

https://en.wikipedia.org/wiki/HATEOAS

Repository Collection https://delivery-
service/deliveries?status=pending

DDD CONCEPT REST EQUIVALENT EXAMPLE

API versioning
An API is a contract between a service and clients or consumers of that service. If an API changes, there is a risk of
breaking clients that depend on the API, whether those are external clients or other microservices. Therefore, it's a
good idea to minimize the number of API changes that you make. Often, changes in the underlying
implementation don't require any changes to the API. Realistically, however, at some point you will want to add
new features or new capabilities that require changing an existing API.

Whenever possible, make API changes backward compatible. For example, avoid removing a field from a model,
because that can break clients that expect the field to be there. Adding a field does not break compatibility, because
clients should ignore any fields they don't understand in a response. However, the service must handle the case
where an older client omits the new field in a request.

Support versioning in your API contract. If you introduce a breaking API change, introduce a new API version.
Continue to support the previous version, and let clients select which version to call. There are a couple of ways to
do this. One is simply to expose both versions in the same service. Another option is to run two versions of the
service side-by-side, and route requests to one or the other version, based on HTTP routing rules.

There's a cost to supporting multiple versions, in terms of developer time, testing, and operational overhead.
Therefore, it's good to deprecate old versions as quickly as possible. For internal APIs, the team that owns the API
can work with other teams to help them migrate to the new version. This is when having a cross-team governance
process is useful. For external (public) APIs, it can be harder to deprecate an API version, especially if the API is
consumed by third parties or by native client applications.

When a service implementation changes, it's useful to tag the change with a version. The version provides
important information when troubleshooting errors. It can be very helpful for root cause analysis to know exactly
which version of the service was called. Consider using semantic versioning for service versions. Semantic
versioning uses a MAJOR.MINOR.PATCH format. However, clients should only select an API by the major version
number, or possibly the minor version if there are significant (but non-breaking) changes between minor versions.
In other words, it's reasonable for clients to select between version 1 and version 2 of an API, but not to select
version 2.1.3. If you allow that level of granularity, you risk having to support a proliferation of versions.

For further discussion of API versioning, see Versioning a RESTful web API.

https://semver.org/

Next steps
Learn about using an API gateway at the boundary between client applications and microservices.

API gateways

Using API gateways in microservices
3/13/2019 • 5 minutes to read • Edit Online

What is an API gateway?

In a microservices architecture, a client might interact with more than one front-end service. Given this fact, how
does a client know what endpoints to call? What happens when new services are introduced, or existing services
are refactored? How do services handle SSL termination, authentication, and other concerns? An API gateway
can help to address these challenges.

An API gateway sits between clients and services. It acts as a reverse proxy, routing requests from clients to
services. It may also perform various cross-cutting tasks such as authentication, SSL termination, and rate
limiting. If you don't deploy a gateway, clients must send requests directly to front-end services. However, there
are some potential problems with exposing services directly to clients:

It can result in complex client code. The client must keep track of multiple endpoints, and handle failures in a
resilient way.
It creates coupling between the client and the backend. The client needs to know how the individual services
are decomposed. That makes it harder to maintain the client and also harder to refactor services.
A single operation might require calls to multiple services. That can result in multiple network round trips
between the client and the server, adding significant latency.
Each public-facing service must handle concerns such as authentication, SSL, and client rate limiting.
Services must expose a client-friendly protocol such as HTTP or WebSocket. This limits the choice of
communication protocols.
Services with public endpoints are a potential attack surface, and must be hardened.

A gateway helps to address these issues by decoupling clients from services. Gateways can perform a number of
different functions, and you may not need all of them. The functions can be grouped into the following design
patterns:

Gateway Routing. Use the gateway as a reverse proxy to route requests to one or more backend services, using
layer 7 routing. The gateway provides a single endpoint for clients, and helps to decouple clients from services.

https://github.com/mspnp/architecture-center/blob/master/docs/microservices/design/gateway.md

Choosing a gateway technology

Gateway Aggregation. Use the gateway to aggregate multiple individual requests into a single request. This
pattern applies when a single operation requires calls to multiple backend services. The client sends one request
to the gateway. The gateway dispatches requests to the various backend services, and then aggregates the results
and sends them back to the client. This helps to reduce chattiness between the client and the backend.

Gateway Offloading. Use the gateway to offload functionality from individual services to the gateway, particularly
cross-cutting concerns. It can be useful to consolidate these functions into one place, rather than making every
service responsible for implementing them. This is particularly true for features that requires specialized skills to
implement correctly, such as authentication and authorization.

Here are some examples of functionality that could be offloaded to a gateway:

SSL termination
Authentication
IP whitelisting
Client rate limiting (throttling)
Logging and monitoring
Response caching
Web application firewall
GZIP compression
Servicing static content

Here are some options for implementing an API gateway in your application.

Reverse proxy server. Nginx and HAProxy are popular reverse proxy servers that support features such
as load balancing, SSL, and layer 7 routing. They are both free, open-source products, with paid editions
that provide additional features and support options. Nginx and HAProxy are both mature products with
rich feature sets and high performance. You can extend them with third-party modules or by writing
custom scripts in Lua. Nginx also supports a JavaScript-based scripting module called NginScript.

Service mesh ingress controller. If you are using a service mesh such as linkerd or Istio, consider the
features that are provided by the ingress controller for that service mesh. For example, the Istio ingress
controller supports layer 7 routing, HTTP redirects, retries, and other features.

Azure Application Gateway. Application Gateway is a managed load balancing service that can perform
layer-7 routing and SSL termination. It also provides a web application firewall (WAF).

Azure API Management. API Management is a turnkey solution for publishing APIs to external and
internal customers. It provides features that are useful for managing a public-facing API, including rate
limiting, IP white listing, and authentication using Azure Active Directory or other identity providers. API
Management doesn't perform any load balancing, so it should be used in conjunction with a load balancer
such as Application Gateway or a reverse proxy. For information about using API Management with
Application Gateway, see Integrate API Management in an internal VNET with Application Gateway.

When choosing a gateway technology, consider the following:

Features. The options listed above all support layer 7 routing, but support for other features will vary. Depending
on the features that you need, you might deploy more than one gateway.

Deployment. Azure Application Gateway and API Management are managed services. Nginx and HAProxy will
typically run in containers inside the cluster, but can also be deployed to dedicated VMs outside of the cluster. This
isolates the gateway from the rest of the workload, but incurs higher management overhead.

Management. When services are updated or new services are added, the gateway routing rules may need to be

https://docs.microsoft.com/azure/application-gateway/
https://docs.microsoft.com/azure/api-management/
https://docs.microsoft.com/azure/api-management/api-management-howto-integrate-internal-vnet-appgateway

Deploying Nginx or HAProxy to Kubernetes

Next steps

updated. Consider how this process will be managed. Similar considerations apply to managing SSL certificates,
IP whitelists, and other aspects of configuration.

You can deploy Nginx or HAProxy to Kubernetes as a ReplicaSet or DaemonSet that specifies the Nginx or
HAProxy container image. Use a ConfigMap to store the configuration file for the proxy, and mount the
ConfigMap as a volume. Create a service of type LoadBalancer to expose the gateway through an Azure Load
Balancer.

An alternative is to create an Ingress Controller. An Ingress Controller is a Kubernetes resource that deploys a
load balancer or reverse proxy server. Several implementations exist, including Nginx and HAProxy. A separate
resource called an Ingress defines settings for the Ingress Controller, such as routing rules and TLS certificates.
That way, you don't need to manage complex configuration files that are specific to a particular proxy server
technology.

The gateway is a potential bottleneck or single point of failure in the system, so always deploy at least two
replicas for high availability. You may need to scale out the replicas further, depending on the load.

Also consider running the gateway on a dedicated set of nodes in the cluster. Benefits to this approach include:

Isolation. All inbound traffic goes to a fixed set of nodes, which can be isolated from backend services.

Stable configuration. If the gateway is misconfigured, the entire application may become unavailable.

Performance. You may want to use a specific VM configuration for the gateway for performance reasons.

The previous articles have looked at the interfaces between microservices or between microservices and client
applications. By design, these interfaces treat each service as a black box. In particular, microservices should never
expose implementation details about how they manage data. That has implications for data integrity and data
consistency, explored in the next article.

Data considerations for microservices

https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/

Data considerations for microservices
3/13/2019 • 7 minutes to read • Edit Online

NOTENOTE

Challenges

Approaches to managing data

This article describes considerations for managing data in a microservices architecture. Because every
microservice manages its own data, data integrity and data consistency are critical challenges.

A basic principle of microservices is that each service manages its own data. Two services should not share a data
store. Instead, each service is responsible for its own private data store, which other services cannot access
directly.

The reason for this rule is to avoid unintentional coupling between services, which can result if services share the
same underlying data schemas. If there is a change to the data schema, the change must be coordinated across
every service that relies on that database. By isolating each service's data store, we can limit the scope of change,
and preserve the agility of truly independent deployments. Another reason is that each microservice may have its
own data models, queries, or read/write patterns. Using a shared data store limits each team's ability to optimize
data storage for their particular service.

This approach naturally leads to polyglot persistence — the use of multiple data storage technologies within a
single application. One service might require the schema-on-read capabilities of a document database. Another
might need the referential integrity provided by an RDBMS. Each team is free to make the best choice for their
service. For more about the general principle of polyglot persistence, see Use the best data store for the job.

It's fine for services to share the same physical database server. The problem occurs when services share the same schema,
or read and write to the same set of database tables.

Some challenges arise from this distributed approach to managing data. First, there may be redundancy across
the data stores, with the same item of data appearing in multiple places. For example, data might be stored as part
of a transaction, then stored elsewhere for analytics, reporting, or archiving. Duplicated or partitioned data can
lead to issues of data integrity and consistency. When data relationships span multiple services, you can't use
traditional data management techniques to enforce the relationships.

Traditional data modeling uses the rule of "one fact in one place." Every entity appears exactly once in the schema.
Other entities may hold references to it but not duplicate it. The obvious advantage to the traditional approach is
that updates are made in a single place, which avoids problems with data consistency. In a microservices
architecture, you have to consider how updates are propagated across services, and how to manage eventual
consistency when data appears in multiple places without strong consistency.

https://github.com/mspnp/architecture-center/blob/master/docs/microservices/design/data-considerations.md
https://martinfowler.com/bliki/PolyglotPersistence.html

Example: Choosing data stores for the Drone Delivery application

There is no single approach that's correct in all cases, but here are some general guidelines for managing data in a
microservices architecture.

Embrace eventual consistency where possible. Understand the places in the system where you need strong
consistency or ACID transactions, and the places where eventual consistency is acceptable.

When you need strong consistency guarantees, one service may represent the source of truth for a given
entity, which is exposed through an API. Other services might hold their own copy of the data, or a subset
of the data, that is eventually consistent with the master data but not considered the source of truth. For
example, imagine an e-commerce system with a customer order service and a recommendation service.
The recommendation service might listen to events from the order service, but if a customer requests a
refund, it is the order service, not the recommendation service, that has the complete transaction history.

For transactions, use patterns such as Scheduler Agent Supervisor and Compensating Transaction to keep
data consistent across several services. You may need to store an additional piece of data that captures the
state of a unit of work that spans multiple services, to avoid partial failure among multiple services. For
example, keep a work item on a durable queue while a multi-step transaction is in progress.

Store only the data that a service needs. A service might only need a subset of information about a domain
entity. For example, in the Shipping bounded context, we need to know which customer is associated to a
particular delivery. But we don't need the customer's billing address — that's managed by the Accounts
bounded context. Thinking carefully about the domain, and using a DDD approach, can help here.

Consider whether your services are coherent and loosely coupled. If two services are continually
exchanging information with each other, resulting in chatty APIs, you may need to redraw your service
boundaries, by merging two services or refactoring their functionality.

Use an event driven architecture style. In this architecture style, a service publishes an event when there are
changes to its public models or entities. Interested services can subscribe to these events. For example,
another service could use the events to construct a materialized view of the data that is more suitable for
querying.

A service that owns events should publish a schema that can be used to automate serializing and
deserializing the events, to avoid tight coupling between publishers and subscribers. Consider JSON
schema or a framework like Microsoft Bond, Protobuf, or Avro.

At high scale, events can become a bottleneck on the system, so consider using aggregation or batching to
reduce the total load.

The previous articles in this series discuss a drone delivery service as a running example. You can read more about
the scenario and the corresponding reference implementation here.

To recap, this application defines several microservices for scheduling deliveries by drone. When a user schedules
a new delivery, the client request includes information about the delivery, such as pickup and dropoff locations,
and about the package, such as size and weight. This information defines a unit of work.

The various backend services care about different portions of the information in the request, and also have
different read and write profiles.

https://github.com/Microsoft/bond

Delivery serviceDelivery service

Delivery History serviceDelivery History service

Package servicePackage service

The Delivery service stores information about every delivery that is currently scheduled or in progress. It listens
for events from the drones, and tracks the status of deliveries that are in progress. It also sends domain events
with delivery status updates.

It's expected that users will frequently check the status of a delivery while they are waiting for their package.
Therefore, the Delivery service requires a data store that emphasizes throughput (read and write) over long-term
storage. Also, the Delivery service does not perform any complex queries or analysis, it simply fetches the latest
status for a given delivery. The Delivery service team chose Azure Redis Cache for its high read-write
performance. The information stored in Redis is relatively short-lived. Once a delivery is complete, the Delivery
History service is the system of record.

The Delivery History service listens for delivery status events from the Delivery service. It stores this data in long-
term storage. There are two different use-cases for this historical data, which have different data storage
requirements.

The first scenario is aggregating the data for the purpose of data analytics, in order to optimize the business or
improve the quality of the service. Note that the Delivery History service doesn't perform the actual analysis of the
data. It's only responsible for the ingestion and storage. For this scenario, the storage must be optimized for data
analysis over a large set of data, using a schema-on-read approach to accommodate a variety of data sources.
Azure Data Lake Store is a good fit for this scenario. Data Lake Store is an Apache Hadoop file system compatible
with Hadoop Distributed File System (HDFS), and is tuned for performance for data analytics scenarios.

The other scenario is enabling users to look up the history of a delivery after the delivery is completed. Azure Data
Lake is not particularly optimized for this scenario. For optimal performance, Microsoft recommends storing time-
series data in Data Lake in folders partitioned by date. (See Tuning Azure Data Lake Store for performance).
However, that structure is not optimal for looking up individual records by ID. Unless you also know the
timestamp, a lookup by ID requires scanning the entire collection. Therefore, the Delivery History service also
stores a subset of the historical data in Cosmos DB for quicker lookup. The records don't need to stay in Cosmos
DB indefinitely. Older deliveries can be archived — say, after a month. This could be done by running an
occasional batch process.

The Package service stores information about all of the packages. The storage requirements for the Package are:

https://docs.microsoft.com/azure/data-lake-store/
https://docs.microsoft.com/azure/data-lake-store/data-lake-store-performance-tuning-guidance

Long-term storage.
Able to handle a high volume of packages, requiring high write throughput.
Support simple queries by package ID. No complex joins or requirements for referential integrity.

Because the package data is not relational, a document oriented database is appropriate, and Cosmos DB can
achieve very high throughput by using sharded collections. The team that works on the Package service is familiar
with the MEAN stack (MongoDB, Express.js, AngularJS, and Node.js), so they select the MongoDB API for
Cosmos DB. That lets them leverage their existing experience with MongoDB, while getting the benefits of
Cosmos DB, which is a managed Azure service.

https://docs.microsoft.com/azure/cosmos-db/mongodb-introduction

Design patterns for microservices
3/13/2019 • 2 minutes to read • Edit Online

The goal of microservices is to increase the velocity of application releases, by decomposing the application into
small autonomous services that can be deployed independently. A microservices architecture also brings some
challenges. The design patterns shown here can help mitigate these challenges.

Ambassador can be used to offload common client connectivity tasks such as monitoring, logging, routing, and
security (such as TLS) in a language agnostic way. Ambassador services are often deployed as a sidecar (see
below).

Anti-corruption layer implements a façade between new and legacy applications, to ensure that the design of a
new application is not limited by dependencies on legacy systems.

Backends for Frontends creates separate backend services for different types of clients, such as desktop and
mobile. That way, a single backend service doesn’t need to handle the conflicting requirements of various client
types. This pattern can help keep each microservice simple, by separating client-specific concerns.

Bulkhead isolates critical resources, such as connection pool, memory, and CPU, for each workload or service. By
using bulkheads, a single workload (or service) can’t consume all of the resources, starving others. This pattern
increases the resiliency of the system by preventing cascading failures caused by one service.

Gateway Aggregation aggregates requests to multiple individual microservices into a single request, reducing
chattiness between consumers and services.

Gateway Offloading enables each microservice to offload shared service functionality, such as the use of SSL
certificates, to an API gateway.

Gateway Routing routes requests to multiple microservices using a single endpoint, so that consumers don't
need to manage many separate endpoints.

Sidecar deploys helper components of an application as a separate container or process to provide isolation and
encapsulation.

Strangler supports incremental refactoring of an application, by gradually replacing specific pieces of functionality
with new services.

For the complete catalog of cloud design patterns on the Azure Architecture Center, see Cloud Design Patterns.

https://github.com/mspnp/architecture-center/blob/master/docs/microservices/design/patterns.md

Designing microservices: Logging and monitoring
3/13/2019 • 13 minutes to read • Edit Online

In any complex application, at some point something will go wrong. In a microservices application, you need to
track what's happening across dozens or even hundreds of services. Logging and monitoring are critically
important to give you a holistic view of the system.

In a microservices architecture, it can be especially challenging to pinpoint the exact cause of errors or
performance bottlenecks. A single user operation might span multiple services. Services may hit network I/O
limits inside the cluster. A chain of calls across services may cause backpressure in the system, resulting in high
latency or cascading failures. Moreover, you generally don't know which node a particular container will run in.
Containers placed on the same node may be competing for limited CPU or memory.

To make sense of what's happening, you must collect telemetry from the application. Telemetry can be divided into
logs and metrics. Azure Monitor collects both logs and metrics across the Azure platform.

Logs are text-based records of events that occur while the application is running. They include things like
application logs (trace statements) or web server logs. Logs are primarily useful for forensics and root cause
analysis.

Metrics are numerical values that can be analyzed. You can use them to observe the system in real time (or close
to real time), or to analyze performance trends over time. Metrics can be further subcategorized as follows:

Node-level metrics, including CPU, memory, network, disk, and file system usage. System metrics help
you to understand resource allocation for each node in the cluster, and troubleshoot outliers.

Container metrics. If services are run inside containers, you need to collect metrics at the container level,
not just at the VM level. You can set up Azure Monitor to monitor container workloads in Azure Kubernetes
Service (AKS). For more information, see Azure Monitor for containers overview. For other container
orchestrators, use the Container Monitoring solution in Log Analytics.

Application metrics. This includes any metrics that are relevant to understanding the behavior of a service.
Examples include the number of queued inbound HTTP requests, request latency, or message queue length.
Applications can also create custom metrics that are specific to the domain, such as the number of business
transactions processed per minute. Use Application Insights to enable application metrics.

https://github.com/mspnp/architecture-center/blob/master/docs/microservices/logging-monitoring.md
https://docs.microsoft.com/azure/monitoring-and-diagnostics/monitoring-overview
https://docs.microsoft.com/azure/monitoring/monitoring-container-insights-overview
https://docs.microsoft.com/azure/log-analytics/log-analytics-containers
https://docs.microsoft.com/azure/application-insights/app-insights-overview

Considerations

Distributed tracing

Dependent service metrics. Services may call external services or endpoints, such as managed PaaS
services or SaaS services. Third-party services may or may not provide any metrics. If not, you'll have to
rely on your own application metrics to track statistics for latency and error rate.

The article Monitoring and diagnostics describes general best practices for monitoring an application. Here are
some particular things to think about in the context of a microservices architecture.

Configuration and management. Will you use a managed service for logging and monitoring, or deploy
logging and monitoring components as containers inside the cluster? For more discussion of these options, see
the section Technology Options below.

Ingestion rate. What is the throughput at which the system can ingest telemetry events? What happens if that
rate is exceeded? For example, the system may throttle clients, in which case telemetry data is lost, or it may
downsample the data. Sometimes you can mitigate this problem by reducing the amount of data that you collect:

Aggregate metrics by calculating statistics, such as average and standard deviation, and send that statistical
data to the monitoring system.
Downsample the data — that is, process only a percentage of the events.
Batch the data to reduce the number of network calls to the monitoring service.

Cost. The cost of ingesting and storing telemetry data may be high, especially at high volumes. In some cases it
could even exceed the cost of running the application. In that case, you may need to reduce the volume of
telemetry by aggregating, downsampling, or batching the data, as described above.

Data fidelity. How accurate are the metrics? Averages can hide outliers, especially at scale. Also, if the sampling
rate is too low, it can smooth out fluctuations in the data. It may appear that all requests have about the same end-
to-end latency, when in fact a significant fraction of requests are taking much longer.

Latency. To enable real-time monitoring and alerts, telemetry data should be available quickly. How "real-time" is
the data that appears on the monitoring dashboard? A few seconds old? More than a minute?

Storage. For logs, it may be most efficient to write the log events to ephemeral storage in the cluster, and
configure an agent to ship the log files to more persistent storage. Data should eventually be moved to long-term
storage so that it's available for retrospective analysis. A microservices architecture can generate a large volume of
telemetry data, so the cost of storing that data is an important consideration. Also consider how you will query the
data.

Dashboard and visualization. Do you get a holistic view of the system, across all of the services, both within the
cluster and external services? If you are writing telemetry data and logs to more than one location, can the
dashboard show all of them and correlate? The monitoring dashboard should show at least the following
information:

Overall resource allocation for capacity and growth. This includes the number of containers, file system metrics,
network, and core allocation.
Container metrics correlated at the service level.
System metrics correlated with containers.
Service errors and outliers.

As mentioned, one challenge in microservices is understanding the flow of events across services. A single
operation or transaction may involve calls to multiple services. To reconstruct the entire sequence of steps, each
service should propagate a correlation ID that acts as a unique identifier for that operation. The correlation ID
enables distributed tracing across services.

https://microservices.io/patterns/observability/distributed-tracing.html

 Technology options

The first service that receives a client request should generate the correlation ID. If the service makes an HTTP call
to another service, it puts the correlation ID in a request header. Similarly, if the service sends an asynchronous
message, it puts the correlation ID into the message. Downstream services continue to propagate the correlation
ID, so that it flows through the entire system. In addition, all code that writes application metrics or log events
should include the correlation ID.

When service calls are correlated, you can calculate operational metrics such as the end-to-end latency for a
complete transaction, the number of successful transactions per second, and the percentage of failed transactions.
Including correlation IDs in application logs makes it possible to perform root cause analysis. If an operation fails,
you can find the log statements for all of the service calls that were part of the same operation.

Here are some considerations when implementing distributed tracing:

There is currently no standard HTTP header for correlation IDs. Your team should standardize on a custom
header value. The choice may be decided by your logging/monitoring framework or choice of service mesh.

For asynchronous messages, if your messaging infrastructure supports adding metadata to messages, you
should include the correlation ID as metadata. Otherwise, include it as part of the message schema.

Rather than a single opaque identifier, you might send a correlation context that includes richer information,
such as caller-callee relationships.

The Azure Application Insights SDK automatically injects correlation context into HTTP headers, and
includes the correlation ID in Application Insights logs. If you decide to use the correlation features built
into Application Insights, some services may still need to explicitly propagate the correlation headers,
depending on the libraries being used. For more information, see Telemetry correlation in Application
Insights.

If you are using Istio or linkerd as a service mesh, these technologies automatically generate correlation
headers when HTTP calls are routed through the service mesh proxies. Services should forward the
relevant headers.

Istio: Distributed Request Tracing
linkerd: Context Headers

Consider how you will aggregate logs. You may want to standardize across teams on how to include
correlation IDs in logs. Use a structured or semi-structured format, such as JSON, and define a common
field to hold the correlation ID.

Application Insights is a managed service in Azure that ingests and stores telemetry data, and provides tools for
analyzing and searching the data. To use Application Insights, you install an instrumentation package in your
application. This package monitors the app and sends telemetry data to the Application Insights service. It can also
pull telemetry data from the host environment. Application Insights provides built-in correlation and dependency
tracking. It lets you track system metrics, application metrics, and Azure service metrics, all in one place.

Be aware that Application Insights throttles if the data rate exceeds a maximum limit; for details, see Application
Insights limits. A single operation may generate several telemetry events, so if the application experiences a high
volume of traffic, it is likely to get throttled. To mitigate this problem, you can perform sampling to reduce the
telemetry traffic. The tradeoff is that your metrics will be less precise. For more information, see Sampling in
Application Insights. You can also reduce the data volume by pre-aggregating metrics — that is, calculating
statistical values such as average and standard deviation, and sending those values instead of the raw telemetry.
The following blog post describes an approach to using Application Insights at scale: Azure Monitoring and
Analytics at Scale.

In addition, make sure that you understand the pricing model for Application Insights, because you are charged

https://docs.microsoft.com/azure/application-insights/application-insights-correlation
https://istio-releases.github.io/v0.1/docs/tasks/zipkin-tracing.html
https://linkerd.io/config/1.3.0/linkerd/index.html#http-headers
https://docs.microsoft.com/azure/azure-subscription-service-limits#application-insights-limits
https://docs.microsoft.com/azure/application-insights/app-insights-sampling
https://blogs.msdn.microsoft.com/azurecat/2017/05/11/azure-monitoring-and-analytics-at-scale/

Example: Logging with correlation IDs

based on data volume. For more information, see Manage pricing and data volume in Application Insights. If your
application generates a large volume of telemetry, and you don't wish to perform sampling or aggregation of the
data, then Application Insights may not be the appropriate choice.

If Application Insights doesn't meet your requirements, here are some suggested approaches that use popular
open-source technologies.

For system and container metrics, consider exporting metrics to a time-series database such as Prometheus or
InfluxDB running in the cluster.

InfluxDB is a push-based system. An agent needs to push the metrics. You can use Heapster, which is a
service that collects cluster-wide metrics from kubelet, aggregates the data, and pushes it to InfluxDB or
other time-series storage solution. Azure Container Service deploys Heapster as part of the cluster setup.
Another option is Telegraf, which is an agent for collecting and reporting metrics.

Prometheus is a pull-based system. It periodically scrapes metrics from configured locations. Prometheus
can scrape metrics generated by cAdvisor or kube-state-metrics. kube-state-metrics is a service that collects
metrics from the Kubernetes API server and makes them available to Prometheus (or a scraper that is
compatible with a Prometheus client endpoint). Whereas Heapster aggregates metrics that Kubernetes
generates and forwards them to a sink, kube-state-metrics generates its own metrics and makes them
available through an endpoint for scraping. For system metrics, use Node exporter , which is a Prometheus
exporter for system metrics. Prometheus supports floating point data, but not string data, so it is
appropriate for system metrics but not logs.

Use a dashboard tool such as Kibana or Grafana to visualize and monitor the data. The dashboard service
can also run inside a container in the cluster.

For application logs, consider using Fluentd and Elasticsearch. Fluentd is an open source data collector, and
Elasticsearch is a document database that is optimized to act as a search engine. Using this approach, each service
sends logs to stdout and stderr , and Kubernetes writes these streams to the local file system. Fluentd collects
the logs, optionally enriches them with additional metadata from Kubernetes, and sends the logs to Elasticsearch.
Use Kibana, Grafana, or a similar tool to create a dashboard for Elasticsearch. Fluentd runs as a daemonset in the
cluster, which ensures that one Fluentd pod is assigned to each node. You can configure Fluentd to collect kubelet
logs as well as container logs. At high volumes, writing logs to the local file system could become a performance
bottleneck, especially when multiple services are running on the same node. Monitor disk latency and file system
utilization in production.

One advantage of using Fluentd with Elasticsearch for logs is that services do not require any additional library
dependencies. Each service just writes to stdout and stderr , and Fluentd handles exporting the logs into
Elasticsearch. Also, the teams writing services don't need to understand how to configure the logging
infrastructure. One challenge is to configure the Elasticsearch cluster for a production deployment, so that it scales
to handle your traffic.

Another option is to send logs to Operations Management Suite (OMS) Log Analytics. The Log Analytics service
collects log data into a central repository, and can also consolidate data from other Azure services that your
application uses. For more information, see Monitor an Azure Container Service cluster with Microsoft Operations
Management Suite (OMS).

To illustrate some of the points discussed in this article, here is an extended example of how the Package service
implements logging. The Package service was written in TypeScript and uses the Koa web framework for Node.js.
There are several Node.js logging libraries to choose from. We picked Winston, a popular logging library that met
our performance requirements when we tested it.

To encapsulate the implementation details, we defined an abstract ILogger interface:

https://docs.microsoft.com/azure/application-insights/app-insights-pricing
https://github.com/kubernetes/heapster
https://www.influxdata.com/time-series-platform/telegraf/
https://github.com/kubernetes/kube-state-metrics
https://github.com/prometheus/node_exporter
https://docs.microsoft.com/azure/log-analytics/
https://docs.microsoft.com/azure/container-service/kubernetes/container-service-kubernetes-oms
https://koajs.com/
https://github.com/winstonjs/winston

export interface ILogger {
 log(level: string, msg: string, meta?: any)
 debug(msg: string, meta?: any)
 info(msg: string, meta?: any)
 warn(msg: string, meta?: any)
 error(msg: string, meta?: any)
}

class WinstonLogger implements ILogger {
 constructor(private correlationId: string) {}
 log(level: string, msg: string, payload?: any) {
 var meta : any = {};
 if (payload) { meta.payload = payload };
 if (this.correlationId) { meta.correlationId = this.correlationId }
 winston.log(level, msg, meta)
 }

 info(msg: string, payload?: any) {
 this.log('info', msg, payload);
 }
 debug(msg: string, payload?: any) {
 this.log('debug', msg, payload);
 }
 warn(msg: string, payload?: any) {
 this.log('warn', msg, payload);
 }
 error(msg: string, payload?: any) {
 this.log('error', msg, payload);
 }
}

export type CorrelationIdFn = (ctx: Context) => string;

export function logger(level: string, getCorrelationId: CorrelationIdFn) {
 winston.configure({
 level: level,
 transports: [new (winston.transports.Console)()]
 });
 return async function(ctx: any, next: any) {
 ctx.state.logger = new WinstonLogger(getCorrelationId(ctx));
 await next();
 }
}

Here is an ILogger implementation that wraps the Winston library. It takes the correlation ID as a constructor
parameter, and injects the ID into every log message.

The Package service needs to extract the correlation ID from the HTTP request. For example, if you're using
linkerd, the correlation ID is found in the l5d-ctx-trace header. In Koa, the HTTP request is stored in a Context
object that gets passed through the request processing pipeline. We can define a middleware function to get the
correlation ID from the Context and initialize the logger. (A middleware function in Koa is simply a function that
gets executed for each request.)

This middleware invokes a caller-defined function, getCorrelationId , to get the correlation ID. Then it creates an
instance of the logger and stashes it inside ctx.state , which is a key-value dictionary used in Koa to pass
information through the pipeline.

The logger middleware is added to the pipeline on startup:

app.use(logger(Settings.logLevel(), function (ctx) {
 return ctx.headers[Settings.correlationHeader()];
}));

async getById(ctx: any, next: any) {
 var logger : ILogger = ctx.state.logger;
 var packageId = ctx.params.packageId;
 logger.info('Entering getById, packageId = %s', packageId);

 await next();

 let pkg = await this.repository.findPackage(ctx.params.packageId)

 if (pkg == null) {
 logger.info(`getById: %s not found`, packageId);
 ctx.response.status= 404;
 return;
 }

 ctx.response.status = 200;
 ctx.response.body = this.mapPackageDbToApi(pkg);
}

Once everything is configured, it's easy to add logging statements to the code. For example, here is the method
that looks up a package. It makes two calls to the ILogger.info method.

We don't need to include the correlation ID in the logging statements, because that's done automatically by the
middleware function. This makes the logging code cleaner, and reduces the chance that a developer will forget to
include the correlation ID. And because all of the logging statements use the abstract ILogger interface, it would
be easy to replace the logger implementation later.

Continuous integration and delivery

Designing microservices: Continuous integration
3/13/2019 • 11 minutes to read • Edit Online

Continuous integration and continuous delivery (CI/CD) are a key requirement for achieving success with
microservices. Without a good CI/CD process, you will not achieve the agility that microservices promise. Some of
the CI/CD challenges for microservices arise from having multiple code bases and heterogenous build
environments for the various services. This article describes the challenges and recommends some approaches to
the problem.

Faster release cycles are one of the biggest reasons to adopt a microservices architecture.

In a purely monolithic application, there is a single build pipeline whose output is the application executable. All
development work feeds into this pipeline. If a high-priority bug is found, a fix must be integrated, tested, and
published, which can delay the release of new features. It's true that you can mitigate these problems by having
well-factored modules and using feature branches to minimize the impact of code changes. But as the application
grows more complex, and more features are added, the release process for a monolith tends to become more
brittle and likely to break.

Following the microservices philosophy, there should never be a long release train where every team has to get in
line. The team that builds service "A" can release an update at any time, without waiting for changes in service "B"
to be merged, tested, and deployed. The CI/CD process is critical to making this possible. Your release pipeline
must be automated and highly reliable, so that the risks of deploying updates are minimized. If you are releasing
to production daily or multiple times a day, regressions or service disruptions must be very rare. At the same time,
if a bad update does get deployed, you must have a reliable way to quickly roll back or roll forward to a previous
version of a service.

When we talk about CI/CD, we are really talking about several related processes: Continuous integration,
continuous delivery, and continuous deployment.

https://github.com/mspnp/architecture-center/blob/master/docs/microservices/ci-cd.md

Challenges

CI/CD approaches for microservices

Continuous integration means that code changes are frequently merged into the main branch, using
automated build and test processes to ensure that code in the main branch is always production-quality.

Continuous delivery means that code changes that pass the CI process are automatically published to a
production-like environment. Deployment into the live production environment may require manual
approval, but is otherwise automated. The goal is that your code should always be ready to deploy into
production.

Continuous deployment means that code changes that pass the CI/CD process are automatically deployed
into production.

In the context of Kubernetes and microservices, the CI stage is concerned with building and testing container
images, and pushing those images to a container registry. In the deployment stage, pod specs are updated to pick
up the latest production image.

Many small independent code bases. Each team is responsible for building its own service, with its own
build pipeline. In some organizations, teams may use separate code repositories. This could lead to a
situation where the knowledge of how to build the system is spread across teams, and nobody in the
organization knows how to deploy the entire application. For example, what happens in a disaster recovery
scenario, if you need to quickly deploy to a new cluster?

Multiple languages and frameworks. With each team using its own mix of technologies, it can be
difficult to create a single build process that works across the organization. The build process must be
flexible enough that every team can adapt it for their choice of language or framework.

Integration and load testing. With teams releasing updates at their own pace, it can be challenging to
design robust end-to-end testing, especially when services have dependencies on other services. Moreover,
running a full production cluster can be expensive, so it's unlikely that every team will be able to run its own
full cluster at production scales, just for testing.

Release management. Every team should have the ability to deploy an update to production. That doesn't
mean that every team member has permissions to do so. But having a centralized Release Manager role
can reduce the velocity of deployments. The more that your CI/CD process is automated and reliable, the
less there should be a need for a central authority. That said, you might have different policies for releasing
major feature updates versus minor bug fixes. Being decentralized does not mean there should be zero
governance.

Container image versioning. During the development and test cycle, the CI/CD process will build many
container images. Only some of those are candidates for release, and then only some of those release
candidates will get pushed into production. You should have a clear versioning strategy, so that you know
which images are currently deployed to production, and can roll back to a previous version if necessary.

Service updates. When you update a service to a new version, it shouldn't break other services that
depend on it. If you do a rolling update, there will be a period of time when a mix of versions is running.

These challenges reflect a fundamental tension. On the one hand, teams need to work as independently as
possible. On the other hand, some coordination is needed so that a single person can do tasks like running an
integration test, redeploying the entire solution to a new cluster, or rolling back a bad update.

It's a good practice for every service team to containerize their build environment. This container should have all
of the build tools necessary to build the code artifacts for their service. Often you can find an official Docker image
for your language and framework. Then you can use docker run or Docker Compose to run the build.

Updating services

Rolling updateRolling update

Blue-green deploymentBlue-green deployment

With this approach, it's trivial to set up a new build environment. A developer who wants to build your code
doesn't need to install a set of build tools, but simply runs the container image. Perhaps more importantly, your
build server can be configured to do the same thing. That way, you don't need to install those tools onto the build
server, or manage conflicting versions of tools.

For local development and testing, use Docker to run the service inside a container. As part of this process, you
may need to run other containers that have mock services or test databases needed for local testing. You could use
Docker Compose to coordinate these containers, or use Minikube to run Kubernetes locally.

When the code is ready, open a pull request and merge into master. This will start a job on the build server:

1. Build the code assets.
2. Run unit tests against the code.
3. Build the container image.
4. Test the container image by running functional tests on a running container. This step can catch errors in the

Docker file, such as a bad entry point.
5. Push the image to a container registry.
6. Update the test cluster with the new image to run integration tests.

When the image is ready to go into production, update the deployment files as needed to specify the latest image,
including any Kubernetes configuration files. Then apply the update to the production cluster.

Here are some recommendations for making deployments more reliable:

Define organization-wide conventions for container tags, versioning, and naming conventions for resources
deployed to the cluster (pods, services, and so on). That can make it easier to diagnose deployment issues.

Create two separate container registries, one for development/testing and one for production. Don't push
an image to the production registry until you're ready to deploy it into production. If you combine this
practice with semantic versioning of container images, it can reduce the chance of accidentally deploying a
version that wasn't approved for release.

There are various strategies for updating a service that's already in production. Here we discuss three common
options: Rolling update, blue-green deployment, and canary release.

In a rolling update, you deploy new instances of a service, and the new instances start receiving requests right
away. As the new instances come up, the previous instances are removed.

Rolling updates are the default behavior in Kubernetes when you update the pod spec for a Deployment. The
Deployment controller creates a new ReplicaSet for the updated pods. Then it scales up the new ReplicaSet while
scaling down the old one, to maintain the desired replica count. It doesn't delete old pods until the new ones are
ready. Kubernetes keeps a history of the update, so you can use kubectl to roll back an update if needed.

If your service performs a long startup task, you can define a readiness probe. The readiness probe reports when
the container is ready to start receiving traffic. Kubernetes won't send traffic to the pod until the probe reports
success.

One challenge of rolling updates is that during the update process, a mix of old and new versions are running and
receiving traffic. During this period, any request could get routed to either of the two versions. That may or may
not cause problems, depending on the scope of the changes between the two versions.

In a blue-green deployment, you deploy the new version alongside the previous version. After you validate the

Canary releaseCanary release

Conclusion

new version, you switch all traffic at once from the previous version to the new version. After the switch, you
monitor the application for any problems. If something goes wrong, you can swap back to the old version.
Assuming there are no problems, you can delete the old version.

With a more traditional monolithic or N-tier application, blue-green deployment generally meant provisioning two
identical environments. You would deploy the new version to a staging environment, then redirect client traffic to
the staging environment — for example, by swapping VIP addresses.

In Kubernetes, you don't need to provision a separate cluster to do blue-green deployments. Instead, you can take
advantage of selectors. Create a new Deployment resource with a new pod spec and a different set of labels.
Create this deployment, without deleting the previous deployment or modifying the service that points to it. Once
the new pods are running, you can update the service's selector to match the new deployment.

An advantage of blue-green deployments is that the service switches all the pods at the same time. After the
service is updated, all new requests get routed to the new version. One drawback is that during the update, you are
running twice as many pods for the service (current and next). If the pods require a lot of CPU or memory
resources, you may need to scale out the cluster temporarily to handle the resource consumption.

In a canary release, you roll out an updated version to a small number of clients. Then you monitor the behavior of
the new service before rolling it out to all clients. This lets you do a slow rollout in a controlled fashion, observe
real data, and spot problems before all customers are affected.

A canary release is more complex to manage than either blue-green or rolling update, because you must
dynamically route requests to different versions of the service. In Kubernetes, you can configure a Service to span
two replica sets (one for each version) and adjust the replica counts manually. However, this approach is rather
coarse-grained, because of the way Kubernetes load balances across pods. For example, if you have a total of ten
replicas, you can only shift traffic in 10% increments. If you are using a service mesh, you can use the service mesh
routing rules to implement a more sophisticated canary release strategy. Here are some resources that may be
helpful:

Kubernetes without service mesh: Canary deployments
Linkerd: Dynamic request routing
Istio: Canary Deployments using Istio

In recent years, there has been a sea change in the industry, a movement from building systems of record to
building systems of engagement.

Systems of record are traditional back-office data management applications. At the heart of these systems there
often sits an RDBMS that is the single source of truth. The term "system of engagement" is credited to Geoffrey
Moore, in his 2011 paper Systems of Engagement and the Future of Enterprise IT. Systems of engagement are
applications focused on communication and collaboration. They connect people in real time. They must be
available 24/7. New features are introduced regularly without taking the application offline. Users expect more and
are less patient of unexpected delays or downtime.

In the consumer space, a better user experience can have measurable business value. The amount of time that a
user engages with an application may translate directly into revenue. And in the realm of business systems, users'
expectations have changed. If these systems aim to foster communication and collaboration, they must take their
cue from consumer-facing applications.

Microservices are a response to this changing landscape. By decomposing a monolithic application into a group of
loosely coupled services, we can control the release cycle of each service, and enable frequent updates without
downtime or breaking changes. Microservices also help with scalability, failure isolation, and resiliency. Meanwhile,
cloud platforms are making it easier to build and run microservices, with automated provisioning of compute

https://kubernetes.io/docs/concepts/cluster-administration/manage-deployment/#canary-deployments
https://linkerd.io/features/routing/
https://istio.io/blog/canary-deployments-using-istio.html

resources, container orchestrators as a service, and event-driven serverless environments.

But as we've seen, microservices architectures also being a lot of challenges. To succeed, you must start from a
solid design. You must put careful thought into analyzing the domain, choosing technologies, modeling data,
designing APIs, and building a mature DevOps culture. We hope that this guide, and the accompanying reference
implementation, has helped to illuminate the journey.

https://github.com/mspnp/microservices-reference-implementation

Introduction

How this guide is structured

This guide presents a structured approach for designing data-centric solutions on Microsoft Azure. It is based on proven practices
derived from customer engagements.

The cloud is changing the way applications are designed, including how data is processed and stored. Instead of a single general-
purpose database that handles all of a solution's data, polyglot persistence solutions use multiple, specialized data stores, each
optimized to provide specific capabilities. The perspective on data in the solution changes as a result. There are no longer multiple
layers of business logic that read and write to a single data layer. Instead, solutions are designed around a data pipeline that
describes how data flows through a solution, where it is processed, where it is stored, and how it is consumed by the next
component in the pipeline.

This guide is structured around two general categories of data solution, traditional RDBMS workloads and big data solutions.

Traditional RDBMS workloads. These workloads include online transaction processing (OLTP) and online analytical processing
(OLAP). Data in OLTP systems is typically relational data with a pre-defined schema and a set of constraints to maintain referential
integrity. Often, data from multiple sources in the organization may be consolidated into a data warehouse, using an ETL process
to move and transform the source data.

Data WarehouseData Warehouse AnalysisAnalysis ReportingReportingOLTPOLTP

ETLETL

Big data solutions. A big data architecture is designed to handle the ingestion, processing, and analysis of data that is too large
or complex for traditional database systems. The data may be processed in batch or in real time. Big data solutions typically
involve a large amount of non-relational data, such as key-value data, JSON documents, or time series data. Often traditional
RDBMS systems are not well-suited to store this type of data. The term NoSQL refers to a family of databases designed to hold
non-relational data. (The term isn't quite accurate, because many non-relational data stores support SQL compatible queries.)

StorageStorageProcessingProcessingIngestionIngestion

MLML

ReportingReporting

These two categories are not mutually exclusive, and there is overlap between them, but we feel that it's a useful way to frame the
discussion. Within each category, the guide discusses common scenarios, including relevant Azure services and the appropriate
architecture for the scenario. In addition, the guide compares technology choices for data solutions in Azure, including open
source options. Within each category, we describe the key selection criteria and a capability matrix, to help you choose the right
technology for your scenario.

This guide is not intended to teach you data science or database theory — you can find entire books on those subjects. Instead, the

goal is to help you select the right data architecture or data pipeline for your scenario, and then select the Azure services and
technologies that best fit your requirements. If you already have an architecture in mind, you can skip directly to the technology
choices.

Traditional relational database solutions
3/13/2019 • 2 minutes to read • Edit Online

Relational data is data modeled using the relational model. In this model, data is expressed as tuples. A tuple is a
set of attribute/value pairs. For example, a tuple might be (itemid = 5, orderid = 1, item = "Chair", amount =
200.00). A set of tuples that all share the same attributes is called a relation.

Relations are naturally represented as tables, where each tuple is exposed as a row in the table. However, rows
have an explicit ordering, unlike tuples. The database schema defines the columns (headings) of each table. Each
column is defined with a name and a data type for all values stored in that column across all rows in the table.

A data store that organizes data using the relational model is referred to as a relational database. Primary keys
uniquely identify rows within a table. Foreign key fields are used in one table to refer to a row in another table by
referencing the primary key of the other table. Foreign keys are used to maintain referential integrity, ensuring that
the referenced rows are not altered or deleted while the referencing row depends on them.

Relational databases support various types of constraints that help to ensure data integrity:

Unique constraints ensure that all values in a column are unique.

Foreign key constraints enforce a link between the data in two tables. A foreign key references the primary
key or another unique key from another table. A foreign key constraint enforces referential integrity,
disallowing changes that cause invalid foreign key values.

Check constraints, also known as entity integrity constraints, limit the values that can be stored within a
single column, or in relationship to values in other columns of the same row.

Most relational databases use the Structured Query Language (SQL) language that enables a declarative approach
to querying. The query describes the desired result, but not the steps to execute the query. The engine then decides
the best way to execute the query. This differs from a procedural approach, where the query program specifies the
processing steps explicitly. However, relational databases can store executable code routines in the form of stored
procedures and functions, which enables a mixture of declarative and procedural approaches.

To improve query performance, relational databases use indexes. Primary indexes, which are used by the primary
key, define the order of the data as it sits on disk. Secondary indexes provide an alternative combination of fields,

https://github.com/mspnp/architecture-center/blob/master/docs/data-guide/relational-data/index.md

so the desired rows can be queried efficiently, without having to re-sort the entire data on disk.

Because relational databases enforce referential integrity, scaling a relational database can become challenging.
That's because any query or insert operation might touch any number of tables. You can scale out a relational
database by sharding the data, but this requires careful design of the schema. For more information, see the
Sharding pattern.

If data is non-relational or has requirements that are not suited to a relational database, consider a Non-relational
or NoSQL data store.

Online transaction processing (OLTP)
3/13/2019 • 6 minutes to read • Edit Online

Transactional data

Typical traits of transactional data

REQUIREMENT DESCRIPTION

Normalization Highly normalized

Schema Schema on write, strongly enforced

Consistency Strong consistency, ACID guarantees

Integrity High integrity

Uses transactions Yes

Locking strategy Pessimistic or optimistic

Updateable Yes

The management of transactional data using computer systems is referred to as Online Transaction Processing
(OLTP). OLTP systems record business interactions as they occur in the day-to-day operation of the organization,
and support querying of this data to make inferences.

Transactional data is information that tracks the interactions related to an organization's activities. These
interactions are typically business transactions, such as payments received from customers, payments made to
suppliers, products moving through inventory, orders taken, or services delivered. Transactional events, which
represent the transactions themselves, typically contain a time dimension, some numerical values, and references
to other data.

Transactions typically need to be atomic and consistent. Atomicity means that an entire transaction always
succeeds or fails as one unit of work, and is never left in a half-completed state. If a transaction cannot be
completed, the database system must roll back any steps that were already done as part of that transaction. In a
traditional RDBMS, this rollback happens automatically if a transaction cannot be completed. Consistency means
that transactions always leave the data in a valid state. (These are very informal descriptions of atomicity and
consistency. There are more formal definitions of these properties, such as ACID.)

Transactional databases can support strong consistency for transactions using various locking strategies, such as
pessimistic locking, to ensure that all data is strongly consistent within the context of the enterprise, for all users
and processes.

The most common deployment architecture that uses transactional data is the data store tier in a 3-tier
architecture. A 3-tier architecture typically consists of a presentation tier, business logic tier, and data store tier. A
related deployment architecture is the N-tier architecture, which may have multiple middle-tiers handling business
logic.

Transactional data tends to have the following traits:

https://github.com/mspnp/architecture-center/blob/master/docs/data-guide/relational-data/online-transaction-processing.md
https://en.wikipedia.org/wiki/ACID
https://docs.microsoft.com/azure/architecture/guide/architecture-styles/n-tier

Appendable Yes

Workload Heavy writes, moderate reads

Indexing Primary and secondary indexes

Datum size Small to medium sized

Model Relational

Data shape Tabular

Query flexibility Highly flexible

Scale Small (MBs) to Large (a few TBs)

REQUIREMENT DESCRIPTION

When to use this solution

Challenges

OLTP in Azure

Choose OLTP when you need to efficiently process and store business transactions and immediately make them
available to client applications in a consistent way. Use this architecture when any tangible delay in processing
would have a negative impact on the day-to-day operations of the business.

OLTP systems are designed to efficiently process and store transactions, as well as query transactional data. The
goal of efficiently processing and storing individual transactions by an OLTP system is partly accomplished by data
normalization — that is, breaking the data up into smaller chunks that are less redundant. This supports efficiency
because it enables the OLTP system to process large numbers of transactions independently, and avoids extra
processing needed to maintain data integrity in the presence of redundant data.

Implementing and using an OLTP system can create a few challenges:

OLTP systems are not always good for handling aggregates over large amounts of data, although there are
exceptions, such as a well-planned SQL Server-based solution. Analytics against the data, that rely on
aggregate calculations over millions of individual transactions, are very resource intensive for an OLTP system.
They can be slow to execute and can cause a slow-down by blocking other transactions in the database.
When conducting analytics and reporting on data that is highly normalized, the queries tend to be complex,
because most queries need to de-normalize the data by using joins. Also, naming conventions for database
objects in OLTP systems tend to be terse and succinct. The increased normalization coupled with terse naming
conventions makes OLTP systems difficult for business users to query, without the help of a DBA or data
developer.
Storing the history of transactions indefinitely and storing too much data in any one table can lead to slow
query performance, depending on the number of transactions stored. The common solution is to maintain a
relevant window of time (such as the current fiscal year) in the OLTP system and offload historical data to other
systems, such as a data mart or data warehouse.

Applications such as websites hosted in App Service Web Apps, REST APIs running in App Service, or mobile or
desktop applications communicate with the OLTP system, typically via a REST API intermediary.

https://docs.microsoft.com/azure/app-service/app-service-web-overview

Key selection criteria

Capability matrix

General capabilitiesGeneral capabilities

AZURE SQL DATABASE

SQL SERVER IN AN
AZURE VIRTUAL
MACHINE

AZURE DATABASE FOR
MYSQL

AZURE DATABASE FOR
POSTGRESQL

Is Managed Service Yes No Yes Yes

Runs on Platform N/A Windows, Linux,
Docker

N/A N/A

Programmability T-SQL, .NET, R T-SQL, .NET, R,
Python

T-SQL, .NET, R,
Python

SQL

In practice, most workloads are not purely OLTP. There tends to be an analytical component as well. In addition,
there is an increasing demand for real-time reporting, such as running reports against the operational system. This
is also referred to as HTAP (Hybrid Transactional and Analytical Processing). For more information, see Online
Analytical Processing (OLAP).

In Azure, all of the following data stores will meet the core requirements for OLTP and the management of
transaction data:

Azure SQL Database
SQL Server in an Azure virtual machine
Azure Database for MySQL
Azure Database for PostgreSQL

To narrow the choices, start by answering these questions:

Do you want a managed service rather than managing your own servers?

Does your solution have specific dependencies for Microsoft SQL Server, MySQL or PostgreSQL
compatibility? Your application may limit the data stores you can choose based on the drivers it supports for
communicating with the data store, or the assumptions it makes about which database is used.

Are your write throughput requirements particularly high? If yes, choose an option that provides in-
memory tables.

Is your solution multi-tenant? If so, consider options that support capacity pools, where multiple database
instances draw from an elastic pool of resources, instead of fixed resources per database. This can help you
better distribute capacity across all database instances, and can make your solution more cost effective.

Does your data need to be readable with low latency in multiple regions? If yes, choose an option that
supports readable secondary replicas.

Does your database need to be highly available across geo-graphic regions? If yes, choose an option that
supports geographic replication. Also consider the options that support automatic failover from the primary
replica to a secondary replica.

Does your database have specific security needs? If yes, examine the options that provide capabilities like
row level security, data masking, and transparent data encryption.

The following tables summarize the key differences in capabilities.

1

https://docs.microsoft.com/azure/sql-database/
https://docs.microsoft.com/azure/virtual-machines/windows/sql/virtual-machines-windows-sql-server-iaas-overview?toc=%2Fazure%2Fvirtual-machines%2Fwindows%2Ftoc.json
https://docs.microsoft.com/azure/mysql/
https://docs.microsoft.com/azure/postgresql/

 Scalability capabilitiesScalability capabilities

AZURE SQL DATABASE

SQL SERVER IN AN
AZURE VIRTUAL
MACHINE

AZURE DATABASE FOR
MYSQL

AZURE DATABASE FOR
POSTGRESQL

Maximum database
instance size

4 TB 256 TB 1 TB 1 TB

Supports capacity
pools

Yes Yes No No

Supports clusters
scale out

No Yes No No

Dynamic scalability
(scale up)

Yes No Yes Yes

Analytic workload capabilitiesAnalytic workload capabilities

AZURE SQL DATABASE

SQL SERVER IN AN
AZURE VIRTUAL
MACHINE

AZURE DATABASE FOR
MYSQL

AZURE DATABASE FOR
POSTGRESQL

Temporal tables Yes Yes No No

In-memory (memory-
optimized) tables

Yes Yes No No

Columnstore support Yes Yes No No

Adaptive query
processing

Yes Yes No No

Availability capabilitiesAvailability capabilities

AZURE SQL DATABASE

SQL SERVER IN AN
AZURE VIRTUAL
MACHINE

AZURE DATABASE FOR
MYSQL

AZURE DATABASE FOR
POSTGRESQL

Readable secondaries Yes Yes No No

Geographic
replication

Yes Yes No No

Automatic failover to
secondary

Yes No No No

Point-in-time restore Yes Yes Yes Yes

Security capabilitiesSecurity capabilities

[1] Not including client driver support, which allows many programming languages to connect to and use the
OLTP data store.

https://docs.microsoft.com/azure/sql-database/sql-database-resource-limits
https://docs.microsoft.com/azure/mysql/concepts-limits
https://docs.microsoft.com/azure/postgresql/concepts-limits

AZURE SQL DATABASE

SQL SERVER IN AN
AZURE VIRTUAL
MACHINE

AZURE DATABASE FOR
MYSQL

AZURE DATABASE FOR
POSTGRESQL

Row level security Yes Yes Yes Yes

Data masking Yes Yes No No

Transparent data
encryption

Yes Yes Yes Yes

Restrict access to
specific IP addresses

Yes Yes Yes Yes

Restrict access to
allow VNET access
only

Yes Yes No No

Azure Active Directory
authentication

Yes Yes No No

Active Directory
authentication

No Yes No No

Multi-factor
authentication

Yes Yes No No

Supports Always
Encrypted

Yes Yes Yes No

Private IP No Yes Yes No

https://docs.microsoft.com/sql/relational-databases/security/encryption/always-encrypted-database-engine

Data warehousing and data marts
3/13/2019 • 12 minutes to read • Edit Online

Data marts and operational data stores

When to use this solution

A data warehouse is a central, organizational, relational repository of integrated data from one or more disparate
sources, across many or all subject areas. Data warehouses store current and historical data and are used for
reporting and analysis of the data in different ways.

To move data into a data warehouse, it is extracted on a periodic basis from various sources that contain important
business information. As the data is moved, it can be formatted, cleaned, validated, summarized, and reorganized.
Alternately, the data can be stored in the lowest level of detail, with aggregated views provided in the warehouse
for reporting. In either case, the data warehouse becomes a permanent storage space for data used for reporting,
analysis, and forming important business decisions using business intelligence (BI) tools.

Managing data at scale is complex, and it is becoming less common to have a single data warehouse that
represents all data across the entire enterprise. Instead, organizations create smaller, more focused data
warehouses, called data marts, that expose the desired data for analytics purposes. An orchestration process
populates the data marts from data maintained in an operational data store. The operational data store acts as an
intermediary between the source transactional system and the data mart. Data managed by the operational data
store is a cleaned version of the data present in the source transactional system, and is typically a subset of the
historical data that is maintained by the data warehouse or data mart.

Choose a data warehouse when you need to turn massive amounts of data from operational systems into a
format that is easy to understand, current, and accurate. Data warehouses do not need to follow the same terse
data structure you may be using in your operational/OLTP databases. You can use column names that make sense
to business users and analysts, restructure the schema to simplify data relationships, and consolidate several
tables into one. These steps help guide users who need to create ad hoc reports, or create reports and analyze the
data in BI systems, without the help of a database administrator (DBA) or data developer.

Consider using a data warehouse when you need to keep historical data separate from the source transaction
systems for performance reasons. Data warehouses make it easy to access historical data from multiple locations,
by providing a centralized location using common formats, common keys, common data models, and common
access methods.

Data warehouses are optimized for read access, resulting in faster report generation compared to running reports
against the source transaction system. In addition, data warehouses provide the following benefits:

https://github.com/mspnp/architecture-center/blob/master/docs/data-guide/relational-data/data-warehousing.md

Challenges

Data warehousing in Azure

All historical data from multiple sources can be stored and accessed from a data warehouse as the single
source of truth.
You can improve data quality by cleaning up data as it is imported into the data warehouse, providing more
accurate data as well as providing consistent codes and descriptions.
Reporting tools do not compete with the transactional source systems for query processing cycles. A data
warehouse allows the transactional system to focus predominantly on handling writes, while the data
warehouse satisfies the majority of read requests.
A data warehouse can help consolidate data from different software.
Data mining tools can help you find hidden patterns using automatic methodologies against data stored in
your warehouse.
Data warehouses make it easier to provide secure access to authorized users, while restricting access to others.
There is no need to grant business users access to the source data, thereby removing a potential attack vector
against one or more production transaction systems.
Data warehouses make it easier to create business intelligence solutions on top of the data, such as OLAP
cubes.

Properly configuring a data warehouse to fit the needs of your business can bring some of the following
challenges:

Committing the time required to properly model your business concepts. This is an important step, as data
warehouses are information driven, where concept mapping drives the rest of the project. This involves
standardizing business-related terms and common formats (such as currency and dates), and restructuring
the schema in a way that makes sense to business users but still ensures accuracy of data aggregates and
relationships.

Planning and setting up your data orchestration. Considerations include how to copy data from the source
transactional system to the data warehouse, and when to move historical data out of your operational data
stores and into the warehouse.

Maintaining or improving data quality by cleaning the data as it is imported into the warehouse.

In Azure, you may have one or more sources of data, whether from customer transactions, or from various
business applications used by various departments. This data is traditionally stored in one or more OLTP
databases. The data could be persisted in other storage mediums such as network shares, Azure Storage Blobs, or
a data lake. The data could also be stored by the data warehouse itself or in a relational database such as Azure
SQL Database. The purpose of the analytical data store layer is to satisfy queries issued by analytics and reporting
tools against the data warehouse or data mart. In Azure, this analytical store capability can be met with Azure SQL
Data Warehouse, or with Azure HDInsight using Hive or Interactive Query. In addition, you will need some level
of orchestration to periodically move or copy data from data storage to the data warehouse, which can be done
using Azure Data Factory or Oozie on Azure HDInsight.

There are several options for implementing a data warehouse in Azure, depending on your needs. The following
lists are broken into two categories, symmetric multiprocessing (SMP) and massively parallel processing (MPP).

SMP:

Azure SQL Database
SQL Server in a virtual machine

MPP:

https://en.wikipedia.org/wiki/Symmetric_multiprocessing
https://en.wikipedia.org/wiki/Massively_parallel
https://docs.microsoft.com/azure/sql-database/
https://docs.microsoft.com/sql/sql-server/sql-server-technical-documentation

Key selection criteria

Azure Data Warehouse
Apache Hive on HDInsight
Interactive Query (Hive LLAP) on HDInsight

As a general rule, SMP-based warehouses are best suited for small to medium data sets (up to 4-100 TB), while
MPP is often used for big data. The delineation between small/medium and big data partly has to do with your
organization's definition and supporting infrastructure. (See Choosing an OLTP data store.)

Beyond data sizes, the type of workload pattern is likely to be a greater determining factor. For example, complex
queries may be too slow for an SMP solution, and require an MPP solution instead. MPP-based systems are likely
to impose a performance penalty with small data sizes, due to the way jobs are distributed and consolidated
across nodes. If your data sizes already exceed 1 TB and are expected to continually grow, consider selecting an
MPP solution. However, if your data sizes are less than this, but your workloads are exceeding the available
resources of your SMP solution, then MPP may be your best option as well.

The data accessed or stored by your data warehouse could come from a number of data sources, including a data
lake, such as Azure Data Lake Store. For a video session that compares the different strengths of MPP services
that can use Azure Data Lake, see Azure Data Lake and Azure Data Warehouse: Applying Modern Practices to
Your App.

SMP systems are characterized by a single instance of a relational database management system sharing all
resources (CPU/Memory/Disk). You can scale up an SMP system. For SQL Server running on a VM, you can scale
up the VM size. For Azure SQL Database, you can scale up by selecting a different service tier.

MPP systems can be scaled out by adding more compute nodes (which have their own CPU, memory and I/O
subsystems). There are physical limitations to scaling up a server, at which point scaling out is more desirable,
depending on the workload. However, MPP solutions require a different skillset, due to variances in querying,
modeling, partitioning of data, and other factors unique to parallel processing.

When deciding which SMP solution to use, see A closer look at Azure SQL Database and SQL Server on Azure
VMs.

Azure SQL Data Warehouse can also be used for small and medium datasets, where the workload is compute and
memory intensive. Read more about SQL Data Warehouse patterns and common scenarios:

SQL Data Warehouse Patterns and Anti-Patterns

SQL Data Warehouse Loading Patterns and Strategies

Migrating Data to Azure SQL Data Warehouse

Common ISV Application Patterns Using Azure SQL Data Warehouse

To narrow the choices, start by answering these questions:

Do you want a managed service rather than managing your own servers?

Are you working with extremely large data sets or highly complex, long-running queries? If yes, consider an
MPP option.

For a large data set, is the data source structured or unstructured? Unstructured data may need to be
processed in a big data environment such as Spark on HDInsight, Azure Databricks, Hive LLAP on
HDInsight, or Azure Data Lake Analytics. All of these can serve as ELT (Extract, Load, Transform) and ETL
(Extract, Transform, Load) engines. They can output the processed data into structured data, making it
easier to load into SQL Data Warehouse or one of the other options. For structured data, SQL Data
Warehouse has a performance tier called Optimized for Compute, for compute-intensive workloads

https://docs.microsoft.com/azure/sql-data-warehouse/sql-data-warehouse-overview-what-is
https://docs.microsoft.com/azure/hdinsight/hadoop/hdinsight-use-hive
https://docs.microsoft.com/azure/hdinsight/interactive-query/apache-interactive-query-get-started
https://docs.microsoft.com/azure/data-lake-store/
https://azure.microsoft.com/resources/videos/build-2016-azure-data-lake-and-azure-data-warehouse-applying-modern-practices-to-your-app/
https://docs.microsoft.com/azure/sql-database/sql-database-paas-vs-sql-server-iaas#a-closer-look-at-azure-sql-database-and-sql-server-on-azure-vms
https://blogs.msdn.microsoft.com/sqlcat/2017/09/05/azure-sql-data-warehouse-workload-patterns-and-anti-patterns/
https://blogs.msdn.microsoft.com/sqlcat/2017/05/17/azure-sql-data-warehouse-loading-patterns-and-strategies/
https://blogs.msdn.microsoft.com/sqlcat/2016/08/18/migrating-data-to-azure-sql-data-warehouse-in-practice/
https://blogs.msdn.microsoft.com/sqlcat/2017/09/05/common-isv-application-patterns-using-azure-sql-data-warehouse/

Capability Matrix

General capabilitiesGeneral capabilities

AZURE SQL
DATABASE SQL SERVER (VM)

SQL DATA
WAREHOUSE

APACHE HIVE ON
HDINSIGHT

HIVE LLAP ON
HDINSIGHT

Is managed
service

Yes No Yes Yes Yes

Requires data
orchestration
(holds copy of
data/historical
data)

No No Yes Yes Yes

Easily integrate
multiple data
sources

No No Yes Yes Yes

requiring ultra-high performance.

Do you want to separate your historical data from your current, operational data? If so, select one of the
options where orchestration is required. These are standalone warehouses optimized for heavy read access,
and are best suited as a separate historical data store.

Do you need to integrate data from several sources, beyond your OLTP data store? If so, consider options
that easily integrate multiple data sources.

Do you have a multi-tenancy requirement? If so, SQL Data Warehouse is not ideal for this requirement. For
more information, see SQL Data Warehouse Patterns and Anti-Patterns.

Do you prefer a relational data store? If so, narrow your options to those with a relational data store, but
also note that you can use a tool like PolyBase to query non-relational data stores if needed. If you decide
to use PolyBase, however, run performance tests against your unstructured data sets for your workload.

Do you have real-time reporting requirements? If you require rapid query response times on high volumes
of singleton inserts, narrow your options to those that can support real-time reporting.

Do you need to support a large number of concurrent users and connections? The ability to support a
number of concurrent users/connections depends on several factors.

For Azure SQL Database, refer to the documented resource limits based on your service tier.

SQL Server allows a maximum of 32,767 user connections. When running on a VM, performance
will depend on the VM size and other factors.

SQL Data Warehouse has limits on concurrent queries and concurrent connections. For more
information, see Concurrency and workload management in SQL Data Warehouse. Consider using
complementary services, such as Azure Analysis Services, to overcome limits in SQL Data
Warehouse.

What sort of workload do you have? In general, MPP-based warehouse solutions are best suited for
analytical, batch-oriented workloads. If your workloads are transactional by nature, with many small
read/write operations or multiple row-by-row operations, consider using one of the SMP options. One
exception to this guideline is when using stream processing on an HDInsight cluster, such as Spark
Streaming, and storing the data within a Hive table.

The following tables summarize the key differences in capabilities.

1 1

https://blogs.msdn.microsoft.com/sqlcat/2017/09/05/azure-sql-data-warehouse-workload-patterns-and-anti-patterns/
https://docs.microsoft.com/azure/sql-database/sql-database-resource-limits
https://docs.microsoft.com/azure/sql-data-warehouse/sql-data-warehouse-develop-concurrency
https://docs.microsoft.com/azure/analysis-services/analysis-services-overview

Supports pausing
compute

No No Yes No No

Relational data
store

Yes Yes Yes No No

Real-time
reporting

Yes Yes No No Yes

Flexible backup
restore points

Yes Yes No Yes Yes

SMP/MPP SMP SMP MPP MPP MPP

AZURE SQL
DATABASE SQL SERVER (VM)

SQL DATA
WAREHOUSE

APACHE HIVE ON
HDINSIGHT

HIVE LLAP ON
HDINSIGHT

Scalability capabilitiesScalability capabilities

AZURE SQL
DATABASE SQL SERVER (VM)

SQL DATA
WAREHOUSE

APACHE HIVE ON
HDINSIGHT

HIVE LLAP ON
HDINSIGHT

Redundant
regional servers
for high
availability

Yes Yes Yes No No

Supports query
scale out
(distributed
queries)

No No Yes Yes Yes

Dynamic
scalability

Yes No Yes No No

Supports in-
memory caching
of data

Yes Yes No Yes Yes

Security capabilitiesSecurity capabilities

2 2

3 4 4

[1] Manual configuration and scaling.

[2] HDInsight clusters can be deleted when not needed, and then re-created. Attach an external data store to your
cluster so your data is retained when you delete your cluster. You can use Azure Data Factory to automate your
cluster's lifecycle by creating an on-demand HDInsight cluster to process your workload, then delete it once the
processing is complete.

[3] With SQL Data Warehouse, you can restore a database to any available restore point within the last seven
days. Snapshots start every four to eight hours and are available for seven days. When a snapshot is older than
seven days, it expires and its restore point is no longer available.

[4] Consider using an external Hive metastore that can be backed up and restored as needed. Standard backup
and restore options that apply to Blob Storage or Data Lake Store can be used for the data, or third party
HDInsight backup and restore solutions, such as Imanis Data can be used for greater flexibility and ease of use.

1

[1] SQL Data Warehouse allows you to scale up or down by adjusting the number of data warehouse units
(DWUs). See Manage compute power in Azure SQL Data Warehouse.

https://docs.microsoft.com/azure/hdinsight/hdinsight-hadoop-provision-linux-clusters#use-hiveoozie-metastore
https://azure.microsoft.com/blog/imanis-data-cloud-migration-backup-for-your-big-data-applications-on-azure-hdinsight/
https://docs.microsoft.com/azure/sql-data-warehouse/sql-data-warehouse-manage-compute-overview

AZURE SQL
DATABASE

SQL SERVER IN A
VIRTUAL MACHINE

SQL DATA
WAREHOUSE

APACHE HIVE ON
HDINSIGHT

HIVE LLAP ON
HDINSIGHT

Authentication SQL / Azure
Active Directory
(Azure AD)

SQL / Azure AD /
Active Directory

SQL / Azure AD local / Azure AD local / Azure AD

Authorization Yes Yes Yes Yes Yes

Auditing Yes Yes Yes Yes Yes

Data encryption
at rest

Yes Yes Yes Yes Yes

Row-level
security

Yes Yes Yes No Yes

Supports firewalls Yes Yes Yes Yes Yes

Dynamic data
masking

Yes Yes Yes No Yes

1 1

1

1

2 2 2 2 1

1

3

1

[1] Requires using a domain-joined HDInsight cluster.

[2] Requires using Transparent Data Encryption (TDE) to encrypt and decrypt your data at rest.

[3] Supported when used within an Azure Virtual Network.

Read more about securing your data warehouse:

Securing your SQL Database

Secure a database in SQL Data Warehouse

Extend Azure HDInsight using an Azure Virtual Network

Enterprise-level Hadoop security with domain-joined HDInsight clusters

https://docs.microsoft.com/azure/hdinsight/domain-joined/apache-domain-joined-introduction
https://docs.microsoft.com/azure/hdinsight/hdinsight-extend-hadoop-virtual-network
https://docs.microsoft.com/azure/sql-database/sql-database-security-overview#connection-security
https://docs.microsoft.com/azure/sql-data-warehouse/sql-data-warehouse-overview-manage-security
https://docs.microsoft.com/azure/hdinsight/hdinsight-extend-hadoop-virtual-network
https://docs.microsoft.com/azure/hdinsight/domain-joined/apache-domain-joined-introduction

Online analytical processing (OLAP)
3/13/2019 • 8 minutes to read • Edit Online

Semantic modeling

Online analytical processing (OLAP) is a technology that organizes large business databases and supports
complex analysis. It can be used to perform complex analytical queries without negatively affecting transactional
systems.

The databases that a business uses to store all its transactions and records are called online transaction processing
(OLTP) databases. These databases usually have records that are entered one at a time. Often they contain a great
deal of information that is valuable to the organization. The databases that are used for OLTP, however, were not
designed for analysis. Therefore, retrieving answers from these databases is costly in terms of time and effort.
OLAP systems were designed to help extract this business intelligence information from the data in a highly
performant way. This is because OLAP databases are optimized for heavy read, low write workloads.

A semantic data model is a conceptual model that describes the meaning of the data elements it contains.
Organizations often have their own terms for things, sometimes with synonyms, or even different meanings for
the same term. For example, an inventory database might track a piece of equipment with an asset ID and a serial
number, but a sales database might refer to the serial number as the asset ID. There is no simple way to relate
these values without a model that describes the relationship.

Semantic modeling provides a level of abstraction over the database schema, so that users don't need to know the
underlying data structures. This makes it easier for end users to query data without performing aggregates and
joins over the underlying schema. Also, usually columns are renamed to more user-friendly names, so that the
context and meaning of the data are more obvious.

Semantic modeling is predominately used for read-heavy scenarios, such as analytics and business intelligence
(OLAP), as opposed to more write-heavy transactional data processing (OLTP). This is mostly due to the nature of
a typical semantic layer :

Aggregation behaviors are set so that reporting tools display them properly.
Business logic and calculations are defined.
Time-oriented calculations are included.
Data is often integrated from multiple sources.

Traditionally, the semantic layer is placed over a data warehouse for these reasons.

https://github.com/mspnp/architecture-center/blob/master/docs/data-guide/relational-data/online-analytical-processing.md

Example use case

Typical traits of semantic modeling

REQUIREMENT DESCRIPTION

Schema Schema on write, strongly enforced

Uses Transactions No

Locking Strategy None

Updateable No (typically requires recomputing cube)

Appendable No (typically requires recomputing cube)

Workload Heavy reads, read-only

There are two primary types of semantic models:

Tabular. Uses relational modeling constructs (model, tables, columns). Internally, metadata is inherited from
OLAP modeling constructs (cubes, dimensions, measures). Code and script use OLAP metadata.
Multidimensional. Uses traditional OLAP modeling constructs (cubes, dimensions, measures).

Relevant Azure service:

Azure Analysis Services

An organization has data stored in a large database. It wants to make this data available to business users and
customers to create their own reports and do some analysis. One option is just to give those users direct access to
the database. However, there are several drawbacks to doing this, including managing security and controlling
access. Also, the design of the database, including the names of tables and columns, may be hard for a user to
understand. Users would need to know which tables to query, how those tables should be joined, and other
business logic that must be applied to get the correct results. Users would also need to know a query language like
SQL even to get started. Typically this leads to multiple users reporting the same metrics but with different results.

Another option is to encapsulate all of the information that users need into a semantic model. The semantic model
can be more easily queried by users with a reporting tool of their choice. The data provided by the semantic model
is pulled from a data warehouse, ensuring that all users see a single version of the truth. The semantic model also
provides friendly table and column names, relationships between tables, descriptions, calculations, and row-level
security.

Semantic modeling and analytical processing tends to have the following traits:

https://azure.microsoft.com/services/analysis-services/

Indexing Multidimensional indexing

Datum size Small to medium sized

Model Multidimensional

Data shape: Cube or star/snowflake schema

Query flexibility Highly flexible

Scale: Large (10s-100s GBs)

REQUIREMENT DESCRIPTION

When to use this solution

Challenges

OLAP in Azure

Consider OLAP in the following scenarios:

You need to execute complex analytical and ad hoc queries rapidly, without negatively affecting your OLTP
systems.
You want to provide business users with a simple way to generate reports from your data
You want to provide a number of aggregations that will allow users to get fast, consistent results.

OLAP is especially useful for applying aggregate calculations over large amounts of data. OLAP systems are
optimized for read-heavy scenarios, such as analytics and business intelligence. OLAP allows users to segment
multi-dimensional data into slices that can be viewed in two dimensions (such as a pivot table) or filter the data by
specific values. This process is sometimes called "slicing and dicing" the data, and can be done regardless of
whether the data is partitioned across several data sources. This helps users to find trends, spot patterns, and
explore the data without having to know the details of traditional data analysis.

Semantic models can help business users abstract relationship complexities and make it easier to analyze data
quickly.

For all the benefits OLAP systems provide, they do produce a few challenges:

Whereas data in OLTP systems is constantly updated through transactions flowing in from various sources,
OLAP data stores are typically refreshed at a much slower intervals, depending on business needs. This means
OLAP systems are better suited for strategic business decisions, rather than immediate responses to changes.
Also, some level of data cleansing and orchestration needs to be planned to keep the OLAP data stores up-to-
date.
Unlike traditional, normalized, relational tables found in OLTP systems, OLAP data models tend to be
multidimensional. This makes it difficult or impossible to directly map to entity-relationship or object-oriented
models, where each attribute is mapped to one column. Instead, OLAP systems typically use a star or
snowflake schema in place of traditional normalization.

In Azure, data held in OLTP systems such as Azure SQL Database is copied into the OLAP system, such as Azure
Analysis Services. Data exploration and visualization tools like Power BI, Excel, and third-party options connect to
Analysis Services servers and provide users with highly interactive and visually rich insights into the modeled data.
The flow of data from OLTP data to OLAP is typically orchestrated using SQL Server Integration Services, which

https://docs.microsoft.com/azure/analysis-services/analysis-services-overview
https://powerbi.microsoft.com

Key selection criteria

Capability matrix

General capabilitiesGeneral capabilities

AZURE ANALYSIS
SERVICES

SQL SERVER ANALYSIS
SERVICES

SQL SERVER WITH
COLUMNSTORE
INDEXES

AZURE SQL DATABASE
WITH COLUMNSTORE
INDEXES

Is managed service Yes No No Yes

can be executed using Azure Data Factory.

In Azure, all of the following data stores will meet the core requirements for OLAP:

SQL Server with Columnstore indexes
Azure Analysis Services
SQL Server Analysis Services (SSAS)

SQL Server Analysis Services (SSAS) offers OLAP and data mining functionality for business intelligence
applications. You can either install SSAS on local servers, or host within a virtual machine in Azure. Azure Analysis
Services is a fully managed service that provides the same major features as SSAS. Azure Analysis Services
supports connecting to various data sources in the cloud and on-premises in your organization.

Clustered Columnstore indexes are available in SQL Server 2014 and above, as well as Azure SQL Database, and
are ideal for OLAP workloads. However, beginning with SQL Server 2016 (including Azure SQL Database), you
can take advantage of hybrid transactional/analytics processing (HTAP) through the use of updateable
nonclustered columnstore indexes. HTAP enables you to perform OLTP and OLAP processing on the same
platform, which removes the need to store multiple copies of your data, and eliminates the need for distinct OLTP
and OLAP systems. For more information, see Get started with Columnstore for real-time operational analytics.

To narrow the choices, start by answering these questions:

Do you want a managed service rather than managing your own servers?

Do you require secure authentication using Azure Active Directory (Azure AD)?

Do you want to conduct real-time analytics? If so, narrow your options to those that support real-time
analytics.

Real-time analytics in this context applies to a single data source, such as an enterprise resource planning
(ERP) application, that will run both an operational and an analytics workload. If you need to integrate data
from multiple sources, or require extreme analytics performance by using pre-aggregated data such as
cubes, you might still require a separate data warehouse.

Do you need to use pre-aggregated data, for example to provide semantic models that make analytics more
business user friendly? If yes, choose an option that supports multidimensional cubes or tabular semantic
models.

Providing aggregates can help users consistently calculate data aggregates. Pre-aggregated data can also
provide a large performance boost when dealing with several columns across many rows. Data can be pre-
aggregated in multidimensional cubes or tabular semantic models.

Do you need to integrate data from several sources, beyond your OLTP data store? If so, consider options
that easily integrate multiple data sources.

The following tables summarize the key differences in capabilities.

https://docs.microsoft.com/azure/data-factory/concepts-integration-runtime
https://docs.microsoft.com/sql/relational-databases/indexes/get-started-with-columnstore-for-real-time-operational-analytics
https://docs.microsoft.com/azure/analysis-services/analysis-services-overview
https://docs.microsoft.com/sql/analysis-services/analysis-services
https://docs.microsoft.com/azure/analysis-services/analysis-services-datasource
https://docs.microsoft.com/sql/relational-databases/indexes/get-started-with-columnstore-for-real-time-operational-analytics

Supports
multidimensional
cubes

No Yes No No

Supports tabular
semantic models

Yes Yes No No

Easily integrate
multiple data sources

Yes Yes No No

Supports real-time
analytics

No No Yes Yes

Requires process to
copy data from
source(s)

Yes Yes No No

Azure AD integration Yes No No Yes

AZURE ANALYSIS
SERVICES

SQL SERVER ANALYSIS
SERVICES

SQL SERVER WITH
COLUMNSTORE
INDEXES

AZURE SQL DATABASE
WITH COLUMNSTORE
INDEXES

Scalability CapabilitiesScalability Capabilities

AZURE ANALYSIS
SERVICES

SQL SERVER ANALYSIS
SERVICES

SQL SERVER WITH
COLUMNSTORE
INDEXES

AZURE SQL DATABASE
WITH COLUMNSTORE
INDEXES

Redundant regional
servers for high
availability

Yes No Yes Yes

Supports query scale
out

Yes No Yes No

Dynamic scalability
(scale up)

Yes No Yes No

1 1

2

[1] Although SQL Server and Azure SQL Database cannot be used to query from and integrate multiple external
data sources, you can still build a pipeline that does this for you using SSIS or Azure Data Factory. SQL Server
hosted in an Azure VM has additional options, such as linked servers and PolyBase. For more information, see
Pipeline orchestration, control flow, and data movement.

[2] Connecting to SQL Server running on an Azure Virtual Machine is not supported using an Azure AD account.
Use a domain Active Directory account instead.

https://docs.microsoft.com/sql/integration-services/sql-server-integration-services
https://docs.microsoft.com/azure/data-factory/
https://docs.microsoft.com/sql/relational-databases/polybase/polybase-guide

Extract, transform, and load (ETL)
3/13/2019 • 5 minutes to read • Edit Online

Extract, transform, and load (ETL) process

Extract, load, and transform (ELT)

A common problem that organizations face is how to gathering data from multiple sources, in multiple formats,
and move it to one or more data stores. The destination may not be the same type of data store as the source, and
often the format is different, or the data needs to be shaped or cleaned before loading it into its final destination.

Various tools, services, and processes have been developed over the years to help address these challenges. No
matter the process used, there is a common need to coordinate the work and apply some level of data
transformation within the data pipeline. The following sections highlight the common methods used to perform
these tasks.

Extract, transform, and load (ETL) is a data pipeline used to collect data from various sources, transform the data
according to business rules, and load it into a destination data store. The transformation work in ETL takes place in
a specialized engine, and often involves using staging tables to temporarily hold data as it is being transformed and
ultimately loaded to its destination.

The data transformation that takes place usually involves various operations, such as filtering, sorting, aggregating,
joining data, cleaning data, deduplicating, and validating data.

Often, the three ETL phases are run in parallel to save time. For example, while data is being extracted, a
transformation process could be working on data already received and prepare it for loading, and a loading process
can begin working on the prepared data, rather than waiting for the entire extraction process to complete.

Relevant Azure service:

Azure Data Factory v2

Other tools:

SQL Server Integration Services (SSIS)

https://github.com/mspnp/architecture-center/blob/master/docs/data-guide/relational-data/etl.md
https://azure.microsoft.com/services/data-factory/
https://docs.microsoft.com/sql/integration-services/sql-server-integration-services

Extract, load, and transform (ELT) differs from ETL solely in where the transformation takes place. In the ELT
pipeline, the transformation occurs in the target data store. Instead of using a separate transformation engine, the
processing capabilities of the target data store are used to transform data. This simplifies the architecture by
removing the transformation engine from the pipeline. Another benefit to this approach is that scaling the target
data store also scales the ELT pipeline performance. However, ELT only works well when the target system is
powerful enough to transform the data efficiently.

Typical use cases for ELT fall within the big data realm. For example, you might start by extracting all of the source
data to flat files in scalable storage such as Hadoop distributed file system (HDFS) or Azure Data Lake Store.
Technologies such as Spark, Hive, or PolyBase can then be used to query the source data. The key point with ELT is
that the data store used to perform the transformation is the same data store where the data is ultimately
consumed. This data store reads directly from the scalable storage, instead of loading the data into its own
proprietary storage. This approach skips the data copy step present in ETL, which can be a time consuming
operation for large data sets.

In practice, the target data store is a data warehouse using either a Hadoop cluster (using Hive or Spark) or a SQL
Data Warehouse. In general, a schema is overlaid on the flat file data at query time and stored as a table, enabling
the data to be queried like any other table in the data store. These are referred to as external tables because the
data does not reside in storage managed by the data store itself, but on some external scalable storage.

The data store only manages the schema of the data and applies the schema on read. For example, a Hadoop
cluster using Hive would describe a Hive table where the data source is effectively a path to a set of files in HDFS.
In SQL Data Warehouse, PolyBase can achieve the same result — creating a table against data stored externally to
the database itself. Once the source data is loaded, the data present in the external tables can be processed using
the capabilities of the data store. In big data scenarios, this means the data store must be capable of massively
parallel processing (MPP), which breaks the data into smaller chunks and distributes processing of the chunks
across multiple machines in parallel.

The final phase of the ELT pipeline is typically to transform the source data into a final format that is more efficient
for the types of queries that need to be supported. For example, the data may be partitioned. Also, ELT might use
optimized storage formats like Parquet, which stores row-oriented data in a columnar fashion and providess
optimized indexing.

Relevant Azure service:

Azure SQL Data Warehouse
HDInsight with Hive
Azure Data Factory v2
Oozie on HDInsight

https://docs.microsoft.com/azure/sql-data-warehouse/sql-data-warehouse-overview-what-is
https://docs.microsoft.com/azure/hdinsight/hadoop/hdinsight-use-hive
https://azure.microsoft.com/services/data-factory/
https://docs.microsoft.com/azure/hdinsight/hdinsight-use-oozie-linux-mac

Data flow and control flow

Technology choices

Next steps

Other tools:

SQL Server Integration Services (SSIS)

In the context of data pipelines, the control flow ensures orderly processing of a set of tasks. To enforce the correct
processing order of these tasks, precedence constraints are used. You can think of these constraints as connectors
in a workflow diagram, as shown in the image below. Each task has an outcome, such as success, failure, or
completion. Any subsequent task does not initiate processing until its predecessor has completed with one of these
outcomes.

Control flows execute data flows as a task. In a data flow task, data is extracted from a source, transformed, or
loaded into a data store. The output of one data flow task can be the input to the next data flow task, and data
flowss can run in parallel. Unlike control flows, you cannot add constraints between tasks in a data flow. You can,
however, add a data viewer to observe the data as it is processed by each task.

In the diagram above, there are several tasks within the control flow, one of which is a data flow task. One of the
tasks is nested within a container. Containers can be used to provide structure to tasks, providing a unit of work.
One such example is for repeating elements within a collection, such as files in a folder or database statements.

Relevant Azure service:

Azure Data Factory v2

Other tools:

SQL Server Integration Services (SSIS)

Online Transaction Processing (OLTP) data stores
Online Analytical Processing (OLAP) data stores
Data warehouses
Pipeline orchestration

The following reference architectures show end-to-end ELT pipelines on Azure:

Enterprise BI in Azure with SQL Data Warehouse

https://docs.microsoft.com/sql/integration-services/sql-server-integration-services
https://azure.microsoft.com/services/data-factory/
https://docs.microsoft.com/sql/integration-services/sql-server-integration-services

Automated enterprise BI with SQL Data Warehouse and Azure Data Factory

Big data architectures
3/13/2019 • 10 minutes to read • Edit Online

Components of a big data architecture

A big data architecture is designed to handle the ingestion, processing, and analysis of data that is too large or
complex for traditional database systems. The threshold at which organizations enter into the big data realm
differs, depending on the capabilities of the users and their tools. For some, it can mean hundreds of gigabytes of
data, while for others it means hundreds of terabytes. As tools for working with big data sets advance, so does the
meaning of big data. More and more, this term relates to the value you can extract from your data sets through
advanced analytics, rather than strictly the size of the data, although in these cases they tend to be quite large.

Over the years, the data landscape has changed. What you can do, or are expected to do, with data has changed.
The cost of storage has fallen dramatically, while the means by which data is collected keeps growing. Some data
arrives at a rapid pace, constantly demanding to be collected and observed. Other data arrives more slowly, but in
very large chunks, often in the form of decades of historical data. You might be facing an advanced analytics
problem, or one that requires machine learning. These are challenges that big data architectures seek to solve.

Big data solutions typically involve one or more of the following types of workload:

Batch processing of big data sources at rest.
Real-time processing of big data in motion.
Interactive exploration of big data.
Predictive analytics and machine learning.

Consider big data architectures when you need to:

Store and process data in volumes too large for a traditional database.
Transform unstructured data for analysis and reporting.
Capture, process, and analyze unbounded streams of data in real time, or with low latency.

The following diagram shows the logical components that fit into a big data architecture. Individual solutions may
not contain every item in this diagram.

Most big data architectures include some or all of the following components:

https://github.com/mspnp/architecture-center/blob/master/docs/data-guide/big-data/index.md

 Lambda architecture

Data sources. All big data solutions start with one or more data sources. Examples include:

Application data stores, such as relational databases.
Static files produced by applications, such as web server log files.
Real-time data sources, such as IoT devices.

Data storage. Data for batch processing operations is typically stored in a distributed file store that can
hold high volumes of large files in various formats. This kind of store is often called a data lake. Options for
implementing this storage include Azure Data Lake Store or blob containers in Azure Storage.

Batch processing. Because the data sets are so large, often a big data solution must process data files
using long-running batch jobs to filter, aggregate, and otherwise prepare the data for analysis. Usually these
jobs involve reading source files, processing them, and writing the output to new files. Options include
running U-SQL jobs in Azure Data Lake Analytics, using Hive, Pig, or custom Map/Reduce jobs in an
HDInsight Hadoop cluster, or using Java, Scala, or Python programs in an HDInsight Spark cluster.

Real-time message ingestion. If the solution includes real-time sources, the architecture must include a
way to capture and store real-time messages for stream processing. This might be a simple data store,
where incoming messages are dropped into a folder for processing. However, many solutions need a
message ingestion store to act as a buffer for messages, and to support scale-out processing, reliable
delivery, and other message queuing semantics. This portion of a streaming architecture is often referred to
as stream buffering. Options include Azure Event Hubs, Azure IoT Hub, and Kafka.

Stream processing. After capturing real-time messages, the solution must process them by filtering,
aggregating, and otherwise preparing the data for analysis. The processed stream data is then written to an
output sink. Azure Stream Analytics provides a managed stream processing service based on perpetually
running SQL queries that operate on unbounded streams. You can also use open source Apache streaming
technologies like Storm and Spark Streaming in an HDInsight cluster.

Analytical data store. Many big data solutions prepare data for analysis and then serve the processed
data in a structured format that can be queried using analytical tools. The analytical data store used to serve
these queries can be a Kimball-style relational data warehouse, as seen in most traditional business
intelligence (BI) solutions. Alternatively, the data could be presented through a low-latency NoSQL
technology such as HBase, or an interactive Hive database that provides a metadata abstraction over data
files in the distributed data store. Azure SQL Data Warehouse provides a managed service for large-scale,
cloud-based data warehousing. HDInsight supports Interactive Hive, HBase, and Spark SQL, which can also
be used to serve data for analysis.

Analysis and reporting. The goal of most big data solutions is to provide insights into the data through
analysis and reporting. To empower users to analyze the data, the architecture may include a data modeling
layer, such as a multidimensional OLAP cube or tabular data model in Azure Analysis Services. It might also
support self-service BI, using the modeling and visualization technologies in Microsoft Power BI or
Microsoft Excel. Analysis and reporting can also take the form of interactive data exploration by data
scientists or data analysts. For these scenarios, many Azure services support analytical notebooks, such as
Jupyter, enabling these users to leverage their existing skills with Python or R. For large-scale data
exploration, you can use Microsoft R Server, either standalone or with Spark.

Orchestration. Most big data solutions consist of repeated data processing operations, encapsulated in
workflows, that transform source data, move data between multiple sources and sinks, load the processed
data into an analytical data store, or push the results straight to a report or dashboard. To automate these
workflows, you can use an orchestration technology such Azure Data Factory or Apache Oozie and Sqoop.

When working with very large data sets, it can take a long time to run the sort of queries that clients need. These
queries can't be performed in real time, and often require algorithms such as MapReduce that operate in parallel

https://en.wikipedia.org/wiki/MapReduce

Kappa architecture

across the entire data set. The results are then stored separately from the raw data and used for querying.

One drawback to this approach is that it introduces latency — if processing takes a few hours, a query may return
results that are several hours old. Ideally, you would like to get some results in real time (perhaps with some loss
of accuracy), and combine these results with the results from the batch analytics.

The lambda architecture, first proposed by Nathan Marz, addresses this problem by creating two paths for data
flow. All data coming into the system goes through these two paths:

A batch layer (cold path) stores all of the incoming data in its raw form and performs batch processing on
the data. The result of this processing is stored as a batch view.

A speed layer (hot path) analyzes data in real time. This layer is designed for low latency, at the expense of
accuracy.

The batch layer feeds into a serving layer that indexes the batch view for efficient querying. The speed layer
updates the serving layer with incremental updates based on the most recent data.

Data that flows into the hot path is constrained by latency requirements imposed by the speed layer, so that it can
be processed as quickly as possible. Often, this requires a tradeoff of some level of accuracy in favor of data that is
ready as quickly as possible. For example, consider an IoT scenario where a large number of temperature sensors
are sending telemetry data. The speed layer may be used to process a sliding time window of the incoming data.

Data flowing into the cold path, on the other hand, is not subject to the same low latency requirements. This allows
for high accuracy computation across large data sets, which can be very time intensive.

Eventually, the hot and cold paths converge at the analytics client application. If the client needs to display timely,
yet potentially less accurate data in real time, it will acquire its result from the hot path. Otherwise, it will select
results from the cold path to display less timely but more accurate data. In other words, the hot path has data for a
relatively small window of time, after which the results can be updated with more accurate data from the cold path.

The raw data stored at the batch layer is immutable. Incoming data is always appended to the existing data, and
the previous data is never overwritten. Any changes to the value of a particular datum are stored as a new
timestamped event record. This allows for recomputation at any point in time across the history of the data
collected. The ability to recompute the batch view from the original raw data is important, because it allows for
new views to be created as the system evolves.

A drawback to the lambda architecture is its complexity. Processing logic appears in two different places — the
cold and hot paths — using different frameworks. This leads to duplicate computation logic and the complexity of
managing the architecture for both paths.

The kappa architecture was proposed by Jay Kreps as an alternative to the lambda architecture. It has the same

 Internet of Things (IoT)

basic goals as the lambda architecture, but with an important distinction: All data flows through a single path,
using a stream processing system.

There are some similarities to the lambda architecture's batch layer, in that the event data is immutable and all of it
is collected, instead of a subset. The data is ingested as a stream of events into a distributed and fault tolerant
unified log. These events are ordered, and the current state of an event is changed only by a new event being
appended. Similar to a lambda architecture's speed layer, all event processing is performed on the input stream
and persisted as a real-time view.

If you need to recompute the entire data set (equivalent to what the batch layer does in lambda), you simply replay
the stream, typically using parallelism to complete the computation in a timely fashion.

From a practical viewpoint, Internet of Things (IoT) represents any device that is connected to the Internet. This
includes your PC, mobile phone, smart watch, smart thermostat, smart refrigerator, connected automobile, heart
monitoring implants, and anything else that connects to the Internet and sends or receives data. The number of
connected devices grows every day, as does the amount of data collected from them. Often this data is being
collected in highly constrained, sometimes high-latency environments. In other cases, data is sent from low-
latency environments by thousands or millions of devices, requiring the ability to rapidly ingest the data and
process accordingly. Therefore, proper planning is required to handle these constraints and unique requirements.

Event-driven architectures are central to IoT solutions. The following diagram shows a possible logical architecture
for IoT. The diagram emphasizes the event-streaming components of the architecture.

The cloud gateway ingests device events at the cloud boundary, using a reliable, low latency messaging system.

Devices might send events directly to the cloud gateway, or through a field gateway. A field gateway is a
specialized device or software, usually collocated with the devices, that receives events and forwards them to the
cloud gateway. The field gateway might also preprocess the raw device events, performing functions such as

filtering, aggregation, or protocol transformation.

After ingestion, events go through one or more stream processors that can route the data (for example, to
storage) or perform analytics and other processing.

The following are some common types of processing. (This list is certainly not exhaustive.)

Writing event data to cold storage, for archiving or batch analytics.

Hot path analytics, analyzing the event stream in (near) real time, to detect anomalies, recognize patterns
over rolling time windows, or trigger alerts when a specific condition occurs in the stream.

Handling special types of nontelemetry messages from devices, such as notifications and alarms.

Machine learning.

The boxes that are shaded gray show components of an IoT system that are not directly related to event
streaming, but are included here for completeness.

The device registry is a database of the provisioned devices, including the device IDs and usually device
metadata, such as location.

The provisioning API is a common external interface for provisioning and registering new devices.

Some IoT solutions allow command and control messages to be sent to devices.

Relevant Azure services:

Azure IoT Hub
Azure Event Hubs
Azure Stream Analytics

Learn more about IoT on Azure by reading the Azure IoT reference architecture.

https://azure.microsoft.com/services/iot-hub/
https://azure.microsoft.com/services/event-hubs/
https://azure.microsoft.com/services/stream-analytics/
https://azure.microsoft.com/updates/microsoft-azure-iot-reference-architecture-available/

Batch processing
3/13/2019 • 6 minutes to read • Edit Online

When to use this solution

Challenges

A common big data scenario is batch processing of data at rest. In this scenario, the source data is loaded into data
storage, either by the source application itself or by an orchestration workflow. The data is then processed in-place
by a parallelized job, which can also be initiated by the orchestration workflow. The processing may include
multiple iterative steps before the transformed results are loaded into an analytical data store, which can be
queried by analytics and reporting components.

For example, the logs from a web server might be copied to a folder and then processed overnight to generate
daily reports of web activity.

Batch processing is used in a variety of scenarios, from simple data transformations to a more complete ETL
(extract-transform-load) pipeline. In a big data context, batch processing may operate over very large data sets,
where the computation takes significant time. (For example, see Lambda architecture.) Batch processing typically
leads to further interactive exploration, provides the modeling-ready data for machine learning, or writes the data
to a data store that is optimized for analytics and visualization.

One example of batch processing is transforming a large set of flat, semi-structured CSV or JSON files into a
schematized and structured format that is ready for further querying. Typically the data is converted from the raw
formats used for ingestion (such as CSV) into binary formats that are more performant for querying because they
store data in a columnar format, and often provide indexes and inline statistics about the data.

Data format and encoding. Some of the most difficult issues to debug happen when files use an
unexpected format or encoding. For example, source files might use a mix of UTF-16 and UTF-8 encoding,
or contain unexpected delimiters (space versus tab), or include unexpected characters. Another common
example is text fields that contain tabs, spaces, or commas that are interpreted as delimiters. Data loading
and parsing logic must be flexible enough to detect and handle these issues.

Orchestrating time slices. Often source data is placed in a folder hierarchy that reflects processing
windows, organized by year, month, day, hour, and so on. In some cases, data may arrive late. For example,
suppose that a web server fails, and the logs for March 7th don't end up in the folder for processing until
March 9th. Are they just ignored because they're too late? Can the downstream processing logic handle

https://github.com/mspnp/architecture-center/blob/master/docs/data-guide/big-data/batch-processing.md

Architecture

Technology choices

Data storageData storage

Batch processingBatch processing

Analytical data storeAnalytical data store

out-of-order records?

A batch processing architecture has the following logical components, shown in the diagram above.

Data storage. Typically a distributed file store that can serve as a repository for high volumes of large files
in various formats. Generically, this kind of store is often referred to as a data lake.

Batch processing. The high-volume nature of big data often means that solutions must process data files
using long-running batch jobs to filter, aggregate, and otherwise prepare the data for analysis. Usually these
jobs involve reading source files, processing them, and writing the output to new files.

Analytical data store. Many big data solutions are designed to prepare data for analysis and then serve
the processed data in a structured format that can be queried using analytical tools.

Analysis and reporting. The goal of most big data solutions is to provide insights into the data through
analysis and reporting.

Orchestration. With batch processing, typically some orchestration is required to migrate or copy the data
into your data storage, batch processing, analytical data store, and reporting layers.

The following technologies are recommended choices for batch processing solutions in Azure.

Azure Storage Blob Containers. Many existing Azure business processes already use Azure blob storage,
making this a good choice for a big data store.
Azure Data Lake Store. Azure Data Lake Store offers virtually unlimited storage for any size of file, and
extensive security options, making it a good choice for extremely large-scale big data solutions that require a
centralized store for data in heterogeneous formats.

For more information, see Data storage.

U-SQL. U-SQL is the query processing language used by Azure Data Lake Analytics. It combines the
declarative nature of SQL with the procedural extensibility of C#, and takes advantage of parallelism to enable
efficient processing of data at massive scale.
Hive. Hive is a SQL-like language that is supported in most Hadoop distributions, including HDInsight. It can
be used to process data from any HDFS-compatible store, including Azure blob storage and Azure Data Lake
Store.
Pig. Pig is a declarative big data processing language used in many Hadoop distributions, including HDInsight.
It is particularly useful for processing data that is unstructured or semi-structured.
Spark. The Spark engine supports batch processing programs written in a range of languages, including Java,
Scala, and Python. Spark uses a distributed architecture to process data in parallel across multiple worker
nodes.

For more information, see Batch processing.

SQL Data Warehouse. Azure SQL Data Warehouse is a managed service based on SQL Server database
technologies and optimized to support large-scale data warehousing workloads.
Spark SQL. Spark SQL is an API built on Spark that supports the creation of dataframes and tables that can be
queried using SQL syntax.

Analytics and reportingAnalytics and reporting

OrchestrationOrchestration

HBase. HBase is a low-latency NoSQL store that offers a high-performance, flexible option for querying
structured and semi-structured data.
Hive. In addition to being useful for batch processing, Hive offers a database architecture that is conceptually
similar to that of a typical relational database management system. Improvements in Hive query performance
through innovations like the Tez engine and Stinger initiative mean that Hive tables can be used effectively as
sources for analytical queries in some scenarios.

For more information, see Analytical data stores.

Azure Analysis Services. Many big data solutions emulate traditional enterprise business intelligence
architectures by including a centralized online analytical processing (OLAP) data model (often referred to as a
cube) on which reports, dashboards, and interactive “slice and dice” analysis can be based. Azure Analysis
Services supports the creation of tabular models to meet this need.
Power BI. Power BI enables data analysts to create interactive data visualizations based on data models in an
OLAP model or directly from an analytical data store.
Microsoft Excel. Microsoft Excel is one of the most widely used software applications in the world, and offers
a wealth of data analysis and visualization capabilities. Data analysts can use Excel to build document data
models from analytical data stores, or to retrieve data from OLAP data models into interactive PivotTables and
charts.

For more information, see Analytics and reporting.

Azure Data Factory. Azure Data Factory pipelines can be used to define a sequence of activities, scheduled for
recurring temporal windows. These activities can initiate data copy operations as well as Hive, Pig, MapReduce,
or Spark jobs in on-demand HDInsight clusters; U-SQL jobs in Azure Date Lake Analytics; and stored
procedures in Azure SQL Data Warehouse or Azure SQL Database.
Oozie and Sqoop. Oozie is a job automation engine for the Apache Hadoop ecosystem and can be used to
initiate data copy operations as well as Hive, Pig, and MapReduce jobs to process data and Sqoop jobs to copy
data between HDFS and SQL databases.

For more information, see Pipeline orchestration

Real time processing
3/13/2019 • 5 minutes to read • Edit Online

Challenges

Architecture

Real time processing deals with streams of data that are captured in real-time and processed with minimal latency
to generate real-time (or near-real-time) reports or automated responses. For example, a real-time traffic
monitoring solution might use sensor data to detect high traffic volumes. This data could be used to dynamically
update a map to show congestion, or automatically initiate high-occupancy lanes or other traffic management
systems.

Real-time processing is defined as the processing of unbounded stream of input data, with very short latency
requirements for processing — measured in milliseconds or seconds. This incoming data typically arrives in an
unstructured or semi-structured format, such as JSON, and has the same processing requirements as batch
processing, but with shorter turnaround times to support real-time consumption.

Processed data is often written to an analytical data store, which is optimized for analytics and visualization. The
processed data can also be ingested directly into the analytics and reporting layer for analysis, business
intelligence, and real-time dashboard visualization.

One of the big challenges of real-time processing solutions is to ingest, process, and store messages in real time,
especially at high volumes. Processing must be done in such a way that it does not block the ingestion pipeline.
The data store must support high-volume writes. Another challenge is being able to act on the data quickly, such
as generating alerts in real time or presenting the data in a real-time (or near-real-time) dashboard.

A real-time processing architecture has the following logical components.

Real-time message ingestion. The architecture must include a way to capture and store real-time
messages to be consumed by a stream processing consumer. In simple cases, this service could be
implemented as a simple data store in which new messages are deposited in a folder. But often the solution
requires a message broker, such as Azure Event Hubs, that acts as a buffer for the messages. The message
broker should support scale-out processing and reliable delivery.

Stream processing. After capturing real-time messages, the solution must process them by filtering,
aggregating, and otherwise preparing the data for analysis.

https://github.com/mspnp/architecture-center/blob/master/docs/data-guide/big-data/real-time-processing.md

Technology choices

Real-time message ingestionReal-time message ingestion

Data storageData storage

Stream processingStream processing

Analytical data storeAnalytical data store

Analytics and reportingAnalytics and reporting

Analytical data store. Many big data solutions are designed to prepare data for analysis and then serve
the processed data in a structured format that can be queried using analytical tools.

Analysis and reporting. The goal of most big data solutions is to provide insights into the data through
analysis and reporting.

The following technologies are recommended choices for real-time processing solutions in Azure.

Azure Event Hubs. Azure Event Hubs is a message queuing solution for ingesting millions of event messages
per second. The captured event data can be processed by multiple consumers in parallel.
Azure IoT Hub. Azure IoT Hub provides bi-directional communication between Internet-connected devices,
and a scalable message queue that can handle millions of simultaneously connected devices.
Apache Kafka. Kafka is an open source message queuing and stream processing application that can scale to
handle millions of messages per second from multiple message producers, and route them to multiple
consumers. Kafka is available in Azure as an HDInsight cluster type.

For more information, see Real-time message ingestion.

Azure Storage Blob Containers or Azure Data Lake Store. Incoming real-time data is usually captured in a
message broker (see above), but in some scenarios, it can make sense to monitor a folder for new files and
process them as they are created or updated. Additionally, many real-time processing solutions combine
streaming data with static reference data, which can be stored in a file store. Finally, file storage may be used as
an output destination for captured real-time data for archiving, or for further batch processing in a lambda
architecture.

For more information, see Data storage.

Azure Stream Analytics. Azure Stream Analytics can run perpetual queries against an unbounded stream of
data. These queries consume streams of data from storage or message brokers, filter and aggregate the data
based on temporal windows, and write the results to sinks such as storage, databases, or directly to reports in
Power BI. Stream Analytics uses a SQL-based query language that supports temporal and geospatial
constructs, and can be extended using JavaScript.
Storm. Apache Storm is an open source framework for stream processing that uses a topology of spouts and
bolts to consume, process, and output the results from real-time streaming data sources. You can provision
Storm in an Azure HDInsight cluster, and implement a topology in Java or C#.
Spark Streaming. Apache Spark is an open source distributed platform for general data processing. Spark
provides the Spark Streaming API, in which you can write code in any supported Spark language, including
Java, Scala, and Python. Spark 2.0 introduced the Spark Structured Streaming API, which provides a simpler
and more consistent programming model. Spark 2.0 is available in an Azure HDInsight cluster.

For more information, see Stream processing.

SQL Data Warehouse, HBase, Spark, or Hive. Processed real-time data can be stored in a relational
database such Azure SQL Data Warehouse, a NoSQL store such as HBase, or as files in distributed storage
over which Spark or Hive tables can be defined and queried.

For more information, see Analytical data stores.

Next steps

Azure Analysis Services, Power BI, and Microsoft Excel. Processed real-time data that is stored in an
analytical data store can be used for historical reporting and analysis in the same way as batch processed data.
Additionally, Power BI can be used to publish real-time (or near-real-time) reports and visualizations from
analytical data sources where latency is sufficiently low, or in some cases directly from the stream processing
output.

For more information, see Analytics and reporting.

In a purely real-time solution, most of the processing orchestration is managed by the message ingestion and
stream processing components. However, in a lambda architecture that combines batch processing and real-time
processing, you may need to use an orchestration framework such as Azure Data Factory or Apache Oozie and
Sqoop to manage batch workflows for captured real-time data.

The following reference architecture shows an end-to-end stream processing pipeline:

Stream processing with Azure Stream Analytics

Machine learning at scale
3/13/2019 • 3 minutes to read • Edit Online

Model preparation and training

Model deployment and consumption

Challenges

Machine learning (ML) is a technique used to train predictive models based on mathematical algorithms. Machine
learning analyzes the relationships between data fields to predict unknown values.

Creating and deploying a machine learning model is an iterative process:

Data scientists explore the source data to determine relationships between features and predicted labels.
The data scientists train and validate models based on appropriate algorithms to find the optimal model for
prediction.
The optimal model is deployed into production, as a web service or some other encapsulated function.
As new data is collected, the model is periodically retrained to improve its effectiveness.

Machine learning at scale addresses two different scalability concerns. The first is training a model against large
data sets that require the scale-out capabilities of a cluster to train. The second centers is operationalizating the
learned model in a way that can scale to meet the demands of the applications that consume it. Typically this is
accomplished by deploying the predictive capabilities as a web service that can then be scaled out.

Machine learning at scale has the benefit that it can produce powerful, predictive capabilities because better models
typically result from more data. Once a model is trained, it can be deployed as a stateless, highly-performant, scale-
out web service.

During the model preparation and training phase, data scientists explore the data interactively using languages like
Python and R to:

Extract samples from high volume data stores.
Find and treat outliers, duplicates, and missing values to clean the data.
Determine correlations and relationships in the data through statistical analysis and visualization.
Generate new calculated features that improve the predictiveness of statistical relationships.
Train ML models based on predictive algorithms.
Validate trained models using data that was withheld during training.

To support this interactive analysis and modeling phase, the data platform must enable data scientists to explore
data using a variety of tools. Additionally, the training of a complex machine learning model can require a lot of
intensive processing of high volumes of data, so sufficient resources for scaling out the model training is essential.

When a model is ready to be deployed, it can be encapsulated as a web service and deployed in the cloud, to an
edge device, or within an enterprise ML execution environment. This deployment process is referred to as
operationalization.

Machine learning at scale produces a few challenges:

You typically need a lot of data to train a model, especially for deep learning models.
You need to prepare these big data sets before you can even begin training your model.

https://github.com/mspnp/architecture-center/blob/master/docs/data-guide/big-data/machine-learning-at-scale.md

Machine learning at scale in Azure

Next steps

The model training phase must access the big data stores. It's common to perform the model training using the
same big data cluster, such as Spark, that is used for data preparation.
For scenarios such as deep learning, not only will you need a cluster that can provide you scale out on CPUs,
but your cluster will need to consist of GPU-enabled nodes.

Before deciding which ML services to use in training and operationalization, consider whether you need to train a
model at all, or if a prebuilt model can meet your requirements. In many cases, using a prebuilt model is just a
matter of calling a web service or using an ML library to load an existing model. Some options include:

Use the web services provided by Microsoft Cognitive Services.
Use the pretrained neural network models provided by Cognitive Toolkit.
Embed the serialized models provided by Core ML for an iOS apps.

If a prebuilt model does not fit your data or your scenario, options in Azure include Azure Machine Learning,
HDInsight with Spark MLlib and MMLSpark, Azure Databricks, Cognitive Toolkit, and SQL Machine Learning
Services. If you decide to use a custom model, you must design a pipeline that includes model training and
operationalization.

For a list of technology choices for ML in Azure, see the following topics:

Choosing a cognitive services technology
Choosing a machine learning technology
Choosing a natural language processing technology

The following reference architectures show machine learning scenarios in Azure:

Batch scoring on Azure for deep learning models
Real-time scoring of Python Scikit-Learn and Deep Learning Models on Azure

Non-relational data and NoSQL
3/13/2019 • 12 minutes to read • Edit Online

Document data stores

A non-relational database is a database that does not use the tabular schema of rows and columns found in most
traditional database systems. Instead, non-relational databases use a storage model that is optimized for the
specific requirements of the type of data being stored. For example, data may be stored as simple key/value pairs,
as JSON documents, or as a graph consisting of edges and vertices.

What all of these data stores have in common is that they don't use a relational model. Also, they tend to be more
specific in the type of data they support and how data can be queried. For example, time series data stores are
optimized for queries over time-based sequences of data, while graph data stores are optimized for exploring
weighted relationships between entities. Neither format would generalize well to the task of managing
transactional data.

The term NoSQL refers to data stores that do not use SQL for queries, and instead use other programming
languages and constructs to query the data. In practice, "NoSQL" means "non-relational database," even though
many of these databases do support SQL-compatible queries. However, the underlying query execution strategy is
usually very different from the way a traditional RDBMS would execute the same SQL query.

The following sections describe the major categories of non-relational or NoSQL database.

A document data store manages a set of named string fields and object data values in an entity referred to as a
document. These data stores typically store data in the form of JSON documents. Each field value could be a scalar
item, such as a number, or a compound element, such as a list or a parent-child collection. The data in the fields of a
document can be encoded in a variety of ways, including XML, YAML, JSON, BSON, or even stored as plain text.
The fields within documents are exposed to the storage management system, enabling an application to query and
filter data by using the values in these fields.

Typically, a document contains the entire data for an entity. What items constitute an entity are application specific.
For example, an entity could contain the details of a customer, an order, or a combination of both. A single
document might contain information that would be spread across several relational tables in a relational database
management system (RDBMS). A document store does not require that all documents have the same structure.
This free-form approach provides a great deal of flexibility. For example, applications can store different data in
documents in response to a change in business requirements.

https://github.com/mspnp/architecture-center/blob/master/docs/data-guide/big-data/non-relational-data.md

Columnar data stores

The application can retrieve documents by using the document key. This is a unique identifier for the document,
which is often hashed, to help distribute data evenly. Some document databases create the document key
automatically. Others enable you to specify an attribute of the document to use as the key. The application can also
query documents based on the value of one or more fields. Some document databases support indexing to
facilitate fast lookup of documents based on one or more indexed fields.

Many document databases support in-place updates, enabling an application to modify the values of specific fields
in a document without rewriting the entire document. Read and write operations over multiple fields in a single
document are usually atomic.

Relevant Azure service:

Azure Cosmos DB

A columnar or column-family data store organizes data into columns and rows. In its simplest form, a column-
family data store can appear very similar to a relational database, at least conceptually. The real power of a
column-family database lies in its denormalized approach to structuring sparse data, which stems from the
column-oriented approach to storing data.

You can think of a column-family data store as holding tabular data with rows and columns, but the columns are
divided into groups known as column families. Each column family holds a set of columns that are logically related
and are typically retrieved or manipulated as a unit. Other data that is accessed separately can be stored in
separate column families. Within a column family, new columns can be added dynamically, and rows can be sparse
(that is, a row doesn't need to have a value for every column).

The following diagram shows an example with two column families, Identity and Contact Info . The data for a
single entity has the same row key in each column family. This structure, where the rows for any given object in a
column family can vary dynamically, is an important benefit of the column-family approach, making this form of
data store highly suited for storing data with varying schemas.

Unlike a key/value store or a document database, most column-family databases physically store data in key order,
rather than by computing a hash. The row key is considered the primary index and enables key-based access via a
specific key or a range of keys. Some implementations allow you to create secondary indexes over specific
columns in a column family. Secondary indexes let you retrieve data by columns value, rather than row key.

On disk, all of the columns within a column family are stored together in the same file, with a certain number of
rows in each file. With large data sets, this approach creates a performance benefit by reducing the amount of data
that needs to be read from disk when only a few columns are queried together at a time.

Read and write operations for a row are usually atomic within a single column family, although some
implementations provide atomicity across the entire row, spanning multiple column families.

Relevant Azure service:

https://azure.microsoft.com/services/cosmos-db/

Key/value data stores

Graph data stores

HBase in HDInsight

A key/value store is essentially a large hash table. You associate each data value with a unique key, and the
key/value store uses this key to store the data by using an appropriate hashing function. The hashing function is
selected to provide an even distribution of hashed keys across the data storage.

Most key/value stores only support simple query, insert, and delete operations. To modify a value (either partially
or completely), an application must overwrite the existing data for the entire value. In most implementations,
reading or writing a single value is an atomic operation. If the value is large, writing may take some time.

An application can store arbitrary data as a set of values, although some key/value stores impose limits on the
maximum size of values. The stored values are opaque to the storage system software. Any schema information
must be provided and interpreted by the application. Essentially, values are blobs and the key/value store simply
retrieves or stores the value by key.

Key/value stores are highly optimized for applications performing simple lookups using the value of the key, or by
a range of keys, but are less suitable for systems that need to query data across different tables of keys/values,
such as joining data across multiple tables.

Key/value stores are also not optimized for scenarios where querying or filtering by non-key values is important,
rather than performing lookups based only on keys. For example, with a relational database, you can find a record
by using a WHERE clause to filter the non-key columns, but key/values stores usually do not have this type of
lookup capability for values, or if they do it requires a slow scan of all values.

A single key/value store can be extremely scalable, as the data store can easily distribute data across multiple
nodes on separate machines.

Relevant Azure services:

Azure Cosmos DB Table API
Azure Redis Cache
Azure Table Storage

A graph data store manages two types of information, nodes and edges. Nodes represent entities, and edges
specify the relationships between these entities. Both nodes and edges can have properties that provide
information about that node or edge, similar to columns in a table. Edges can also have a direction indicating the
nature of the relationship.

The purpose of a graph data store is to allow an application to efficiently perform queries that traverse the network
of nodes and edges, and to analyze the relationships between entities. The following diagram shows an
organization's personnel data structured as a graph. The entities are employees and departments, and the edges
indicate reporting relationships and the department in which employees work. In this graph, the arrows on the
edges show the direction of the relationships.

https://docs.microsoft.com/azure/hdinsight/hdinsight-hbase-overview
https://docs.microsoft.com/azure/cosmos-db/table-introduction
https://azure.microsoft.com/services/cache/
https://azure.microsoft.com/services/storage/tables/

Time series data stores

This structure makes it straightforward to perform queries such as "Find all employees who report directly or
indirectly to Sarah" or "Who works in the same department as John?" For large graphs with lots of entities and
relationships, you can perform very complex analyses very quickly. Many graph databases provide a query
language that you can use to traverse a network of relationships efficiently.

Relevant Azure service:

Azure Cosmos DB Graph API

Time series data is a set of values organized by time, and a time series data store is optimized for this type of data.
Time series data stores must support a very high number of writes, as they typically collect large amounts of data
in real time from a large number of sources. Time series data stores are optimized for storing telemetry data.
Scenarios include IoT sensors or application/system counters. Updates are rare, and deletes are often done as bulk
operations.

Although the records written to a time series database are generally small, there are often a large number of
records, and total data size can grow rapidly. Time series data stores also handle out-of-order and late-arriving
data, automatic indexing of data points, and optimizations for queries described in terms of windows of time. This
last feature enables queries to run across millions of data points and multiple data streams quickly, in order to
support time series visualizations, which is a common way that time series data is consumed.

For more information, see Time series solutions

Relevant Azure services:

Azure Time Series Insights

https://docs.microsoft.com/azure/cosmos-db/graph-introduction
https://azure.microsoft.com/services/time-series-insights/

Object data stores

External index data stores

OpenTSDB with HBase on HDInsight

Object data stores are optimized for storing and retrieving large binary objects or blobs such as images, text files,
video and audio streams, large application data objects and documents, and virtual machine disk images. An object
consists of the stored data, some metadata, and a unique ID for accessing the object. Object stores are designed to
support files that are individually very large, as well provide large amounts of total storage to manage all files.

Some object data stores replicate a given blob across multiple server nodes, which enables fast parallel reads. This
in turn enables the scale-out querying of data contained in large files, because multiple processes, typically running
on different servers, can each query the large data file simultaneously.

One special case of object data stores is the network file share. Using file shares enables files to be accessed across
a network using standard networking protocols like server message block (SMB). Given appropriate security and
concurrent access control mechanisms, sharing data in this way can enable distributed services to provide highly
scalable data access for basic, low level operations such as simple read and write requests.

Relevant Azure services:

Azure Blob Storage
Azure Data Lake Store
Azure File Storage

External index data stores provide the ability to search for information held in other data stores and services. An
external index acts as a secondary index for any data store, and can be used to index massive volumes of data and
provide near real-time access to these indexes.

For example, you might have text files stored in a file system. Finding a file by its file path is quick, but searching
based on the contents of the file would require a scan of all of the files, which is slow. An external index lets you
create secondary search indexes and then quickly find the path to the files that match your criteria. Another
example application of an external index is with key/value stores that only index by the key. You can build a
secondary index based on the values in the data, and quickly look up the key that uniquely identifies each matched
item.

https://docs.microsoft.com/azure/hdinsight/hdinsight-hbase-overview
https://azure.microsoft.com/services/storage/blobs/
https://azure.microsoft.com/services/data-lake-store/
https://azure.microsoft.com/services/storage/files/

Typical requirements

REQUIREMENT DOCUMENT DATA COLUMN-FAMILY DATA KEY/VALUE DATA GRAPH DATA

Normalization Denormalized Denormalized Denormalized Normalized

Schema Schema on read Column families
defined on write,
column schema on
read

Schema on read Schema on read

Consistency (across
concurrent
transactions)

Tunable consistency,
document-level
guarantees

Column-family–level
guarantees

Key-level guarantees Graph-level
guarantees

Atomicity (transaction
scope)

Collection Table Table Graph

Locking Strategy Optimistic (lock free) Pessimistic (row locks) Optimistic (ETag)

Access pattern Random access Aggregates on
tall/wide data

Random access Random access

The indexes are created by running an indexing process. This can be performed using a pull model, triggered by
the data store, or using a push model, initiated by application code. Indexes can be multidimensional and may
support free-text searches across large volumes of text data.

External index data stores are often used to support full text and web based search. In these cases, searching can be
exact or fuzzy. A fuzzy search finds documents that match a set of terms and calculates how closely they match.
Some external indexes also support linguistic analysis that can return matches based on synonyms, genre
expansions (for example, matching "dogs" to "pets"), and stemming (for example, searching for "run" also matches
"ran" and "running").

Relevant Azure service:

Azure Search

Non-relational data stores often use a different storage architecture from that used by relational databases.
Specifically, they tend towards having no fixed schema. Also, they tend not to support transactions, or else restrict
the scope of transactions, and they generally don't include secondary indexes for scalability reasons.

The following compares the requirements for each of the non-relational data stores:

https://azure.microsoft.com/services/search/

Indexing Primary and
secondary indexes

Primary and
secondary indexes

Primary index only Primary and
secondary indexes

Data shape Document Tabular with column
families containing
columns

Key and value Graph containing
edges and vertices

Sparse Yes Yes Yes No

Wide (lots of
columns/attributes)

Yes Yes No No

Datum size Small (KBs) to
medium (low MBs)

Medium (MBs) to
Large (low GBs)

Small (KBs) Small (KBs)

Overall Maximum
Scale

Very Large (PBs) Very Large (PBs) Very Large (PBs) Large (TBs)

REQUIREMENT DOCUMENT DATA COLUMN-FAMILY DATA KEY/VALUE DATA GRAPH DATA

REQUIREMENT TIME SERIES DATA OBJECT DATA EX TERNAL INDEX DATA

Normalization Normalized Denormalized Denormalized

Schema Schema on read Schema on read Schema on write

Consistency (across
concurrent transactions)

N/A N/A N/A

Atomicity (transaction scope) N/A Object N/A

Locking Strategy N/A Pessimistic (blob locks) N/A

Access pattern Random access and
aggregation

Sequential access Random access

Indexing Primary and secondary
indexes

Primary index only N/A

Data shape Tabular Blob and metadata Document

Sparse No N/A No

Wide (lots of
columns/attributes)

No Yes Yes

Datum size Small (KBs) Large (GBs) to Very Large
(TBs)

Small (KBs)

Overall Maximum Scale Large (low TBs) Very Large (PBs) Large (low TBs)

Advanced analytics
3/13/2019 • 6 minutes to read • Edit Online

Machine learning

Advanced analytics goes beyond the historical reporting and data aggregation of traditional business intelligence
(BI), and uses mathematical, probabilistic, and statistical modeling techniques to enable predictive processing and
automated decision making.

Advanced analytics solutions typically involve the following workloads:

Interactive data exploration and visualization
Machine Learning model training
Real-time or batch predictive processing

Most advanced analytics architectures include some or all of the following components:

Data storage. Advanced analytics solutions require data to train machine learning models. Data scientists
typically need to explore the data to identify its predictive features and the statistical relationships between
them and the values they predict (known as a label). The predicted label can be a quantitative value, like the
financial value of something in the future or the duration of a flight delay in minutes. Or it might represent a
categorical class, like "true" or "false," "flight delay" or "no flight delay," or categories like "low risk," "medium
risk," or "high risk."

Batch processing. To train a machine learning model, you typically need to process a large volume of
training data. Training the model can take some time (on the order of minutes to hours). This training can be
performed using scripts written in languages such as Python or R, and can be scaled out to reduce training
time using distributed processing platforms like Apache Spark hosted in HDInsight or a Docker container.

Real-time message ingestion. In production, many advanced analytics feed real-time data streams to a
predictive model that has been published as a web service. The incoming data stream is typically captured in
some form of queue and a stream processing engine pulls the data from this queue and applies the
prediction to the input data in near real time.

Stream processing. Once you have a trained model, prediction (or scoring) is typically a very fast operation
(on the order of milliseconds) for a given set of features. After capturing real-time messages, the relevant
feature values can be passed to the predictive service to generate a predicted label.

Analytical data store. In some cases, the predicted label values are written to the analytical data store for
reporting and future analysis.

Analysis and reporting. As the name suggests, advanced analytics solutions usually produce some sort of
report or analytical feed that includes predicted data values. Often, predicted label values are used to
populate real-time dashboards.

Orchestration. Although the initial data exploration and modeling is performed interactively by data
scientists, many advanced analytics solutions periodically re-train models with new data — continually
refining the accuracy of the models. This retraining can be automated using an orchestrated workflow.

Machine learning is a mathematical modeling technique used to train a predictive model. The general principle is to
apply a statistical algorithm to a large dataset of historical data to uncover relationships between the fields it
contains.

https://github.com/mspnp/architecture-center/blob/master/docs/data-guide/scenarios/advanced-analytics.md

Deep learning

Artificial intelligence

Machine learning modeling is usually performed by data scientists, who need to thoroughly explore and prepare
the data before training a model. This exploration and preparation typically involves a great deal of interactive data
analysis and visualization — usually using languages such as Python and R in interactive tools and environments
that are specifically designed for this task.

In some cases, you may be able to use pretrained models that come with training data obtained and developed by
Microsoft. The advantage of pretrained models is that you can score and classify new content right away, even if
you don't have the necessary training data, the resources to manage large datasets or to train complex models.

There are two broad categories of machine learning:

Supervised learning. Supervised learning is the most common approach taken by machine learning. In a
supervised learning model, the source data consists of a set of feature data fields that have a mathematical
relationship with one or more label data fields. During the training phase of the machine learning process,
the data set includes both features and known labels, and an algorithm is applied to fit a function that
operates on the features to calculate the corresponding label predictions. Typically, a subset of the training
dataset is held back and used to validate the performance of the trained model. Once the model has been
trained, it can be deployed into production, and used to predict unknown values.

Unsupervised learning. In an unsupervised learning model, the training data does not include known label
values. Instead, the algorithm makes its predictions based on its first exposure to the data. The most
common form of unsupervised learning is clustering, where the algorithm determines the best way to split
the data into a specified number of clusters based on statistical similarities in the features. In clustering, the
predicted outcome is the cluster number to which the input features belong. While they can sometimes be
used directly to generate useful predictions, such as using clustering to identify groups of users in a
database of customers, unsupervised learning approaches are more often used to identify which data is
most useful to provide to a supervised learning algorithm in training a model.

Relevant Azure services:

Azure Machine Learning
Machine Learning Server (R Server) on HDInsight

Machine learning models based on mathematical techniques like linear or logistic regression have been available
for some time. More recently, the use of deep learning techniques based on neural networks has increased. This is
driven partly by the availability of highly scalable processing systems that reduce how long it takes to train complex
models. Also, the increased prevalence of big data makes it easier to train deep learning models in a variety of
domains.

When designing a cloud architecture for advanced analytics, you should consider the need for large-scale
processing of deep learning models. These can be provided through distributed processing platforms like Apache
Spark and the latest generation of virtual machines that include access to GPU hardware.

Relevant Azure services:

Deep Learning Virtual Machine
Apache Spark on HDInsight

Artificial intelligence (AI) refers to scenarios where a machine mimics the cognitive functions associated with
human minds, such as learning and problem solving. Because AI leverages machine learning algorithms, it is
viewed as an umbrella term. Most AI solutions rely on a combination of predictive services, often implemented as
web services, and natural language interfaces, such as chatbots that interact via text or speech, that are presented

https://docs.microsoft.com/machine-learning-server/install/microsoftml-install-pretrained-models
https://docs.microsoft.com/azure/machine-learning/
https://docs.microsoft.com/azure/hdinsight/r-server/r-server-overview
https://docs.microsoft.com/azure/machine-learning/data-science-virtual-machine/deep-learning-dsvm-overview
https://docs.microsoft.com/azure/hdinsight/spark/apache-spark-overview

Model deployment

See also

by AI apps running on mobile devices or other clients. In some cases, the machine learning model is embedded
with the AI app.

The predictive services that support AI applications may leverage custom machine learning models, or off-the-
shelf cognitive services that provide access to pretrained models. The process of deploying custom models into
production is known as operationalization, where the same AI models that are trained and tested within the
processing environment are serialized and made available to external applications and services for batch or self-
service predictions. To use the predictive capability of the model, it is deserialized and loaded using the same
machine learning library that contains the algorithm that was used to train the model in the first place. This library
provides predictive functions (often called score or predict) that take the model and features as input and return the
prediction. This logic is then wrapped in a function that an application can call directly or can be exposed as a web
service.

Relevant Azure services:

Azure Machine Learning

Machine Learning Server (R Server) on HDInsight

Choosing a cognitive services technology

Choosing a machine learning technology

https://docs.microsoft.com/azure/machine-learning/
https://docs.microsoft.com/azure/hdinsight/r-server/r-server-overview

Data lakes
3/13/2019 • 2 minutes to read • Edit Online

When to use a data lake

Challenges

Relevant Azure services

A data lake is a storage repository that holds a large amount of data in its native, raw format. Data lake stores are
optimized for scaling to terabytes and petabytes of data. The data typically comes from multiple heterogeneous
sources, and may be structured, semi-structured, or unstructured. The idea with a data lake is to store everything in
its original, untransformed state. This approach differs from a traditional data warehouse, which transforms and
processes the data at the time of ingestion.

Advantages of a data lake:

Data is never thrown away, because the data is stored in its raw format. This is especially useful in a big data
environment, when you may not know in advance what insights are available from the data.
Users can explore the data and create their own queries.
May be faster than traditional ETL tools.
More flexible than a data warehouse, because it can store unstructured and semi-structured data.

A complete data lake solution consists of both storage and processing. Data lake storage is designed for fault-
tolerance, infinite scalability, and high-throughput ingestion of data with varying shapes and sizes. Data lake
processing involves one or more processing engines built with these goals in mind, and can operate on data stored
in a data lake at scale.

Typical uses for a data lake include data exploration, data analytics, and machine learning.

A data lake can also act as the data source for a data warehouse. With this approach, the raw data is ingested into
the data lake and then transformed into a structured queryable format. Typically this transformation uses an ELT
(extract-load-transform) pipeline, where the data is ingested and transformed in place. Source data that is already
relational may go directly into the data warehouse, using an ETL process, skipping the data lake.

Data lake stores are often used in event streaming or IoT scenarios, because they can persist large amounts of
relational and nonrelational data without transformation or schema definition. They are built to handle high
volumes of small writes at low latency, and are optimized for massive throughput.

Lack of a schema or descriptive metadata can make the data hard to consume or query.
Lack of semantic consistency across the data can make it challenging to perform analysis on the data, unless
users are highly skilled at data analytics.
It can be hard to guarantee the quality of the data going into the data lake.
Without proper governance, access control and privacy issues can be problems. What information is going into
the data lake, who can access that data, and for what uses?
A data lake may not be the best way to integrate data that is already relational.
By itself, a data lake does not provide integrated or holistic views across the organization.
A data lake may become a dumping ground for data that is never actually analyzed or mined for insights.

Data Lake Store is a hyper-scale, Hadoop-compatible repository.

https://github.com/mspnp/architecture-center/blob/master/docs/data-guide/scenarios/data-lake.md
https://docs.microsoft.com/azure/data-lake-store/

Data Lake Analytics is an on-demand analytics job service to simplify big data analytics.

https://docs.microsoft.com/azure/data-lake-analytics/

Processing free-form text for search
3/13/2019 • 2 minutes to read • Edit Online

Challenges

Architecture

Technology choices

To support search, free-form text processing can be performed against documents containing paragraphs of text.

Text search works by constructing a specialized index that is precomputed against a collection of documents. A
client application submits a query that contains the search terms. The query returns a result set, consisting of a list
of documents sorted by how well each document matches the search criteria. The result set may also include the
context in which the document matches the criteria, which enables the application to highlight the matching phrase
in the document.

Free-form text processing can produce useful, actionable data from large amounts of noisy text data. The results
can give unstructured documents a well-defined and queryable structure.

Processing a collection of free-form text documents is typically computationally intensive, as well as time
intensive.
In order to search free-form text effectively, the search index should support fuzzy search based on terms that
have a similar construction. For example, search indexes are built with lemmatization and linguistic stemming,
so that queries for "run" will match documents that contain "ran" and "running."

In most scenarios, the source text documents are loaded into object storage such as Azure Storage or Azure Data
Lake Store. An exception is using full text search within SQL Server or Azure SQL Database. In this case, the
document data is loaded into tables managed by the database. Once stored, the documents are processed in a
batch to create the index.

Options for creating a search index include Azure Search, Elasticsearch, and HDInsight with Solr. Each of these
technologies can populate a search index from a collection of documents. Azure Search provides indexers that can
automatically populate the index for documents ranging from plain text to Excel and PDF formats. On HDInsight,
Apache Solr can index binary files of many types, including plain text, Word, and PDF. Once the index is

https://github.com/mspnp/architecture-center/blob/master/docs/data-guide/scenarios/search.md

constructed, clients can access the search interface by means of a REST API.

If your text data is stored in SQL Server or Azure SQL Database, you can use the full-text search that is built into
the database. The database populates the index from text, binary, or XML data stored within the same database.
Clients search by using T-SQL queries.

For more information, see Search data stores.

Interactive data exploration
3/13/2019 • 5 minutes to read • Edit Online

Self-service BI

Data science experimentation

In many corporate business intelligence (BI) solutions, reports and semantic models are created by BI specialists
and managed centrally. Increasingly, however, organizations want to enable users to make data-driven decisions.
Additionally, a growing number of organizations are hiring data scientists or data analysts, whose job is to explore
data interactively and apply statistical models and analytical techniques to find trends and patterns in the data.
Interactive data exploration requires tools and platforms that provide low-latency processing for ad-hoc queries
and data visualizations.

Self-service BI is a name given to a modern approach to business decision making in which users are empowered
to find, explore, and share insights from data across the enterprise. To accomplish this, the data solution must
support several requirements:

Discovery of business data sources through a data catalog.
Master data management to ensure consistency of data entity definitions and values.
Interactive data modeling and visualization tools for business users.

In a self-service BI solution, business users typically find and consume data sources that are relevant to their
particular area of the business, and use intuitive tools and productivity applications to define personal data models
and reports that they can share with their colleagues.

Relevant Azure services:

Azure Data Catalog
Microsoft Power BI

When an organization requires advanced analytics and predictive modeling, the initial preparation work is usually
undertaken by specialist data scientists. A data scientist explores the data and applies statistical analytical
techniques to find relationships between data features and the desired predicted labels. Data exploration is
typically done using programming languages such as Python or R that natively support statistical modeling and
visualization. The scripts used to explore the data are typically hosted in specialized environments such as Jupyter
Notebooks. These tools enable data scientists to explore the data programmatically while documenting and

https://github.com/mspnp/architecture-center/blob/master/docs/data-guide/scenarios/interactive-data-exploration.md
https://docs.microsoft.com/azure/data-catalog/data-catalog-what-is-data-catalog
https://powerbi.microsoft.com/

Challenges

Architecture

Technology choices

Data storageData storage

Batch processingBatch processing

Analytical Data StoreAnalytical Data Store

sharing the insights they find.

Relevant Azure services:

Azure Notebooks
Azure Machine Learning Studio
Azure Machine Learning Experimentation Services
The Data Science Virtual Machine

Data privacy compliance. You need to be careful about making personal data available to users for self-
service analysis and reporting. There are likely to be compliance considerations, due to organizational
policies and also regulatory issues.

Data volume. While it may be useful to give users access to the full data source, it can result in very long-
running Excel or Power BI operations, or Spark SQL queries that use a lot of cluster resources.

User knowledge. Users create their own queries and aggregations in order to inform business decisions.
Are you confident that users have the necessary analytical and querying skills to get accurate results?

Sharing results. There may be security considerations if users can create and share reports or data
visualizations.

Although the goal of this scenario is to support interactive data analysis, the data cleansing, sampling, and
structuring tasks involved in data science often include long-running processes. That makes a batch processing
architecture appropriate.

The following technologies are recommended choices for interactive data exploration in Azure.

Azure Storage Blob Containers or Azure Data Lake Store. Data scientists generally work with raw source
data, to ensure they have access to all possible features, outliers, and errors in the data. In a big data scenario,
this data usually takes the form of files in a data store.

For more information, see Data storage.

R Server or Spark. Most data scientists use programming languages with strong support for mathematical
and statistical packages, such as R or Python. When working with large volumes of data, you can reduce latency
by using platforms that enable these languages to use distributed processing. R Server can be used on its own
or in conjunction with Spark to scale out R processing functions, and Spark natively supports Python for similar
scale-out capabilities in that language.
Hive. Hive is a good choice for transforming data using SQL-like semantics. Users can create and load tables
using HiveQL statements, which are semantically similar to SQL.

For more information, see Batch processing.

Spark SQL. Spark SQL is an API built on Spark that supports the creation of dataframes and tables that
can be queried using SQL syntax. Regardless of whether the data files to be analyzed are raw source files or
new files that have been cleaned and prepared by a batch process, users can define Spark SQL tables on

https://notebooks.azure.com/
https://docs.microsoft.com/azure/machine-learning/studio/what-is-ml-studio
https://docs.microsoft.com/azure/machine-learning/preview/experimentation-service-configuration
https://docs.microsoft.com/azure/machine-learning/data-science-virtual-machine/overview

Analytics and reportingAnalytics and reporting

them for further querying an analysis.

Hive. In addition to batch processing raw data by using Hive, you can create a Hive database that contains
Hive tables and views based on the folders where the data is stored, enabling interactive queries for analysis
and reporting. HDInsight includes an Interactive Hive cluster type that uses in-memory caching to reduce
Hive query response times. Users who are comfortable with SQL-like syntax can use Interactive Hive to
explore data.

For more information, see Analytical data stores.

Jupyter. Jupyter Notebooks provides a browser-based interface for running code in languages such as R,
Python, or Scala. When using R Server or Spark to batch process data, or when using Spark SQL to define a
schema of tables for querying, Jupyter can be a good choice for querying the data. When using Spark, you
can use the standard Spark dataframe API or the Spark SQL API as well as embedded SQL statements to
query the data and produce visualizations.

Drill. If you want to perform ad hoc data exploration, Apache Drill is a schema-free SQL query engine.
Because it doesn't require a schema, you can query data from a variety of data sources, and the engine will
automatically understand the structure of the data. You can use Drill with Azure Blob Storage, by using the
Azure Blob Storage Plugin. This lets you run queries against data in Blob Storage without having to move
the data.

Interactive Hive Clients. If you use an Interactive Hive cluster to query the data, you can use the Hive
view in the Ambari cluster dashboard, the Beeline command line tool, or any ODBC-based tool (using the
Hive ODBC driver), such as Microsoft Excel or Power BI.

For more information, see Data analytics and reporting technology.

https://drill.apache.org/
https://drill.apache.org/docs/azure-blob-storage-plugin/

Natural language processing
3/13/2019 • 2 minutes to read • Edit Online

When to use this solution

Challenges

Natural language processing (NLP) is used for tasks such as sentiment analysis, topic detection, language
detection, key phrase extraction, and document categorization.

NLP can be use to classify documents, such as labeling documents as sensitive or spam. The output of NLP can be
used for subsequent processing or search. Another use for NLP is to summarize text by identifying the entities
present in the document. These entities can also be used to tag documents with keywords, which enables search
and retrieval based on content. Entities might be combined into topics, with summaries that describe the important
topics present in each document. The detected topics may be used to categorize the documents for navigation, or
to enumerate related documents given a selected topic. Another use for NLP is to score text for sentiment, to
assess the positive or negative tone of a document. These approaches use many techniques from natural language
processing, such as:

Tokenizer. Splitting the text into words or phrases.
Stemming and lemmatization. Normalizing words so that that different forms map to the canonical word
with the same meaning. For example, "running" and "ran" map to "run."
Entity extraction. Identifying subjects in the text.
Part of speech detection. Identifying text as a verb, noun, participle, verb phrase, and so on.
Sentence boundary detection. Detecting complete sentences within paragraphs of text.

When using NLP to extract information and insight from free-form text, the starting point is typically the raw
documents stored in object storage such as Azure Storage or Azure Data Lake Store.

Processing a collection of free-form text documents is typically computationally resource intensive, as well as
being time intensive.
Without a standardized document format, it can be very difficult to achieve consistently accurate results using
free-form text processing to extract specific facts from a document. For example, think of a text representation
of an invoice—it can be difficult to build a process that correctly extracts the invoice number and invoice date
for invoices across any number of vendors.

https://github.com/mspnp/architecture-center/blob/master/docs/data-guide/scenarios/natural-language-processing.md

Architecture

Technology choices

In an NLP solution, free-form text processing is performed against documents containing paragraphs of text. The
overall architecture can be a batch processing or real-time stream processing architecture.

The actual processing varies based on the desired outcome, but in terms of the pipeline, NLP may be applied in a
batch or real-time fashion. For example, sentiment analysis can be used against blocks of text to produce a
sentiment score. This can could be done by running a batch process against data in storage, or in real time using
smaller chunks of data flowing through a messaging service.

Natural language processing

Time series solutions
3/13/2019 • 4 minutes to read • Edit Online

Time series data is a set of values organized by time. Examples of time series data include sensor data, stock prices,
click stream data, and application telemetry. Time series data can be analyzed for historical trends, real-time alerts,
or predictive modeling.

Time series data represents how an asset or process changes over time. The data has a timestamp, but more
importantly, time is the most meaningful axis for viewing or analyzing the data. Time series data typically arrives in
order of time and is usually treated as an insert rather than an update to your database. Because of this, change is
measured over time, enabling you to look backward and to predict future change. As such, time series data is best
visualized with scatter or line charts.

Some examples of time series data are:

Stock prices captured over time to detect trends.
Server performance, such as CPU usage, I/O load, memory usage, and network bandwidth consumption.
Telemetry from sensors on industrial equipment, which can be used to detect pending equipment failure and
trigger alert notifications.
Real-time car telemetry data including speed, braking, and acceleration over a time window to produce an
aggregate risk score for the driver.

In each of these cases, you can see how time is most meaningful as an axis. Displaying the events in the order in

https://github.com/mspnp/architecture-center/blob/master/docs/data-guide/scenarios/time-series.md

When to use this solution

Internet of Things (IoT)Internet of Things (IoT)

Real-time analyticsReal-time analytics

Challenges

Architecture

which they arrived is a key characteristic of time series data, as there is a natural temporal ordering. This differs
from data captured for standard OLTP data pipelines where data can be entered in any order, and updated at any
time.

Choose a time series solution when you need to ingest data whose strategic value is centered around changes over
a period of time, and you are primarily inserting new data and rarely updating, if at all. You can use this
information to detect anomalies, visualize trends, and compare current data to historical data, among other things.
This type of architecture is also best suited for predictive modeling and forecasting results, because you have the
historical record of changes over time, which can be applied to any number of forecasting models.

Using time series offers the following benefits:

Clearly represents how an asset or process changes over time.
Helps you quickly detect changes to a number of related sources, making anomalies and emerging trends
clearly stand out.
Best suited for predictive modeling and forecasting.

Data collected by IoT devices is a natural fit for time series storage and analysis. The incoming data is inserted and
rarely, if ever, updated. The data is time stamped and inserted in the order it was received, and this data is typically
displayed in chronological order, enabling users to discover trends, spot anomalies, and use the information for
predictive analysis.

For more information, see Internet of Things.

Time series data is often time sensitive — that is, it must be acted on quickly, to spot trends in real time or generate
alerts. In these scenarios, any delay in insights can cause downtime and business impact. In addition, there is often
a need to correlate data from a variety of different sources, such as sensors.

Ideally, you would have a stream processing layer that can handle the incoming data in real time and process all of
it with high precision and high granularity. This isn't always possible, depending on your streaming architecture
and the components of your stream buffering and stream processing layers. You may need to sacrifice some
precision of the time series data by reducing it. This is done by processing sliding time windows (several seconds,
for example), allowing the processing layer to perform calculations in a timely manner. You may also need to
downsample and aggregate your data when displaying longer periods of time, such as zooming to display data
captured over several months.

Time series data is often very high volume, especially in IoT scenarios. Storing, indexing, querying,
analyzing, and visualizing time series data can be challenging.

It can be challenging to find the right combination of high-speed storage and powerful compute operations
for handling real-time analytics, while minimizing time to market and overall cost investment.

In many scenarios that involve time series data, such as IoT, the data is captured in real time. As such, a real-time
processing architecture is appropriate.

Data from one or more data sources is ingested into the stream buffering layer by IoT Hub, Event Hubs, or Kafka
on HDInsight. Next, the data is processed in the stream processing layer that can optionally hand off the processed

https://docs.microsoft.com/azure/iot-hub/
https://docs.microsoft.com/azure/event-hubs/
https://docs.microsoft.com/azure/hdinsight/kafka/apache-kafka-introduction

Technology choices

data to a machine learning service for predictive analytics. The processed data is stored in an analytical data store,
such as HBase, Azure Cosmos DB, Azure Data Lake, or Blob Storage. An analytics and reporting application or
service, like Power BI or OpenTSDB (if stored in HBase) can be used to display the time series data for analysis.

Another option is to use Azure Time Series Insights. Time Series Insights is a fully managed service for time series
data. In this architecture, Time Series Insights performs the roles of stream processing, data store, and analytics
and reporting. It accepts streaming data from either IoT Hub or Event Hubs and stores, processes, analyzes, and
displays the data in near real time. It does not pre-aggregate the data, but stores the raw events.

Time Series Insights is schema adaptive, which means that you do not have to do any data preparation to start
deriving insights. This enables you to explore, compare, and correlate a variety of data sources seamlessly. It also
provides SQL-like filters and aggregates, ability to construct, visualize, compare, and overlay various time series
patterns, heat maps, and the ability to save and share queries.

Data Storage
Analysis, visualizations, and reporting
Analytical Data Stores
Stream processing

https://docs.microsoft.com/azure/hdinsight/hbase/apache-hbase-overview
https://docs.microsoft.com/azure/cosmos-db/
https://docs.microsoft.com/azure/time-series-insights/

Working with CSV and JSON files for data solutions
3/13/2019 • 4 minutes to read • Edit Online

About CSV format

About JSON format

When to use CSV or JSON formats

CSV and JSON are likely the most common formats used for ingesting, exchanging, and storing unstructured or
semi-structured data.

CSV (comma-separated values) files are commonly used to exchange tabular data between systems in plain text.
They typically contain a header row that provides column names for the data, but are otherwise considered semi-
structured. This is due to the fact that CSVs cannot naturally represent hierarchical or relational data. Data
relationships are typically handled with multiple CSV files, where foreign keys are stored in columns of one or
more files, but the relationships between those files are not expressed by the format itself. Files in CSV format may
use other delimiters besides commas, such as tabs or spaces.

Despite their limitations, CSV files are a popular choice for data exchange, because they are supported by a wide
range of business, consumer, and scientific applications. For example, database and spreadsheet programs can
import and export CSV files. Similarly, most batch and stream data processing engines, such as Spark and Hadoop,
natively support serializing and deserializing CSV-formatted files and offer ways to apply a schema on read. This
makes it easier to work with the data, by offering options to query against it and store the information in a more
efficient data format for faster processing.

JSON (JavaScript Object Notation) data is represented as key-value pairs in a semi-structured format. JSON is
often compared to XML, as both are capable of storing data in hierarchical format, with child data represented
inline with its parent. Both are self-describing and human readable, but JSON documents tend to be much smaller,
leading to their popular use in online data exchange, especially with the advent of REST-based web services.

JSON-formatted files have several benefits over CSV:

JSON maintains hierarchical structures, making it easier to hold related data in a single document and
represent complex relationships.
Most programming languages provide native support for deserializing JSON into objects, or provide
lightweight JSON serialization libraries.
JSON supports lists of objects, helping to avoid messy translations of lists into a relational data model.
JSON is a commonly used file format for NoSQL databases, such as MongoDB, Couchbase, and Azure Cosmos
DB.

Since a lot of data coming across the wire is already in JSON format, most web-based programming languages
support working with JSON natively, or through the use of external libraries to serialize and deserialize JSON data.
This universal support for JSON has led to its use in logical formats through data structure representation,
exchange formats for hot data, and data storage for cold data.

Many batch and stream data processing engines natively support JSON serialization and deserialization. Though
the data contained within JSON documents may ultimately be stored in a more performance-optimized formats,
such as Parquet or Avro, it serves as the raw data for source of truth, which is critical for reprocessing the data as
needed.

https://github.com/mspnp/architecture-center/blob/master/docs/data-guide/scenarios/csv-and-json.md

Working with CSV and JSON data in Azure

Challenges

CSVs are more commonly used for exporting and importing data, or processing it for analytics and machine
learning. JSON-formatted files have the same benefits, but are more common in hot data exchange solutions.
JSON documents are often sent by web and mobile devices performing online transactions, by IoT (internet of
things) devices for one-way or bidirectional communication, or by client applications communicating with SaaS
and PaaS services or serverless architectures.

CSV and JSON file formats both make it easy to exchange data between dissimilar systems or devices. Their semi-
structured formats allow flexibility in transferring almost any type of data, and universal support for these formats
make them simple to work with. Both can be used as the raw source of truth in cases where the processed data is
stored in binary formats for more efficient querying.

Azure provides several solutions for working with CSV and JSON files, depending on your needs. The primary
landing place for these files is either Azure Storage or Azure Data Lake Store. Most Azure services that work with
these and other text-based files integrate with either object storage service. In some situations, however, you may
opt to directly import the data into Azure SQL or some other data store. SQL Server has native support for storing
and working with JSON documents, which makes it easy to import and process those types of files. You can use a
utility like SQL Bulk Import to easily import CSV files.

You can also query JSON files directly from Azure Blob Storage without importing them into Azure SQL. For a
complete example of this approach, see Work with JSON files with Azure SQL. Currently this option isn't available
for CSV files.

Depending on the scenario, you may perform batch processing or real-time processing of the data.

There are some challenges to consider when working with these formats:

Without any restraints on the data model, CSV and JSON files are prone to data corruption ("garbage in,
garbage out"). For instance, there's no notion of a date/time object in either file, so the file format does not
prevent you from inserting "ABC123" in a date field, for example.

Using CSV and JSON files as your cold storage solution does not scale well when working with big data. In
most cases, they cannot be split into partitions for parallel processing, and cannot be compressed as well as
binary formats. This often leads to processing and storing this data into read-optimized formats such as
Parquet and ORC (optimized row columnar), which also provide indexes and inline statistics about the data
contained.

You may need to apply a schema on the semi-structured data to make it easier to query and analyze.
Typically, this requires storing the data in another form that complies with your environment's data storage
needs, such as within a database.

https://docs.microsoft.com/sql/relational-databases/json/import-json-documents-into-sql-server
https://docs.microsoft.com/sql/relational-databases/json/import-json-documents-into-sql-server
https://medium.com/@mauridb/work-with-json-files-with-azure-sql-8946f066ddd4

Choosing an analytical data store in Azure
3/13/2019 • 4 minutes to read • Edit Online

What are your options when choosing an analytical data store?

In a big data architecture, there is often a need for an analytical data store that serves processed data in a
structured format that can be queried using analytical tools. Analytical data stores that support querying of both
hot-path and cold-path data are collectively referred to as the serving layer, or data serving storage.

The serving layer deals with processed data from both the hot path and cold path. In the lambda architecture, the
serving layer is subdivided into a speed serving layer, which stores data that has been processed incrementally,
and a batch serving layer, which contains the batch-processed output. The serving layer requires strong support
for random reads with low latency. Data storage for the speed layer should also support random writes, because
batch loading data into this store would introduce undesired delays. On the other hand, data storage for the batch
layer does not need to support random writes, but batch writes instead.

There is no single best data management choice for all data storage tasks. Different data management solutions
are optimized for different tasks. Most real-world cloud apps and big data processes have a variety of data storage
requirements and often use a combination of data storage solutions.

There are several options for data serving storage in Azure, depending on your needs:

SQL Data Warehouse
Azure SQL Database
SQL Server in Azure VM
HBase/Phoenix on HDInsight
Hive LLAP on HDInsight
Azure Analysis Services
Azure Cosmos DB

These options provide various database models that are optimized for different types of tasks:

Key/value databases hold a single serialized object for each key value. They're good for storing large volumes
of data where you want to get one item for a given key value and you don't have to query based on other
properties of the item.
Document databases are key/value databases in which the values are documents. A "document" in this context
is a collection of named fields and values. The database typically stores the data in a format such as XML,
YAML, JSON, or BSON, but may use plain text. Document databases can query on non-key fields and define
secondary indexes to make querying more efficient. This makes a document database more suitable for
applications that need to retrieve data based on criteria more complex than the value of the document key. For
example, you could query on fields such as product ID, customer ID, or customer name.
Column-family databases are key/value data stores that structure data storage into collections of related
columns called column families. For example, a census database might have one group of columns for a
person's name (first, middle, last), one group for the person's address, and one group for the person's profile
information (data of birth, gender). The database can store each column family in a separate partition, while
keeping all of the data for one person related to the same key. An application can read a single column family
without reading through all of the data for an entity.
Graph databases store information as a collection of objects and relationships. A graph database can efficiently
perform queries that traverse the network of objects and the relationships between them. For example, the
objects might be employees in a human resources database, and you might want to facilitate queries such as

https://github.com/mspnp/architecture-center/blob/master/docs/data-guide/technology-choices/analytical-data-stores.md
https://docs.microsoft.com/azure/sql-data-warehouse/sql-data-warehouse-overview-what-is
https://docs.microsoft.com/azure/sql-database/
https://docs.microsoft.com/sql/sql-server/sql-server-technical-documentation
https://docs.microsoft.com/azure/hdinsight/hbase/apache-hbase-overview
https://docs.microsoft.com/azure/hdinsight/interactive-query/apache-interactive-query-get-started
https://docs.microsoft.com/azure/analysis-services/analysis-services-overview
https://docs.microsoft.com/azure/cosmos-db/
https://msdn.microsoft.com/library/dn313285.aspx#sec7
https://msdn.microsoft.com/library/dn313285.aspx#sec8
https://msdn.microsoft.com/library/dn313285.aspx#sec9
https://msdn.microsoft.com/library/dn313285.aspx#sec10

Key selection criteria

Capability matrix

General capabilitiesGeneral capabilities

SQL DATABASE
SQL DATA
WAREHOUSE

HBASE/PHOENI
X ON
HDINSIGHT

HIVE LLAP ON
HDINSIGHT

AZURE
ANALYSIS
SERVICES COSMOS DB

Is managed
service

Yes Yes Yes Yes Yes Yes

Primary
database
model

Relational
(columnar
format when
using
columnstore
indexes)

Relational
tables with
columnar
storage

Wide column
store

Hive/In-
Memory

Tabular/MOL
AP semantic
models

Document
store, graph,
key-value
store, wide
column store

SQL language
support

Yes Yes Yes (using
Phoenix JDBC
driver)

Yes No Yes

Optimized for
speed serving
layer

Yes No Yes Yes No Yes

Scalability capabilitiesScalability capabilities

SQL DATABASE
SQL DATA
WAREHOUSE

HBASE/PHOENI
X ON
HDINSIGHT

HIVE LLAP ON
HDINSIGHT

AZURE
ANALYSIS
SERVICES COSMOS DB

Redundant
regional
servers for
high
availability

Yes Yes Yes No No Yes

"find all employees who directly or indirectly work for Scott."

To narrow the choices, start by answering these questions:

Do you need serving storage that can serve as a hot path for your data? If yes, narrow your options to
those that are optimized for a speed serving layer.

Do you need massively parallel processing (MPP) support, where queries are automatically distributed
across several processes or nodes? If yes, select an option that supports query scale out.

Do you prefer to use a relational data store? If so, narrow your options to those with a relational database
model. However, note that some non-relational stores support SQL syntax for querying, and tools such as
PolyBase can be used to query non-relational data stores.

The following tables summarize the key differences in capabilities.

1 1

2

[1] With manual configuration and scaling.

[2] Using memory-optimized tables and hash or nonclustered indexes.

https://phoenix.apache.org/

Supports
query scale
out

No Yes Yes Yes Yes Yes

Dynamic
scalability
(scale up)

Yes Yes No No Yes Yes

Supports in-
memory
caching of
data

Yes Yes No Yes Yes No

SQL DATABASE
SQL DATA
WAREHOUSE

HBASE/PHOENI
X ON
HDINSIGHT

HIVE LLAP ON
HDINSIGHT

AZURE
ANALYSIS
SERVICES COSMOS DB

Security capabilitiesSecurity capabilities

SQL DATABASE
SQL DATA
WAREHOUSE

HBASE/PHOENI
X ON
HDINSIGHT

HIVE LLAP ON
HDINSIGHT

AZURE
ANALYSIS
SERVICES COSMOS DB

Authenticatio
n

SQL / Azure
Active
Directory
(Azure AD)

SQL / Azure
AD

local / Azure
AD

local / Azure
AD

Azure AD database
users / Azure
AD via access
control (IAM)

Data
encryption at
rest

Yes Yes Yes Yes Yes Yes

Row-level
security

Yes No Yes Yes Yes (through
object-level
security in
model)

No

Supports
firewalls

Yes Yes Yes Yes Yes Yes

Dynamic data
masking

Yes No Yes Yes * No No

1 1

2 2 1 1

1 1

3 3

1

[1] Requires using a domain-joined HDInsight cluster.

[2] Requires using transparent data encryption (TDE) to encrypt and decrypt your data at rest.

[3] When used within an Azure Virtual Network. See Extend Azure HDInsight using an Azure Virtual Network.

https://docs.microsoft.com/azure/hdinsight/domain-joined/apache-domain-joined-introduction
https://docs.microsoft.com/azure/hdinsight/hdinsight-extend-hadoop-virtual-network

Choosing a data analytics technology in Azure
3/13/2019 • 4 minutes to read • Edit Online

What are your options when choosing a data analytics technology?

Power BIPower BI

Jupyter NotebooksJupyter Notebooks

Zeppelin NotebooksZeppelin Notebooks

Microsoft Azure NotebooksMicrosoft Azure Notebooks

The goal of most big data solutions is to provide insights into the data through analysis and reporting. This can
include preconfigured reports and visualizations, or interactive data exploration.

There are several options for analysis, visualizations, and reporting in Azure, depending on your needs:

Power BI
Jupyter Notebooks
Zeppelin Notebooks
Microsoft Azure Notebooks

Power BI is a suite of business analytics tools. It can connect to hundreds of data sources, and can be used for ad
hoc analysis. See this list of the currently available data sources. Use Power BI Embedded to integrate Power BI
within your own applications without requiring any additional licensing.

Organizations can use Power BI to produce reports and publish them to the organization. Everyone can create
personalized dashboards, with governance and security built in. Power BI uses Azure Active Directory (Azure AD)
to authenticate users who log in to the Power BI service, and uses the Power BI login credentials whenever a user
attempts to access resources that require authentication.

Jupyter Notebooks provide a browser-based shell that lets data scientists create notebook files that contain
Python, Scala, or R code and markdown text, making it an effective way to collaborate by sharing and
documenting code and results in a single document.

Most varieties of HDInsight clusters, such as Spark or Hadoop, come preconfigured with Jupyter notebooks for
interacting with data and submitting jobs for processing. Depending on the type of HDInsight cluster you are
using, one or more kernels will be provided for interpreting and running your code. For example, Spark clusters
on HDInsight provide Spark-related kernels that you can select from to execute Python or Scala code using the
Spark engine.

Jupyter notebooks provide a great environment for analyzing, visualizing, and processing your data prior to
building more advanced visualizations with a BI/reporting tool like Power BI.

Zeppelin Notebooks are another option for a browser-based shell, similar to Jupyter in functionality. Some
HDInsight clusters come preconfigured with Zeppelin notebooks. However, if you are using an HDInsight
Interactive Query (Hive LLAP) cluster, Zeppelin is currently your only choice of notebook that you can use to run
interactive Hive queries. Also, if you are using a domain-joined HDInsight cluster, Zeppelin notebooks are the only
type that enables you to assign different user logins to control access to notebooks and the underlying Hive tables.

Azure Notebooks is an online Jupyter Notebooks-based service that enables data scientists to create, run, and
share Jupyter Notebooks in cloud-based libraries. Azure Notebooks provides execution environments for Python
2, Python 3, F#, and R, and provides several charting libraries for visualizing your data, such as ggplot, matplotlib,
bokeh, and seaborn.

https://github.com/mspnp/architecture-center/blob/master/docs/data-guide/technology-choices/analysis-visualizations-reporting.md
https://docs.microsoft.com/power-bi/
https://jupyter.readthedocs.io/en/latest/index.html
https://zeppelin.apache.org/
https://notebooks.azure.com/
https://docs.microsoft.com/power-bi/
https://docs.microsoft.com/power-bi/desktop-data-sources
https://azure.microsoft.com/services/power-bi-embedded/
https://docs.microsoft.com/power-bi/service-admin-power-bi-security
https://docs.microsoft.com/azure/active-directory/
https://jupyter.readthedocs.io/en/latest/index.html
https://docs.microsoft.com/azure/hdinsight/spark/apache-spark-jupyter-notebook-kernels
https://zeppelin.apache.org/
https://docs.microsoft.com/azure/hdinsight/spark/apache-spark-zeppelin-notebook
https://docs.microsoft.com/azure/hdinsight/interactive-query/apache-interactive-query-get-started
https://docs.microsoft.com/azure/hdinsight/hdinsight-connect-hive-zeppelin
https://docs.microsoft.com/azure/hdinsight/domain-joined/apache-domain-joined-introduction
https://notebooks.azure.com/

Key selection criteria

Capability matrix

General capabilitiesGeneral capabilities

POWER BI JUPYTER NOTEBOOKS ZEPPELIN NOTEBOOKS
MICROSOFT AZURE
NOTEBOOKS

Connect to big data
cluster for advanced
processing

Yes Yes Yes No

Managed service Yes Yes Yes Yes

Connect to 100s of
data sources

Yes No No No

Offline capabilities Yes No No No

Embedding
capabilities

Yes No No No

Unlike Jupyter notebooks running on an HDInsight cluster, which are connected to the cluster's default storage
account, Azure Notebooks does not provide any data. You must load data in a variety of ways, such downloading
data from an online source, interacting with Azure Blobs or Table Storage, connecting to a SQL database, or
loading data with the Copy Wizard for Azure Data Factory.

Key benefits:

Free service—no Azure subscription required.
No need to install Jupyter and the supporting R or Python distributions locally—just use a browser.
Manage your own online libraries and access them from any device.
Share your notebooks with collaborators.

Considerations:

You will be unable to access your notebooks when offline.
Limited processing capabilities of the free notebook service may not be enough to train large or complex
models.

To narrow the choices, start by answering these questions:

Do you need to connect to numerous data sources, providing a centralized place to create reports for data
spread throughout your domain? If so, choose an option that allows you to connect to 100s of data sources.

Do you want to to embed dynamic visualizations in an external website or application? If so, choose an
option that provides embedding capabilities.

Do you want to design your visualizations and reports while offline? If yes, choose an option with offline
capabilities.

Do you need heavy processing power to train large or complex AI models or work with very large data
sets? If yes, choose an option that can connect to a big data cluster.

The following tables summarize the key differences in capabilities.

1 1

2

https://notebooks.azure.com/Microsoft/libraries/samples/html/Getting to your Data in Azure Notebooks.ipynb

Automatic data
refresh

Yes No No No

Access to numerous
open source packages

No Yes Yes Yes

Data
transformation/cleans
ing options

Power Query, R 40 languages,
including Python, R,
Julia, and Scala

20+ interpreters,
including Python,
JDBC, and R

Python, F#, R

Pricing Free for Power BI
Desktop (authoring),
see pricing for
hosting options

Free Free Free

Multiuser
collaboration

Yes Yes (through sharing
or with a multiuser
server like
JupyterHub)

Yes Yes (through sharing)

POWER BI JUPYTER NOTEBOOKS ZEPPELIN NOTEBOOKS
MICROSOFT AZURE
NOTEBOOKS

3 3 4

[1] When used as part of a managed HDInsight cluster.

[2] With the use of Power BI Desktop.

[2] You can search the Maven repository for community-contributed packages.

[3] Python packages can be installed using either pip or conda. R packages can be installed from CRAN or
GitHub. Packages in F# can be installed via nuget.org using the Paket dependency manager.

https://powerbi.microsoft.com/blog/getting-started-with-power-query-part-i/
https://powerbi.microsoft.com/pricing/
https://docs.microsoft.com/power-bi/service-how-to-collaborate-distribute-dashboards-reports
https://github.com/jupyterhub/jupyterhub
https://search.maven.org/
https://fsprojects.github.io/Paket/

Choosing a batch processing technology in Azure
3/13/2019 • 3 minutes to read • Edit Online

Technology choices for batch processing
Azure SQL Data WarehouseAzure SQL Data Warehouse

Azure Data Lake AnalyticsAzure Data Lake Analytics

HDInsightHDInsight

Azure DatabricksAzure Databricks

Azure Distributed Data Engineering ToolkitAzure Distributed Data Engineering Toolkit

Big data solutions often use long-running batch jobs to filter, aggregate, and otherwise prepare the data for
analysis. Usually these jobs involve reading source files from scalable storage (like HDFS, Azure Data Lake Store,
and Azure Storage), processing them, and writing the output to new files in scalable storage.

The key requirement of such batch processing engines is the ability to scale out computations, in order to handle a
large volume of data. Unlike real-time processing, however, batch processing is expected to have latencies (the
time between data ingestion and computing a result) that measure in minutes to hours.

SQL Data Warehouse is a distributed system designed to perform analytics on large data. It supports massive
parallel processing (MPP), which makes it suitable for running high-performance analytics. Consider SQL Data
Warehouse when you have large amounts of data (more than 1 TB) and are running an analytics workload that
will benefit from parallelism.

Data Lake Analytics is an on-demand analytics job service. It is optimized for distributed processing of very large
data sets stored in Azure Data Lake Store.

Languages: U-SQL (including Python, R, and C# extensions).
Integrates with Azure Data Lake Store, Azure Storage blobs, Azure SQL Database, and SQL Data Warehouse.
Pricing model is per-job.

HDInsight is a managed Hadoop service. Use it deploy and manage Hadoop clusters in Azure. For batch
processing, you can use Spark, Hive, Hive LLAP, MapReduce.

Languages: R, Python, Java, Scala, SQL
Kerberos authentication with Active Directory, Apache Ranger based access control
Gives you full control of the Hadoop cluster

Azure Databricks is an Apache Spark-based analytics platform. You can think of it as "Spark as a service." It's the
easiest way to use Spark on the Azure platform.

Languages: R, Python, Java, Scala, Spark SQL
Fast cluster start times, auto-termination, auto-scaling.
Manages the Spark cluster for you.
Built-in integration with Azure Blob Storage, Azure Data Lake Storage (ADLS), Azure SQL Data Warehouse
(SQL DW), and other services. See Data Sources.
User authentication with Azure Active Directory.
Web-based notebooks for collaboration and data exploration.
Supports GPU-enabled clusters

The Distributed Data Engineering Toolkit (AZTK) is a tool for provisioning on-demand Spark on Docker clusters in

https://github.com/mspnp/architecture-center/blob/master/docs/data-guide/technology-choices/batch-processing.md
https://docs.microsoft.com/azure/sql-data-warehouse/
https://docs.microsoft.com/azure/data-lake-analytics/data-lake-analytics-overview
https://docs.microsoft.com/azure/data-lake-analytics/data-lake-analytics-u-sql-get-started
https://docs.microsoft.com/azure/hdinsight/spark/apache-spark-overview
https://docs.microsoft.com/azure/hdinsight/hadoop/hdinsight-use-hive
https://docs.microsoft.com/azure/hdinsight/interactive-query/apache-interactive-query-get-started
https://docs.microsoft.com/azure/hdinsight/hadoop/hdinsight-use-mapreduce
https://docs.microsoft.com/azure/azure-databricks/
https://docs.azuredatabricks.net/spark/latest/data-sources/index.html
https://docs.azuredatabricks.net/user-guide/notebooks/index.html
https://docs.azuredatabricks.net/user-guide/clusters/gpu.html
https://github.com/azure/aztk

Key selection criteria

Capability matrix

General capabilitiesGeneral capabilities

AZURE DATA LAKE
ANALYTICS

AZURE SQL DATA
WAREHOUSE HDINSIGHT AZURE DATABRICKS

Is managed service Yes Yes Yes Yes

Relational data store Yes Yes No No

Pricing model Per batch job By cluster hour By cluster hour Databricks Unit +
cluster hour

CapabilitiesCapabilities

AZURE DATA
LAKE
ANALYTICS

SQL DATA
WAREHOUSE

HDINSIGHT
WITH SPARK

HDINSIGHT
WITH HIVE

HDINSIGHT
WITH HIVE
LLAP

AZURE
DATABRICKS

Autoscaling No No No No No Yes

Scale-out
granularity

Per job Per cluster Per cluster Per cluster Per cluster Per cluster

In-memory
caching of
data

No Yes Yes No Yes Yes

Azure.

AZTK is not an Azure service. Rather, it's a client-side tool with a CLI and Python SDK interface, that's built on
Azure Batch. This option gives you the most control over the infrastructure when deploying a Spark cluster.

Bring your own Docker image.
Use low-priority VMs for an 80% discount.
Mixed mode clusters that use both low-priority and dedicated VMs.
Built in support for Azure Blob Storage and Azure Data Lake connection.

To narrow the choices, start by answering these questions:

Do you want a managed service rather than managing your own servers?

Do you want to author batch processing logic declaratively or imperatively?

Will you perform batch processing in bursts? If yes, consider options that let you auto-terminate the cluster
or whose pricing model is per batch job.

Do you need to query relational data stores along with your batch processing, for example to look up
reference data? If yes, consider the options that enable querying of external relational stores.

The following tables summarize the key differences in capabilities.

1

2

[1] With manual configuration and scaling.

[2] A Databricks Unit (DBU) is a unit of processing capability per hour.

Query from
external
relational
stores

Yes No Yes No No Yes

Authenticatio
n

Azure AD SQL / Azure
AD

No Azure AD Azure AD Azure AD

Auditing Yes Yes No Yes Yes Yes

Row-level
security

No No No Yes Yes No

Supports
firewalls

Yes Yes Yes Yes Yes No

Dynamic data
masking

No No No Yes Yes No

AZURE DATA
LAKE
ANALYTICS

SQL DATA
WAREHOUSE

HDINSIGHT
WITH SPARK

HDINSIGHT
WITH HIVE

HDINSIGHT
WITH HIVE
LLAP

AZURE
DATABRICKS

1 1

1 1

1 1

2 2

1 1

[1] Requires using a domain-joined HDInsight cluster.

[2] Supported when used within an Azure Virtual Network.

https://docs.microsoft.com/azure/hdinsight/domain-joined/apache-domain-joined-introduction
https://docs.microsoft.com/azure/hdinsight/hdinsight-extend-hadoop-virtual-network

Choosing a Microsoft cognitive services technology
3/13/2019 • 3 minutes to read • Edit Online

What are your options when choosing amongst the cognitive services?

Key Selection Criteria

Microsoft cognitive services are cloud-based APIs that you can use in artificial intelligence (AI) applications and
data flows. They provide you with pretrained models that are ready to use in your application, requiring no data
and no model training on your part. The cognitive services are developed by Microsoft's AI and Research team
and leverage the latest deep learning algorithms. They are consumed over HTTP REST interfaces. In addition,
SDKs are available for many common application development frameworks.

The cognitive services include:

Text analysis
Computer vision
Video analytics
Speech recognition and generation
Natural language understanding
Intelligent search

Key benefits:

Minimal development effort for state-of-the-art AI services.
Easy integration into apps via HTTP REST interfaces.
Built-in support for consuming cognitive services in Azure Data Lake Analytics.

Considerations:

Only available over the web. Internet connectivity is generally required. An exception is the Custom Vision
Service, whose trained model you can export for prediction on devices and at the IoT edge.

Although considerable customization is supported, the available services may not suit all predictive
analytics requirements.

In Azure, there are dozens of Cognitive Services available. The current listing of these is available in a directory
categorized by the functional area they support:

Vision
Speech
Knowledge
Search
Language

To narrow the choices, start by answering these questions:

What type of data are you dealing with? Narrow your options based on the type of input data you are
working with. For example, if your input is text, select from the services that have an input type of text.

Do you have the data to train a model? If yes, consider the custom services that enable you to train their
underlying models with data that you provide, for improved accuracy and performance.

https://github.com/mspnp/architecture-center/blob/master/docs/data-guide/technology-choices/cognitive-services.md
https://azure.microsoft.com/services/cognitive-services/directory/vision/
https://azure.microsoft.com/services/cognitive-services/directory/speech/
https://azure.microsoft.com/services/cognitive-services/directory/know/
https://azure.microsoft.com/services/cognitive-services/directory/search/
https://azure.microsoft.com/services/cognitive-services/directory/lang/

Capability matrix

Uses prebuilt modelsUses prebuilt models

INPUT TYPE KEY BENEFIT

Text Analytics API Text Evaluate sentiment and topics to
understand what users want.

Entity Linking API Text Power your app's data links with named
entity recognition and disambiguation.

Language Understanding Intelligent
Service (LUIS)

Text Teach your apps to understand
commands from your users.

QnA Maker Service Text Distill FAQ formatted information into
conversational, easy-to-navigate
answers.

Linguistic Analysis API Text Simplify complex language concepts
and parse text.

Knowledge Exploration Service Text Enable interactive search experiences
over structured data via natural
language inputs.

Web Language Model API Text Use predictive language models trained
on web-scale data.

Academic Knowledge API Text Tap into the wealth of academic content
in the Microsoft Academic Graph
populated by Bing.

Bing Autosuggest API Text Give your app intelligent autosuggest
options for searches.

Bing Spell Check API Text Detect and correct spelling mistakes in
your app.

Translator Text API Text Machine translation.

Recommendations API Text Predict and recommend items your
customers want.

Bing Entity Search API Text (web search query) Identify and augment entity
information from the web.

Bing Image Search API Text (web search query) Search for images.

Bing News Search API Text (web search query) Search for news.

Bing Video Search API Text (web search query) Search for videos.

The following tables summarize the key differences in capabilities.

Bing Web Search API Text (web search query) Get enhanced search details from
billions of web documents.

Bing Speech API Text or Speech Convert speech to text and back again.

Speaker Recognition API Speech Use speech to identify and authenticate
individual speakers.

Translator Speech API Speech Perform real-time speech translation.

Computer Vision API Images (or frames from video) Distill actionable information from
images, automatically create description
of photos, derive tags, recognize
celebrities, extract text, and create
accurate thumbnails.

Content Moderator Text, Images or Video Automated image, text, and video
moderation.

Emotion API Images (photos with human subjects) Identify the range emotions of human
subjects.

Face API Images (photos with human subjects) Detect, identify, analyze, organize, and
tag faces in photos.

Video Indexer Video Video insights such as sentiment,
transcript speech, translate speech,
recognize faces and emotions, and
extract keywords.

INPUT TYPE KEY BENEFIT

Trained with custom data you provideTrained with custom data you provide

INPUT TYPE KEY BENEFIT

Custom Vision Service Images (or frames from video) Customize your own computer vision
models.

Custom Speech Service Speech Overcome speech recognition barriers
like speaking style, background noise,
and vocabulary.

Custom Decision Service Web content (for example, RSS feed) Use machine learning to automatically
select the appropriate content for your
home page

Bing Custom Search API Text (web search query) Commercial-grade search tool.

Choosing a big data storage technology in Azure
3/13/2019 • 7 minutes to read • Edit Online

What are your options when choosing data storage in Azure?

Azure Storage blobs

Azure Data Lake Store

This topic compares options for data storage for big data solutions — specifically, data storage for bulk data
ingestion and batch processing, as opposed to analytical data stores or real-time streaming ingestion.

There are several options for ingesting data into Azure, depending on your needs.

File storage:

Azure Storage blobs
Azure Data Lake Store

NoSQL databases:

Azure Cosmos DB
HBase on HDInsight

Azure Storage is a managed storage service that is highly available, secure, durable, scalable, and redundant.
Microsoft takes care of maintenance and handles critical problems for you. Azure Storage is the most ubiquitous
storage solution Azure provides, due to the number of services and tools that can be used with it.

There are various Azure Storage services you can use to store data. The most flexible option for storing blobs
from a number of data sources is Blob storage. Blobs are basically files. They store pictures, documents, HTML
files, virtual hard disks (VHDs), big data such as logs, database backups — pretty much anything. Blobs are stored
in containers, which are similar to folders. A container provides a grouping of a set of blobs. A storage account can
contain an unlimited number of containers, and a container can store an unlimited number of blobs.

Azure Storage is a good choice for big data and analytics solutions, because of its flexibility, high availability, and
low cost. It provides hot, cool, and archive storage tiers for different use cases. For more information, see Azure
Blob Storage: Hot, cool, and archive storage tiers.

Azure Blob storage can be accessed from Hadoop (available through HDInsight). HDInsight can use a blob
container in Azure Storage as the default file system for the cluster. Through a Hadoop distributed file system
(HDFS) interface provided by a WASB driver, the full set of components in HDInsight can operate directly on
structured or unstructured data stored as blobs. Azure Blob storage can also be accessed via Azure SQL Data
Warehouse using its PolyBase feature.

Other features that make Azure Storage a good choice are:

Multiple concurrency strategies.
Disaster recovery and high availability options.
Encryption at rest.
Role-Based Access Control (RBAC) to control access using Azure Active Directory users and groups.

Azure Data Lake Store is an enterprise-wide hyper-scale repository for big data analytic workloads. Data Lake

https://github.com/mspnp/architecture-center/blob/master/docs/data-guide/technology-choices/data-storage.md
https://docs.microsoft.com/azure/storage/blobs/storage-blobs-introduction
https://docs.microsoft.com/azure/data-lake-store/
https://docs.microsoft.com/azure/cosmos-db/
https://hbase.apache.org/
https://docs.microsoft.com/azure/storage/blobs/storage-blobs-introduction
https://docs.microsoft.com/azure/storage/blobs/storage-blob-storage-tiers
https://docs.microsoft.com/azure/storage/common/storage-concurrency?toc=%2fazure%2fstorage%2fblobs%2ftoc.json
https://docs.microsoft.com/azure/storage/common/storage-disaster-recovery-guidance?toc=%2fazure%2fstorage%2fblobs%2ftoc.json
https://docs.microsoft.com/azure/storage/common/storage-service-encryption?toc=%2fazure%2fstorage%2fblobs%2ftoc.json
https://docs.microsoft.com/azure/storage/common/storage-security-guide?toc=%2fazure%2fstorage%2fblobs%2ftoc.json#management-plane-security
https://docs.microsoft.com/azure/data-lake-store/

Azure Cosmos DB

HBase on HDInsight

Key selection criteria

enables you to capture data of any size, type, and ingestion speed in one single secure location for operational and
exploratory analytics.

Data Lake Store does not impose any limits on account sizes, file sizes, or the amount of data that can be stored in
a data lake. Data is stored durably by making multiple copies and there is no limit on the duration of time that the
data can be stored in the Data Lake. In addition to making multiple copies of files to guard against any unexpected
failures, Data lake spreads parts of a file over a number of individual storage servers. This improves the read
throughput when reading the file in parallel for performing data analytics.

Data Lake Store can be accessed from Hadoop (available through HDInsight) using the WebHDFS-compatible
REST APIs. You may consider using this as an alternative to Azure Storage when your individual or combined file
sizes exceed that which is supported by Azure Storage. However, there are performance tuning guidelines you
should follow when using Data Lake Store as your primary storage for an HDInsight cluster, with specific
guidelines for Spark, Hive, MapReduce, and Storm. Also, be sure to check Data Lake Store's regional availability,
because it is not available in as many regions as Azure Storage, and it needs to be located in the same region as
your HDInsight cluster.

Coupled with Azure Data Lake Analytics, Data Lake Store is specifically designed to enable analytics on the stored
data and is tuned for performance for data analytics scenarios. Data Lake Store can also be accessed via Azure
SQL Data Warehouse using its PolyBase feature.

Azure Cosmos DB is Microsoft’s globally distributed multi-model database. Cosmos DB guarantees single-digit-
millisecond latencies at the 99th percentile anywhere in the world, offers multiple well-defined consistency models
to fine-tune performance, and guarantees high availability with multi-homing capabilities.

Azure Cosmos DB is schema-agnostic. It automatically indexes all the data without requiring you to deal with
schema and index management. It’s also multi-model, natively supporting document, key-value, graph, and
column-family data models.

Azure Cosmos DB features:

Geo-replication
Elastic scaling of throughput and storage worldwide
Five well-defined consistency levels

Apache HBase is an open-source, NoSQL database that is built on Hadoop and modeled after Google BigTable.
HBase provides random access and strong consistency for large amounts of unstructured and semi-structured
data in a schemaless database organized by column families.

Data is stored in the rows of a table, and data within a row is grouped by column family. HBase is schemaless in
the sense that neither the columns nor the type of data stored in them need to be defined before using them. The
open-source code scales linearly to handle petabytes of data on thousands of nodes. It can rely on data
redundancy, batch processing, and other features that are provided by distributed applications in the Hadoop
ecosystem.

The HDInsight implementation leverages the scale-out architecture of HBase to provide automatic sharding of
tables, strong consistency for reads and writes, and automatic failover. Performance is enhanced by in-memory
caching for reads and high-throughput streaming for writes. In most cases, you'll want to create the HBase cluster
inside a virtual network so other HDInsight clusters and applications can directly access the tables.

https://docs.microsoft.com/azure/data-lake-store/data-lake-store-overview#DataLakeStoreSecurity
https://docs.microsoft.com/azure/data-lake-store/data-lake-store-performance-tuning-guidance#optimizing-io-intensive-jobs-on-hadoop-and-spark-workloads-on-hdinsight
https://docs.microsoft.com/azure/data-lake-store/data-lake-store-performance-tuning-spark
https://docs.microsoft.com/azure/data-lake-store/data-lake-store-performance-tuning-hive
https://docs.microsoft.com/azure/data-lake-store/data-lake-store-performance-tuning-mapreduce
https://docs.microsoft.com/azure/data-lake-store/data-lake-store-performance-tuning-storm
https://azure.microsoft.com/regions/#services
https://docs.microsoft.com/azure/cosmos-db/
https://docs.microsoft.com/azure/cosmos-db/distribute-data-globally
https://docs.microsoft.com/azure/cosmos-db/partition-data
https://docs.microsoft.com/azure/cosmos-db/consistency-levels
https://hbase.apache.org/
https://docs.microsoft.com/azure/hdinsight/hbase/apache-hbase-overview
https://docs.microsoft.com/azure/hdinsight/hbase/apache-hbase-provision-vnet

Capability matrix

File storage capabilitiesFile storage capabilities

AZURE DATA LAKE STORE AZURE BLOB STORAGE CONTAINERS

Purpose Optimized storage for big data analytics
workloads

General purpose object store for a wide
variety of storage scenarios

Use cases Batch, streaming analytics, and machine
learning data such as log files, IoT data,
click streams, large datasets

Any type of text or binary data, such as
application back end, backup data,
media storage for streaming, and
general purpose data

Structure Hierarchical file system Object store with flat namespace

Authentication Based on Azure Active Directory
Identities

Based on shared secrets Account
Access Keys and Shared Access
Signature Keys, and Role-Based Access
Control (RBAC)

Authentication protocol OAuth 2.0. Calls must contain a valid
JWT (JSON web token) issued by Azure
Active Directory

Hash-based message authentication
code (HMAC). Calls must contain a
Base64-encoded SHA-256 hash over a
part of the HTTP request.

Authorization POSIX access control lists (ACLs). ACLs
based on Azure Active Directory
identities can be set file and folder level.

For account-level authorization use
Account Access Keys. For account,
container, or blob authorization use
Shared Access Signature Keys.

Auditing Available. Available

Encryption at rest Transparent, server side Transparent, server side; Client-side
encryption

Developer SDKs .NET, Java, Python, Node.js .Net, Java, Python, Node.js, C++, Ruby

Analytics workload performance Optimized performance for parallel
analytics workloads, High Throughput
and IOPS

Not optimized for analytics workloads

To narrow the choices, start by answering these questions:

Do you need managed, high speed, cloud-based storage for any type of text or binary data? If yes, then
select one of the file storage options.

Do you need file storage that is optimized for parallel analytics workloads and high throughput/IOPS? If
yes, then choose an option that is tuned to analytics workload performance.

Do you need to store unstructured or semi-structured data in a schemaless database? If so, select one of
the non-relational options. Compare options for indexing and database models. Depending on the type of
data you need to store, the primary database models may be the largest factor.

Can you use the service in your region? Check the regional availability for each Azure service. See Products
available by region.

The following tables summarize the key differences in capabilities.

https://azure.microsoft.com/regions/services/
https://docs.microsoft.com/azure/active-directory/active-directory-authentication-scenarios
https://docs.microsoft.com/azure/storage/common/storage-create-storage-account#manage-your-storage-account
https://docs.microsoft.com/azure/storage/common/storage-dotnet-shared-access-signature-part-1
https://docs.microsoft.com/azure/security/security-storage-overview
https://docs.microsoft.com/azure/storage/common/storage-create-storage-account#manage-your-storage-account
https://docs.microsoft.com/azure/storage/common/storage-dotnet-shared-access-signature-part-1

Size limits No limits on account sizes, file sizes or
number of files

Specific limits documented here

Geo-redundancy Locally-redundant (multiple copies of
data in one Azure region)

Locally redundant (LRS), globally
redundant (GRS), read-access globally
redundant (RA-GRS). See here for more
information

AZURE DATA LAKE STORE AZURE BLOB STORAGE CONTAINERS

NoSQL database capabilitiesNoSQL database capabilities

AZURE COSMOS DB HBASE ON HDINSIGHT

Primary database model Document store, graph, key-value
store, wide column store

Wide column store

Secondary indexes Yes No

SQL language support Yes Yes (using the Phoenix JDBC driver)

Consistency Strong, bounded-staleness, session,
consistent prefix, eventual

Strong

Native Azure Functions integration Yes No

Automatic global distribution Yes No HBase cluster replication can be
configured across regions with eventual
consistency

Pricing model Elastically scalable request units (RUs)
charged per-second as needed,
elastically scalable storage

Per-minute pricing for HDInsight
cluster (horizontal scaling of nodes),
storage

https://docs.microsoft.com/azure/azure-subscription-service-limits#storage-limits
https://docs.microsoft.com/azure/storage/common/storage-redundancy
https://phoenix.apache.org/
https://docs.microsoft.com/azure/cosmos-db/serverless-computing-database
https://docs.microsoft.com/azure/cosmos-db/distribute-data-globally
https://docs.microsoft.com/azure/hdinsight/hbase/apache-hbase-replication

What are the machine learning products at
Microsoft?
3/13/2019 • 7 minutes to read • Edit Online

Cloud-based options

CLOUD OPTIONS WHAT IT IS WHAT YOU CAN DO WITH IT

Azure Machine Learning service Managed cloud service for machine
learning

Train, deploy, and manage models in
Azure using Python and CLI

Azure Machine Learning Studio Drag–and–drop visual interface for
machine learning

Build, experiment, and deploy models
using preconfigured algorithms

On-premises options

ON-PREMISES OPTIONS WHAT IT IS WHAT YOU CAN DO WITH IT

SQL Server Machine Learning Services Analytics engine embedded in SQL Build and deploy models inside SQL
Server

Microsoft Machine Learning Server Standalone enterprise server for
predictive analysis

Build and deploy models on pre-
processed data

Development platforms and tools

Machine learning is a data science technique that allows computers to use existing data to forecast future
behaviors, outcomes, and trends. By using machine learning, computers learn without being explicitly
programmed.

Machine learning solutions are built iteratively, and have distinct phases:

Preparing data
Experimenting and training models
Deploying trained models
Managing deployed models

Microsoft provides a variety of product options to prep, build, deploy, and manage your machine learning models.
Compare these products and choose what you need to develop your machine learning solutions most effectively.

The following options are available for machine learning in the Azure cloud.

If you want to use pre-built AI and machine learning models, Azure Cognitive Services allows you to easily add
intelligent features to your applications.

The following options are available for machine learning on-premises. On-premises servers can also run in a
virtual machine in the cloud.

The following development platforms and tools are available for machine learning.

https://github.com/mspnp/architecture-center/blob/master/docs/data-guide/technology-choices/data-science-and-machine-learning.md

PLATFORMS/TOOLS WHAT IT IS WHAT YOU CAN DO WITH IT

Azure Data Science Virtual Machine Virtual machine with pre-installed data
science tools

Develop machine learning solutions in a
pre-configured environment

Azure Databricks Spark-based analytics platform Build and deploy models and data
workflows

ML.NET Open-source, cross-platform machine
learning SDK

Develop machine learning solutions for
.NET applications

Windows ML Windows 10 machine learning platform Evaluate trained models on a Windows
10 device

Azure Machine Learning service

Type Cloud-based machine learning solution

Supported languages Python

Machine learning phases Data preparation
Model training
Deployment
Management

Key benefits Central management of scripts and run history, making it easy
to compare model versions.

Easy deployment and management of models to the cloud or
edge devices.

Considerations Requires some familiarity with the model management model.

Azure Machine Learning Studio

Azure Machine Learning service is a fully managed cloud service used to train, deploy, and manage machine
learning models at scale. It fully supports open-source technologies, so you can use tens of thousands of open-
source Python packages such as TensorFlow, PyTorch, and scikit-learn. Rich tools are also available, such as Azure
notebooks, Jupyter notebooks, or the Azure Machine Learning for Visual Studio Code extension to make it easy to
explore and transform data, and then train and deploy models. Azure Machine Learning service includes features
that automate model generation and tuning with ease, efficiency, and accuracy.

Use Azure Machine Learning service to train, deploy, and manage machine learning models using Python and CLI
at cloud scale.

Try the free or paid version of Azure Machine Learning service.

Azure Machine Learning Studio gives you an interactive, visual workspace that you can use to easily and quickly
build, test, and deploy models using pre-built machine learning algorithms. Machine Learning Studio publishes
models as web services that can easily be consumed by custom apps or BI tools such as Excel. No programming is
required - you construct your machine learning model by connecting datasets and analysis modules on an
interactive canvas, and then deploy it with a couple clicks.

Use Machine Learning Studio when you want to develop and deploy models with no code required.

https://docs.microsoft.com/azure/machine-learning/service/overview-what-is-azure-ml.md
https://notebooks.azure.com/
http://jupyter.org
https://aka.ms/vscodetoolsforai
http://aka.ms/AMLFree
https://docs.microsoft.com/azure/machine-learning/studio/what-is-ml-studio.md

Type Cloud-based, drag-and-drop machine learning solution

Supported languages Python, R

Machine learning phases Data preparation
Model training
Deployment
Management

Key benefits Interactive visual interface enables machine learning modeling
with minimal code.

Built-in Jupyter Notebooks for data exploration.

Direct deployment of trained models as Azure web services.

Considerations Limited scalability. The maximum size of a training dataset is
10 GB.

Online only. No offline development environment.

Azure Cognitive Services

Type APIs for building intelligent applications

Supported languages many options depending on the service

Machine learning phases Deployment

Key benefits Incorporating machine learning capabilities in applications
using pre-trained models.

Variety of models for natural communication methods with
vision and speech.

Considerations Models have been pre-trained and are not customizable.

SQL Server Machine Learning Services

Try Azure Machine Learning Studio, available in paid or free options.

Azure Cognitive Services is a set of APIs that enable you to build apps that use natural methods of
communication. These APIs allow your apps to see, hear, speak, understand, and interpret user needs with just a
few lines of code. Easily add intelligent features to your apps, such as:

Emotion and sentiment detection
Vision and speech recognition
Language understanding (LUIS)
Knowledge and search

Use Cognitive Services to develop apps across devices and platforms. The APIs keep improving, and are easy to
set up.

https://studio.azureml.net/?selectAccess=true&o=2&target=_blank
https://docs.microsoft.com/azure/cognitive-services/welcome

Type On-premises predictive analytics for relational data

Supported languages Python, R

Machine learning phases Data preparation
Model training
Deployment

Key benefits Encapsulate predictive logic in a database function, making it
easy to include in data-tier logic.

Considerations Assumes a SQL Server database as the data tier for your
application.

Microsoft Machine Learning Server

Type On-premises enterprise server for predictive analytics

Supported languages Python, R

Machine learning phases Model training
Deployment

Key benefits High scalability.

Considerations You need to deploy and manage Machine Learning Server in
your enterprise.

Azure Data Science Virtual Machine

SQL Server Microsoft Machine Learning Service adds statistical analysis, data visualization, and predictive
analytics in R and Python for relational data in SQL Server databases. R and Python libraries from Microsoft
include advanced modeling and machine learning algorithms, which can run in parallel and at scale, in SQL Server.

Use SQL Server Machine Learning Services when you need built-in AI and predictive analytics on relational data
in SQL Server.

Microsoft Machine Learning Server is an enterprise server for hosting and managing parallel and distributed
workloads of R and Python processes. Microsoft Machine Learning Server runs on Linux, Windows, Hadoop, and
Apache Spark, and it is also available on HDInsight. It provides an execution engine for solutions built using
RevoScaleR, revoscalepy, and MicrosoftML packages, and extends open-source R and Python with support for
high-performance analytics, statistical analysis, machine learning, and massively large datasets. This functionality is
provided through proprietary packages that install with the server. For development, you can use IDEs such as R
Tools for Visual Studio and Python Tools for Visual Studio.

Use Microsoft Machine Learning Server when you need to build and operationalize models built with R and
Python on a server, or distribute R and Python training at scale on a Hadoop or Spark cluster.

The Azure Data Science Virtual Machine is a customized virtual machine environment on the Microsoft Azure
cloud built specifically for doing data science. It has many popular data science and other tools pre-installed and
pre-configured to jump-start building intelligent applications for advanced analytics.

https://docs.microsoft.com/sql/advanced-analytics/r/r-services
https://docs.microsoft.com/machine-learning-server/what-is-machine-learning-server
https://azure.microsoft.com/services/hdinsight/r-server/
https://docs.microsoft.com/machine-learning-server/r-reference/revoscaler/revoscaler
https://docs.microsoft.com/machine-learning-server/python-reference/revoscalepy/revoscalepy-package
https://docs.microsoft.com/r-server/r/concept-what-is-the-microsoftml-package
https://www.visualstudio.com/vs/rtvs/
https://www.visualstudio.com/vs/python/
https://docs.microsoft.com/azure/machine-learning/data-science-virtual-machine/overview.md

Type Customized virtual machine environment for data science

Key benefits Reduced time to install, manage, and troubleshoot data
science tools and frameworks.

The latest versions of all commonly used tools and
frameworks are included.

Virtual machine options include highly scalable images with
GPU capabilities for intensive data modeling.

Considerations The virtual machine cannot be accessed when offline.

Running a virtual machine incurs Azure charges, so you must
be careful to have it running only when required.

Azure Databricks

Type Apache Spark-based analytics platform

Supported languages Python, R, Scala, SQL

Machine learning phases Data query
Model training

ML.NET

Type Open-source framework for developing custom machine
learning applications

Languages supported .NET

The Data Science Virtual Machine is supported as a target for Azure Machine Learning service. It is available in
versions for both Windows and Linux Ubuntu (Azure Machine Learning service is not supported on Linux
CentOS). For specific version information and a list of what’s included, see Introduction to the Azure Data Science
Virtual Machine.

Use the Data Science VM when you need to run or host your jobs on a single node. Or if you need to remotely
scale up your processing on a single machine.

Azure Databricks is an Apache Spark-based analytics platform optimized for the Microsoft Azure cloud services
platform. Databricks is integrated with Azure to provide one-click setup, streamlined workflows, and an interactive
workspace that enables collaboration between data scientists, data engineers, and business analysts. Use Python,
R, Scala, and SQL code in web-based notebooks to query, visualize, and model data.

Use Databricks when you want to collaborate on building machine learning solutions on Apache Spark.

ML.NET is a free, open-source, and cross-platform machine learning framework that enables you to build custom
machine learning solutions and integrate them into your .NET applications.

Use ML.NET when you want to integrate machine learning solutions into your .NET applications.

https://docs.microsoft.com/azure/machine-learning/data-science-virtual-machine/overview.md
https://docs.microsoft.com/azure/azure-databricks/what-is-azure-databricks
https://docs.microsoft.com/dotnet/machine-learning/

 Windows ML

Type Inference engine for trained models in Windows devices

Languages supported C#/C++, JavaScript

Next steps

Windows ML inference engine allows you to use trained machine learning models in your applications, evaluating
trained models locally on Windows 10 devices.

Use Windows ML when you want to use trained machine learning models within your Windows applications.

To learn about all the Articifical Intelligence (AI) development products available from Microsoft, see Microsoft
AI platform
For training in how to develop AI solutions, see Microsoft AI School

https://docs.microsoft.com/windows/uwp/machine-learning/
https://www.microsoft.com/ai
https://aischool.microsoft.com/learning-paths

Choosing a natural language processing technology
in Azure
3/13/2019 • 2 minutes to read • Edit Online

What are your options when choosing an NLP service?

Key selection criteria

Capability matrix

General capabilitiesGeneral capabilities

AZURE HDINSIGHT MICROSOFT COGNITIVE SERVICES

Provides pretrained models as a service No Yes

REST API Yes Yes

Programmability Python, Scala, Java C#, Java, Node.js, Python, PHP, Ruby

Support processing of big data sets and
large documents

Yes No

Free-form text processing is performed against documents containing paragraphs of text, typically for the purpose
of supporting search, but is also used to perform other natural language processing (NLP) tasks such as sentiment
analysis, topic detection, language detection, key phrase extraction, and document categorization. This article
focuses on the technology choices that act in support of the NLP tasks.

In Azure, the following services provide natural language processing (NLP) capabilities:

Azure HDInsight with Spark and Spark MLlib
Azure Databricks
Microsoft Cognitive Services

To narrow the choices, start by answering these questions:

Do you want to use prebuilt models? If yes, consider using the APIs offered by Microsoft Cognitive
Services.

Do you need to train custom models against a large corpus of text data? If yes, consider using Azure
HDInsight with Spark MLlib and Spark NLP.

Do you need low-level NLP capabilities like tokenization, stemming, lemmatization, and term
frequency/inverse document frequency (TF/IDF)? If yes, consider using Azure HDInsight with Spark MLlib
and Spark NLP.

Do you need simple, high-level NLP capabilities like entity and intent identification, topic detection, spell
check, or sentiment analysis? If yes, consider using the APIs offered by Microsoft Cognitive Services.

The following tables summarize the key differences in capabilities.

https://github.com/mspnp/architecture-center/blob/master/docs/data-guide/technology-choices/natural-language-processing.md
https://docs.microsoft.com/azure/hdinsight/spark/apache-spark-overview
https://docs.microsoft.com/azure/azure-databricks/what-is-azure-databricks
https://docs.microsoft.com/azure/cognitive-services/welcome

Low-level natural language processing capabilitiesLow-level natural language processing capabilities

AZURE HDINSIGHT MICROSOFT COGNITIVE SERVICES

Tokenizer Yes (Spark NLP) Yes (Linguistic Analysis API)

Stemmer Yes (Spark NLP) No

Lemmatizer Yes (Spark NLP) No

Part of speech tagging Yes (Spark NLP) Yes (Linguistic Analysis API)

Term frequency/inverse-document
frequency (TF/IDF)

Yes (Spark MLlib) No

String similarity—edit distance
calculation

Yes (Spark MLlib) No

N-gram calculation Yes (Spark MLlib) No

Stop word removal Yes (Spark MLlib) No

High-level natural language processing capabilitiesHigh-level natural language processing capabilities

AZURE HDINSIGHT MICROSOFT COGNITIVE SERVICES

Entity/intent identification and
extraction

No Yes (Language Understanding
Intelligent Service (LUIS) API)

Topic detection Yes (Spark NLP) Yes (Text Analytics API)

Spell checking Yes (Spark NLP) Yes (Bing Spell Check API)

Sentiment analysis Yes (Spark NLP) Yes (Text Analytics API)

Language detection No Yes (Text Analytics API)

Supports multiple languages besides
English

No Yes (varies by API)

See also
Natural language processing

Choosing a data pipeline orchestration technology in
Azure
3/13/2019 • 2 minutes to read • Edit Online

What are your options for data pipeline orchestration?

Key Selection Criteria

Capability matrix

General capabilitiesGeneral capabilities

AZURE DATA FACTORY
SQL SERVER INTEGRATION
SERVICES (SSIS) OOZIE ON HDINSIGHT

Managed Yes No Yes

Cloud-based Yes No (local) Yes

Most big data solutions consist of repeated data processing operations, encapsulated in workflows. A pipeline
orchestrator is a tool that helps to automate these workflows. An orchestrator can schedule jobs, execute
workflows, and coordinate dependencies among tasks.

In Azure, the following services and tools will meet the core requirements for pipeline orchestration, control flow,
and data movement:

Azure Data Factory
Oozie on HDInsight
SQL Server Integration Services (SSIS)

These services and tools can be used independently from one another, or used together to create a hybrid
solution. For example, the Integration Runtime (IR) in Azure Data Factory V2 can natively execute SSIS packages
in a managed Azure compute environment. While there is some overlap in functionality between these services,
there are a few key differences.

To narrow the choices, start by answering these questions:

Do you need big data capabilities for moving and transforming your data? Usually this means multi-
gigabytes to terabytes of data. If yes, then narrow your options to those that best suited for big data.

Do you require a managed service that can operate at scale? If yes, select one of the cloud-based services
that aren't limited by your local processing power.

Are some of your data sources located on-premises? If yes, look for options that can work with both cloud
and on-premises data sources or destinations.

Is your source data stored in Blob storage on an HDFS filesystem? If so, choose an option that supports
Hive queries.

The following tables summarize the key differences in capabilities.

https://github.com/mspnp/architecture-center/blob/master/docs/data-guide/technology-choices/pipeline-orchestration-data-movement.md
https://docs.microsoft.com/azure/data-factory/
https://docs.microsoft.com/azure/hdinsight/hdinsight-use-oozie-linux-mac
https://docs.microsoft.com/sql/integration-services/sql-server-integration-services

Prerequisite Azure Subscription SQL Server Azure Subscription,
HDInsight cluster

Management tools Azure Portal, PowerShell,
CLI, .NET SDK

SSMS, PowerShell Bash shell, Oozie REST API,
Oozie web UI

Pricing Pay per usage Licensing / pay for features No additional charge on top
of running the HDInsight
cluster

AZURE DATA FACTORY
SQL SERVER INTEGRATION
SERVICES (SSIS) OOZIE ON HDINSIGHT

Pipeline capabilitiesPipeline capabilities

AZURE DATA FACTORY
SQL SERVER INTEGRATION
SERVICES (SSIS) OOZIE ON HDINSIGHT

Copy data Yes Yes Yes

Custom transformations Yes Yes Yes (MapReduce, Pig, and
Hive jobs)

Azure Machine Learning
scoring

Yes Yes (with scripting) No

HDInsight On-Demand Yes No No

Azure Batch Yes No No

Pig, Hive, MapReduce Yes No Yes

Spark Yes No No

Execute SSIS Package Yes Yes No

Control flow Yes Yes Yes

Access on-premises data Yes Yes No

Scalability capabilitiesScalability capabilities

AZURE DATA FACTORY
SQL SERVER INTEGRATION
SERVICES (SSIS) OOZIE ON HDINSIGHT

Scale up Yes No No

Scale out Yes No Yes (by adding worker nodes
to cluster)

Optimized for big data Yes No Yes

Choosing a real-time message ingestion technology
in Azure
3/13/2019 • 2 minutes to read • Edit Online

What are your options for real-time message ingestion?

Azure Event Hubs

Azure IoT Hub

Kafka on HDInsight

Real time processing deals with streams of data that are captured in real-time and processed with minimal latency.
Many real-time processing solutions need a message ingestion store to act as a buffer for messages, and to
support scale-out processing, reliable delivery, and other message queuing semantics.

Azure Event Hubs
Azure IoT Hub
Kafka on HDInsight

Azure Event Hubs is a highly scalable data streaming platform and event ingestion service, capable of receiving
and processing millions of events per second. Event Hubs can process and store events, data, or telemetry
produced by distributed software and devices. Data sent to an event hub can be transformed and stored using any
real-time analytics provider or batching/storage adapters. Event Hubs provides publish-subscribe capabilities with
low latency at massive scale, which makes it appropriate for big data scenarios.

Azure IoT Hub is a managed service that enables reliable and secure bidirectional communications between
millions of IoT devices and a cloud-based back end.

Feature of IoT Hub include:

Multiple options for device-to-cloud and cloud-to-device communication. These options include one-way
messaging, file transfer, and request-reply methods.
Message routing to other Azure services.
Queryable store for device metadata and synchronized state information.
Secure communications and access control using per-device security keys or X.509 certificates.
Monitoring of device connectivity and device identity management events.

In terms of message ingestion, IoT Hub is similar to Event Hubs. However, it was specifically designed for
managing IoT device connectivity, not just message ingestion. For more information, see Comparison of Azure IoT
Hub and Azure Event Hubs.

Apache Kafka is an open-source distributed streaming platform that can be used to build real-time data pipelines
and streaming applications. Kafka also provides message broker functionality similar to a message queue, where
you can publish and subscribe to named data streams. It is horizontally scalable, fault-tolerant, and extremely fast.
Kafka on HDInsight provides a Kafka as a managed, highly scalable, and highly available service in Azure.

Some common use cases for Kafka are:

Messaging. Because it supports the publish-subscribe message pattern, Kafka is often used as a message

https://github.com/mspnp/architecture-center/blob/master/docs/data-guide/technology-choices/real-time-ingestion.md
https://docs.microsoft.com/azure/event-hubs/
https://docs.microsoft.com/azure/iot-hub/
https://docs.microsoft.com/azure/hdinsight/kafka/apache-kafka-get-started
https://docs.microsoft.com/azure/event-hubs/
https://docs.microsoft.com/azure/iot-hub/
https://docs.microsoft.com/azure/iot-hub/iot-hub-compare-event-hubs
https://kafka.apache.org/
https://docs.microsoft.com/azure/hdinsight/kafka/apache-kafka-get-started

Key selection criteria

Capability matrix

IOT HUB EVENT HUBS KAFKA ON HDINSIGHT

Cloud-to-device
communications

Yes No No

Device-initiated file upload Yes No No

Device state information Device twins No No

Protocol support MQTT, AMQP, HTTPS AMQP, HTTPS Kafka Protocol

Security Per-device identity;
revocable access control.

Shared access policies;
limited revocation through
publisher policies.

Authentication using SASL;
pluggable authorization;
integration with external
authentication services
supported.

broker.
Activity tracking. Because Kafka provides in-order logging of records, it can be used to track and re-create
activities, such as user actions on a web site.
Aggregation. Using stream processing, you can aggregate information from different streams to combine and
centralize the information into operational data.
Transformation. Using stream processing, you can combine and enrich data from multiple input topics into
one or more output topics.

To narrow the choices, start by answering these questions:

Do you need two-way communication between your IoT devices and Azure? If so, choose IoT Hub.

Do you need to manage access for individual devices and be able to revoke access to a specific device? If
yes, choose IoT Hub.

The following tables summarize the key differences in capabilities.

1

[1] You can also use Azure IoT protocol gateway as a custom gateway to enable protocol adaptation for IoT Hub.

For more information, see Comparison of Azure IoT Hub and Azure Event Hubs.

https://docs.microsoft.com/azure/iot-hub/iot-hub-devguide-device-twins
https://cwiki.apache.org/confluence/display/KAFKA/A+Guide+To+The+Kafka+Protocol
https://docs.microsoft.com/azure/iot-hub/iot-hub-protocol-gateway
https://docs.microsoft.com/azure/iot-hub/iot-hub-compare-event-hubs

Choosing a search data store in Azure
3/13/2019 • 2 minutes to read • Edit Online

What are your options when choosing a search data store?

Key selection criteria

Capability matrix

General capabilitiesGeneral capabilities

AZURE SEARCH ELASTICSEARCH HDINSIGHT WITH SOLR SQL DATABASE

Is managed service Yes No Yes Yes

REST API Yes Yes Yes No

This article compares technology choices for search data stores in Azure. A seach data store is used to create and
store specialized indexes for performing searches on free-form text. The text that is indexed may reside in a
separate data store, such as blob storage. An application submits a query to the search data store, and the result is
a list of matching documents. For more information about this scenario, see Processing free-form text for search.

In Azure, all of the following data stores will meet the core requirements for search against free-form text data by
providing a search index:

Azure Search
Elasticsearch
HDInsight with Solr
Azure SQL Database with full text search

For search scenarios, begin choosing the appropriate search data store for your needs by answering these
questions:

Do you want a managed service rather than managing your own servers?

Can you specify your index schema at design time? If not, choose an option that supports updateable
schemas.

Do you need an index only for full-text search, or do you also need rapid aggregation of numeric data and
other analytics? If you need functionality beyond full-text search, consider options that support additional
analytics.

Do you need a search index for log analytics, with support for log collection, aggregation, and visualizations
on indexed data? If so, consider Elasticsearch, which is part of a log analytics stack.

Do you need to index data in common document formats such as PDF, Word, PowerPoint, and Excel? If yes,
choose an option that provides document indexers.

Does your database have specific security needs? If yes, consider the security features listed below.

The following tables summarize the key differences in capabilities.

https://github.com/mspnp/architecture-center/blob/master/docs/data-guide/technology-choices/search-options.md
https://docs.microsoft.com/azure/search/search-what-is-azure-search
https://azuremarketplace.microsoft.com/marketplace/apps/elastic.elasticsearch?tab=Overview
https://docs.microsoft.com/azure/hdinsight/hdinsight-hadoop-solr-install-linux
https://docs.microsoft.com/sql/relational-databases/search/full-text-search

Programmability .NET Java Java T-SQL

Document indexers
for common file types
(PDF, DOCX, TXT, and
so on)

Yes No Yes No

AZURE SEARCH ELASTICSEARCH HDINSIGHT WITH SOLR SQL DATABASE

Manageability capabilitiesManageability capabilities

AZURE SEARCH ELASTICSEARCH HDINSIGHT WITH SOLR SQL DATABASE

Updateable schema No Yes Yes Yes

Supports scale out Yes Yes Yes No

Analytic workload capabilitiesAnalytic workload capabilities

AZURE SEARCH ELASTICSEARCH HDINSIGHT WITH SOLR SQL DATABASE

Supports analytics
beyond full text
search

No Yes Yes Yes

Part of a log analytics
stack

No Yes (ELK) No No

Supports semantic
search

Yes (find similar
documents only)

Yes Yes Yes

Security capabilitiesSecurity capabilities

AZURE SEARCH ELASTICSEARCH HDINSIGHT WITH SOLR SQL DATABASE

Row-level security Partial (requires
application query to
filter by group id)

Partial (requires
application query to
filter by group id)

Yes Yes

Transparent data
encryption

No No No Yes

Restrict access to
specific IP addresses

No Yes Yes Yes

Restrict access to
allow virtual network
access only

No Yes Yes Yes

Active Directory
authentication
(integrated
authentication)

No No No Yes

See also

Processing free-form text for search

Choosing a stream processing technology in Azure
3/13/2019 • 2 minutes to read • Edit Online

What are your options when choosing a technology for real-time
processing?

Key Selection Criteria

Capability matrix

General capabilitiesGeneral capabilities

AZURE
STREAM
ANALYTICS

HDINSIGHT
WITH SPARK
STREAMING

APACHE SPARK
IN AZURE
DATABRICKS

HDINSIGHT
WITH STORM

AZURE
FUNCTIONS

AZURE APP
SERVICE
WEBJOBS

Programmabil
ity

Stream
analytics
query
language,
JavaScript

Scala, Python,
Java

Scala, Python,
Java, R

Java, C# C#, F#,
Node.js

C#, Node.js,
PHP, Java,
Python

This article compares technology choices for real-time stream processing in Azure.

Real-time stream processing consumes messages from either queue or file-based storage, process the messages,
and forward the result to another message queue, file store, or database. Processing may include querying,
filtering, and aggregating messages. Stream processing engines must be able to consume an endless streams of
data and produce results with minimal latency. For more information, see Real time processing.

In Azure, all of the following data stores will meet the core requirements supporting real-time processing:

Azure Stream Analytics
HDInsight with Spark Streaming
Apache Spark in Azure Databricks
HDInsight with Storm
Azure Functions
Azure App Service WebJobs

For real-time processing scenarios, begin choosing the appropriate service for your needs by answering these
questions:

Do you prefer a declarative or imperative approach to authoring stream processing logic?

Do you need built-in support for temporal processing or windowing?

Does your data arrive in formats besides Avro, JSON, or CSV? If yes, consider options support any format
using custom code.

Do you need to scale your processing beyond 1 GB/s? If yes, consider the options that scale with the cluster
size.

The following tables summarize the key differences in capabilities.

https://github.com/mspnp/architecture-center/blob/master/docs/data-guide/technology-choices/stream-processing.md
https://docs.microsoft.com/azure/stream-analytics/
https://docs.microsoft.com/azure/hdinsight/spark/apache-spark-streaming-overview
https://docs.microsoft.com/azure/azure-databricks/
https://docs.microsoft.com/azure/hdinsight/storm/apache-storm-overview
https://docs.microsoft.com/azure/azure-functions/functions-overview
https://docs.microsoft.com/azure/app-service/web-sites-create-web-jobs

Programming
paradigm

Declarative Mixture of
declarative
and
imperative

Mixture of
declarative
and
imperative

Imperative Imperative Imperative

Pricing model Streaming
units

Per cluster
hour

Databricks
units

Per cluster
hour

Per function
execution and
resource
consumption

Per app
service plan
hour

AZURE
STREAM
ANALYTICS

HDINSIGHT
WITH SPARK
STREAMING

APACHE SPARK
IN AZURE
DATABRICKS

HDINSIGHT
WITH STORM

AZURE
FUNCTIONS

AZURE APP
SERVICE
WEBJOBS

Integration capabilitiesIntegration capabilities

AZURE
STREAM
ANALYTICS

HDINSIGHT
WITH SPARK
STREAMING

APACHE SPARK
IN AZURE
DATABRICKS

HDINSIGHT
WITH STORM

AZURE
FUNCTIONS

AZURE APP
SERVICE
WEBJOBS

Inputs Azure Event
Hubs, Azure
IoT Hub,
Azure Blob
storage

Event Hubs,
IoT Hub,
Kafka, HDFS,
Storage Blobs,
Azure Data
Lake Store

Event Hubs,
IoT Hub,
Kafka, HDFS,
Storage Blobs,
Azure Data
Lake Store

Event Hubs,
IoT Hub,
Storage Blobs,
Azure Data
Lake Store

Supported
bindings

Service Bus,
Storage
Queues,
Storage Blobs,
Event Hubs,
WebHooks,
Cosmos DB,
Files

Sinks Azure Data
Lake Store,
Azure SQL
Database,
Storage Blobs,
Event Hubs,
Power BI,
Table Storage,
Service Bus
Queues,
Service Bus
Topics,
Cosmos DB,
Azure
Functions

HDFS, Kafka,
Storage Blobs,
Azure Data
Lake Store,
Cosmos DB

HDFS, Kafka,
Storage Blobs,
Azure Data
Lake Store,
Cosmos DB

Event Hubs,
Service Bus,
Kafka

Supported
bindings

Service Bus,
Storage
Queues,
Storage Blobs,
Event Hubs,
WebHooks,
Cosmos DB,
Files

Processing capabilitiesProcessing capabilities

AZURE
STREAM
ANALYTICS

HDINSIGHT
WITH SPARK
STREAMING

APACHE SPARK
IN AZURE
DATABRICKS

HDINSIGHT
WITH STORM

AZURE
FUNCTIONS

AZURE APP
SERVICE
WEBJOBS

Built-in
temporal/win
dowing
support

Yes Yes Yes Yes No No

Input data
formats

Avro, JSON or
CSV, UTF-8
encoded

Any format
using custom
code

Any format
using custom
code

Any format
using custom
code

Any format
using custom
code

Any format
using custom
code

https://azure.microsoft.com/pricing/details/stream-analytics/
https://azure.microsoft.com/pricing/details/databricks/
https://docs.microsoft.com/azure/azure-functions/functions-triggers-bindings#supported-bindings
https://docs.microsoft.com/azure/azure-functions/functions-triggers-bindings#supported-bindings

Scalability Query
partitions

Bounded by
cluster size

Bounded by
Databricks
cluster scale
configuration

Bounded by
cluster size

Up to 200
function app
instances
processing in
parallel

Bounded by
app service
plan capacity

Late arrival
and out of
order event
handling
support

Yes Yes Yes Yes No No

AZURE
STREAM
ANALYTICS

HDINSIGHT
WITH SPARK
STREAMING

APACHE SPARK
IN AZURE
DATABRICKS

HDINSIGHT
WITH STORM

AZURE
FUNCTIONS

AZURE APP
SERVICE
WEBJOBS

See also:

Choosing a real-time message ingestion technology
Real time processing

https://docs.microsoft.com/azure/stream-analytics/stream-analytics-parallelization

Transferring data to and from Azure
3/13/2019 • 7 minutes to read • Edit Online

Physical transfer

Command line tools and APIs

There are several options for transferring data to and from Azure, depending on your needs.

Using physical hardware to transfer data to Azure is a good option when:

Your network is slow or unreliable.
Getting additional network bandwidth is cost-prohibitive.
Security or organizational policies do not allow outbound connections when dealing with sensitive data.

If your primary concern is how long it will take to transfer your data, you may want to run a test to verify whether
network transfer is actually slower than physical transport.

There are two main options for physically transporting data to Azure:

Azure Import/Export. The Azure Import/Export service lets you securely transfer large amounts of data to
Azure Blob Storage or Azure Files by shipping internal SATA HDDs or SDDs to an Azure datacenter. You can
also use this service to transfer data from Azure Storage to hard disk drives and have these shipped to you
for loading on-premises.

Azure Data Box. Azure Data Box is a Microsoft-provided appliance that works much like the Azure
Import/Export service. Microsoft ships you a proprietary, secure, and tamper-resistant transfer appliance
and handles the end-to-end logistics, which you can track through the portal. One benefit of the Azure Data
Box service is ease of use. You don't need to purchase several hard drives, prepare them, and transfer files to
each one. Azure Data Box is supported by a number of industry-leading Azure partners to make it easier to
seamlessly leverage offline transport to the cloud from their products.

Consider these options when you want scripted and programmatic data transfer.

Azure CLI. The Azure CLI is a cross-platform tool that allows you to manage Azure services and upload
data to Azure Storage.

AzCopy. Use AzCopy from a Windows or Linux command-line to easily copy data to and from Azure Blob,
File, and Table storage with optimal performance. AzCopy supports concurrency and parallelism, and the
ability to resume copy operations when interrupted. It is also faster than most other options. For
programmatic access, the Microsoft Azure Storage Data Movement Library is the core framework that
powers AzCopy. It is provided as a .NET Core library.

PowerShell. The Start-AzureStorageBlobCopy PowerShell cmdlet is an option for Windows administrators
who are used to PowerShell.

AdlCopy. AdlCopy enables you to copy data from Azure Storage Blobs into Data Lake Store. It can also be
used to copy data between two Azure Data Lake Store accounts. However, it cannot be used to copy data
from Data Lake Store to Storage Blobs.

Distcp. If you have an HDInsight cluster with access to Data Lake Store, you can use Hadoop ecosystem
tools like Distcp to copy data to and from an HDInsight cluster storage (WASB) into a Data Lake Store
account.

https://github.com/mspnp/architecture-center/blob/master/docs/data-guide/scenarios/data-transfer.md
https://docs.microsoft.com/azure/storage/common/storage-import-export-service
https://azure.microsoft.com/services/storage/databox/
https://docs.microsoft.com/azure/hdinsight/hdinsight-upload-data#commandline
https://docs.microsoft.com/azure/storage/common/storage-use-azcopy?toc=%2fazure%2fstorage%2fblobs%2ftoc.json
https://docs.microsoft.com/azure/storage/common/storage-use-azcopy-linux?toc=%2fazure%2fstorage%2fblobs%2ftoc.json
https://docs.microsoft.com/azure/storage/common/storage-use-data-movement-library
https://docs.microsoft.com/powershell/module/azure.storage/start-azurestorageblobcopy?view=azurermps-5.0.0
https://docs.microsoft.com/azure/data-lake-store/data-lake-store-copy-data-azure-storage-blob
https://docs.microsoft.com/azure/data-lake-store/data-lake-store-copy-data-wasb-distcp

Graphical interface

Data pipeline

Key Selection Criteria

Sqoop. Sqoop is an Apache project and part of the Hadoop ecosystem. It comes preinstalled on all
HDInsight clusters. It allows data transfer between an HDInsight cluster and relational databases such as
SQL, Oracle, MySQL, and so on. Sqoop is a collection of related tools, including import and export. Sqoop
works with HDInsight clusters using either Azure Storage blobs or Data Lake Store attached storage.

PolyBase. PolyBase is a technology that accesses data outside of the database through the T-SQL language.
In SQL Server 2016, it allows you to run queries on external data in Hadoop or to import/export data from
Azure Blob Storage. In Azure SQL Data Warehouse, you can import/export data from Azure Blob Storage
and Azure Data Lake Store. Currently, PolyBase is the fastest method of importing data into SQL Data
Warehouse.

Hadoop command line. When you have data that resides on an HDInsight cluster head node, you can use
the hadoop -copyFromLocal command to copy that data to your cluster's attached storage, such as Azure
Storage blob or Azure Data Lake Store. In order to use the Hadoop command, you must first connect to the
head node. Once connected, you can upload a file to storage.

Consider the following options if you are only transferring a few files or data objects and don't need to automate
the process.

Azure Storage Explorer. Azure Storage Explorer is a cross-platform tool that lets you manage the contents
of your Azure storage accounts. It allows you to upload, download, and manage blobs, files, queues, tables,
and Azure Cosmos DB entities. Use it with Blob storage to manage blobs and folders, as well as upload and
download blobs between your local file system and Blob storage, or between storage accounts.

Azure portal. Both Blob storage and Data Lake Store provide a web-based interface for exploring files and
uploading new files one at a time. This is a good option if you do not want to install any tools or issue
commands to quickly explore your files, or to simply upload a handful of new ones.

Azure Data Factory. Azure Data Factory is a managed service best suited for regularly transferring files between
a number of Azure services, on-premises, or a combination of the two. Using Azure Data Factory, you can create
and schedule data-driven workflows (called pipelines) that ingest data from disparate data stores. It can process
and transform the data by using compute services such as Azure HDInsight Hadoop, Spark, Azure Data Lake
Analytics, and Azure Machine Learning. Create data-driven workflows for orchestrating and automating data
movement and data transformation.

For data transfer scenarios, choose the appropriate system for your needs by answering these questions:

Do you need to transfer very large amounts of data, where doing so over an Internet connection would take
too long, be unreliable, or too expensive? If yes, consider physical transfer.

Do you prefer to script your data transfer tasks, so they are reusable? If so, select one of the command line
options or Azure Data Factory.

Do you need to transfer a very large amount of data over a network connection? If so, select an option that
is optimized for big data.

Do you need to transfer data to or from a relational database? If yes, choose an option that supports one or
more relational databases. Note that some of these options also require a Hadoop cluster.

Do you need an automated data pipeline or workflow orchestration? If yes, consider Azure Data Factory.

https://docs.microsoft.com/azure/hdinsight/hadoop/hdinsight-use-sqoop
https://docs.microsoft.com/sql/relational-databases/polybase/get-started-with-polybase
https://azure.microsoft.com/features/storage-explorer/
https://docs.microsoft.com/azure/data-factory/

Capability matrix

Physical transferPhysical transfer

AZURE IMPORT/EXPORT SERVICE AZURE DATA BOX

Form factor Internal SATA HDDs or SDDs Secure, tamper-proof, single hardware
appliance

Microsoft manages shipping logistics No Yes

Integrates with partner products No Yes

Custom appliance No Yes

Command line toolsCommand line tools

DISTCP SQOOP HADOOP CLI

Optimized for big data Yes Yes Yes

Copy to relational database No Yes No

Copy from relational
database

No Yes No

Copy to Blob storage Yes Yes Yes

Copy from Blob storage Yes Yes No

Copy to Data Lake Store Yes Yes Yes

Copy from Data Lake Store Yes Yes No

AZURE CLI AZCOPY POWERSHELL ADLCOPY POLYBASE

Compatible
platforms

Linux, OS X,
Windows

Linux, Windows Windows Linux, OS X,
Windows

SQL Server, Azure
SQL Data
Warehouse

Optimized for big
data

No No No Yes Yes

Copy to relational
database

No No No No Yes

Copy from
relational
database

No No No No Yes

The following tables summarize the key differences in capabilities.

Hadoop/HDInsight:

Other:

1 2

Copy to Blob
storage

Yes Yes Yes No Yes

Copy from Blob
storage

Yes Yes Yes Yes Yes

Copy to Data
Lake Store

No No Yes Yes Yes

Copy from Data
Lake Store

No No Yes Yes Yes

AZURE CLI AZCOPY POWERSHELL ADLCOPY POLYBASE

Graphical interface and Azure Data FactoryGraphical interface and Azure Data Factory

AZURE STORAGE EXPLORER AZURE PORTAL * AZURE DATA FACTORY

Optimized for big data No No Yes

Copy to relational database No No Yes

Copy from relational
database

No No Yes

Copy to Blob storage Yes No Yes

Copy from Blob storage Yes No Yes

Copy to Data Lake Store No No Yes

Copy from Data Lake Store No No Yes

Upload to Blob storage Yes Yes Yes

Upload to Data Lake Store Yes Yes Yes

Orchestrate data transfers No No Yes

Custom data
transformations

No No Yes

Pricing model Free Free Pay per usage

[1] AdlCopy is optimized for transferring big data when used with a Data Lake Analytics account.

[2] PolyBase performance can be increased by pushing computation to Hadoop and using PolyBase scale-out
groups to enable parallel data transfer between SQL Server instances and Hadoop nodes.

* Azure portal in this case means using the web-based exploration tools for Blob storage and Data Lake Store.

https://docs.microsoft.com/sql/relational-databases/polybase/polybase-guide#performance
https://docs.microsoft.com/sql/relational-databases/polybase/polybase-scale-out-groups

Extending on-premises data solutions to the cloud
3/13/2019 • 7 minutes to read • Edit Online

When to use a hybrid solution

Challenges

On-premises data stores

When organizations move workloads and data to the cloud, their on-premises datacenters often continue to play
an important role. The term hybrid cloud refers to a combination of public cloud and on-premises data centers, to
create an integrated IT environment that spans both. Some organizations use hybrid cloud as a path to migrate
their entire datacenter to the cloud ove time. Other organizations use cloud services to extend their existing on-
premises infrastructure.

This article describes some considerations and best practices for managing data in a hybrid cloud solution,

Consider using a hybrid solution in the following scenarios:

As a transition strategy during a longer-term migration to a fully cloud native solution.
When regulations or policies do not permit moving specific data or workloads to the cloud.
For disaster recovery and fault tolerance, by replicating data and services between on-premises and cloud
environments.
To reduce latency between your on-premises data center and remote locations, by hosting part of your
architecture in Azure.

Creating a consistent environment in terms of security, management, and development, and avoiding
duplication of work.

Creating a reliable, low latency and secure data connection between your on-premises and cloud
environments.

Replicating your data and modifying applications and tools to use the correct data stores within each
environment.

Securing and encrypting data that is hosted in the cloud but accessed from on-premises, or vice versa.

On-premises data stores include databases and files. There may be several reasons to keep these local. There there
may be regulations or policies that do not permit moving specific data or workloads to the cloud. Data sovereignty,
privacy, or security concerns may favor on-premises placement. During a migration, you may want to keep some
data local to an application that hasn't been migrated yet.

Considerations in placing application data in a public cloud include:

Cost. The cost of storage in Azure can be significantly lower than the cost of maintaining storage with
similar characteristics in an on-premises datacenter. Of course, many companies have existing investments
in high-end SANs, so these cost advantages may not reach full fruition until existing hardware ages out.

Elastic scale. Planning and managing data capacity growth in an on-premises environment can be
challenging, particularly when data growth is difficult to predict. These applications can take advantage of
the capacity-on-demand and virtually unlimited storage available in the cloud. This consideration is less
relevant for applications that consist of relatively static sized datasets.

https://github.com/mspnp/architecture-center/blob/master/docs/data-guide/scenarios/hybrid-on-premises-and-cloud.md

Extending data stores to the cloud

Azure Stack

SQL Server data stores

Disaster recovery. Data stored in Azure can be automatically replicated within an Azure region and across
geographic regions. In hybrid environments, these same technologies can be used to replicate between on-
premises and cloud-based data stores.

There are several options for extending on-premises data stores to the cloud. One option is to have on-premises
and cloud replicas. This can help achieve a high level of fault tolerance, but may require making changes to
applications to connect to the appropriate data store in the event of a failover.

Another option is to move a portion of the data to cloud storage, while keeping the more current or more highly
accessed data on-premises. This method can provide a more cost-effective option for long-term storage, as well as
improve data access response times by reducing your operational data set.

A third option is to keep all data on-premises, but use cloud computing to host applications. To do this, you would
host your application in the cloud and connect it to your on-premises data store over a secure connection.

For a complete hybrid cloud solution, consider using Microsoft Azure Stack. Azure Stack is a hybrid cloud platform
that lets you provide Azure services from your datacenter. This helps maintain consistency between on-premises
and Azure, by using identical tools and requiring no code changes.

The following are some use cases for Azure and Azure Stack:

Edge and disconnected solutions. Address latency and connectivity requirements by processing data
locally in Azure Stack and then aggregating in Azure for further analytics, with common application logic
across both.

Cloud applications that meet varied regulations. Develop and deploy applications in Azure, with the
flexibility to deploy the same applications on-premises on Azure Stack to meet regulatory or policy
requirements.

Cloud application model on-premises. Use Azure to update and extend existing applications or build
new ones. Use a consistent DevOps processes across Azure in the cloud and Azure Stack on-premises.

If you are running SQL Server on-premises, you can use Microsoft Azure Blob Storage service for backup and
restore. For more information, see SQL Server Backup and Restore with Microsoft Azure Blob Storage Service.
This capability gives you limitless offsite storage, and the ability to share the same backups between SQL Server
running on-premises and SQL Server running in a virtual machine in Azure.

Azure SQL Database is a managed relational database-as-a service. Because Azure SQL Database uses the
Microsoft SQL Server Engine, applications can access data in the same way with both technologies. Azure SQL
Database can also be combined with SQL Server in useful ways. For example, the SQL Server Stretch Database
feature lets an application access what looks like a single table in a SQL Server database while some or all rows of
that table might be stored in Azure SQL Database. This technology automatically moves data that's not accessed
for a defined period of time to the cloud. Applications reading this data are unaware that any data has been moved
to the cloud.

Maintaining data stores on-premises and in the cloud can be challenging when you desire to keep the data
synchronized. You can address this with SQL Data Sync, a service built on Azure SQL Database that lets you
synchronize the data you select, bi-directionally across multiple Azure SQL databases and SQL Server instances.
While Data Sync makes it easy to keep your data up-to-date across these various data stores, it should not be used
for disaster recovery or for migrating from on-premises SQL Server to Azure SQL Database.

https://docs.microsoft.com/azure/azure-stack/
https://docs.microsoft.com/sql/relational-databases/backup-restore/sql-server-backup-and-restore-with-microsoft-azure-blob-storage-service
https://docs.microsoft.com/azure/sql-database/
https://docs.microsoft.com/sql/sql-server/stretch-database/stretch-database
https://docs.microsoft.com/azure/sql-database/sql-database-sync-data

Network shares and file-based data stores

Hybrid networking

For disaster recovery and business continuity, you can use AlwaysOn Availability Groups to replicate data across
two or more instances of SQL Server, some of which can be running on Azure virtual machines in another
geographic region.

In a hybrid cloud architecture, it is common for an organization to keep newer files on-premises while archiving
older files to the cloud. This is sometimes called file tiering, where there is seamless access to both sets of files, on-
premises and cloud-hosted. This approach helps to minimize network bandwidth usage and access times for newer
files, which are likely to be accessed the most often. At the same time, you get the benefits of cloud-based storage
for archived data.

Organizations may also wish to move their network shares entirely to the cloud. This would be desirable, for
example, if the applications that access them are also located in the cloud. This procedure can be done using data
orchestration tools.

Azure StorSimple offers the most complete integrated storage solution for managing storage tasks between your
on-premises devices and Azure cloud storage. StorSimple is an efficient, cost-effective, and easily manageable
storage area network (SAN) solution that eliminates many of the issues and expenses associated with enterprise
storage and data protection. It uses the proprietary StorSimple 8000 series device, integrates with cloud services,
and provides a set of integrated management tools.

Another way to use on-premises network shares alongside cloud-based file storage is with Azure Files. Azure Files
offers fully managed file shares that you can access with the standard Server Message Block (SMB) protocol
(sometimes referred to as CIFS). You can mount Azure Files as a file share on your local computer, or use them
with existing applications that access local or network share files.

To synchronize file shares in Azure Files with your on-premises Windows Servers, use Azure File Sync. One major
benefit of Azure File Sync is the ability to tier files between your on-premises file server and Azure Files. This lets
you keep only the newest and most recently accessed files locally.

For more information, see Deciding when to use Azure Blob storage, Azure Files, or Azure Disks.

This article focused on hybrid data solutions, but another consideration is how to extend your on-premises
network to Azure. For more information about this aspect of hybrid solutions, see the following topics:

Choose a solution for connecting an on-premises network to Azure
Hybrid network reference architectures

https://docs.microsoft.com/sql/database-engine/availability-groups/windows/overview-of-always-on-availability-groups-sql-server
https://docs.microsoft.com/azure/storsimple/
https://docs.microsoft.com/azure/storage/files/storage-files-introduction
https://msdn.microsoft.com/library/windows/desktop/aa365233.aspx?f=255&MSPPError=-2147217396
https://docs.microsoft.com/azure/storage/files/storage-sync-files-planning
https://docs.microsoft.com/azure/storage/common/storage-decide-blobs-files-disks
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/hybrid-networking/considerations

Securing data solutions
3/13/2019 • 5 minutes to read • Edit Online

Challenges

Data Protection

Access Control

For many, making data accessible in the cloud, particularly when transitioning from working exclusively in on-
premises data stores, can cause some concern around increased accessibility to that data and new ways in which to
secure it.

Centralizing the monitoring and analysis of security events stored in numerous logs.
Implementing encryption and authorization management across your applications and services.
Ensuring that centralized identity management works across all of your solution components, whether on-
premises or in the cloud.

The first step to protecting information is identifying what to protect. Develop clear, simple, and well-
communicated guidelines to identify, protect, and monitor the most important data assets anywhere they reside.
Establish the strongest protection for assets that have a disproportionate impact on the organization's mission or
profitability. These are known as high value assets, or HVAs. Perform stringent analysis of HVA lifecycle and
security dependencies, and establish appropriate security controls and conditions. Similarly, identify and classify
sensitive assets, and define the technologies and processes to automatically apply security controls.

Once the data you need to protect has been identified, consider how you will protect the data at rest and data in
transit.

Data at rest: Data that exists statically on physical media, whether magnetic or optical disk, on premises or in
the cloud.
Data in transit: Data while it is being transferred between components, locations or programs, such as over the
network, across a service bus (from on-premises to cloud and vice-versa), or during an input/output process.

To learn more about protecting your data at rest or in transit, see Azure Data Security and Encryption Best
Practices.

Central to protecting your data in the cloud is a combination of identity management and access control. Given the
variety and type of cloud services, as well as the rising popularity of hybrid cloud, there are several key practices
you should follow when it comes to identity and access control:

Centralize your identity management.
Enable Single Sign-On (SSO).
Deploy password management.
Enforce multi-factor authentication (MFA) for users.
Use role based access control (RBAC).
Conditional Access Policies should be configured, which enhances the classic concept of user identity with
additional properties related to user location, device type, patch level, and so on.
Control locations where resources are created using resource manager.
Actively monitor for suspicious activities

https://github.com/mspnp/architecture-center/blob/master/docs/data-guide/scenarios/securing-data-solutions.md
https://docs.microsoft.com/azure/security/azure-security-data-encryption-best-practices

Auditing

Securing data solutions in Azure
EncryptionEncryption

Rights managementRights management

Access controlAccess control

NetworkNetwork

For more information, see Azure Identity Management and access control security best practices.

Beyond the identity and access monitoring previously mentioned, the services and applications that you use in the
cloud should be generating security-related events that you can monitor. The primary challenge to monitoring
these events is handling the quantities of logs , in order to avoid potential problems or troubleshoot past ones.
Cloud-based applications tend to contain many moving parts, most of which generate some level of logging and
telemetry. Use centralized monitoring and analysis to help you manage and make sense of the large amount of
information.

For more information, see Azure Logging and Auditing.

Virtual machines. Use Azure Disk Encryption to encrypt the attached disks on Windows or Linux VMs. This
solution integrates with Azure Key Vault to control and manage the disk-encryption keys and secrets.

Azure Storage. Use Azure Storage Service Encryption to automatically encrypt data at rest in Azure Storage.
Encryption, decryption, and key management are totally transparent to users. Data can also be secured in transit by
using client-side encryption with Azure Key Vault. For more information, see Client-Side Encryption and Azure Key
Vault for Microsoft Azure Storage.

SQL Database and Azure SQL Data Warehouse. Use Transparent Data Encryption (TDE) to perform real-time
encryption and decryption of your databases, associated backups, and transaction log files without requiring any
changes to your applications. SQL Database can also use Always Encrypted to help protect sensitive data at rest on
the server, during movement between client and server, and while the data is in use. You can use Azure Key Vault to
store your Always Encrypted encryption keys.

Azure Rights Management is a cloud-based service that uses encryption, identity, and authorization policies to
secure files and email. It works across multiple devices — phones, tablets, and PCs. Information can be protected
both within your organization and outside your organization because that protection remains with the data, even
when it leaves your organization's boundaries.

Use Role-Based Access Control (RBAC) to restrict access to Azure resources based on user roles. If you are using
Active Directory on-premises, you can synchronize with Azure AD to provide users with a cloud identity based on
their on-premises identity.

Use Conditional access in Azure Active Directory to enforce controls on the access to applications in your
environment based on specific conditions. For example, your policy statement could take the form of: When
contractors are trying to access our cloud apps from networks that are not trusted, then block access.

Azure AD Privileged Identity Management can help you manage, control, and monitor your users and what sorts
of tasks they are performing with their admin privileges. This is an important step to limiting who in your
organization can carry out privileged operations in Azure AD, Azure, Office 365, or SaaS apps, as well as monitor
their activities.

To protect data in transit, always use SSL/TLS when exchanging data across different locations. Sometimes you
need to isolate your entire communication channel between your on-premises and cloud infrastructure by using
either a virtual private network (VPN) or ExpressRoute. For more information, see Extending on-premises data
solutions to the cloud.

https://docs.microsoft.com/azure/security/azure-security-identity-management-best-practices
https://docs.microsoft.com/azure/security/azure-log-audit
https://docs.microsoft.com/azure/security/azure-security-disk-encryption
https://docs.microsoft.com/azure/key-vault/
https://docs.microsoft.com/azure/storage/common/storage-service-encryption
https://docs.microsoft.com/azure/storage/common/storage-client-side-encryption
https://docs.microsoft.com/sql/relational-databases/security/encryption/transparent-data-encryption-azure-sql
https://docs.microsoft.com/azure/sql-database/sql-database-always-encrypted-azure-key-vault
https://docs.microsoft.com/information-protection/understand-explore/what-is-azure-rms
https://docs.microsoft.com/azure/active-directory/role-based-access-control-what-is
https://docs.microsoft.com/azure/active-directory/active-directory-hybrid-identity-design-considerations-directory-sync-requirements
https://docs.microsoft.com/azure/active-directory/active-directory-conditional-access-azure-portal
https://docs.microsoft.com/azure/active-directory/active-directory-privileged-identity-management-configure
https://docs.microsoft.com/azure/expressroute/

MonitoringMonitoring

Use network security groups (NSGs) to reduce the number of potential attack vectors. A network security group
contains a list of security rules that allow or deny inbound or outbound network traffic based on source or
destination IP address, port, and protocol.

Use Virtual Network service endpoints to secure Azure SQL or Azure Storage resources, so that only traffic from
your virtual network can access these resources.

VMs within an Azure Virtual Network (VNet) can securely communicate with other VNets using virtual network
peering. Network traffic between peered virtual networks is private. Traffic between the virtual networks is kept on
the Microsoft backbone network.

For more information, see Azure network security

Azure Security Center automatically collects, analyzes, and integrates log data from your Azure resources, the
network, and connected partner solutions, such as firewall solutions, to detect real threats and reduce false
positives.

Log Analytics provides centralized access to your logs and helps you analyze that data and create custom alerts.

Azure SQL Database Threat Detection detects anomalous activities indicating unusual and potentially harmful
attempts to access or exploit databases. Security officers or other designated administrators can receive an
immediate notification about suspicious database activities as they occur. Each notification provides details of the
suspicious activity and recommends how to further investigate and mitigate the threat.

https://docs.microsoft.com/azure/virtual-network/virtual-networks-nsg
https://docs.microsoft.com/azure/virtual-network/virtual-network-service-endpoints-overview
https://docs.microsoft.com/azure/virtual-network/virtual-network-peering-overview
https://docs.microsoft.com/azure/security/azure-network-security
https://docs.microsoft.com/azure/security-center/security-center-intro
https://docs.microsoft.com/azure/log-analytics/log-analytics-overview
https://docs.microsoft.com/azure/sql-database/sql-database-threat-detection

Extend Azure Resource Manager template
functionality
3/13/2019 • 2 minutes to read • Edit Online

NOTENOTE

In 2016, the Microsoft patterns & practices team created a set of Azure Resource Manager template building
blocks with the goal of simplifying resource deployment. Each building block contains a set of pre-built templates
that deploy sets of resources specified by separate parameter files.

The building block templates are designed to be combined together to create larger and more complex
deployments. For example, deploying a virtual machine in Azure requires a virtual network, storage accounts, and
other resources. The virtual network building block template deploys a virtual network and subnets. The virtual
machine building block template deploys storage accounts, network interfaces, and the actual VMs. You can then
create a script or template to call both building block templates with their corresponding parameter files to deploy
a complete architecture with one operation.

While developing the building block templates, p&p designed several concepts to extend Azure Resource Manager
template functionality. In this series, we will describe several of these concepts so you can use them in your own
templates.

These articles assume you have an advanced understanding of Azure Resource Manager templates.

https://github.com/mspnp/architecture-center/blob/master/docs/building-blocks/extending-templates/index.md
https://github.com/mspnp/template-building-blocks/wiki
https://github.com/mspnp/template-building-blocks/wiki/VNet-(v1)
https://github.com/mspnp/template-building-blocks/wiki/Windows-and-Linux-VMs-(v1)

Update a resource in an Azure Resource Manager
template
3/13/2019 • 3 minutes to read • Edit Online

Example template

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {},
 "resources": [
 {
 "apiVersion": "2016-03-30",
 "name": "firstVNet",
 "location":"[resourceGroup().location]",
 "type": "Microsoft.Network/virtualNetworks",
 "properties": {
 "addressSpace":{"addressPrefixes": [
 "10.0.0.0/22"
]},
 "subnets":[
 {
 "name":"firstSubnet",
 "properties":{
 "addressPrefix":"10.0.0.0/24"
 }
 }
]
 }
 },
 {
 "apiVersion": "2015-06-15",
 "type":"Microsoft.Network/networkInterfaces",

There are some scenarios in which you need to update a resource during a deployment. You might encounter this
scenario when you cannot specify all the properties for a resource until other, dependent resources are created. For
example, if you create a backend pool for a load balancer, you might update the network interfaces (NICs) on your
virtual machines (VMs) to include them in the backend pool. And while Resource Manager supports updating
resources during deployment, you must design your template correctly to avoid errors and to ensure the
deployment is handled as an update.

First, you must reference the resource once in the template to create it and then reference the resource by the same
name to update it later. However, if two resources have the same name in a template, Resource Manager throws an
exception. To avoid this error, specify the updated resource in a second template that's either linked or included as a
subtemplate using the Microsoft.Resources/deployments resource type.

Second, you must either specify the name of the existing property to change or a new name for a property to add
in the nested template. You must also specify the original properties and their original values. If you fail to provide
the original properties and values, Resource Manager assumes you want to create a new resource and deletes the
original resource.

Let's look at an example template that demonstrates this. Our template deploys a virtual network named
firstVNet that has one subnet named firstSubnet . It then deploys a virtual network interface (NIC) named nic1

and associates it with our subnet. Then, a deployment resource named updateVNet includes a nested template that
updates our firstVNet resource by adding a second subnet named secondSubnet .

https://github.com/mspnp/architecture-center/blob/master/docs/building-blocks/extending-templates/update-resource.md

 "name":"nic1",
 "location":"[resourceGroup().location]",
 "dependsOn": [
 "firstVNet"
],
 "properties": {
 "ipConfigurations":[
 {
 "name":"ipconfig1",
 "properties": {
 "privateIPAllocationMethod":"Dynamic",
 "subnet": {
 "id": "
[concat(resourceId('Microsoft.Network/virtualNetworks','firstVNet'),'/subnets/firstSubnet')]"
 }
 }
 }
]
 }
 },
 {
 "apiVersion": "2015-01-01",
 "type": "Microsoft.Resources/deployments",
 "name": "updateVNet",
 "dependsOn": [
 "nic1"
],
 "properties": {
 "mode": "Incremental",
 "parameters": {},
 "template": {
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {},
 "variables": {},
 "resources": [
 {
 "apiVersion": "2016-03-30",
 "name": "firstVNet",
 "location":"[resourceGroup().location]",
 "type": "Microsoft.Network/virtualNetworks",
 "properties": {
 "addressSpace": "[reference('firstVNet').addressSpace]",
 "subnets":[
 {
 "name":"[reference('firstVNet').subnets[0].name]",
 "properties":{
 "addressPrefix":"
[reference('firstVNet').subnets[0].properties.addressPrefix]"
 }
 },
 {
 "name":"secondSubnet",
 "properties":{
 "addressPrefix":"10.0.1.0/24"
 }
 }
]
 }
 }
],
 "outputs": {}
 }
 }
 }
],
 "outputs": {}
}

Try the template

az group create --location <location> --name <resource-group-name>
az group deployment create -g <resource-group-name> \
 --template-uri https://raw.githubusercontent.com/mspnp/template-examples/master/example1-update/deploy.json

Next steps

Let's take a look at the resource object for our firstVNet resource first. Notice that we respecify the settings for
our firstVNet in a nested template—this is because Resource Manager doesn't allow the same deployment name
within the same template and nested templates are considered to be a different template. By respecifying our
values for our firstSubnet resource, we are telling Resource Manager to update the existing resource instead of
deleting it and redeploying it. Finally, our new settings for secondSubnet are picked up during this update.

An example template is available on GitHub. To deploy the template, run the following Azure CLI commands:

Once deployment has finished, open the resource group you specified in the portal. You see a virtual network
named firstVNet and a NIC named nic1 . Click firstVNet , then click subnets . You see the firstSubnet that was
originally created, and you see the secondSubnet that was added in the updateVNet resource.

Then, go back to the resource group and click nic1 then click IP configurations . In the IP configurations

section, the subnet is set to firstSubnet (10.0.0.0/24) .

The original firstVNet has been updated instead of recreated. If firstVNet had been recreated, nic1 would not
be associated with firstVNet .

Learn how deploy a resource based on a condition, such as whether a parameter value is present. See
Conditionally deploy a resource in an Azure Resource Manager template.

https://github.com/mspnp/template-examples
https://docs.microsoft.com/cli/azure/?view=azure-cli-latest

Conditionally deploy a resource in an Azure Resource
Manager template
3/13/2019 • 3 minutes to read • Edit Online

Example template

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "virtualNetworkPeerings": {
 "type": "array",
 "defaultValue": []
 }
 },

"virtualNetworkPeerings": [
 {
 "name": "firstVNet/peering1",
 "properties": {
 "remoteVirtualNetwork": {
 "id": "[resourceId('Microsoft.Network/virtualNetworks','secondVNet')]"
 },
 "allowForwardedTraffic": true,
 "allowGatewayTransit": true,
 "useRemoteGateways": false
 }
 }
]

There are some scenarios in which you need to design your template to deploy a resource based on a condition,
such as whether or not a parameter value is present. For example, your template may deploy a virtual network and
include parameters to specify other virtual networks for peering. If you've not specified any parameter values for
peering, you don't want Resource Manager to deploy the peering resource.

To accomplish this, use the condition element in the resource to test the length of your parameter array. If the
length is zero, return false to prevent deployment, but for all values greater than zero return true to allow
deployment.

Let's look at an example template that demonstrates this. Our template uses the condition element to control
deployment of the Microsoft.Network/virtualNetworks/virtualNetworkPeerings resource. This resource creates a
peering between two Azure Virtual Networks in the same region.

Let's take a look at each section of the template.

The parameters element defines a single parameter named virtualNetworkPeerings :

Our virtualNetworkPeerings parameter is an array and has the following schema:

The properties in our parameter specify the settings related to peering virtual networks. We'll provide the values
for these properties when we specify the Microsoft.Network/virtualNetworks/virtualNetworkPeerings resource in
the resources section:

https://github.com/mspnp/architecture-center/blob/master/docs/building-blocks/extending-templates/conditional-deploy.md
https://docs.microsoft.com/azure/azure-resource-manager/resource-manager-templates-resources#condition
https://docs.microsoft.com/azure/azure-resource-manager/resource-manager-templates-resources#condition
https://docs.microsoft.com/azure/templates/microsoft.network/virtualnetworks/virtualnetworkpeerings

"resources": [
 {
 "type": "Microsoft.Resources/deployments",
 "apiVersion": "2017-05-10",
 "name": "[concat('vnp-', copyIndex())]",
 "condition": "[greater(length(parameters('virtualNetworkPeerings')), 0)]",
 "dependsOn": [
 "firstVNet", "secondVNet"
],
 "copy": {
 "name": "iterator",
 "count": "[length(variables('peerings'))]",
 "mode": "serial"
 },
 "properties": {
 "mode": "Incremental",
 "template": {
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 },
 "variables": {
 },
 "resources": [
 {
 "type": "Microsoft.Network/virtualNetworks/virtualNetworkPeerings",
 "apiVersion": "2016-06-01",
 "location": "[resourceGroup().location]",
 "name": "[variables('peerings')[copyIndex()].name]",
 "properties": "[variables('peerings')[copyIndex()].properties]"
 }
],
 "outputs": {
 }
 }
 }
 }
]

There are a couple of things going on in this part of our template. First, the actual resource being deployed is an
inline template of type Microsoft.Resources/deployments that includes its own template that actually deploys the
Microsoft.Network/virtualNetworks/virtualNetworkPeerings .

Our name for the inline template is made unique by concatenating the current iteration of the copyIndex() with
the prefix vnp- .

The condition element specifies that our resource should be processed when the greater() function evaluates to
true . Here, we're testing if the virtualNetworkPeerings parameter array is greater() than zero. If it is, it evaluates

to true and the condition is satisfied. Otherwise, it's false .

Next, we specify our copy loop. It's a serial loop that means the loop is done in sequence, with each resource
waiting until the last resource has been deployed. The count property specifies the number of times the loop
iterates. Here, normally we'd set it to the length of the virtualNetworkPeerings array because it contains the
parameter objects specifying the resource we want to deploy. However, if we do that, validation will fail if the array
is empty because Resource Manager notices that we are attempting to access properties that do not exist. We can
work around this, however. Let's take a look at the variables we'll need:

 "variables": {
 "workaround": {
 "true": "[parameters('virtualNetworkPeerings')]",
 "false": [{
 "name": "workaround",
 "properties": {}
 }]
 },
 "peerings": "[variables('workaround')[string(greater(length(parameters('virtualNetworkPeerings')), 0))]]"
 },

Try the template

az group create --location <location> --name <resource-group-name>
az group deployment create -g <resource-group-name> \
 --template-uri https://raw.githubusercontent.com/mspnp/template-examples/master/example2-
conditional/deploy.json

Next steps

Our workaround variable includes two properties, one named true and one named false . The true property
evaluates to the value of the virtualNetworkPeerings parameter array. The false property evaluates to an empty
object including the named properties that Resource Manager expects to see — note that false is actually an
array, just as our virtualNetworkPeerings parameter is, which will satisfy validation.

Our peerings variable uses our workaround variable by once again testing if the length of the
virtualNetworkPeerings parameter array is greater than zero. If it is, the string evaluates to true and the
workaround variable evaluates to the virtualNetworkPeerings parameter array. Otherwise, it evaluates to false

and the workaround variable evaluates to our empty object in the first element of the array.

Now that we've worked around the validation issue, we can simply specify the deployment of the
Microsoft.Network/virtualNetworks/virtualNetworkPeerings resource in the nested template, passing the name and
properties from our virtualNetworkPeerings parameter array. You can see this in the template element nested in

the properties element of our resource.

An example template is available on GitHub. To deploy the template, run the following Azure CLI commands:

Use objects instead of scalar values as template parameters. See Use an object as a parameter in an Azure
Resource Manager template

https://github.com/mspnp/template-examples
https://docs.microsoft.com/cli/azure/?view=azure-cli-latest

Use an object as a parameter in an Azure Resource
Manager template
3/13/2019 • 5 minutes to read • Edit Online

...
"parameters": {
 "VNetSettings":{"type":"object"}
},

NOTENOTE

"parameters":{
 "VNetSettings":{
 "value":{
 "name":"VNet1",
 "addressPrefixes": [
 {
 "name": "firstPrefix",
 "addressPrefix": "10.0.0.0/22"
 }
],
 "subnets":[
 {
 "name": "firstSubnet",
 "addressPrefix": "10.0.0.0/24"
 },
 {
 "name":"secondSubnet",
 "addressPrefix":"10.0.1.0/24"
 }
]
 }
 }
}

When you author Azure Resource Manager templates, you can either specify resource property values directly in
the template or define a parameter and provide values during deployment. It's fine to use a parameter for each
property value for small deployments, but there is a limit of 255 parameters per deployment. Once you get to
larger and more complex deployments you may run out of parameters.

One way to solve this problem is to use an object as a parameter instead of a value. To do this, define the
parameter in your template and specify a JSON object instead of a single value during deployment. Then,
reference the subproperties of the parameter using the parameter() function and dot operator in your template.

Let's take a look at an example that deploys a virtual network resource. First, let's specify a VNetSettings

parameter in our template and set the type to object :

Next, let's provide values for the VNetSettings object:

To learn how to provide parameter values during deployment, see the parameters section of understand the structure and
syntax of Azure Resource Manager templates.

As you can see, our single parameter actually specifies three subproperties: name , addressPrefixes , and subnets .

https://github.com/mspnp/architecture-center/blob/master/docs/building-blocks/extending-templates/objects-as-parameters.md
https://docs.microsoft.com/azure/azure-resource-manager/resource-manager-create-first-template
https://docs.microsoft.com/azure/azure-resource-manager/resource-group-template-functions-resource
https://docs.microsoft.com/azure/azure-resource-manager/resource-group-authoring-templates

...
"resources": [
 {
 "apiVersion": "2015-06-15",
 "type": "Microsoft.Network/virtualNetworks",
 "name": "[parameters('VNetSettings').name]",
 "location":"[resourceGroup().location]",
 "properties": {
 "addressSpace":{
 "addressPrefixes": [
 "[parameters('VNetSettings').addressPrefixes[0].addressPrefix]"
]
 },
 "subnets":[
 {
 "name":"[parameters('VNetSettings').subnets[0].name]",
 "properties": {
 "addressPrefix": "[parameters('VNetSettings').subnets[0].addressPrefix]"
 }
 },
 {
 "name":"[parameters('VNetSettings').subnets[1].name]",
 "properties": {
 "addressPrefix": "[parameters('VNetSettings').subnets[1].addressPrefix]"
 }
 }
]
 }
 }
]

Each of these subproperties either specifies a value or other subproperties. The result is that our single parameter
specifies all the values necessary to deploy our virtual network.

Now let's have a look at the rest of our template to see how the VNetSettings object is used:

The values of our VNetSettings object are applied to the properties required by our virtual network resource
using the parameters() function with both the [] array indexer and the dot operator. This approach works if you
just want to statically apply the values of the parameter object to the resource. However, if you want to
dynamically assign an array of property values during deployment you can use a copy loop. To use a copy loop,
you provide a JSON array of resource property values and the copy loop dynamically applies the values to the
resource's properties.

There is one issue to be aware of if you use the dynamic approach. To demonstrate the issue, let's take a look at a
typical array of property values. In this example the values for our properties are stored in a variable. Notice we
have two arrays here—one named firstProperty and one named secondProperty .

https://docs.microsoft.com/azure/azure-resource-manager/resource-group-create-multiple

"variables": {
 "firstProperty": [
 {
 "name": "A",
 "type": "typeA"
 },
 {
 "name": "B",
 "type": "typeB"
 },
 {
 "name": "C",
 "type": "typeC"
 }
],
 "secondProperty": [
 "one","two", "three"
]
}

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 ...
 "copy": {
 "name": "copyLoop1",
 "count": "[length(variables('firstProperty'))]"
 },
 ...
 "properties": {
 "name": { "value": "[variables('firstProperty')[copyIndex()].name]" },
 "type": { "value": "[variables('firstProperty')[copyIndex()].type]" },
 "number": { "value": "[variables('secondProperty')[copyIndex()]]" }
 }
}

Now let's take a look at the way we access the properties in the variable using a copy loop.

The copyIndex() function returns the current iteration of the copy loop, and we use that as an index into each of
the two arrays simultaneously.

This works fine when the two arrays are the same length. The issue arises if you've made a mistake and the two
arrays are different lengths—in this case your template will fail validation during deployment. You can avoid this
issue by including all your properties in a single object, because it is much easier to see when a value is missing.
For example, let's take a look another parameter object in which each element of the propertyObject array is the
union of the firstProperty and secondProperty arrays from earlier.

"variables": {
 "propertyObject": [
 {
 "name": "A",
 "type": "typeA",
 "number": "one"
 },
 {
 "name": "B",
 "type": "typeB",
 "number": "two"
 },
 {
 "name": "C",
 "type": "typeC"
 }
]
}

Using a property object in a copy loop

Notice the third element in the array? It's missing the number property, but it's much easier to notice that you've
missed it when you're authoring the parameter values this way.

This approach becomes even more useful when combined with the [serial copy loop][azure-resource-manager-
create-multiple], particularly for deploying child resources.

To demonstrate this, let's look at a template that deploys a network security group (NSG) with two security rules.

First, let's take a look at our parameters. When we look at our template we'll see that we've defined one parameter
named networkSecurityGroupsSettings that includes an array named securityRules . This array contains two
JSON objects that specify a number of settings for a security rule.

https://docs.microsoft.com/azure/virtual-network/virtual-networks-nsg

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentParameters.json#",
 "contentVersion": "1.0.0.0",
 "parameters":{
 "networkSecurityGroupsSettings": {
 "value": {
 "securityRules": [
 {
 "name": "RDPAllow",
 "description": "allow RDP connections",
 "direction": "Inbound",
 "priority": 100,
 "sourceAddressPrefix": "*",
 "destinationAddressPrefix": "10.0.0.0/24",
 "sourcePortRange": "*",
 "destinationPortRange": "3389",
 "access": "Allow",
 "protocol": "Tcp"
 },
 {
 "name": "HTTPAllow",
 "description": "allow HTTP connections",
 "direction": "Inbound",
 "priority": 200,
 "sourceAddressPrefix": "*",
 "destinationAddressPrefix": "10.0.1.0/24",
 "sourcePortRange": "*",
 "destinationPortRange": "80",
 "access": "Allow",
 "protocol": "Tcp"
 }
]
 }
 }
 }
 }

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "networkSecurityGroupsSettings": {"type":"object"}
 },
 "variables": {},
 "resources": [
 {
 "apiVersion": "2015-06-15",
 "type": "Microsoft.Network/networkSecurityGroups",
 "name": "NSG1",
 "location":"[resourceGroup().location]",
 "properties": {
 "securityRules":[]
 }
 },
 {
 "apiVersion": "2015-01-01",
 "type": "Microsoft.Resources/deployments",
 "name": "loop-0",
 "dependsOn": [
 "NSG1"

Now let's take a look at our template. Our first resource named NSG1 deploys the NSG. Our second resource
named loop-0 performs two functions: first, it dependsOn the NSG so its deployment doesn't begin until NSG1 is
completed, and it is the first iteration of the sequential loop. Our third resource is a nested template that deploys
our security rules using an object for its parameter values as in the last example.

],
 "properties": {
 "mode":"Incremental",
 "parameters":{},
 "template": {
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {},
 "variables": {},
 "resources": [],
 "outputs": {}
 }
 }
 },
 {
 "apiVersion": "2015-01-01",
 "type": "Microsoft.Resources/deployments",
 "name": "[concat('loop-', copyIndex(1))]",
 "dependsOn": [
 "[concat('loop-', copyIndex())]"
],
 "copy": {
 "name": "iterator",
 "count": "[length(parameters('networkSecurityGroupsSettings').securityRules)]"
 },
 "properties": {
 "mode": "Incremental",
 "template": {
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {},
 "variables": {},
 "resources": [
 {
 "name": "[concat('NSG1/' ,
parameters('networkSecurityGroupsSettings').securityRules[copyIndex()].name)]",
 "type": "Microsoft.Network/networkSecurityGroups/securityRules",
 "apiVersion": "2016-09-01",
 "location":"[resourceGroup().location]",
 "properties":{
 "description": "
[parameters('networkSecurityGroupsSettings').securityRules[copyIndex()].description]",
 "priority":"
[parameters('networkSecurityGroupsSettings').securityRules[copyIndex()].priority]",
 "protocol":"
[parameters('networkSecurityGroupsSettings').securityRules[copyIndex()].protocol]",
 "sourcePortRange": "
[parameters('networkSecurityGroupsSettings').securityRules[copyIndex()].sourcePortRange]",
 "destinationPortRange": "
[parameters('networkSecurityGroupsSettings').securityRules[copyIndex()].destinationPortRange]",
 "sourceAddressPrefix": "
[parameters('networkSecurityGroupsSettings').securityRules[copyIndex()].sourceAddressPrefix]",
 "destinationAddressPrefix": "
[parameters('networkSecurityGroupsSettings').securityRules[copyIndex()].destinationAddressPrefix]",
 "access":"
[parameters('networkSecurityGroupsSettings').securityRules[copyIndex()].access]",
 "direction":"
[parameters('networkSecurityGroupsSettings').securityRules[copyIndex()].direction]"
 }
 }
],
 "outputs": {}
 }
 }
 }
],
 "outputs": {}
}

Try the template

git clone https://github.com/mspnp/template-examples.git
cd template-examples/example3-object-param
az group create --location <location> --name <resource-group-name>
az group deployment create -g <resource-group-name> \
 --template-uri https://raw.githubusercontent.com/mspnp/template-examples/master/example3-object-
param/deploy.json \
 --parameters deploy.parameters.json

Next steps

Let's take a closer look at how we specify our property values in the securityRules child resource. All of our
properties are referenced using the parameter() function, and then we use the dot operator to reference our
securityRules array, indexed by the current value of the iteration. Finally, we use another dot operator to

reference the name of the object.

An example template is available on GitHub. To deploy the template, clone the repo and run the following Azure
CLI commands:

Learn how to create a template that iterates through an object array and transforms it into a JSON schema. See
Implement a property transformer and collector in an Azure Resource Manager template

https://github.com/mspnp/template-examples
https://docs.microsoft.com/cli/azure/?view=azure-cli-latest

Implement a property transformer and collector in an
Azure Resource Manager template
3/13/2019 • 6 minutes to read • Edit Online

IMPORTANTIMPORTANT

Parameter object

In use an object as a parameter in an Azure Resource Manager template, you learned how to store resource
property values in an object and apply them to a resource during deployment. While this is a very useful way to
manage your parameters, it still requires you to map the object's properties to resource properties each time you
use it in your template.

To work around this, you can implement a property transform and collector template that iterates your object array
and transforms it into the JSON schema expected by the resource.

This approach requires that you have a deep understanding of Resource Manager templates and functions.

Let's take a look at how we can implement a property collector and transformer with an example that deploys a
network security group (NSG). The diagram below shows the relationship between our templates and our
resources within those templates:

Our calling template includes two resources:

A template link that invokes our collector template.
The NSG resource to deploy.

Our collector template includes two resources:

An anchor resource.
A template link that invokes the transform template in a copy loop.

Our transform template includes a single resource: an empty template with a variable that transforms our
source JSON to the JSON schema expected by our NSG resource in the main template.

We'll be using our securityRules parameter object from objects as parameters. Our transform template will
transform each object in the securityRules array into the JSON schema expected by the NSG resource in our
calling template.

https://github.com/mspnp/architecture-center/blob/master/docs/building-blocks/extending-templates/collector.md
https://docs.microsoft.com/azure/virtual-network/virtual-networks-nsg

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentParameters.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "networkSecurityGroupsSettings": {
 "value": {
 "securityRules": [
 {
 "name": "RDPAllow",
 "description": "allow RDP connections",
 "direction": "Inbound",
 "priority": 100,
 "sourceAddressPrefix": "*",
 "destinationAddressPrefix": "10.0.0.0/24",
 "sourcePortRange": "*",
 "destinationPortRange": "3389",
 "access": "Allow",
 "protocol": "Tcp"
 },
 {
 "name": "HTTPAllow",
 "description": "allow HTTP connections",
 "direction": "Inbound",
 "priority": 200,
 "sourceAddressPrefix": "*",
 "destinationAddressPrefix": "10.0.1.0/24",
 "sourcePortRange": "*",
 "destinationPortRange": "80",
 "access": "Allow",
 "protocol": "Tcp"
 }
]
 }
 }
 }
 }

Transform template

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "source": { "type": "object" },
 "state": {
 "type": "array",
 "defaultValue": []
 }
 },

Let's look at our transform template first.

Our transform template includes two parameters that are passed from the collector template:

source is an object that receives one of the property value objects from the property array. In our example,
each object from the "securityRules" array will be passed in one at a time.
state is an array that receives the concatenated results of all the previous transforms. This is the collection of

transformed JSON.

Our parameters look like this:

Our template also defines a variable named instance . It performs the actual transform of our source object into

 "variables": {
 "instance": [
 {
 "name": "[parameters('source').name]",
 "properties":{
 "description": "[parameters('source').description]",
 "protocol": "[parameters('source').protocol]",
 "sourcePortRange": "[parameters('source').sourcePortRange]",
 "destinationPortRange": "[parameters('source').destinationPortRange]",
 "sourceAddressPrefix": "[parameters('source').sourceAddressPrefix]",
 "destinationAddressPrefix": "[parameters('source').destinationAddressPrefix]",
 "access": "[parameters('source').access]",
 "priority": "[parameters('source').priority]",
 "direction": "[parameters('source').direction]"
 }
 }
]

 },

 "resources": [],
 "outputs": {
 "collection": {
 "type": "array",
 "value": "[concat(parameters('state'), variables('instance'))]"
 }

Collector template

 "parameters": {
 "source": { "type": "array" },
 "transformTemplateUri": { "type": "string" },
 "state": {
 "type": "array",
 "defaultValue": []
 }

the required JSON schema:

Finally, the output of our template concatenates the collected transforms of our state parameter with the
current transform performed by our instance variable:

Next, let's take a look at our collector template to see how it passes in our parameter values.

Our collector template includes three parameters:

source is our complete parameter object array. It's passed in by the calling template. This has the same name
as the source parameter in our transform template but there is one key difference that you may have already
noticed: this is the complete array, but we only pass one element of this array to the transform template at a
time.
transformTemplateUri is the URI of our transform template. We're defining it as a parameter here for

template reusability.
state is an initially empty array that we pass to our transform template. It stores the collection of

transformed parameter objects when the copy loop is complete.

Our parameters look like this:

Next, we define a variable named count . Its value is the length of the source parameter object array:

 "variables": {
 "count": "[length(parameters('source'))]"
 },

 "resources": [
 {
 "type": "Microsoft.Resources/deployments",
 "apiVersion": "2015-01-01",
 "name": "loop-0",
 "properties": {
 "mode": "Incremental",
 "parameters": { },
 "template": {
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": { },
 "variables": { },
 "resources": [],
 "outputs": {
 "collection": {
 "type": "array",
 "value": "[parameters('state')]"
 }
 }
 }
 }
 },
 {
 "type": "Microsoft.Resources/deployments",
 "apiVersion": "2015-01-01",
 "name": "[concat('loop-', copyindex(1))]",
 "copy": {
 "name": "iterator",
 "count": "[variables('count')]",
 "mode": "serial"
 },
 "dependsOn": [
 "loop-0"
],
 "properties": {
 "mode": "Incremental",
 "templateLink": { "uri": "[parameters('transformTemplateUri')]" },
 "parameters": {
 "source": { "value": "[parameters('source')[copyindex()]]" },
 "state": { "value": "[reference(concat('loop-', copyindex())).outputs.collection.value]" }
 }
 }
 }
],

As you might suspect, we use it for the number of iterations in our copy loop.

Now let's take a look at our resources. We define two resources:

loop-0 is the zero-based resource for our copy loop.
loop- is concatenated with the result of the copyIndex(1) function to generate a unique iteration-based name

for our resource, starting with 1 .

Our resources look like this:

Let's take a closer look at the parameters we're passing to our transform template in the nested template. Recall
from earlier that our source parameter passes the current object in the source parameter object array. The
state parameter is where the collection happens, because it takes the output of the previous iteration of our copy

 "outputs": {
 "result": {
 "type": "array",
 "value": "[reference(concat('loop-', variables('count'))).outputs.collection.value]"
 }
 }

Calling template

...
"parameters": {
 "networkSecurityGroupsSettings": {
 "type": "object"
 }

"variables": {
 "collectorTemplateUri": "[uri(deployment().properties.templateLink.uri, 'collector.template.json')]"
 }

{
 "apiVersion": "2015-01-01",
 "name": "collector",
 "type": "Microsoft.Resources/deployments",
 "properties": {
 "mode": "Incremental",
 "templateLink": {
 "uri": "[variables('collectorTemplateUri')]",
 "contentVersion": "1.0.0.0"
 },
 "parameters": {
 "source" : {"value": "[parameters('networkSecurityGroupsSettings').securityRules]"},
 "transformTemplateUri": { "value": "[uri(deployment().properties.templateLink.uri,
'transform.json')]"}
 }
 }
}

loop—notice that the reference() function uses the copyIndex() function with no parameter to reference the
name of our previous linked template object—and passes it to the current iteration.

Finally, the output of our template returns the output of the last iteration of our transform template:

It may seem counterintuitive to return the output of the last iteration of our transform template to our calling
template because it appeared we were storing it in our source parameter. However, remember that it's the last
iteration of our transform template that holds the complete array of transformed property objects, and that's
what we want to return.

Finally, let's take a look at how to call the collector template from our calling template.

Our calling template defines a single parameter named networkSecurityGroupsSettings :

Next, our template defines a single variable named collectorTemplateUri :

As you would expect, this is the URI for the collector template that will be used by our linked template resource:

We pass two parameters to the collector template:

source is our property object array. In our example, it's our networkSecurityGroupsSettings parameter.

 {
 "apiVersion": "2015-06-15",
 "type": "Microsoft.Network/networkSecurityGroups",
 "name": "networkSecurityGroup1",
 "location": "[resourceGroup().location]",
 "properties": {
 "securityRules": "[reference('collector').outputs.result.value]"
 }
 }
],
 "outputs": {
 "instance":{
 "type": "array",
 "value": "[reference('collector').outputs.result.value]"
 }

 }

Try the template

git clone https://github.com/mspnp/template-examples.git
cd template-examples/example4-collector
az group create --location <location> --name <resource-group-name>
az group deployment create -g <resource-group-name> \
 --template-uri https://raw.githubusercontent.com/mspnp/template-examples/master/example4-
collector/deploy.json \
 --parameters deploy.parameters.json

transformTemplateUri is the variable we just defined with the URI of our collector template.

Finally, our Microsoft.Network/networkSecurityGroups resource directly assigns the output of the collector linked
template resource to its securityRules property:

An example template is available on GitHub. To deploy the template, clone the repo and run the following Azure
CLI commands:

https://github.com/mspnp/template-examples
https://docs.microsoft.com/cli/azure/?view=azure-cli-latest

Manage identity in multitenant applications
3/13/2019 • 3 minutes to read • Edit Online

Introduction

What is multitenancy?

This series of articles describes best practices for multitenancy, when using Azure AD for authentication and
identity management.

 Sample code

When you're building a multitenant application, one of the first challenges is managing user identities, because now
every user belongs to a tenant. For example:

Users sign in with their organizational credentials.
Users should have access to their organization's data, but not data that belongs to other tenants.
An organization can sign up for the application, and then assign application roles to its members.

Azure Active Directory (Azure AD) has some great features that support all of these scenarios.

To accompany this series of articles, we created a complete end-to-end implementation of a multitenant
application. The articles reflect what we learned in the process of building the application. To get started with the
application, see Run the Surveys application.

Let's say you're writing an enterprise SaaS application to be hosted in the cloud. Of course, the application will
have users:

But those users belong to organizations:

Example: Tailspin sells subscriptions to its SaaS application. Contoso and Fabrikam sign up for the app. When Alice
(alice@contoso) signs in, the application should know that Alice is part of Contoso.

Alice should have access to Contoso data.
Alice should not have access to Fabrikam data.

This guidance will show you how to manage user identities in a multitenant application, using Azure Active
Directory (Azure AD) to handle sign-in and authentication.

https://github.com/mspnp/architecture-center/blob/master/docs/multitenant-identity/index.md
https://github.com/mspnp/multitenant-saas-guidance
https://github.com/mspnp/multitenant-saas-guidance
https://docs.microsoft.com/azure/active-directory

Multitenancy and horizontal scalingMultitenancy and horizontal scaling

Identity in a multitenant app

AuthenticationAuthentication

AuthorizationAuthorization

A tenant is a group of users. In a SaaS application, the tenant is a subscriber or customer of the application.
Multitenancy is an architecture where multiple tenants share the same physical instance of the app. Although
tenants share physical resources (such as VMs or storage), each tenant gets its own logical instance of the app.

Typically, application data is shared among the users within a tenant, but not with other tenants.

Compare this architecture with a single-tenant architecture, where each tenant has a dedicated physical instance. In
a single-tenant architecture, you add tenants by spinning up new instances of the app.

To achieve scale in the cloud, it’s common to add more physical instances. This is known as horizontal scaling or
scaling out. Consider a web app. To handle more traffic, you can add more server VMs and put them behind a load
balancer. Each VM runs a separate physical instance of the web app.

Any request can be routed to any instance. Together, the system functions as a single logical instance. You can tear
down a VM or spin up a new VM, without affecting users. In this architecture, each physical instance is multi-
tenant, and you scale by adding more instances. If one instance goes down, it should not affect any tenant.

In a multitenant app, you must consider users in the context of tenants.

Users sign into the app with their organization credentials. They don't have to create new user profiles for the
app.
Users within the same organization are part of the same tenant.
When a user signs in, the application knows which tenant the user belongs to.

When authorizing a user's actions (say, viewing a resource), the app must take into account the user's tenant.
Users might be assigned roles within the application, such as "Admin" or "Standard User". Role assignments
should be managed by the customer, not by the SaaS provider.

Example. Alice, an employee at Contoso, navigates to the application in her browser and clicks the “Log in” button.
She is redirected to a login screen where she enters her corporate credentials (username and password). At this
point, she is logged into the app as alice@contoso.com . The application also knows that Alice is an admin user for
this application. Because she is an admin, she can see a list of all the resources that belong to Contoso. However,
she cannot view Fabrikam's resources, because she is an admin only within her tenant.

In this guidance, we'll look specifically at using Azure AD for identity management.

We assume the customer stores their user profiles in Azure AD (including Office365 and Dynamics CRM
tenants)
Customers with on-premises Active Directory can use Azure AD Connect to sync their on-premises Active
Directory with Azure AD. If a customer with on-premises Active Directory cannot use Azure AD Connect (due
to corporate IT policy or other reasons), the SaaS provider can federate with the customer's directory through
Active Directory Federation Services (AD FS). This option is described in Federating with a customer's AD FS.

This guidance does not consider other aspects of multitenancy such as data partitioning, per-tenant configuration,
and so forth.

Next

https://docs.microsoft.com/azure/active-directory/hybrid/whatis-hybrid-identity

The Tailspin scenario
3/13/2019 • 2 minutes to read • Edit Online

NOTENOTE

Users can create, edit, and view surveys

 Sample code

Tailspin is a fictitious company that is developing a SaaS application named Surveys. This application enables
organizations to create and publish online surveys.

An organization can sign up for the application.
After the organization is signed up, users can sign into the application with their organizational credentials.
Users can create, edit, and publish surveys.

To get started with the application, see Run the Surveys application.

An authenticated user can view all the surveys that he or she has created or has contributor rights to, and create
new surveys. Notice that the user is signed in with his organizational identity, bob@contoso.com .

This screenshot shows the Edit Survey page:

https://github.com/mspnp/architecture-center/blob/master/docs/multitenant-identity/tailspin.md
https://github.com/mspnp/multitenant-saas-guidance

Survey owners can invite contributors

Users can also view any surveys created by other users within the same tenant.

When a user creates a survey, he or she can invite other people to be contributors on the survey. Contributors can
edit the survey, but cannot delete or publish it.

Architecture

A user can add contributors from other tenants, which enables cross-tenant sharing of resources. In this
screenshot, Bob (bob@contoso.com) is adding Alice (alice@fabrikam.com) as a contributor to a survey that Bob
created.

When Alice logs in, she sees the survey listed under "Surveys I can contribute to".

Note that Alice signs into her own tenant, not as a guest of the Contoso tenant. Alice has contributor permissions
only for that survey — she cannot view other surveys from the Contoso tenant.

The Surveys application consists of a web front end and a web API backend. Both are implemented using
ASP.NET Core.

The web application uses Azure Active Directory (Azure AD) to authenticate users. The web application also calls
Azure AD to get OAuth 2 access tokens for the Web API. Access tokens are cached in Azure Redis Cache. The
cache enables multiple instances to share the same token cache (e.g., in a server farm).

https://docs.microsoft.com/aspnet/core

Next

Authenticate using Azure AD and OpenID Connect
3/13/2019 • 8 minutes to read • Edit Online

Register the app with Azure AD

Configure the auth middleware

 Sample code

The Surveys application uses the OpenID Connect (OIDC) protocol to authenticate users with Azure Active
Directory (Azure AD). The Surveys application uses ASP.NET Core, which has built-in middleware for OIDC. The
following diagram shows what happens when the user signs in, at a high level.

1. The user clicks the "sign in" button in the app. This action is handled by an MVC controller.
2. The MVC controller returns a ChallengeResult action.
3. The middleware intercepts the ChallengeResult and creates a 302 response, which redirects the user to the

Azure AD sign-in page.
4. The user authenticates with Azure AD.
5. Azure AD sends an ID token to the application.
6. The middleware validates the ID token. At this point, the user is now authenticated inside the application.
7. The middleware redirects the user back to application.

To enable OpenID Connect, the SaaS provider registers the application inside their own Azure AD tenant.

To register the application, follow the steps in Integrating Applications with Azure Active Directory, in the section
Adding an Application.

See Run the Surveys application for the specific steps for the Surveys application. Note the following:

For a multitenant application, you must configure the multi-tenanted option explicitly. This enables other
organizations to to access the application.

The reply URL is the URL where Azure AD will send OAuth 2.0 responses. When using the ASP.NET Core,
this needs to match the path that you configure in the authentication middleware (see next section).

This section describes how to configure the authentication middleware in ASP.NET Core for multitenant
authentication with OpenID Connect.

https://github.com/mspnp/architecture-center/blob/master/docs/multitenant-identity/authenticate.md
https://github.com/mspnp/multitenant-saas-guidance
https://docs.microsoft.com/azure/active-directory/active-directory-integrating-applications/
https://docs.microsoft.com/azure/active-directory/active-directory-integrating-applications/#adding-an-application

app.UseOpenIdConnectAuthentication(new OpenIdConnectOptions {
 ClientId = configOptions.AzureAd.ClientId,
 ClientSecret = configOptions.AzureAd.ClientSecret, // for code flow
 Authority = Constants.AuthEndpointPrefix,
 ResponseType = OpenIdConnectResponseType.CodeIdToken,
 PostLogoutRedirectUri = configOptions.AzureAd.PostLogoutRedirectUri,
 SignInScheme = CookieAuthenticationDefaults.AuthenticationScheme,
 TokenValidationParameters = new TokenValidationParameters { ValidateIssuer = false },
 Events = new SurveyAuthenticationEvents(configOptions.AzureAd, loggerFactory),
});

app.UseCookieAuthentication(new CookieAuthenticationOptions {
 AutomaticAuthenticate = true,
 AutomaticChallenge = true,
 AccessDeniedPath = "/Home/Forbidden",
 CookieSecure = CookieSecurePolicy.Always,

 // The default setting for cookie expiration is 14 days. SlidingExpiration is set to true by default
 ExpireTimeSpan = TimeSpan.FromHours(1),
 SlidingExpiration = true
});

Initiate the authentication flow

In your startup class, add the OpenID Connect middleware:

Notice that some of the settings are taken from runtime configuration options. Here's what the middleware
options mean:

ClientId. The application's client ID, which you got when you registered the application in Azure AD.
Authority. For a multitenant application, set this to https://login.microsoftonline.com/common/ . This is the URL
for the Azure AD common endpoint, which enables users from any Azure AD tenant to sign in. For more
information about the common endpoint, see this blog post.
In TokenValidationParameters, set ValidateIssuer to false. That means the app will be responsible for
validating the issuer value in the ID token. (The middleware still validates the token itself.) For more
information about validating the issuer, see Issuer validation.
PostLogoutRedirectUri. Specify a URL to redirect users after the sign out. This should be a page that allows
anonymous requests — typically the home page.
SignInScheme. Set this to CookieAuthenticationDefaults.AuthenticationScheme . This setting means that after
the user is authenticated, the user claims are stored locally in a cookie. This cookie is how the user stays logged
in during the browser session.
Events. Event callbacks; see Authentication events.

Also add the Cookie Authentication middleware to the pipeline. This middleware is responsible for writing the user
claims to a cookie, and then reading the cookie during subsequent page loads.

To start the authentication flow in ASP.NET MVC, return a ChallengeResult from the contoller :

https://docs.microsoft.com/aspnet/core/fundamentals/startup
https://www.cloudidentity.com/blog/2014/08/26/the-common-endpoint-walks-like-a-tenant-talks-like-a-tenant-but-is-not-a-tenant/

[AllowAnonymous]
public IActionResult SignIn()
{
 return new ChallengeResult(
 OpenIdConnectDefaults.AuthenticationScheme,
 new AuthenticationProperties
 {
 IsPersistent = true,
 RedirectUri = Url.Action("SignInCallback", "Account")
 });
}

User login sessions

About the OpenID Connect middleware

This causes the middleware to return a 302 (Found) response that redirects to the authentication endpoint.

As mentioned, when the user first signs in, the Cookie Authentication middleware writes the user claims to a
cookie. After that, HTTP requests are authenticated by reading the cookie.

By default, the cookie middleware writes a session cookie, which gets deleted once the user closes the browser. The
next time the user next visits the site, they will have to sign in again. However, if you set IsPersistent to true in the
ChallengeResult, the middleware writes a persistent cookie, so the user stays logged in after closing the browser.
You can configure the cookie expiration; see Controlling cookie options. Persistent cookies are more convenient for
the user, but may be inappropriate for some applications (say, a banking application) where you want the user to
sign in every time.

The OpenID Connect middleware in ASP.NET hides most of the protocol details. This section contains some notes
about the implementation, that may be useful for understanding the protocol flow.

First, let's examine the authentication flow in terms of ASP.NET (ignoring the details of the OIDC protocol flow
between the app and Azure AD). The following diagram shows the process.

In this diagram, there are two MVC controllers. The Account controller handles sign-in requests, and the Home
controller serves up the home page.

https://en.wikipedia.org/wiki/HTTP_cookie#Session_cookie
https://docs.microsoft.com/aspnet/core/security/authentication/cookie#controlling-cookie-options

Authentication ticketAuthentication ticket

NOTENOTE

Authentication eventsAuthentication events

OpenID Connect endpointsOpenID Connect endpoints

Here is the authentication process:

1. The user clicks the "Sign in" button, and the browser sends a GET request. For example: GET /Account/SignIn/ .
2. The account controller returns a ChallengeResult .
3. The OIDC middleware returns an HTTP 302 response, redirecting to Azure AD.
4. The browser sends the authentication request to Azure AD
5. The user signs in to Azure AD, and Azure AD sends back an authentication response.
6. The OIDC middleware creates a claims principal and passes it to the Cookie Authentication middleware.
7. The cookie middleware serializes the claims principal and sets a cookie.
8. The OIDC middleware redirects to the application's callback URL.
9. The browser follows the redirect, sending the cookie in the request.

10. The cookie middleware deserializes the cookie to a claims principal and sets HttpContext.User equal to the
claims principal. The request is routed to an MVC controller.

If authentication succeeds, the OIDC middleware creates an authentication ticket, which contains a claims principal
that holds the user's claims. You can access the ticket inside the AuthenticationValidated or TicketReceived
event.

Until the entire authentication flow is completed, HttpContext.User still holds an anonymous principal, not the
authenticated user. The anonymous principal has an empty claims collection. After authentication completes and the app
redirects, the cookie middleware deserializes the authentication cookie and sets HttpContext.User to a claims principal that
represents the authenticated user.

During the authentication process, the OpenID Connect middleware raises a series of events:

RedirectToIdentityProvider. Called right before the middleware redirects to the authentication endpoint. You
can use this event to modify the redirect URL; for example, to add request parameters. See Adding the admin
consent prompt for an example.
AuthorizationCodeReceived. Called with the authorization code.
TokenResponseReceived. Called after the middleware gets an access token from the IDP, but before it is
validated. Applies only to authorization code flow.
TokenValidated. Called after the middleware validates the ID token. At this point, the application has a set of
validated claims about the user. You can use this event to perform additional validation on the claims, or to
transform claims. See Working with claims.
UserInformationReceived. Called if the middleware gets the user profile from the user info endpoint. Applies
only to authorization code flow, and only when GetClaimsFromUserInfoEndpoint = true in the middleware
options.
TicketReceived. Called when authentication is completed. This is the last event, assuming that authentication
succeeds. After this event is handled, the user is signed into the app.
AuthenticationFailed. Called if authentication fails. Use this event to handle authentication failures — for
example, by redirecting to an error page.

To provide callbacks for these events, set the Events option on the middleware. There are two different ways to
declare the event handlers: Inline with lambdas, or in a class that derives from OpenIdConnectEvents. The
second approach is recommended if your event callbacks have any substantial logic, so they don't clutter your
startup class. Our reference implementation uses this approach.

OpenID Connect flowsOpenID Connect flows

app.UseOpenIdConnectAuthentication(options =>
{
 options.ResponseType = "code"; // Authorization code flow

 // Other options
}

Azure AD supports OpenID Connect Discovery, wherein the identity provider (IDP) returns a JSON metadata
document from a well-known endpoint. The metadata document contains information such as:

The URL of the authorization endpoint. This is where the app redirects to authenticate the user.
The URL of the "end session" endpoint, where the app goes to log out the user.
The URL to get the signing keys, which the client uses to validate the OIDC tokens that it gets from the IDP.

By default, the OIDC middleware knows how to fetch this metadata. Set the Authority option in the middleware,
and the middleware constructs the URL for the metadata. (You can override the metadata URL by setting the
MetadataAddress option.)

By default, the OIDC middleware uses hybrid flow with form post response mode.

Hybrid flow means the client can get an ID token and an authorization code in the same round-trip to the
authorization server.
Form post reponse mode means the authorization server uses an HTTP POST request to send the ID token and
authorization code to the app. The values are form-urlencoded (content type = "application/x-www-form-
urlencoded").

When the OIDC middleware redirects to the authorization endpoint, the redirect URL includes all of the query
string parameters needed by OIDC. For hybrid flow:

client_id. This value is set in the ClientId option
scope = "openid profile", which means it's an OIDC request and we want the user's profile.
response_type = "code id_token". This specifies hybrid flow.
response_mode = "form_post". This specifies form post response.

To specify a different flow, set the ResponseType property on the options. For example:

Next

https://openid.net/specs/openid-connect-discovery-1_0.html
https://openid.net/specs/openid-connect-discovery-1_0.html#ProviderConfig

Work with claims-based identities
3/13/2019 • 5 minutes to read • Edit Online

Claims in Azure AD

CLAIM TYPE IN ID TOKEN DESCRIPTION

aud Who the token was issued for. This will be the application's
client ID. Generally, you shouldn't need to worry about this
claim, because the middleware automatically validates it.
Example: "91464657-d17a-4327-91f3-2ed99386406f"

groups A list of AAD groups of which the user is a member. Example:
["93e8f556-8661-4955-87b6-890bc043c30f", "fc781505-
18ef-4a31-a7d5-7d931d7b857e"]

iss The issuer of the OIDC token. Example:
https://sts.windows.net/b9bd2162-77ac-4fb2-8254-
5c36e9c0a9c4/

name The user's display name. Example: "Alice A."

oid The object identifier for the user in AAD. This value is the
immutable and non-reusable identifier of the user. Use this
value, not email, as a unique identifier for users; email
addresses can change. If you use the Azure AD Graph API in
your app, object ID is that value used to query profile
information. Example:
"59f9d2dc-995a-4ddf-915e-b3bb314a7fa4"

roles A list of app roles for the user. Example: ["SurveyCreator"]

 Sample code

When a user signs in, Azure AD sends an ID token that contains a set of claims about the user. A claim is simply a
piece of information, expressed as a key/value pair. For example, email = bob@contoso.com . Claims have an issuer
— in this case, Azure AD — which is the entity that authenticates the user and creates the claims. You trust the
claims because you trust the issuer. (Conversely, if you don't trust the issuer, don't trust the claims!)

At a high level:

1. The user authenticates.
2. The IDP sends a set of claims.
3. The app normalizes or augments the claims (optional).
4. The app uses the claims to make authorization decisions.

In OpenID Connect, the set of claims that you get is controlled by the scope parameter of the authentication
request. However, Azure AD issues a limited set of claims through OpenID Connect; see Supported Token and
Claim Types. If you want more information about the user, you'll need to use the Azure AD Graph API.

Here are some of the claims from AAD that an app might typically care about:

https://github.com/mspnp/architecture-center/blob/master/docs/multitenant-identity/claims.md
https://github.com/mspnp/multitenant-saas-guidance
https://nat.sakimura.org/2012/01/26/scopes-and-claims-in-openid-connect/
https://docs.microsoft.com/azure/active-directory/active-directory-token-and-claims/
https://openid.net/specs/openid-connect-core-1_0.html#IDToken

tid Tenant ID. This value is a unique identifier for the tenant in
Azure AD. Example:
"b9bd2162-77ac-4fb2-8254-5c36e9c0a9c4"

unique_name A human readable display name of the user. Example:
"alice@contoso.com"

upn User principal name. Example: "alice@contoso.com"

CLAIM TYPE IN ID TOKEN DESCRIPTION

Claims transformations

Issuer validation

This table lists the claim types as they appear in the ID token. In ASP.NET Core, the OpenID Connect middleware
converts some of the claim types when it populates the Claims collection for the user principal:

oid > http://schemas.microsoft.com/identity/claims/objectidentifier

tid > http://schemas.microsoft.com/identity/claims/tenantid

unique_name > http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name

upn > http://schemas.xmlsoap.org/ws/2005/05/identity/claims/upn

During the authentication flow, you might want to modify the claims that you get from the IDP. In ASP.NET Core,
you can perform claims transformation inside of the AuthenticationValidated event from the OpenID Connect
middleware. (See Authentication events.)

Any claims that you add during AuthenticationValidated are stored in the session authentication cookie. They
don't get pushed back to Azure AD.

Here are some examples of claims transformation:

var email = principal.FindFirst(ClaimTypes.Upn)?.Value;
if (!string.IsNullOrWhiteSpace(email))
{
 identity.AddClaim(new Claim(ClaimTypes.Email, email));
}

Claims normalization, or making claims consistent across users. This is particularly relevant if you are
getting claims from multiple IDPs, which might use different claim types for similar information. For
example, Azure AD sends a "upn" claim that contains the user's email. Other IDPs might send an "email"
claim. The following code converts the "upn" claim into an "email" claim:

Add default claim values for claims that aren't present — for example, assigning a user to a default role.
In some cases this can simplify authorization logic.

Add custom claim types with application-specific information about the user. For example, you might
store some information about the user in a database. You could add a custom claim with this information to
the authentication ticket. The claim is stored in a cookie, so you only need to get it from the database once
per login session. On the other hand, you also want to avoid creating excessively large cookies, so you need
to consider the trade-off between cookie size versus database lookups.

After the authentication flow is complete, the claims are available in HttpContext.User . At that point, you should
treat them as a read-only collection — e.g., use them to make authorization decisions.

Using claims for authorization

In OpenID Connect, the issuer claim ("iss") identifies the IDP that issued the ID token. Part of the OIDC
authentication flow is to verify that the issuer claim matches the actual issuer. The OIDC middleware handles this
for you.

In Azure AD, the issuer value is unique per AD tenant (https://sts.windows.net/<tenantID>). Therefore, an
application should do an additional check, to make sure the issuer represents a tenant that is allowed to sign in to
the app.

For a single-tenant application, you can just check that the issuer is your own tenant. In fact, the OIDC middleware
does this automatically by default. In a multi-tenant app, you need to allow for multiple issuers, corresponding to
the different tenants. Here is a general approach to use:

In the OIDC middleware options, set ValidateIssuer to false. This turns off the automatic check.
When a tenant signs up, store the tenant and the issuer in your user DB.
Whenever a user signs in, look up the issuer in the database. If the issuer isn't found, it means that tenant hasn't
signed up. You can redirect them to a sign up page.
You could also blacklist certain tenants; for example, for customers that didn't pay their subscription.

For a more detailed discussion, see Sign-up and tenant onboarding in a multitenant application.

With claims, a user's identity is no longer a monolithic entity. For example, a user might have an email address,
phone number, birthday, gender, etc. Maybe the user's IDP stores all of this information. But when you
authenticate the user, you'll typically get a subset of these as claims. In this model, the user's identity is simply a
bundle of claims. When you make authorization decisions about a user, you will look for particular sets of claims.
In other words, the question "Can user X perform action Y" ultimately becomes "Does user X have claim Z".

Here are some basic patterns for checking claims.

if (User.HasClaim(ClaimTypes.Role, "Admin")) { ... }

string email = User.FindFirst(ClaimTypes.Email)?.Value;

IEnumerable<Claim> groups = User.FindAll("groups");

To check that the user has a particular claim with a particular value:

This code checks whether the user has a Role claim with the value "Admin". It correctly handles the case
where the user has no Role claim or multiple Role claims.

The ClaimTypes class defines constants for commonly-used claim types. However, you can use any string
value for the claim type.

To get a single value for a claim type, when you expect there to be at most one value:

To get all the values for a claim type:

For more information, see Role-based and resource-based authorization in multitenant applications.

Next

Tenant sign-up and onboarding
3/13/2019 • 6 minutes to read • Edit Online

Admin consent and Azure AD permissions

 Sample code

This article describes how to implement a sign-up process in a multi-tenant application, which allows a customer
to sign up their organization for your application. There are several reasons to implement a sign-up process:

Allow an AD admin to consent for the customer's entire organization to use the application.
Collect credit card payment or other customer information.
Perform any one-time per-tenant setup needed by your application.

In order to authenticate with Azure AD, an application needs access to the user's directory. At a minimum, the
application needs permission to read the user's profile. The first time that a user signs in, Azure AD shows a
consent page that lists the permissions being requested. By clicking Accept, the user grants permission to the
application.

By default, consent is granted on a per-user basis. Every user who signs in sees the consent page. However, Azure
AD also supports admin consent, which allows an AD administrator to consent for an entire organization.

When the admin consent flow is used, the consent page states that the AD admin is granting permission on behalf
of the entire tenant:

After the admin clicks Accept, other users within the same tenant can sign in, and Azure AD will skip the consent
screen.

Only an AD administrator can give admin consent, because it grants permission on behalf of the entire
organization. If a non-administrator tries to authenticate with the admin consent flow, Azure AD displays an error:

https://github.com/mspnp/architecture-center/blob/master/docs/multitenant-identity/signup.md
https://github.com/mspnp/multitenant-saas-guidance

Implementing tenant sign-up

If the application requires additional permissions at a later point, the customer will need to sign up again and
consent to the updated permissions.

For the Tailspin Surveys application, we defined several requirements for the sign-up process:

A tenant must sign up before users can sign in.
Sign-up uses the admin consent flow.
Sign-up adds the user's tenant to the application database.
After a tenant signs up, the application shows an onboarding page.

In this section, we'll walk through our implementation of the sign-up process. It's important to understand that
"sign up" versus "sign in" is an application concept. During the authentication flow, Azure AD does not inherently
know whether the user is in process of signing up. It's up to the application to keep track of the context.

When an anonymous user visits the Surveys application, the user is shown two buttons, one to sign in, and one to
"enroll your company" (sign up).

These buttons invoke actions in the AccountController class.

The SignIn action returns a ChallegeResult, which causes the OpenID Connect middleware to redirect to the
authentication endpoint. This is the default way to trigger authentication in ASP.NET Core.

[AllowAnonymous]
public IActionResult SignIn()
{
 return new ChallengeResult(
 OpenIdConnectDefaults.AuthenticationScheme,
 new AuthenticationProperties
 {
 IsPersistent = true,
 RedirectUri = Url.Action("SignInCallback", "Account")
 });
}

[AllowAnonymous]
public IActionResult SignUp()
{
 var state = new Dictionary<string, string> { { "signup", "true" }};
 return new ChallengeResult(
 OpenIdConnectDefaults.AuthenticationScheme,
 new AuthenticationProperties(state)
 {
 RedirectUri = Url.Action(nameof(SignUpCallback), "Account")
 });
}

Adding the admin consent prompt

Now compare the SignUp action:

Like SignIn , the SignUp action also returns a ChallengeResult . But this time, we add a piece of state information
to the AuthenticationProperties in the ChallengeResult :

signup: A Boolean flag, indicating that the user has started the sign-up process.

The state information in AuthenticationProperties gets added to the OpenID Connect state parameter, which
round trips during the authentication flow.

After the user authenticates in Azure AD and gets redirected back to the application, the authentication ticket
contains the state. We are using this fact to make sure the "signup" value persists across the entire authentication
flow.

In Azure AD, the admin consent flow is triggered by adding a "prompt" parameter to the query string in the
authentication request:

https://openid.net/specs/openid-connect-core-1_0.html#AuthRequest

/authorize?prompt=admin_consent&...

public override Task RedirectToAuthenticationEndpoint(RedirectContext context)
{
 if (context.IsSigningUp())
 {
 context.ProtocolMessage.Prompt = "admin_consent";
 }

 _logger.RedirectToIdentityProvider();
 return Task.FromResult(0);
}

internal static bool IsSigningUp(this BaseControlContext context)
{
 Guard.ArgumentNotNull(context, nameof(context));

 string signupValue;
 // Check the HTTP context and convert to string
 if ((context.Ticket == null) ||
 (!context.Ticket.Properties.Items.TryGetValue("signup", out signupValue)))
 {
 return false;
 }

 // We have found the value, so see if it's valid
 bool isSigningUp;
 if (!bool.TryParse(signupValue, out isSigningUp))
 {
 // The value for signup is not a valid boolean, throw

 throw new InvalidOperationException($"'{signupValue}' is an invalid boolean value");
 }

 return isSigningUp;
}

Registering a tenant

The Surveys application adds the prompt during the RedirectToAuthenticationEndpoint event. This event is called
right before the middleware redirects to the authentication endpoint.

Setting ProtocolMessage.Prompt tells the middleware to add the "prompt" parameter to the authentication request.

Note that the prompt is only needed during sign-up. Regular sign-in should not include it. To distinguish between
them, we check for the signup value in the authentication state. The following extension method checks for this
condition:

The Surveys application stores some information about each tenant and user in the application database.

public override async Task TokenValidated(TokenValidatedContext context)
{
 var principal = context.AuthenticationTicket.Principal;
 var userId = principal.GetObjectIdentifierValue();
 var tenantManager = context.HttpContext.RequestServices.GetService<TenantManager>();
 var userManager = context.HttpContext.RequestServices.GetService<UserManager>();
 var issuerValue = principal.GetIssuerValue();
 _logger.AuthenticationValidated(userId, issuerValue);

 // Normalize the claims first.
 NormalizeClaims(principal);
 var tenant = await tenantManager.FindByIssuerValueAsync(issuerValue)
 .ConfigureAwait(false);

 if (context.IsSigningUp())
 {
 if (tenant == null)
 {
 tenant = await SignUpTenantAsync(context, tenantManager)
 .ConfigureAwait(false);
 }

 // In this case, we need to go ahead and set up the user signing us up.
 await CreateOrUpdateUserAsync(context.Ticket, userManager, tenant)
 .ConfigureAwait(false);
 }
 else
 {
 if (tenant == null)
 {
 _logger.UnregisteredUserSignInAttempted(userId, issuerValue);
 throw new SecurityTokenValidationException($"Tenant {issuerValue} is not registered");
 }

 await CreateOrUpdateUserAsync(context.Ticket, userManager, tenant)
 .ConfigureAwait(false);
 }
}

In the Tenant table, IssuerValue is the value of the issuer claim for the tenant. For Azure AD, this is
https://sts.windows.net/<tentantID> and gives a unique value per tenant.

When a new tenant signs up, the Surveys application writes a tenant record to the database. This happens inside
the AuthenticationValidated event. (Don't do it before this event, because the ID token won't be validated yet, so
you can't trust the claim values. See Authentication.

Here is the relevant code from the Surveys application:

This code does the following:

1. Check if the tenant's issuer value is already in the database. If the tenant has not signed up,
FindByIssuerValueAsync returns null.

2. If the user is signing up:

3. Otherwise complete the normal sign-in flow:

a. Add the tenant to the database (SignUpTenantAsync).
b. Add the authenticated user to the database (CreateOrUpdateUserAsync).

a. If the tenant's issuer was not found in the database, it means the tenant is not registered, and the
customer needs to sign up. In that case, throw an exception to cause the authentication to fail.

b. Otherwise, create a database record for this user, if there isn't one already (CreateOrUpdateUserAsync).

Here is the SignUpTenantAsync method that adds the tenant to the database.

private async Task<Tenant> SignUpTenantAsync(BaseControlContext context, TenantManager tenantManager)
{
 Guard.ArgumentNotNull(context, nameof(context));
 Guard.ArgumentNotNull(tenantManager, nameof(tenantManager));

 var principal = context.Ticket.Principal;
 var issuerValue = principal.GetIssuerValue();
 var tenant = new Tenant
 {
 IssuerValue = issuerValue,
 Created = DateTimeOffset.UtcNow
 };

 try
 {
 await tenantManager.CreateAsync(tenant)
 .ConfigureAwait(false);
 }
 catch(Exception ex)
 {
 _logger.SignUpTenantFailed(principal.GetObjectIdentifierValue(), issuerValue, ex);
 throw;
 }

 return tenant;
}

Here is a summary of the entire sign-up flow in the Surveys application:

1. The user clicks the Sign Up button.
2. The AccountController.SignUp action returns a challege result. The authentication state includes "signup" value.
3. In the RedirectToAuthenticationEndpoint event, add the admin_consent prompt.
4. The OpenID Connect middleware redirects to Azure AD and the user authenticates.
5. In the AuthenticationValidated event, look for the "signup" state.
6. Add the tenant to the database.

Next

Application roles
3/13/2019 • 5 minutes to read • Edit Online

Roles using Azure AD App Roles

NOTENOTE

ImplementationImplementation

 Sample code

Application roles are used to assign permissions to users. For example, the Tailspin Surveys application defines the
following roles:

Administrator. Can perform all CRUD operations on any survey that belongs to that tenant.
Creator. Can create new surveys.
Reader. Can read any surveys that belong to that tenant.

You can see that roles ultimately get translated into permissions, during authorization. But the first question is how
to assign and manage roles. We identified three main options:

Azure AD App Roles
Azure AD security groups
Application role manager.

This is the approach that we used in the Tailspin Surveys app.

In this approach, The SaaS provider defines the application roles by adding them to the application manifest. After
a customer signs up, an admin for the customer's AD directory assigns users to the roles. When a user signs in, the
user's assigned roles are sent as claims.

If the customer has Azure AD Premium, the admin can assign a security group to a role, and members of the group will
inherit the app role. This is a convenient way to manage roles, because the group owner doesn't need to be an AD admin.

Advantages of this approach:

Simple programming model.
Roles are specific to the application. The role claims for one application are not sent to another application.
If the customer removes the application from their AD tenant, the roles go away.
The application doesn't need any extra Active Directory permissions, other than reading the user's profile.

Drawbacks:

Customers without Azure AD Premium cannot assign security groups to roles. For these customers, all user
assignments must be done by an AD administrator.
If you have a backend web API, which is separate from the web app, then role assignments for the web app
don't apply to the web API. For more discussion of this point, see Securing a backend web API.

Define the roles. The SaaS provider declares the app roles in the application manifest. For example, here is the
manifest entry for the Surveys app:

https://github.com/mspnp/architecture-center/blob/master/docs/multitenant-identity/app-roles.md
https://github.com/mspnp/multitenant-saas-guidance
https://docs.microsoft.com/azure/active-directory/active-directory-application-manifest/

"appRoles": [
 {
 "allowedMemberTypes": [
 "User"
],
 "description": "Creators can create Surveys",
 "displayName": "SurveyCreator",
 "id": "1b4f816e-5eaf-48b9-8613-7923830595ad",
 "isEnabled": true,
 "value": "SurveyCreator"
 },
 {
 "allowedMemberTypes": [
 "User"
],
 "description": "Administrators can manage the Surveys in their tenant",
 "displayName": "SurveyAdmin",
 "id": "c20e145e-5459-4a6c-a074-b942bbd4cfe1",
 "isEnabled": true,
 "value": "SurveyAdmin"
 }
],

NOTENOTE

The value property appears in the role claim. The id property is the unique identifier for the defined role.
Always generate a new GUID value for id .

Assign users. When a new customer signs up, the application is registered in the customer's AD tenant. At this
point, an AD admin for that tenant can assign users to roles.

As noted earlier, customers with Azure AD Premium can also assign security groups to roles.

The following screenshot from the Azure portal shows users and groups for the Survey application. Admin and
Creator are groups, assigned to SurveyAdmin and SurveyCreator roles respectively. Alice is a user who was
assigned directly to the SurveyAdmin role. Bob and Charles are users that have not been directly assigned to a
role.

As shown in the following screenshot, Charles is part of the Admin group, so he inherits the SurveyAdmin role. In
the case of Bob, he has not been assigned a role yet.

NOTENOTE

if (context.User.HasClaim(ClaimTypes.Role, "Admin")) { ... }

Roles using Azure AD security groups

ImplementationImplementation

{
 // ...
 "groupMembershipClaims": "SecurityGroup",
}

An alternative approach is for the application to assign roles programmatically, using the Azure AD Graph API. However, this
requires the application to obtain write permissions for the customer's AD directory. An application with those permissions
could do a lot of mischief — the customer is trusting the app not to mess up their directory. Many customers might be
unwilling to grant this level of access.

Get role claims. When a user signs in, the application receives the user's assigned role(s) in a claim with type
http://schemas.microsoft.com/ws/2008/06/identity/claims/role .

A user can have multiple roles, or no role. In your authorization code, don't assume the user has exactly one role
claim. Instead, write code that checks whether a particular claim value is present:

In this approach, roles are represented as AD security groups. The application assigns permissions to users based
on their security group memberships.

Advantages:

For customers who do not have Azure AD Premium, this approach enables the customer to use security groups
to manage role assignments.

Disadvantages:

Complexity. Because every tenant sends different group claims, the app must keep track of which security
groups correspond to which application roles, for each tenant.
If the customer removes the application from their AD tenant, the security groups are left in their AD directory.

In the application manifest, set the groupMembershipClaims property to "SecurityGroup". This is needed to get
group membership claims from AAD.

When a new customer signs up, the application instructs the customer to create security groups for the roles
needed by the application. The customer then needs to enter the group object IDs into the application. The

NOTENOTE

Roles using an application role manager

application stores these in a table that maps group IDs to application roles, per tenant.

Alternatively, the application could create the groups programmatically, using the Azure AD Graph API. This would be less
error prone. However, it requires the application to obtain "read and write all groups" permissions for the customer's AD
directory. Many customers might be unwilling to grant this level of access.

When a user signs in:

1. The application receives the user's groups as claims. The value of each claim is the object ID of a group.
2. Azure AD limits the number of groups sent in the token. If the number of groups exceeds this limit, Azure AD

sends a special "overage" claim. If that claim is present, the application must query the Azure AD Graph API to
get all of the groups to which that user belongs. For details, see [Authorization in Cloud Applications using AD
Groups], under the section titled "Groups claim overage".

3. The application looks up the object IDs in its own database, to find the corresponding application roles to
assign to the user.

4. The application adds a custom claim value to the user principal that expresses the application role. For example:
survey_role = "SurveyAdmin".

Authorization policies should use the custom role claim, not the group claim.

With this approach, application roles are not stored in Azure AD at all. Instead, the application stores the role
assignments for each user in its own DB — for example, using the RoleManager class in ASP.NET Identity.

Advantages:

The app has full control over the roles and user assignments.

Drawbacks:

More complex, harder to maintain.
Cannot use AD security groups to manage role assignments.
Stores user information in the application database, where it can get out of sync with the tenant's AD directory,
as users are added or removed.

Next

Role-based and resource-based authorization
3/13/2019 • 5 minutes to read • Edit Online

Role-Based Authorization

Create policiesCreate policies

public class SurveyCreatorRequirement : AuthorizationHandler<SurveyCreatorRequirement>,
IAuthorizationRequirement
{
 protected override Task HandleRequirementAsync(AuthorizationHandlerContext context,
SurveyCreatorRequirement requirement)
 {
 if (context.User.HasClaim(ClaimTypes.Role, Roles.SurveyAdmin) ||
 context.User.HasClaim(ClaimTypes.Role, Roles.SurveyCreator))
 {
 context.Succeed(requirement);
 }
 return Task.FromResult(0);
 }
}

 Sample code

Our reference implementation is an ASP.NET Core application. In this article we'll look at two general approaches
to authorization, using the authorization APIs provided in ASP.NET Core.

Role-based authorization. Authorizing an action based on the roles assigned to a user. For example, some
actions require an administrator role.
Resource-based authorization. Authorizing an action based on a particular resource. For example, every
resource has an owner. The owner can delete the resource; other users cannot.

A typical app will employ a mix of both. For example, to delete a resource, the user must be the resource owner or
an admin.

The Tailspin Surveys application defines the following roles:

Administrator. Can perform all CRUD operations on any survey that belongs to that tenant.
Creator. Can create new surveys
Reader. Can read any surveys that belong to that tenant

Roles apply to users of the application. In the Surveys application, a user is either an administrator, creator, or
reader.

For a discussion of how to define and manage roles, see Application roles.

Regardless of how you manage the roles, your authorization code will look similar. ASP.NET Core has an
abstraction called authorization policies. With this feature, you define authorization policies in code, and then
apply those policies to controller actions. The policy is decoupled from the controller.

To define a policy, first create a class that implements IAuthorizationRequirement . It's easiest to derive from
AuthorizationHandler . In the Handle method, examine the relevant claim(s).

Here is an example from the Tailspin Surveys application:

https://github.com/mspnp/architecture-center/blob/master/docs/multitenant-identity/authorize.md
https://github.com/mspnp/multitenant-saas-guidance
https://docs.microsoft.com/aspnet/core/security/authorization/policies

services.AddAuthorization(options =>
{
 options.AddPolicy(PolicyNames.RequireSurveyCreator,
 policy =>
 {
 policy.AddRequirements(new SurveyCreatorRequirement());
 policy.RequireAuthenticatedUser(); // Adds DenyAnonymousAuthorizationRequirement
 // By adding the CookieAuthenticationDefaults.AuthenticationScheme, if an authenticated
 // user is not in the appropriate role, they will be redirected to a "forbidden" page.
 policy.AddAuthenticationSchemes(CookieAuthenticationDefaults.AuthenticationScheme);
 });

 options.AddPolicy(PolicyNames.RequireSurveyAdmin,
 policy =>
 {
 policy.AddRequirements(new SurveyAdminRequirement());
 policy.RequireAuthenticatedUser();
 policy.AddAuthenticationSchemes(CookieAuthenticationDefaults.AuthenticationScheme);
 });
});

Authorize controller actionsAuthorize controller actions

[Authorize(Policy = PolicyNames.RequireSurveyCreator)]
public IActionResult Create()
{
 var survey = new SurveyDTO();
 return View(survey);
}

// old way
[Authorize(Roles = "SurveyCreator")]

Resource based authorization

This class defines the requirement for a user to create a new survey. The user must be in the SurveyAdmin or
SurveyCreator role.

In your startup class, define a named policy that includes one or more requirements. If there are multiple
requirements, the user must meet every requirement to be authorized. The following code defines two policies:

This code also sets the authentication scheme, which tells ASP.NET which authentication middleware should run if
authorization fails. In this case, we specify the cookie authentication middleware, because the cookie
authentication middleware can redirect the user to a "Forbidden" page. The location of the Forbidden page is set
in the AccessDeniedPath option for the cookie middleware; see Configuring the authentication middleware.

Finally, to authorize an action in an MVC controller, set the policy in the Authorize attribute:

In earlier versions of ASP.NET, you would set the Roles property on the attribute:

This is still supported in ASP.NET Core, but it has some drawbacks compared with authorization policies:

It assumes a particular claim type. Policies can check for any claim type. Roles are just a type of claim.
The role name is hard-coded into the attribute. With policies, the authorization logic is all in one place, making
it easier to update or even load from configuration settings.
Policies enable more complex authorization decisions (e.g., age >= 21) that can't be expressed by simple role
membership.

Resource based authorization occurs whenever the authorization depends on a specific resource that will be

public class SurveyAuthorizationHandler : AuthorizationHandler<OperationAuthorizationRequirement, Survey>
{
 protected override void HandleRequirementAsync(AuthorizationHandlerContext context,
OperationAuthorizationRequirement operation, Survey resource)
 {
 }
}

services.AddSingleton<IAuthorizationHandler>(factory =>
{
 return new SurveyAuthorizationHandler();
});

if (await _authorizationService.AuthorizeAsync(User, survey, Operations.Read) == false)
{
 return StatusCode(403);
}

affected by an operation. In the Tailspin Surveys application, every survey has an owner and zero-to-many
contributors.

The owner can read, update, delete, publish, and unpublish the survey.
The owner can assign contributors to the survey.
Contributors can read and update the survey.

Note that "owner" and "contributor" are not application roles; they are stored per survey, in the application
database. To check whether a user can delete a survey, for example, the app checks whether the user is the owner
for that survey.

In ASP.NET Core, implement resource-based authorization by deriving from AuthorizationHandler and
overriding the Handle method.

Notice that this class is strongly typed for Survey objects. Register the class for DI on startup:

To perform authorization checks, use the IAuthorizationService interface, which you can inject into your
controllers. The following code checks whether a user can read a survey:

Because we pass in a Survey object, this call will invoke the SurveyAuthorizationHandler .

In your authorization code, a good approach is to aggregate all of the user's role-based and resource-based
permissions, then check the aggregate set against the desired operation. Here is an example from the Surveys app.
The application defines several permission types:

Admin
Contributor
Creator
Owner
Reader

The application also defines a set of possible operations on surveys:

Create
Read
Update
Delete

public class SurveyAuthorizationHandler : AuthorizationHandler<OperationAuthorizationRequirement, Survey>
{
 protected override Task HandleRequirementAsync(AuthorizationHandlerContext context,
OperationAuthorizationRequirement requirement, Survey resource)
 {
 var permissions = new List<UserPermissionType>();
 int surveyTenantId = context.User.GetSurveyTenantIdValue();
 int userId = context.User.GetSurveyUserIdValue();
 string user = context.User.GetUserName();

 if (resource.TenantId == surveyTenantId)
 {
 // Admin can do anything, as long as the resource belongs to the admin's tenant.
 if (context.User.HasClaim(ClaimTypes.Role, Roles.SurveyAdmin))
 {
 context.Succeed(requirement);
 return Task.FromResult(0);
 }

 if (context.User.HasClaim(ClaimTypes.Role, Roles.SurveyCreator))
 {
 permissions.Add(UserPermissionType.Creator);
 }
 else
 {
 permissions.Add(UserPermissionType.Reader);
 }

 if (resource.OwnerId == userId)
 {
 permissions.Add(UserPermissionType.Owner);
 }
 }
 if (resource.Contributors != null && resource.Contributors.Any(x => x.UserId == userId))
 {
 permissions.Add(UserPermissionType.Contributor);
 }

 if (ValidateUserPermissions[requirement](permissions))
 {
 context.Succeed(requirement);
 }
 return Task.FromResult(0);
 }
}

Publish
Unpublish

The following code creates a list of permissions for a particular user and survey. Notice that this code looks at
both the user's app roles, and the owner/contributor fields in the survey.

In a multi-tenant application, you must ensure that permissions don't "leak" to another tenant's data. In the
Surveys app, the Contributor permission is allowed across tenants — you can assign someone from another
tenant as a contributor. The other permission types are restricted to resources that belong to that user's tenant. To
enforce this requirement, the code checks the tenant ID before granting the permission. (The TenantId field as
assigned when the survey is created.)

The next step is to check the operation (read, update, delete, etc) against the permissions. The Surveys app
implements this step by using a lookup table of functions:

static readonly Dictionary<OperationAuthorizationRequirement, Func<List<UserPermissionType>, bool>>
ValidateUserPermissions
 = new Dictionary<OperationAuthorizationRequirement, Func<List<UserPermissionType>, bool>>

 {
 { Operations.Create, x => x.Contains(UserPermissionType.Creator) },

 { Operations.Read, x => x.Contains(UserPermissionType.Creator) ||
 x.Contains(UserPermissionType.Reader) ||
 x.Contains(UserPermissionType.Contributor) ||
 x.Contains(UserPermissionType.Owner) },

 { Operations.Update, x => x.Contains(UserPermissionType.Contributor) ||
 x.Contains(UserPermissionType.Owner) },

 { Operations.Delete, x => x.Contains(UserPermissionType.Owner) },

 { Operations.Publish, x => x.Contains(UserPermissionType.Owner) },

 { Operations.UnPublish, x => x.Contains(UserPermissionType.Owner) }
 };

Next

Secure a backend web API
3/13/2019 • 6 minutes to read • Edit Online

GET /users/{userId}/surveys

{
 "Published":[],
 "Own":[
 {"Id":1,"Title":"Survey 1"},
 {"Id":3,"Title":"Survey 3"},
],
 "Contribute": [{"Id":8,"Title":"My survey"}]
}

NOTENOTE

 Sample code

The Tailspin Surveys application uses a backend web API to manage CRUD operations on surveys. For example,
when a user clicks "My Surveys", the web application sends an HTTP request to the web API:

The web API returns a JSON object:

The web API does not allow anonymous requests, so the web app must authenticate itself using OAuth 2 bearer
tokens.

This is a server-to-server scenario. The application does not make any AJAX calls to the API from the browser client.

There are two main approaches you can take:

Delegated user identity. The web application authenticates with the user's identity.
Application identity. The web application authenticates with its client ID, using OAuth 2 client credential flow.

The Tailspin application implements delegated user identity. Here are the main differences:

Delegated user identity:

The bearer token sent to the web API contains the user identity.
The web API makes authorization decisions based on the user identity.
The web application needs to handle 403 (Forbidden) errors from the web API, if the user is not authorized to
perform an action.
Typically, the web application still makes some authorization decisions that affect UI, such as showing or hiding
UI elements).
The web API can potentially be used by untrusted clients, such as a JavaScript application or a native client
application.

Application identity:

The web API does not get information about the user.
The web API cannot perform any authorization based on the user identity. All authorization decisions are made
by the web application.

https://github.com/mspnp/architecture-center/blob/master/docs/multitenant-identity/web-api.md
https://github.com/mspnp/multitenant-saas-guidance

Register the web API in Azure AD

Getting an access token

The web API cannot be used by an untrusted client (JavaScript or native client application).
This approach may be somewhat simpler to implement, because there is no authorization logic in the Web API.

In either approach, the web application must get an access token, which is the credential needed to call the web
API.

For delegated user identity, the token has to come from the IDP, which can issue a token on behalf of the user.
For client credentials, an application might get the token from the IDP or host its own token server. (But don't
write a token server from scratch; use a well-tested framework like IdentityServer4.) If you authenticate with
Azure AD, it's strongly recommended to get the access token from Azure AD, even with client credential flow.

The rest of this article assumes the application is authenticating with Azure AD.

In order for Azure AD to issue a bearer token for the web API, you need to configure some things in Azure AD.

1. Register the web API in Azure AD.

2. Add the client ID of the web app to the web API application manifest, in the knownClientApplications

property. See Update the application manifests.

3. Give the web application permission to call the web API. In the Azure Management Portal, you can set two
types of permissions: "Application Permissions" for application identity (client credential flow), or
"Delegated Permissions" for delegated user identity.

Before calling the web API, the web application gets an access token from Azure AD. In a .NET application, use the
Azure AD Authentication Library (ADAL) for .NET.

In the OAuth 2 authorization code flow, the application exchanges an authorization code for an access token. The
following code uses ADAL to get the access token. This code is called during the AuthorizationCodeReceived event.

https://github.com/IdentityServer/IdentityServer4
https://msdn.microsoft.com/library/azure/jj573266.aspx

// The OpenID Connect middleware sends this event when it gets the authorization code.
public override async Task AuthorizationCodeReceived(AuthorizationCodeReceivedContext context)
{
 string authorizationCode = context.ProtocolMessage.Code;
 string authority = "https://login.microsoftonline.com/" + tenantID
 string resourceID = "https://tailspin.onmicrosoft.com/surveys.webapi" // App ID URI
 ClientCredential credential = new ClientCredential(clientId, clientSecret);

 AuthenticationContext authContext = new AuthenticationContext(authority, tokenCache);
 AuthenticationResult authResult = await authContext.AcquireTokenByAuthorizationCodeAsync(
 authorizationCode, new Uri(redirectUri), credential, resourceID);

 // If successful, the token is in authResult.AccessToken
}

AuthenticationContext authContext = new AuthenticationContext(authority, tokenCache);
var result = await authContext.AcquireTokenSilentAsync(resourceID, credential, new UserIdentifier(userId,
UserIdentifierType.UniqueId));

Using the access token to call the web API

Authorization: Bearer xxxxxxxxxx

Here are the various parameters that are needed:

authority . Derived from the tenant ID of the signed in user. (Not the tenant ID of the SaaS provider)
authorizationCode . the auth code that you got back from the IDP.
clientId . The web application's client ID.
clientSecret . The web application's client secret.
redirectUri . The redirect URI that you set for OpenID Connect. This is where the IDP calls back with the

token.
resourceID . The App ID URI of the web API, which you created when you registered the web API in Azure AD
tokenCache . An object that caches the access tokens. See Token caching.

If AcquireTokenByAuthorizationCodeAsync succeeds, ADAL caches the token. Later, you can get the token from the
cache by calling AcquireTokenSilentAsync:

where userId is the user's object ID, which is found in the
http://schemas.microsoft.com/identity/claims/objectidentifier claim.

Once you have the token, send it in the Authorization header of the HTTP requests to the web API.

The following extension method from the Surveys application sets the Authorization header on an HTTP request,
using the HttpClient class.

public static async Task<HttpResponseMessage> SendRequestWithBearerTokenAsync(this HttpClient httpClient,
HttpMethod method, string path, object requestBody, string accessToken, CancellationToken ct)
{
 var request = new HttpRequestMessage(method, path);
 if (requestBody != null)
 {
 var json = JsonConvert.SerializeObject(requestBody, Formatting.None);
 var content = new StringContent(json, Encoding.UTF8, "application/json");
 request.Content = content;
 }

 request.Headers.Authorization = new AuthenticationHeaderValue("Bearer", accessToken);
 request.Headers.Accept.Add(new MediaTypeWithQualityHeaderValue("application/json"));

 var response = await httpClient.SendAsync(request, ct);
 return response;
}

Authenticating in the web API

public void Configure(IApplicationBuilder app, IHostingEnvironment env, ApplicationDbContext dbContext,
ILoggerFactory loggerFactory)
{
 // ...

 app.UseJwtBearerAuthentication(new JwtBearerOptions {
 Audience = configOptions.AzureAd.WebApiResourceId,
 Authority = Constants.AuthEndpointPrefix,
 TokenValidationParameters = new TokenValidationParameters {
 ValidateIssuer = false
 },
 Events= new SurveysJwtBearerEvents(loggerFactory.CreateLogger<SurveysJwtBearerEvents>())
 });

 // ...
}

Issuer validationIssuer validation

The web API has to authenticate the bearer token. In ASP.NET Core, you can use the
Microsoft.AspNet.Authentication.JwtBearer package. This package provides middleware that enables the
application to receive OpenID Connect bearer tokens.

Register the middleware in your web API Startup class.

Audience. Set this to the App ID URL for the web API, which you created when you registered the web API
with Azure AD.
Authority. For a multitenant application, set this to https://login.microsoftonline.com/common/ .
TokenValidationParameters. For a multitenant application, set ValidateIssuer to false. That means the
application will validate the issuer.
Events is a class that derives from JwtBearerEvents.

Validate the token issuer in the JwtBearerEvents.TokenValidated event. The issuer is sent in the "iss" claim.

In the Surveys application, the web API doesn't handle tenant sign-up. Therefore, it just checks if the issuer is
already in the application database. If not, it throws an exception, which causes authentication to fail.

https://www.nuget.org/packages/Microsoft.AspNet.Authentication.JwtBearer

public override async Task TokenValidated(TokenValidatedContext context)
{
 var principal = context.Ticket.Principal;
 var tenantManager = context.HttpContext.RequestServices.GetService<TenantManager>();
 var userManager = context.HttpContext.RequestServices.GetService<UserManager>();
 var issuerValue = principal.GetIssuerValue();
 var tenant = await tenantManager.FindByIssuerValueAsync(issuerValue);

 if (tenant == null)
 {
 // The caller was not from a trusted issuer. Throw to block the authentication flow.
 throw new SecurityTokenValidationException();
 }

 var identity = principal.Identities.First();

 // Add new claim for survey_userid
 var registeredUser = await userManager.FindByObjectIdentifier(principal.GetObjectIdentifierValue());
 identity.AddClaim(new Claim(SurveyClaimTypes.SurveyUserIdClaimType, registeredUser.Id.ToString()));
 identity.AddClaim(new Claim(SurveyClaimTypes.SurveyTenantIdClaimType,
registeredUser.TenantId.ToString()));

 // Add new claim for Email
 var email = principal.FindFirst(ClaimTypes.Upn)?.Value;
 if (!string.IsNullOrWhiteSpace(email))
 {
 identity.AddClaim(new Claim(ClaimTypes.Email, email));
 }
}

Authorization

[Authorize(ActiveAuthenticationSchemes = JwtBearerDefaults.AuthenticationScheme)]

[Authorize(Policy = PolicyNames.RequireSurveyCreator)]

As this example shows, you can also use the TokenValidated event to modify the claims. Remember that the
claims come directly from Azure AD. If the web application modifies the claims that it gets, those changes won't
show up in the bearer token that the web API receives. For more information, see Claims transformations.

For a general discussion of authorization, see Role-based and resource-based authorization.

The JwtBearer middleware handles the authorization responses. For example, to restrict a controller action to
authenticated users, use the [Authorize] atrribute and specify JwtBearerDefaults.AuthenticationScheme as
the authentication scheme:

This returns a 401 status code if the user is not authenticated.

To restrict a controller action by authorizaton policy, specify the policy name in the [Authorize] attribute:

This returns a 401 status code if the user is not authenticated, and 403 if the user is authenticated but not
authorized. Register the policy on startup:

public void ConfigureServices(IServiceCollection services)
{
 services.AddAuthorization(options =>
 {
 options.AddPolicy(PolicyNames.RequireSurveyCreator,
 policy =>
 {
 policy.AddRequirements(new SurveyCreatorRequirement());
 policy.RequireAuthenticatedUser(); // Adds DenyAnonymousAuthorizationRequirement
 policy.AddAuthenticationSchemes(JwtBearerDefaults.AuthenticationScheme);
 });
 options.AddPolicy(PolicyNames.RequireSurveyAdmin,
 policy =>
 {
 policy.AddRequirements(new SurveyAdminRequirement());
 policy.RequireAuthenticatedUser(); // Adds DenyAnonymousAuthorizationRequirement
 policy.AddAuthenticationSchemes(JwtBearerDefaults.AuthenticationScheme);
 });
 });

 // ...
}

Next

Cache access tokens
3/13/2019 • 4 minutes to read • Edit Online

 Sample code

It's relatively expensive to get an OAuth access token, because it requires an HTTP request to the token endpoint.
Therefore, it's good to cache tokens whenever possible. The Azure AD Authentication Library (ADAL)
automatically caches tokens obtained from Azure AD, including refresh tokens.

ADAL provides a default token cache implementation. However, this token cache is intended for native client apps,
and is not suitable for web apps:

It is a static instance, and not thread safe.
It doesn't scale to large numbers of users, because tokens from all users go into the same dictionary.
It can't be shared across web servers in a farm.

Instead, you should implement a custom token cache that derives from the ADAL TokenCache class but is suitable
for a server environment and provides the desirable level of isolation between tokens for different users.

The TokenCache class stores a dictionary of tokens, indexed by issuer, resource, client ID, and user. A custom token
cache should write this dictionary to a backing store, such as a Redis cache.

In the Tailspin Surveys application, the DistributedTokenCache class implements the token cache. This
implementation uses the IDistributedCache abstraction from ASP.NET Core. That way, any IDistributedCache
implementation can be used as a backing store.

By default, the Surveys app uses a Redis cache.
For a single-instance web server, you could use the ASP.NET Core in-memory cache. (This is also a good
option for running the app locally during development.)

DistributedTokenCache stores the cache data as key/value pairs in the backing store. The key is the user ID plus
client ID, so the backing store holds separate cache data for each unique combination of user/client.

https://github.com/mspnp/architecture-center/blob/master/docs/multitenant-identity/token-cache.md
https://github.com/mspnp/multitenant-saas-guidance
https://msdn.microsoft.com/library/azure/jj573266.aspx
https://docs.microsoft.com/aspnet/core/performance/caching/distributed
https://docs.microsoft.com/aspnet/core/performance/caching/memory

Encrypting cached tokens

NOTENOTE

DistributedTokenCache implementation

public DistributedTokenCache(
 ClaimsPrincipal claimsPrincipal,
 IDistributedCache distributedCache,
 ILoggerFactory loggerFactory,
 IDataProtectionProvider dataProtectionProvider)
 : base()
{
 _claimsPrincipal = claimsPrincipal;
 _cacheKey = BuildCacheKey(_claimsPrincipal);
 _distributedCache = distributedCache;
 _logger = loggerFactory.CreateLogger<DistributedTokenCache>();
 _protector = dataProtectionProvider.CreateProtector(typeof(DistributedTokenCache).FullName);
 AfterAccess = AfterAccessNotification;
 LoadFromCache();
}

private static string BuildCacheKey(ClaimsPrincipal claimsPrincipal)
{
 string clientId = claimsPrincipal.FindFirstValue("aud", true);
 return string.Format(
 "UserId:{0}::ClientId:{1}",
 claimsPrincipal.GetObjectIdentifierValue(),
 clientId);
}

The backing store is partitioned by user. For each HTTP request, the tokens for that user are read from the backing
store and loaded into the TokenCache dictionary. If Redis is used as the backing store, every server instance in a
server farm reads/writes to the same cache, and this approach scales to many users.

Tokens are sensitive data, because they grant access to a user's resources. (Moreover, unlike a user's password, you
can't just store a hash of the token.) Therefore, it's critical to protect tokens from being compromised. The Redis-
backed cache is protected by a password, but if someone obtains the password, they could get all of the cached
access tokens. For that reason, the DistributedTokenCache encrypts everything that it writes to the backing store.
Encryption is done using the ASP.NET Core data protection APIs.

If you deploy to Azure Web Sites, the encryption keys are backed up to network storage and synchronized across all
machines (see Key management and lifetime). By default, keys are not encrypted when running in Azure Web Sites, but you
can enable encryption using an X.509 certificate .

The DistributedTokenCache class derives from the ADAL TokenCache class.

In the constructor, the DistributedTokenCache class creates a key for the current user and loads the cache from the
backing store:

The key is created by concatenating the user ID and client ID. Both of these are taken from claims found in the
user's ClaimsPrincipal :

To load the cache data, read the serialized blob from the backing store, and call TokenCache.Deserialize to convert
the blob into cache data.

https://docs.microsoft.com/aspnet/core/security/data-protection/
https://docs.microsoft.com/aspnet/core/security/data-protection/configuration/default-settings
https://docs.microsoft.com/aspnet/core/security/data-protection/implementation/key-encryption-at-rest#x509-certificate
https://msdn.microsoft.com/library/azure/microsoft.identitymodel.clients.activedirectory.tokencache.aspx

private void LoadFromCache()
{
 byte[] cacheData = _distributedCache.Get(_cacheKey);
 if (cacheData != null)
 {
 this.Deserialize(_protector.Unprotect(cacheData));
 }
}

public void AfterAccessNotification(TokenCacheNotificationArgs args)
{
 if (this.HasStateChanged)
 {
 try
 {
 if (this.Count > 0)
 {
 _distributedCache.Set(_cacheKey, _protector.Protect(this.Serialize()));
 }
 else
 {
 // There are no tokens for this user/client, so remove the item from the cache.
 _distributedCache.Remove(_cacheKey);
 }
 this.HasStateChanged = false;
 }
 catch (Exception exp)
 {
 _logger.WriteToCacheFailed(exp);
 throw;
 }
 }
}

Whenever ADAL access the cache, it fires an AfterAccess event. If the cache data has changed, the
HasStateChanged property is true. In that case, update the backing store to reflect the change, and then set
HasStateChanged to false.

TokenCache sends two other events:

BeforeWrite . Called immediately before ADAL writes to the cache. You can use this to implement a
concurrency strategy
BeforeAccess . Called immediately before ADAL reads from the cache. Here you can reload the cache to get the

latest version.

In our case, we decided not to handle these two events.

For concurrency, last write wins. That's OK, because tokens are stored independently for each user + client, so a
conflict would only happen if the same user had two concurrent login sessions.
For reading, we load the cache on every request. Requests are short lived. If the cache gets modified in that
time, the next request will pick up the new value.

Next

Use client assertion to get access tokens from Azure
AD
3/13/2019 • 2 minutes to read • Edit Online

Background

POST https://login.microsoftonline.com/b9bd2162xxx/oauth2/token HTTP/1.1
Content-Type: application/x-www-form-urlencoded

resource=https://tailspin.onmicrosoft.com/surveys.webapi
 &client_id=87df91dc-63de-4765-8701-b59cc8bd9e11
 &client_secret=i3Bf12Dn...
 &grant_type=authorization_code
 &code=PG8wJG6Y...

 Sample code

When using authorization code flow or hybrid flow in OpenID Connect, the client exchanges an authorization code
for an access token. During this step, the client has to authenticate itself to the server.

One way to authenticate the client is by using a client secret. That's how the Tailspin Surveys application is
configured by default.

Here is an example request from the client to the IDP, requesting an access token. Note the client_secret

parameter.

The secret is just a string, so you have to make sure not to leak the value. The best practice is to keep the client
secret out of source control. When you deploy to Azure, store the secret in an app setting.

However, anyone with access to the Azure subscription can view the app settings. Further, there is always a
temptation to check secrets into source control (e.g., in deployment scripts), share them by email, and so on.

For additional security, you can use client assertion instead of a client secret. With client assertion, the client uses
an X.509 certificate to prove the token request came from the client. The client certificate is installed on the web
server. Generally, it will be easier to restrict access to the certificate, than to ensure that nobody inadvertently
reveals a client secret. For more information about configuring certificates in a web app, see Using Certificates in
Azure Websites Applications

Here is a token request using client assertion:

https://github.com/mspnp/architecture-center/blob/master/docs/multitenant-identity/client-assertion.md
https://github.com/mspnp/multitenant-saas-guidance
https://docs.microsoft.com/azure/app-service-web/web-sites-configure/
https://tools.ietf.org/html/rfc7521
https://azure.microsoft.com/blog/using-certificates-in-azure-websites-applications/

POST https://login.microsoftonline.com/b9bd2162xxx/oauth2/token HTTP/1.1
Content-Type: application/x-www-form-urlencoded

resource=https://tailspin.onmicrosoft.com/surveys.webapi
 &client_id=87df91dc-63de-4765-8701-b59cc8bd9e11
 &client_assertion_type=urn:ietf:params:oauth:client-assertion-type:jwt-bearer
 &client_assertion=eyJhbGci...
 &grant_type=authorization_code
 &code= PG8wJG6Y...

NOTENOTE

public class CertificateCredentialService : ICredentialService
{
 private Lazy<Task<AdalCredential>> _credential;

 public CertificateCredentialService(IOptions<ConfigurationOptions> options)
 {
 var aadOptions = options.Value?.AzureAd;
 _credential = new Lazy<Task<AdalCredential>>(() =>
 {
 X509Certificate2 cert = CertificateUtility.FindCertificateByThumbprint(
 aadOptions.Asymmetric.StoreName,
 aadOptions.Asymmetric.StoreLocation,
 aadOptions.Asymmetric.CertificateThumbprint,
 aadOptions.Asymmetric.ValidationRequired);
 string password = null;
 var certBytes = CertificateUtility.ExportCertificateWithPrivateKey(cert, out password);
 return Task.FromResult(new AdalCredential(new ClientAssertionCertificate(aadOptions.ClientId, new
X509Certificate2(certBytes, password))));
 });
 }

 public async Task<AdalCredential> GetCredentialsAsync()
 {
 return await _credential.Value;
 }
}

Notice that the client_secret parameter is no longer used. Instead, the client_assertion parameter contains a
JWT token that was signed using the client certificate. The client_assertion_type parameter specifies the type of
assertion — in this case, JWT token. The server validates the JWT token. If the JWT token is invalid, the token
request returns an error.

X.509 certificates are not the only form of client assertion; we focus on it here because it is supported by Azure AD.

At run time, the web application reads the certificate from the certificate store. The certificate must be installed on
the same machine as the web app.

The Surveys application includes a helper class that creates a ClientAssertionCertificate that you can pass to the
AuthenticationContext.AcquireTokenSilentAsync method to acquire a token from Azure AD.

For information about setting up client assertion in the Surveys application, see Use Azure Key Vault to protect
application secrets .

Next

https://docs.microsoft.com/dotnet/api/microsoft.identitymodel.clients.activedirectory.clientassertioncertificate
https://docs.microsoft.com/dotnet/api/microsoft.identitymodel.clients.activedirectory.authenticationcontext.acquiretokensilentasync

Use Azure Key Vault to protect application secrets
3/13/2019 • 7 minutes to read • Edit Online

NOTENOTE

Setting up Key Vault in the Surveys app

 Sample code

It's common to have application settings that are sensitive and must be protected, such as:

Database connection strings
Passwords
Cryptographic keys

As a security best practice, you should never store these secrets in source control. It's too easy for them to leak —
even if your source code repository is private. And it's not just about keeping secrets from the general public. On
larger projects, you might want to restrict which developers and operators can access the production secrets.
(Settings for test or development environments are different.)

A more secure option is to store these secrets in Azure Key Vault. Key Vault is a cloud-hosted service for managing
cryptographic keys and other secrets. This article shows how to use Key Vault to store configuration settings for
your app.

In the Tailspin Surveys application, the following settings are secret:

The database connection string.
The Redis connection string.
The client secret for the web application.

The Surveys application loads configuration settings from the following places:

The appsettings.json file
The user secrets store (development environment only; for testing)
The hosting environment (app settings in Azure web apps)
Key Vault (when enabled)

Each of these overrides the previous one, so any settings stored in Key Vault take precedence.

By default, the Key Vault configuration provider is disabled. It's not needed for running the application locally. You would
enable it in a production deployment.

At startup, the application reads settings from every registered configuration provider, and uses them to populate
a strongly typed options object. For more information, see Using Options and configuration objects.

Prerequisites:

Install the Azure Resource Manager Cmdlets.
Configure the Surveys application as described in Run the Surveys application.

High-level steps:

https://github.com/mspnp/architecture-center/blob/master/docs/multitenant-identity/key-vault.md
https://github.com/mspnp/multitenant-saas-guidance
https://azure.microsoft.com/services/key-vault/
https://docs.microsoft.com/aspnet/core/security/app-secrets
https://docs.microsoft.com/aspnet/core/fundamentals/configuration#using-options-and-configuration-objects
https://msdn.microsoft.com/library/mt125356.aspx

Set up an admin userSet up an admin user

NOTENOTE

1. Set up an admin user in the tenant.
2. Set up a client certificate.
3. Create a key vault.
4. Add configuration settings to your key vault.
5. Uncomment the code that enables key vault.
6. Update the application's user secrets.

To create a key vault, you must use an account which can manage your Azure subscription. Also, any application that you
authorize to read from the key vault must be registered in the same tenant as that account.

In this step, you will make sure that you can create a key vault while signed in as a user from the tenant where the
Surveys app is registered.

Create an administrator user within the Azure AD tenant where the Surveys application is registered.

1. Log into the Azure portal.
2. Select the Azure AD tenant where your application is registered.
3. Click More service > SECURITY + IDENTITY > Azure Active Directory > User and groups > All users.
4. At the top of the portal, click New user.
5. Fill in the fields and assign the user to the Global administrator directory role.
6. Click Create.

https://portal.azure.com

Now assign this user as the subscription owner.

1. On the Hub menu, select Subscriptions.

Set up a client certificateSet up a client certificate

2. Select the subscription that you want the administrator to access.

3. In the subscription blade, select Access control (IAM).

4. Click Add.

5. Under Role, select Owner.

6. Type the email address of the user you want to add as owner.

7. Select the user and click Save.

.\Setup-KeyVault.ps1 -Subject <<subject>>

1. Run the PowerShell script /Scripts/Setup-KeyVault.ps1 as follows:

For the Subject parameter, enter any name, such as "surveysapp". The script generates a self-signed
certificate and stores it in the "Current User/Personal" certificate store. The output from the script is a
JSON fragment. Copy this value.

2. In the Azure portal, switch to the directory where the Surveys application is registered, by selecting your
account in the top right corner of the portal.

3. Select Azure Active Directory > App Registrations > Surveys

4. Click Manifest and then Edit.

5. Paste the output from the script into the keyCredentials property. It should look similar to the following:

https://github.com/mspnp/multitenant-saas-guidance/blob/master/scripts/Setup-KeyVault.ps1
https://portal.azure.com

Create a key vaultCreate a key vault

Add configuration settings to your key vaultAdd configuration settings to your key vault

"keyCredentials": [
 {
 "type": "AsymmetricX509Cert",
 "usage": "Verify",
 "keyId": "29d4f7db-0539-455e-b708-....",
 "customKeyIdentifier": "ZEPpP/+KJe2fVDBNaPNOTDoJMac=",
 "value": "MIIDAjCCAeqgAwIBAgIQFxeRiU59eL.....
 }
],

certutil -store -user my [subject]

6. Click Save.

7. Repeat steps 3-6 to add the same JSON fragment to the application manifest of the web API
(Surveys.WebAPI).

8. From the PowerShell window, run the following command to get the thumbprint of the certificate.

For [subject] , use the value that you specified for Subject in the PowerShell script. The thumbprint is
listed under "Cert Hash(sha1)". Copy this value. You will use the thumbprint later.

.\Setup-KeyVault.ps1 -KeyVaultName <<key vault name>> -ResourceGroupName <<resource group name>> -
Location <<location>>

.\Setup-KeyVault.ps1 -KeyVaultName <<key vault name>> -ApplicationIds @("<<Surveys app id>>", "
<<Surveys.WebAPI app ID>>")

* key vault name = The name that you gave the key vault in the previous step.
* Surveys app ID = The application ID for the Surveys web application.
* Surveys.WebApi app ID = The application ID for the Surveys.WebAPI application.

 .\Setup-KeyVault.ps1 -KeyVaultName tailspinkv -ApplicationIds @("f84df9d1-91cc-4603-b662-
302db51f1031", "8871a4c2-2a23-4650-8b46-0625ff3928a6")

1. Run the PowerShell script /Scripts/Setup-KeyVault.ps1 as follows:

When prompted for credentials, sign in as the Azure AD user that you created earlier. The script creates a
new resource group, and a new key vault within that resource group.

2. Run Setup-KeyVault.ps1 again as follows:

Set the following parameter values:

Example:

This script authorizes the web app and web API to retrieve secrets from your key vault. See Get started with
Azure Key Vault for more information.

1. Run Setup-KeyVault.ps1 as follows:

https://github.com/mspnp/multitenant-saas-guidance/blob/master/scripts/Setup-KeyVault.ps1
https://docs.microsoft.com/azure/key-vault/key-vault-get-started/

Uncomment the code that enables Key VaultUncomment the code that enables Key Vault

.\Setup-KeyVault.ps1 -KeyVaultName <<key vault name> -KeyName Redis--Configuration -KeyValue "<<Redis
DNS name>>.redis.cache.windows.net,password=<<Redis access key>>,ssl=true"

Get-AzureKeyVaultSecret <<key vault name>> Redis--Configuration | Select-Object *

.\Setup-KeyVault.ps1 -KeyVaultName <<key vault name> -KeyName Data--SurveysConnectionString -KeyValue
<<DB connection string>> -ConfigName "Data:SurveysConnectionString"

.\Setup-KeyVault.ps1 -KeyVaultName mykeyvault -KeyName Data--SurveysConnectionString -KeyValue "Server=
(localdb)\MSSQLLocalDB;Database=Tailspin.SurveysDB;Trusted_Connection=True;MultipleActiveResultSets=tru
e"

where

key vault name = The name that you gave the key vault in the previous step.
Redis DNS name = The DNS name of your Redis cache instance.
Redis access key = The access key for your Redis cache instance.

2. At this point, it's a good idea to test whether you successfully stored the secrets to key vault. Run the
following PowerShell command:

3. Run Setup-KeyVault.ps1 again to add the database connection string:

where <<DB connection string>> is the value of the database connection string.

For testing with the local database, copy the connection string from the
Tailspin.Surveys.Web/appsettings.json file. If you do that, make sure to change the double backslash ('\\')
into a single backslash. The double backslash is an escape character in the JSON file.

Example:

//var config = builder.Build();
//builder.AddAzureKeyVault(
// $"https://{config["KeyVault:Name"]}.vault.azure.net/",
// config["AzureAd:ClientId"],
// config["AzureAd:ClientSecret"]);

// Uncomment this:
services.AddSingleton<ICredentialService, CertificateCredentialService>();
// Comment out this:
//services.AddSingleton<ICredentialService, ClientCredentialService>();

1. Open the Tailspin.Surveys solution.

2. In Tailspin.Surveys.Web/Startup.cs, locate the following code block and uncomment it.

3. In Tailspin.Surveys.Web/Startup.cs, locate the code that registers the ICredentialService . Uncomment the
line that uses CertificateCredentialService , and comment out the line that uses ClientCredentialService :

This change enables the web app to use Client assertion to get OAuth access tokens. With client assertion,
you don't need an OAuth client secret. Alternatively, you could store the client secret in key vault. However,
key vault and client assertion both use a client certificate, so if you enable key vault, it's a good practice to
enable client assertion as well.

Update the user secretsUpdate the user secrets

{
 "AzureAd": {
 "ClientId": "[Surveys web app client ID]",
 "ClientSecret": "[Surveys web app client secret]",
 "PostLogoutRedirectUri": "https://localhost:44300/",
 "WebApiResourceId": "[App ID URI of your Surveys.WebAPI application]",
 "Asymmetric": {
 "CertificateThumbprint": "[certificate thumbprint. Example: 105b2ff3bc842c53582661716db1b7cdc6b43ec9]",
 "StoreName": "My",
 "StoreLocation": "CurrentUser",
 "ValidationRequired": "false"
 }
 },
 "KeyVault": {
 "Name": "[key vault name]"
 }
}

NOTENOTE

{
 "AzureAd": {
 "ClientId": "[Surveys.WebAPI client ID]",
 "WebApiResourceId": "https://tailspin5.onmicrosoft.com/surveys.webapi",
 "Asymmetric": {
 "CertificateThumbprint": "[certificate thumbprint]",
 "StoreName": "My",
 "StoreLocation": "CurrentUser",
 "ValidationRequired": "false"
 }
 },
 "KeyVault": {
 "Name": "[key vault name]"
 }
}

In Solution Explorer, right-click the Tailspin.Surveys.Web project and select Manage User Secrets. In the
secrets.json file, delete the existing JSON and paste in the following:

Replace the entries in [square brackets] with the correct values.

AzureAd:ClientId : The client ID of the Surveys app.
AzureAd:ClientSecret : The key that you generated when you registered the Surveys application in Azure AD.
AzureAd:WebApiResourceId : The App ID URI that you specified when you created the Surveys.WebAPI

application in Azure AD.
Asymmetric:CertificateThumbprint : The certificate thumbprint that you got previously, when you created the

client certificate.
KeyVault:Name : The name of your key vault.

Asymmetric:ValidationRequired is false because the certificate that you created previously was not signed by a root
certificate authority (CA). In production, use a certificate that is signed by a root CA and set ValidationRequired to true.

Save the updated secrets.json file.

Next, in Solution Explorer, right-click the Tailspin.Surveys.WebApi project and select Manage User Secrets.
Delete the existing JSON and paste in the following:

NOTENOTE

Replace the entries in [square brackets] and save the secrets.json file.

For the web API, make sure to use the client ID for the Surveys.WebAPI application, not the Surveys application.

Next

Federate with a customer's AD FS
3/13/2019 • 6 minutes to read • Edit Online

Overview

This article describes how a multi-tenant SaaS application can support authentication via Active Directory
Federation Services (AD FS), in order to federate with a customer's AD FS.

Azure Active Directory (Azure AD) makes it easy to sign in users from Azure AD tenants, including Office365 and
Dynamics CRM Online customers. But what about customers who use on-premises Active Directory on a
corporate intranet?

One option is for these customers to sync their on-premises AD with Azure AD, using Azure AD Connect.
However, some customers may be unable to use this approach, due to corporate IT policy or other reasons. In that
case, another option is to federate through Active Directory Federation Services (AD FS).

To enable this scenario:

The customer must have an Internet-facing AD FS farm.
The SaaS provider deploys their own AD FS farm.
The customer and the SaaS provider must set up federation trust. This is a manual process.

There are three main roles in the trust relation:

The customer's AD FS is the account partner, responsible for authenticating users from the customer's AD,
and creating security tokens with user claims.

The SaaS provider's AD FS is the resource partner, which trusts the account partner and receives the user
claims.

The application is configured as a relying party (RP) in the SaaS provider's AD FS.

https://github.com/mspnp/architecture-center/blob/master/docs/multitenant-identity/adfs.md
https://docs.microsoft.com/azure/active-directory/hybrid/whatis-hybrid-identity
https://technet.microsoft.com/library/cc770993(v=ws.11).aspx
https://technet.microsoft.com/library/cc731141(v=ws.11).aspx
https://technet.microsoft.com/library/cc731141(v=ws.11).aspx

NOTENOTE

Authentication flow

Limitations

CLAIM DESCRIPTION

aud Audience. The application for which the claims were issued.

authenticationinstant Authentication instant. The time at which authentication
occurred.

c_hash Code hash value. This is a hash of the token contents.

exp Expiration time. The time after which the token will no longer
be accepted.

iat Issued at. The time when the token was issued.

iss Issuer. The value of this claim is always the resource partner's
AD FS.

name User name. Example: john@corp.fabrikam.com

nameidentifier Name identifier. The identifier for the name of the entity for
which the token was issued.

nonce Session nonce. A unique value generated by AD FS to help
prevent replay attacks.

In this article, we assume the application uses OpenID Connect as the authentication protocol. Another option is to use WS-
Federation.

For OpenID Connect, the SaaS provider must use AD FS 2016, running in Windows Server 2016. AD FS 3.0 does not
support OpenID Connect.

ASP.NET Core does not include out-of-the-box support for WS-Federation.

For an example of using WS-Federation with ASP.NET 4, see the active-directory-dotnet-webapp-wsfederation
sample.

1. When the user clicks "sign in", the application redirects to an OpenID Connect endpoint on the SaaS provider's
AD FS.

2. The user enters his or her organizational user name (" alice@corp.contoso.com "). AD FS uses home realm
discovery to redirect to the customer's AD FS, where the user enters their credentials.

3. The customer's AD FS sends user claims to the SaaS provider's AD FS, using WF-Federation (or SAML).
4. Claims flow from AD FS to the app, using OpenID Connect. This requires a protocol transition from WS-

Federation.

By default, the relying party application receives only a fixed set of claims available in the id_token, shown in the
following table. With AD FS 2016, you can customize the id_token in OpenID Connect scenarios. For more
information, see Custom ID Tokens in AD FS.

https://github.com/Azure-Samples/active-directory-dotnet-webapp-wsfederation
https://docs.microsoft.com/windows-server/identity/ad-fs/development/customize-id-token-ad-fs-2016
https://msdn.microsoft.com/library/system.security.claims.claimtypes.authenticationinstant%28v=vs.110%29.aspx
https://tools.ietf.org/html/draft-ietf-oauth-json-web-token-25#section-4.1.
https://msdn.microsoft.com/library/system.security.claims.claimtypes.nameidentifier(v=vs.110).aspx

upn User principal name (UPN). Example:
john@corp.fabrikam.com

pwd_exp Password expiration period. The number of seconds until the
user's password or a similar authentication secret, such as a
PIN. expires.

CLAIM DESCRIPTION

NOTENOTE

AD FS deployment

Configure OpenID Connect authentication with AD FS

Configure the AD FS Resource Partner

Add the claims provider trustAdd the claims provider trust

The "iss" claim contains the AD FS of the partner (typically, this claim will identify the SaaS provider as the issuer). It does not
identify the customer's AD FS. You can find the customer's domain as part of the UPN.

The rest of this article describes how to set up the trust relationship between the RP (the app) and the account
partner (the customer).

The SaaS provider can deploy AD FS either on-premises or on Azure VMs. For security and availability, the
following guidelines are important:

Deploy at least two AD FS servers and two AD FS proxy servers to achieve the best availability of the AD FS
service.
Domain controllers and AD FS servers should never be exposed directly to the Internet and should be in a
virtual network with direct access to them.
Web application proxies (previously AD FS proxies) must be used to publish AD FS servers to the Internet.

To set up a similar topology in Azure requires the use of Virtual networks, NSG’s, azure VM’s and availability sets.
For more details, see Guidelines for Deploying Windows Server Active Directory on Azure Virtual Machines.

The SaaS provider must enable OpenID Connect between the application and AD FS. To do so, add an application
group in AD FS. You can find detailed instructions in this blog post, under " Setting up a Web App for OpenId
Connect sign in AD FS."

Next, configure the OpenID Connect middleware. The metadata endpoint is
https://domain/adfs/.well-known/openid-configuration , where domain is the SaaS provider's AD FS domain.

Typically you might combine this with other OpenID Connect endpoints (such as AAD). You'll need two different
sign-in buttons or some other way to distinguish them, so that the user is sent to the correct authentication
endpoint.

The SaaS provider must do the following for each customer that wants to connect via ADFS:

1. Add a claims provider trust.
2. Add claims rules.
3. Enable home-realm discovery.

Here are the steps in more detail.

https://msdn.microsoft.com/library/azure/jj156090.aspx
https://www.cloudidentity.com/blog/2015/08/21/OPENID-CONNECT-WEB-SIGN-ON-WITH-ADFS-IN-WINDOWS-SERVER-2016-TP3/

Edit claims rulesEdit claims rules

1. In Server Manager, click Tools, and then select AD FS Management.
2. In the console tree, under AD FS, right click Claims Provider Trusts. Select Add Claims Provider Trust.
3. Click Start to start the wizard.
4. Select the option "Import data about the claims provider published online or on a local network". Enter the URI

of the customer's federation metadata endpoint. (Example:
https://contoso.com/FederationMetadata/2007-06/FederationMetadata.xml .) You will need to get this from the

customer.
5. Complete the wizard using the default options.

1. Right-click the newly added claims provider trust, and select Edit Claims Rules.
2. Click Add Rule.
3. Select "Pass Through or Filter an Incoming Claim" and click Next.

4. Enter a name for the rule.
5. Under "Incoming claim type", select UPN .
6. Select "Pass through all claim values".

Enable home-realm discoveryEnable home-realm discovery

Set-ADFSClaimsProviderTrust -TargetName "name" -OrganizationalAccountSuffix @("suffix")

Configure the AD FS Account Partner

Add the RP trustAdd the RP trust

7. Click Finish.
8. Repeat steps 2 - 7, and specify Anchor Claim Type for the incoming claim type.
9. Click OK to complete the wizard.

Run the following PowerShell script:

where "name" is the friendly name of the claims provider trust, and "suffix" is the UPN suffix for the customer's AD
(example, "corp.fabrikam.com").

With this configuration, end users can type in their organizational account, and AD FS automatically selects the
corresponding claims provider. See Customizing the AD FS Sign-in Pages, under the section "Configure Identity
Provider to use certain email suffixes".

The customer must do the following:

1. Add a relying party (RP) trust.
2. Adds claims rules.

1. In Server Manager, click Tools, and then select AD FS Management.
2. In the console tree, under AD FS, right click Relying Party Trusts. Select Add Relying Party Trust.
3. Select Claims Aware and click Start.

https://technet.microsoft.com/library/dn280950.aspx

4. On the Select Data Source page, select the option "Import data about the claims provider published online or
on a local network". Enter the URI of the SaaS provider's federation metadata endpoint.

5. On the Specify Display Name page, enter any name.
6. On the Choose Access Control Policy page, choose a policy. You could permit everyone in the organization,

or choose a specific security group.

Add claims rulesAdd claims rules

7. Enter any parameters required in the Policy box.
8. Click Next to complete the wizard.

1. Right-click the newly added relying party trust, and select Edit Claim Issuance Policy.

2. Click Add Rule.

3. Select "Send LDAP Attributes as Claims" and click Next.

4. Enter a name for the rule, such as "UPN".

5. Under Attribute store, select Active Directory.

6. In the Mapping of LDAP attributes section:

Under LDAP Attribute, select User-Principal-Name.
Under Outgoing Claim Type, select UPN .

EXISTS([Type == "http://schemas.microsoft.com/ws/2014/01/identity/claims/anchorclaimtype"])=>
issue (Type = "http://schemas.microsoft.com/ws/2014/01/identity/claims/anchorclaimtype",
 Value = "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/upn");

7. Click Finish.

8. Click Add Rule again.

9. Select "Send Claims Using a Custom Rule" and click Next.

10. Enter a name for the rule, such as "Anchor Claim Type".

11. Under Custom rule, enter the following:

This rule issues a claim of type anchorclaimtype . The claim tells the relying party to use UPN as the user's
immutable ID.

12. Click Finish.

13. Click OK to complete the wizard.

Run the Surveys application
3/13/2019 • 7 minutes to read • Edit Online

Prerequisites

Create the Tailspin tenant

This article describes how to run the Tailspin Surveys application locally, from Visual Studio. In these steps, you
won't deploy the application to Azure. However, you will need to create some Azure resources — an Azure Active
Directory (Azure AD) directory and a Redis cache.

Here is a summary of the steps:

1. Create an Azure AD directory (tenant) for the fictitious Tailspin company.
2. Register the Surveys application and the backend web API with Azure AD.
3. Create an Azure Redis Cache instance.
4. Configure application settings and create a local database.
5. Run the application and sign up a new tenant.
6. Add application roles to users.

Visual Studio 2017 with the ASP.NET and web development workload installed
Microsoft Azure account

Tailspin is the fictitious company that hosts the Surveys application. Tailspin uses Azure AD to enable other
tenants to register with the app. Those customers can then use their Azure AD credentials to sign into the app.

In this step, you'll create an Azure AD directory for Tailspin.

1. Sign into the Azure portal.

2. Click + Create a Resource > Identity > Azure Active Directory.

3. Enter Tailspin for the organization name, and enter a domain name. The domain name will have the form
xxxx.onmicrosoft.com and must be globally unique.

4. Click Create. It may take a few minutes to create the new directory.

To complete the end-to-end scenario, you'll need a second Azure AD directory to represent a customer that signs

https://github.com/mspnp/architecture-center/blob/master/docs/multitenant-identity/run-the-app.md
https://www.visualstudio.com/vs/
https://visualstudio.microsoft.com/vs/support/selecting-workloads-visual-studio-2017
https://azure.microsoft.com
https://portal.azure.com

Register the Surveys web API

up for the application. You can use your default Azure AD directory (not Tailspin), or create a new directory for this
purpose. In the examples, we use Contoso as the fictitious customer.

1. In the Azure portal, switch to the new Tailspin directory by selecting your account in the top right corner of
the portal.

2. In the left-hand navigation pane, choose Azure Active Directory.

3. Click App registrations > New application registration.

4. In the Create blade, enter the following information:

Name: Surveys.WebAPI

Application type: Web app / API

Sign-on URL: https://localhost:44301/

5. Click Create.

6. In the App registrations blade, select the new Surveys.WebAPI application.

7. Click Settings > Properties.

8. In the App ID URI edit box, enter https://<domain>/surveys.webapi , where <domain> is the domain name
of the directory. For example: https://tailspin.onmicrosoft.com/surveys.webapi

https://portal.azure.com

Register the Surveys web app

9. Set Multi-tenanted to YES.

10. Click Save.

1. Navigate back to the App registrations blade, and click New application registration.

2. In the Create blade, enter the following information:

Name: Surveys

Application type: Web app / API

Sign-on URL: https://localhost:44300/

Notice that the sign-on URL has a different port number from the Surveys.WebAPI app in the previous step.

3. Click Create.

4. In the App registrations blade, select the new Surveys application.

5. Copy the application ID. You will need this later.

6. Click Properties.

7. In the App ID URI edit box, enter https://<domain>/surveys , where <domain> is the domain name of the
directory.

NOTENOTE

8. Set Multi-tenanted to YES.

9. Click Save.

10. In the Settings blade, click Reply URLs.

11. Add the following reply URL: https://localhost:44300/signin-oidc .

12. Click Save.

13. Under API ACCESS, click Keys.

14. Enter a description, such as client secret .

15. In the Select Duration dropdown, select 1 year.

16. Click Save. The key will be generated when you save.

17. Before you navigate away from this blade, copy the value of the key.

The key won't be visible again after you navigate away from the blade.

18. Under API ACCESS, click Required permissions.

19. Click Add > Select an API.

20. In the search box, search for Surveys.WebAPI .

21. Select Surveys.WebAPI and click Select.

22. Under Delegated Permissions, check Access Surveys.WebAPI.

 Update the application manifests

23. Click Select > Done.

{
 "allowedMemberTypes": ["User"],
 "description": "Creators can create surveys",
 "displayName": "SurveyCreator",
 "id": "<Generate a new GUID. Example: 1b4f816e-5eaf-48b9-8613-7923830595ad>",
 "isEnabled": true,
 "value": "SurveyCreator"
},
{
 "allowedMemberTypes": ["User"],
 "description": "Administrators can manage the surveys in their tenant",
 "displayName": "SurveyAdmin",
 "id": "<Generate a new GUID>",
 "isEnabled": true,
 "value": "SurveyAdmin"
}

"knownClientApplications": ["be2cea23-aa0e-4e98-8b21-2963d494912e"],

1. Navigate back to the Settings blade for the Surveys.WebAPI app.

2. Click Manifest > Edit.

3. Add the following JSON to the appRoles element. Generate new GUIDs for the id properties.

4. In the knownClientApplications property, add the application ID for the Surveys web application, which you
got when you registered the Surveys application earlier. For example:

This setting adds the Surveys app to the list of clients authorized to call the web API.

5. Click Save.

Create a new Redis Cache instance

Set application secrets

Now repeat the same steps for the Surveys app, except do not add an entry for knownClientApplications . Use the
same role definitions, but generate new GUIDs for the IDs.

The Surveys application uses Redis to cache OAuth 2 access tokens. To create the cache:

1. Go to Azure Portal and click + Create a Resource > Databases > Redis Cache.

2. Fill in the required information, including DNS name, resource group, location, and pricing tier. You can
create a new resource group or use an existing resource group.

3. Click Create.

4. After the Redis cache is created, navigate to the resource in the portal.

5. Click Access keys and copy the primary key.

For more information about creating a Redis cache, see How to Use Azure Redis Cache.

{
 "AzureAd": {
 "ClientId": "<Surveys application ID>",
 "ClientSecret": "<Surveys app client secret>",
 "PostLogoutRedirectUri": "https://localhost:44300/",
 "WebApiResourceId": "<Surveys.WebAPI app ID URI>"
 },
 "Redis": {
 "Configuration": "<Redis DNS name>.redis.cache.windows.net,password=<Redis primary key>,ssl=true"
 }
}

1. Open the Tailspin.Surveys solution in Visual Studio.

2. In Solution Explorer, right-click the Tailspin.Surveys.Web project and select Manage User Secrets.

3. In the secrets.json file, paste in the following:

Replace the items shown in angle brackets, as follows:

AzureAd:ClientId : The application ID of the Surveys app.
AzureAd:ClientSecret : The key that you generated when you registered the Surveys application in

Azure AD.
AzureAd:WebApiResourceId : The App ID URI that you specified when you created the Surveys.WebAPI

application in Azure AD. It should have the form https://<directory>.onmicrosoft.com/surveys.webapi

Redis:Configuration : Build this string from the DNS name of the Redis cache and the primary access
key. For example, "tailspin.redis.cache.windows.net,password=2h5tBxxx,ssl=true".

4. Save the updated secrets.json file.

5. Repeat these steps for the Tailspin.Surveys.WebAPI project, but paste the following into secrets.json.
Replace the items in angle brackets, as before.

https://portal.azure.com
https://docs.microsoft.com/azure/redis-cache/cache-dotnet-how-to-use-azure-redis-cache

Initialize the database

Run the application

Sign up a new tenant

{
 "AzureAd": {
 "WebApiResourceId": "<Surveys.WebAPI app ID URI>"
 },
 "Redis": {
 "Configuration": "<Redis DNS name>.redis.cache.windows.net,password=<Redis primary key>,ssl=true"
 }
}

In this step, you will use Entity Framework 7 to create a local SQL database, using LocalDB.

dotnet ef database update --startup-project ..\Tailspin.Surveys.Web

1. Open a command window

2. Navigate to the Tailspin.Surveys.Data project.

3. Run the following command:

To run the application, start both the Tailspin.Surveys.Web and Tailspin.Surveys.WebAPI projects.

You can set Visual Studio to run both projects automatically on F5, as follows:

1. In Solution Explorer, right-click the solution and click Set Startup Projects.
2. Select Multiple startup projects.
3. Set Action = Start for the Tailspin.Surveys.Web and Tailspin.Surveys.WebAPI projects.

When the application starts, you are not signed in, so you see the welcome page:

Assign application roles

To sign up an organization:

1. Click Enroll your company in Tailspin.
2. Sign in to the Azure AD directory that represents the organization using the Surveys app. You must sign in as

an admin user.
3. Accept the consent prompt.

The application registers the tenant, and then signs you out. The app signs you out because you need to set up the
application roles in Azure AD, before using the application.

When a tenant signs up, an AD admin for the tenant must assign application roles to users.

1. In the Azure portal, switch to the Azure AD directory that you used to sign up for the Surveys app.

https://portal.azure.com

IMPORTANTIMPORTANT

2. In the left-hand navigation pane, choose Azure Active Directory.

3. Click Enterprise applications > All applications. The portal will list Survey and Survey.WebAPI . If not,
make sure that you completed the sign up process.

4. Click on the Surveys application.

5. Click Users and Groups.

6. Click Add user.

7. If you have Azure AD Premium, click Users and groups. Otherwise, click Users. (Assigning a role to a
group requires Azure AD Premium.)

8. Select one or more users and click Select.

9. Select the role and click Select.

10. Click Assign.

Repeat the same steps to assign roles for the Survey.WebAPI application.

A user should always have the same roles in both Survey and Survey.WebAPI. Otherwise, the user will have inconsistent
permissions, which may lead to 403 (Forbidden) errors from the Web API.

Now go back to the app and sign in again. Click My Surveys. If the user is assigned to the SurveyAdmin or
SurveyCreator role, you will see a Create Survey button, indicating that the user has permissions to create a new
survey.

Migrate an Azure Cloud Services application to
Azure Service Fabric
3/13/2019 • 13 minutes to read • Edit Online

About the Surveys application

Why Microservices?

 Sample code

This article describes migrating an application from Azure Cloud Services to Azure Service Fabric. It focuses on
architectural decisions and recommended practices.

For this project, we started with a Cloud Services application called Surveys and ported it to Service Fabric. The
goal was to migrate the application with as few changes as possible. In a later article, we will optimize the
application for Service Fabric by adopting a microservices architecture.

Before reading this article, it will be useful to understand the basics of Service Fabric and microservices
architectures in general. See the following articles:

Overview of Azure Service Fabric
Why a microservices approach to building applications?

In 2012, the patterns & practices group created an application called Surveys, for a book called Developing Multi-
tenant Applications for the Cloud. The book describes a fictitious company named Tailspin that designs and
implements the Surveys application.

Surveys is a multitenant application that allows customers to create surveys. After a customer signs up for the
application, members of the customer's organization can create and publish surveys, and collect the results for
analysis. The application includes a public website where people can take a survey. Read more about the original
Tailspin scenario here.

Now Tailspin wants to move the Surveys application to a microservices architecture, using Service Fabric running
on Azure. Because the application is already deployed as a Cloud Services application, Tailspin adopts a multi-
phase approach:

1. Port the cloud services to Service Fabric, while minimizing changes to the application.
2. Optimize the application for Service Fabric, by moving to a microservices architecture.

This article describes the first phase. A later article will describe the second phase. In a real-world project, it's likely
that both stages would overlap. While porting to Service Fabric, you would also start to re-architect the application
into micro-services. Later you might refine the architecture further, perhaps dividing coarse-grained services into
smaller services.

The application code is available on GitHub. This repo contains both the Cloud Services application and the Service
Fabric version.

The cloud service is an updated version of the original application from the Developing Multi-tenant
Applications book.

An in-depth discussion of microservices is beyond scope of this article, but here are some of the benefits that

https://github.com/mspnp/architecture-center/blob/master/docs/service-fabric/migrate-from-cloud-services.md
https://github.com/mspnp/cloud-services-to-service-fabric
https://docs.microsoft.com/azure/service-fabric/service-fabric-overview
https://docs.microsoft.com/azure/service-fabric/service-fabric-overview-microservices
https://msdn.microsoft.com/library/ff966499.aspx
https://msdn.microsoft.com/library/hh534482.aspx
https://github.com/mspnp/cloud-services-to-service-fabric

Why Service Fabric?

Comparing Cloud Services with Service Fabric

CLOUD SERVICES SERVICE FABRIC

Application composition Roles Services

Density One role instance per VM Multiple services in a single node

Minimum number of nodes 2 per role 5 per cluster, for production
deployments

State management Stateless Stateless or stateful*

Hosting Azure Cloud or on-premises

Tailspin hopes to get by moving to a microservices architecture:

Application upgrades. Services can be deployed independently, so you can take an incremental approach to
upgrading an application.
Resiliency and fault isolation. If a service fails, other services continue to run.
Scalability. Services can be scaled independently.
Flexibility. Services are designed around business scenarios, not technology stacks, making it easier to migrate
services to new technologies, frameworks, or data stores.
Agile development. Individual services have less code than a monolithic application, making the code base
easier to understand, reason about, and test.
Small, focused teams. Because the application is broken down into many small services, each service can be
built by a small focused team.

Service Fabric is a good fit for a microservices architecture, because most of the features needed in a distributed
system are built into Service Fabric, including:

Cluster management. Service Fabric automatically handles node failover, health monitoring, and other cluster
management functions.
Horizontal scaling. When you add nodes to a Service Fabric cluster, the application automatically scales, as
services are distributed across the new nodes.
Service discovery. Service Fabric provides a discovery service that can resolve the endpoint for a named
service.
Stateless and stateful services. Stateful services use reliable collections, which can take the place of a cache or
queue, and can be partitioned.
Application lifecycle management. Services can be upgraded independently and without application
downtime.
Service orchestration across a cluster of machines.
Higher density for optimizing resource consumption. A single node can host multiple services.

Service Fabric is used by various Microsoft services, including Azure SQL Database, Cosmos DB, Azure Event
Hubs, and others, making it a proven platform for building distributed cloud applications.

The following table summarizes some of the important differences between Cloud Services and Service Fabric
applications. For a more in-depth discussion, see Learn about the differences between Cloud Services and Service
Fabric before migrating applications.

https://docs.microsoft.com/azure/service-fabric/service-fabric-reliable-services-reliable-collections
https://docs.microsoft.com/azure/service-fabric/service-fabric-cloud-services-migration-differences

Web hosting IIS** Self-hosting

Deployment model Classic deployment model Resource Manager

Packaging Cloud service package files (.cspkg) Application and service packages

Application update VIP swap or rolling update Rolling update

Auto-scaling Built-in service VM Scale Sets for auto scale out

Debugging Local emulator Local cluster

CLOUD SERVICES SERVICE FABRIC

The Surveys application on Cloud Services

* Stateful services use reliable collections to store state across replicas, so that all reads are local to the nodes in the
cluster. Writes are replicated across nodes for reliability. Stateless services can have external state, using a database
or other external storage.

** Worker roles can also self-host ASP.NET Web API using OWIN.

The following diagram shows the architecture of the Surveys application running on Cloud Services.

The application consists of two web roles and a worker role.

The Tailspin.Web web role hosts an ASP.NET website that Tailspin customers use to create and manage
surveys. Customers also use this website to sign up for the application and manage their subscriptions.
Finally, Tailspin administrators can use it to see the list of tenants and manage tenant data.

https://docs.microsoft.com/azure/azure-resource-manager/resource-manager-deployment-model
https://docs.microsoft.com/azure/azure-resource-manager/resource-manager-deployment-model
https://docs.microsoft.com/azure/cloud-services/cloud-services-how-to-scale-portal
https://docs.microsoft.com/azure/service-fabric/service-fabric-reliable-services-reliable-collections

Moving to Service Fabric

Converting the cloud service roles to services

Creating the web front-end servicesCreating the web front-end services

The Tailspin.Web.Survey.Public web role hosts an ASP.NET website where people can take the surveys
that Tailspin customers publish.

The Tailspin.Workers.Survey worker role does background processing. The web roles put work items onto
a queue, and the worker role processes the items. Two background tasks are defined: Exporting survey
answers to Azure SQL Database, and calculating statistics for survey answers.

In addition to Cloud Services, the Surveys application uses some other Azure services:

Azure Storage to store surveys, surveys answers, and tenant information.

Azure Redis Cache to cache some of the data that is stored in Azure Storage, for faster read access.

Azure Active Directory (Azure AD) to authenticate customers and Tailspin administrators.

Azure SQL Database to store the survey answers for analysis.

As mentioned, the goal of this phase was migrating to Service Fabric with the minimum necessary changes. To that
end, we created stateless services corresponding to each cloud service role in the original application:

Intentionally, this architecture is very similar to the original application. However, the diagram hides some
important differences. In the rest of this article, we'll explore those differences.

As mentioned, we migrated each cloud service role to a Service Fabric service. Because cloud service roles are
stateless, for this phase it made sense to create stateless services in Service Fabric.

For the migration, we followed the steps outlined in Guide to converting Web and Worker Roles to Service Fabric
stateless services.

In Service Fabric, a service runs inside a process created by the Service Fabric runtime. For a web front end, that
means the service is not running inside IIS. Instead, the service must host a web server. This approach is called self-
hosting, because the code that runs inside the process acts as the web server host.

The requirement to self-host means that a Service Fabric service can't use ASP.NET MVC or ASP.NET Web Forms,

https://docs.microsoft.com/azure/service-fabric/service-fabric-cloud-services-migration-worker-role-stateless-service

NOTENOTE

HTTP listenersHTTP listeners

<!-- Cloud service endpoint -->
<Endpoints>
 <InputEndpoint name="HttpIn" protocol="http" port="80" />
</Endpoints>

<!-- Service Fabric endpoint -->
<Endpoints>
 <Endpoint Protocol="http" Name="ServiceEndpoint" Type="Input" Port="8002" />
</Endpoints>

Packaging and configuration

because those frameworks require IIS and do not support self-hosting. Options for self-hosting include:

ASP.NET Core, self-hosted using the Kestrel web server.
ASP.NET Web API, self-hosted using OWIN.
Third-party frameworks such as Nancy.

The original Surveys application uses ASP.NET MVC. Because ASP.NET MVC cannot be self-hosted in Service
Fabric, we considered the following migration options:

Port the web roles to ASP.NET Core, which can be self-hosted.
Convert the web site into a single-page application (SPA) that calls a web API implemented using ASP.NET
Web API. This would have required a complete redesign of the web front end.
Keep the existing ASP.NET MVC code and deploy IIS in a Windows Server container to Service Fabric. This
approach would require little or no code change.

The first option, porting to ASP.NET Core, allowed us to take advantage of the latest features in ASP.NET Core. To
do the conversion, we followed the steps described in Migrating From ASP.NET MVC to ASP.NET Core MVC.

When using ASP.NET Core with Kestrel, you should place a reverse proxy in front of Kestrel to handle traffic from the Internet,
for security reasons. For more information, see Kestrel web server implementation in ASP.NET Core. The section Deploying
the application describes a recommended Azure deployment.

In Cloud Services, a web or worker role exposes an HTTP endpoint by declaring it in the service definition file. A
web role must have at least one endpoint.

Similarly, Service Fabric endpoints are declared in a service manifest:

Unlike a cloud service role, however, Service Fabric services can be co-located within the same node. Therefore,
every service must listen on a distinct port. Later in this article, we'll discuss how client requests on port 80 or port
443 get routed to the correct port for the service.

A service must explicitly create listeners for each endpoint. The reason is that Service Fabric is agnostic about
communication stacks. For more information, see Build a web service front end for your application using
ASP.NET Core.

A cloud service contains the following configuration and package files:

https://docs.microsoft.com/aspnet/core/
https://docs.microsoft.com/aspnet/core/fundamentals/servers/kestrel
https://www.asp.net/web-api
https://www.asp.net/aspnet/overview/owin-and-katana
http://nancyfx.org/
https://docs.microsoft.com/aspnet/core/migration/mvc
https://docs.microsoft.com/aspnet/core/fundamentals/servers/kestrel
https://docs.microsoft.com/azure/cloud-services/cloud-services-enable-communication-role-instances#worker-roles-vs-web-roles
https://docs.microsoft.com/azure/service-fabric/service-fabric-add-a-web-frontend

FILE DESCRIPTION

Service definition (.csdef) Settings used by Azure to configure the cloud service. Defines
the roles, endpoints, startup tasks, and the names of
configuration settings.

Service configuration (.cscfg) Per-deployment settings, including the number of role
instances, endpoint port numbers, and the values of
configuration settings.

Service package (.cspkg) Contains the application code and configurations, and the
service definition file.

Application package
 - Service packages
 - Code package
 - Configuration package
 - Data package (optional)

FILE LOCATION DESCRIPTION

ApplicationManifest.xml Application package Defines the services that compose the
application.

ServiceManifest.xml Service package Describes one or more services.

Settings.xml Configuration package Contains configuration settings for the
services defined in the service package.

Deploying the application

There is one .csdef file for the entire application. You can have multiple .cscfg files for different environments, such
as local, test, or production. When the service is running, you can update the .cscfg but not the .csdef. For more
information, see What is the Cloud Service model and how do I package it?

Service Fabric has a similar division between a service definition and service settings, but the structure is more
granular. To understand Service Fabric's configuration model, it helps to understand how a Service Fabric
application is packaged. Here is the structure:

The application package is what you deploy. It contains one or more service packages. A service package contains
code, configuration, and data packages. The code package contains the binaries for the services, and the
configuration package contains configuration settings. This model allows you to upgrade individual services
without redeploying the entire application. It also lets you update just the configuration settings, without
redeploying the code or restarting the service.

A Service Fabric application contains the following configuration files:

For more information, see Model an application in Service Fabric.

To support different configuration settings for multiple environments, use the following approach, described in
Manage application parameters for multiple environments:

1. Define the setting in the Setting.xml file for the service.
2. In the application manifest, define an override for the setting.
3. Put environment-specific settings into application parameter files.

https://docs.microsoft.com/azure/cloud-services/cloud-services-model-and-package
https://docs.microsoft.com/azure/service-fabric/service-fabric-application-model
https://docs.microsoft.com/azure/service-fabric/service-fabric-manage-multiple-environment-app-configuration

Layer 7 routingLayer 7 routing

PUBLIC SITE SURVEY MANAGEMENT SITE

http://tailspin.cloudapp.net https://tailspin.cloudapp.net

Node types and placement constraintsNode types and placement constraints

Whereas Azure Cloud Services is a managed service, Service Fabric is a runtime. You can create Service Fabric
clusters in many environments, including Azure and on premises. In this article, we focus on deploying to Azure.

The following diagram shows a recommended deployment:

The Service Fabric cluster is deployed to a VM scale set. Scale sets are an Azure Compute resource that can be
used to deploy and manage a set of identical VMs.

As mentioned, the Kestrel web server requires a reverse proxy for security reasons. This diagram shows Azure
Application Gateway, which is an Azure service that offers various layer 7 load balancing capabilities. It acts as a
reverse-proxy service, terminating the client connection and forwarding requests to back-end endpoints. You might
use a different reverse proxy solution, such as nginx.

In the original Surveys application, one web role listened on port 80, and the other web role listened on port 443.

Another option is to use layer 7 routing. In this approach, different URL paths get routed to different port numbers
on the back end. For example, the public site might use URL paths starting with /public/ .

Options for layer 7 routing include:

Use Application Gateway.

Use a network virtual appliance (NVA), such as nginx.

Write a custom gateway as a stateless service.

Consider this approach if you have two or more services with public HTTP endpoints, but want them to appear as
one site with a single domain name.

One approach that we don't recommend is allowing external clients to send requests through the Service
Fabric reverse proxy. Although this is possible, the reverse proxy is intended for service-to-service
communication. Opening it to external clients exposes any service running in the cluster that has an HTTP
endpoint.

In the deployment shown above, all the services run on all the nodes. However, you can also group services, so
that certain services run only on particular nodes within the cluster. Reasons to use this approach include:

https://docs.microsoft.com/azure/virtual-machine-scale-sets/virtual-machine-scale-sets-overview
https://docs.microsoft.com/azure/application-gateway/
https://msdn.microsoft.com/library/hh534477.aspx#sec21
https://docs.microsoft.com/azure/service-fabric/service-fabric-reverseproxy

Configuring and managing the cluster

Run some services on different VM types. For example, some services might be compute-intensive or require
GPUs. You can have a mix of VM types in your Service Fabric cluster.
Isolate front-end services from back-end services, for security reasons. All the front-end services will run on
one set of nodes, and the back-end services will run on different nodes in the same cluster.
Different scale requirements. Some services might need to run on more nodes than other services. For
example, if you define front-end nodes and back-end nodes, each set can be scaled independently.

The following diagram shows a cluster that separates front-end and back-end services:

To implement this approach:

1. When you create the cluster, define two or more node types.
2. For each service, use placement constraints to assign the service to a node type.

When you deploy to Azure, each node type is deployed to a separate VM scale set. The Service Fabric cluster spans
all node types. For more information, see The relationship between Service Fabric node types and Virtual Machine
Scale Sets.

If a cluster has multiple node types, one node type is designated as the primary node type. Service Fabric
runtime services, such as the Cluster Management Service, run on the primary node type. Provision at least 5
nodes for the primary node type in a production environment. The other node type should have at least 2
nodes.

Clusters must be secured to prevent unauthorized users from connecting to your cluster. It is recommended to use
Azure AD to authenticate clients, and X.509 certificates for node-to-node security. For more information, see
Service Fabric cluster security scenarios.

To configure a public HTTPS endpoint, see Specify resources in a service manifest.

You can scale out the application by adding VMs to the cluster. VM scale sets support auto-scaling using auto-scale
rules based on performance counters. For more information, see Scale a Service Fabric cluster in or out using auto-
scale rules.

While the cluster is running, you should collect logs from all the nodes in a central location. For more information,
see Collect logs by using Azure Diagnostics.

https://docs.microsoft.com/azure/service-fabric/service-fabric-cluster-resource-manager-cluster-description
https://docs.microsoft.com/azure/service-fabric/service-fabric-cluster-nodetypes
https://docs.microsoft.com/azure/service-fabric/service-fabric-cluster-security
https://docs.microsoft.com/azure/service-fabric/service-fabric-service-manifest-resources
https://docs.microsoft.com/azure/service-fabric/service-fabric-cluster-scale-up-down
https://docs.microsoft.com/azure/service-fabric/service-fabric-diagnostics-how-to-setup-wad

Conclusion

Next steps

Porting the Surveys application to Service Fabric was fairly straightforward. To summarize, we did the following:

Converted the roles to stateless services.
Converted the web front ends to ASP.NET Core.
Changed the packaging and configuration files to the Service Fabric model.

In addition, the deployment changed from Cloud Services to a Service Fabric cluster running in a VM Scale Set.

Now that the Surveys application has been successfully ported, Tailspin wants to take advantage of Service Fabric
features such as independent service deployment and versioning. Learn how Tailspin decomposed these services
to a more granular architecture to take advantage of these Service Fabric features in Refactor an Azure Service
Fabric Application migrated from Azure Cloud Services

Refactor an Azure Service Fabric Application
migrated from Azure Cloud Services
3/13/2019 • 9 minutes to read • Edit Online

Scenario

 Sample code

This article describes refactoring an existing Azure Service Fabric application to a more granular architecture. This
article focuses on the design, packaging, performance, and deployment considerations of the refactored Service
Fabric application.

As discussed in the previous article, Migrating an Azure Cloud Services application to Azure Service Fabric, the
patterns & practices team authored a book in 2012 that documented the process for designing and implementing
a Cloud Services application in Azure. The book describes a fictitious company named Tailspin that wants to create
a Cloud Services application named Surveys. The Surveys application allows users to create and publish surveys
that can be answered by the public. The following diagram shows the architecture of this version of the Surveys
application:

The Tailspin.Web web role hosts an ASP.NET MVC site that Tailspin customers use to:

sign up for the Surveys application,
create or delete a single survey,
view results for a single survey,

https://github.com/mspnp/architecture-center/blob/master/docs/service-fabric/refactor-migrated-app.md
https://github.com/mspnp/cloud-services-to-service-fabric/tree/master/servicefabric-phase-2

NOTENOTE

request that survey results be exported to SQL, and
view aggregated survey results and analysis.

The Tailspin.Web.Survey.Public web role also hosts an ASP.NET MVC site that the public visits to fill out the
surveys. These responses are put in a queue to be saved.

The Tailspin.Workers.Survey worker role performs background processing by picking up requests from multiple
queues.

The patterns & practices team then created a new project to port this application to Azure Service Fabric. The goal
of this project was to make only the necessary code changes to get the application running in an Azure Service
Fabric cluster. As a result, the original web and worker roles were not decomposed into a more granular
architecture. The resulting architecture is very similar to the Cloud Service version of the application:

The Tailspin.Web service is ported from the original Tailspin.Web web role.

The Tailspin.Web.Survey.Public service is ported from the original Tailspin.Web.Survey.Public web role.

The Tailspin.AnswerAnalysisService service is ported from the original Tailspin.Workers.Survey worker role.

While minimal code changes were made to each of the web and worker roles, Tailspin.Web and
Tailspin.Web.Survey.Public were modified to self-host a Kestrel web server. The earlier Surveys application is an ASP.NET
application that was hosted using Interet Information Services (IIS), but it is not possible to run IIS as a service in Service
Fabric. Therefore, any web server must be capable of being self-hosted, such as Kestrel. It is possible to run IIS in a container
in Service Fabric in some situations. See scenarios for using containers for more information.

Now, Tailspin is refactoring the Surveys application to a more granular architecture. Tailspin's motivation for
refactoring is to make it easier to develop, build, and deploy the Surveys application. By decomposing the existing
web and worker roles to a more granular architecture, Tailspin wants to remove the existing tightly coupled
communication and data dependencies between these roles.

Tailspin sees other benefits in moving the Surveys application to a more granular architecture:

Each service can be packaged into independent projects with a scope small enough to be managed by a small
team.
Each service can be independently versioned and deployed.

https://docs.microsoft.com/aspnet/core/fundamentals/servers/kestrel?tabs=aspnetcore2x
https://docs.microsoft.com/aspnet/core/fundamentals/servers/kestrel?tabs=aspnetcore2x
https://docs.microsoft.com/azure/service-fabric/service-fabric-containers-overview

NOTENOTE

Design considerations

Each service can be implemented using the best technology for that service. For example, a service fabric
cluster can include services built using different versions of the .Net Frameworks, Java, or other languages such
as C or C++.
Each service can be independently scaled to respond to increases and decreases in load.

Multitenancy is out of scope for the refactoring of this application. Tailspin has several options to support multitenancy and
can make these design decisions later without affecting the initial design. For example, Tailspin can create separate instances
of the services for each tenant within a cluster or create a separate cluster for each tenant.

The following diagram shows the architecture of the Surveys application refactored to a more granular
architecture:

Tailspin.Web is a stateless service self-hosting an ASP.NET MVC application that Tailspin customers visit to
create surveys and view survey results. This service shares most of its code with the Tailspin.Web service from the
ported Service Fabric application. As mentioned earlier, this service uses ASP.NET core and switches from using
Kestrel as web frontend to implementing a WebListener.

Tailspin.Web.Survey.Public is a stateless service also self-hosting an ASP.NET MVC site. Users visit this site to
select surveys from a list and then fill them out. This service shares most of its code with the
Tailspin.Web.Survey.Public service from the ported Service Fabric application. This service also uses ASP.NET
Core and also switches from using Kestrel as web frontend to implementing a WebListener.

Tailspin.SurveyResponseService is a stateful service that stores survey answers in Azure Blob Storage. It also
merges answers into the survey analysis data. The service is implemented as a stateful service because it uses a
ReliableConcurrentQueue to process survey answers in batches. This functionality was originally implemented in
the Tailspin.AnswerAnalysisService service in the ported Service Fabric application.

Tailspin.SurveyManagementService is a stateless service that stores and retrieves surveys and survey
questions. The service uses Azure Blob storage. This functionality was also originally implemented in the data
access components of the Tailspin.Web and Tailspin.Web.Survey.Public services in the ported Service Fabric
application. Tailspin refactored the original functionality into this service to allow it to scale independently.

https://docs.microsoft.com/azure/service-fabric/service-fabric-reliable-services-reliable-concurrent-queue

Stateless versus stateful services

Communication framework

Tailspin.SurveyAnswerService is a stateless service that retrieves survey answers and survey analysis. The
service also uses Azure Blob storage. This functionality was also originally implemented in the data access
components of the Tailspin.Web service in the ported Service Fabric application. Tailspin refactored the original
functionality into this service because it expects less load and wants to use fewer instances to conserve resources.

Tailspin.SurveyAnalysisService is a stateless service that persists survey answer summary data in a Redis cache
for quick retrieval. This service is called by the Tailspin.SurveyResponseService each time a survey is answered and
the new survey answer data is merged in the summary data. This service includes the functionality originally
implemented in the Tailspin.AnswerAnalysisService service from the ported Service Fabric application.

Azure Service Fabric supports the following programming models:

The guest executable model allows any executable to be packaged as a service and deployed to a Service Fabric
cluster. Service Fabric orchestrates and manages execution of the guest executable.
The container model allows for deployment of services in container images. Service Fabric supports creation
and management of containers on top of Linux kernel containers as well as Windows Server containers.
The reliable services programming model allows for the creation of stateless or stateful services that integrate
with all Service Fabric platform features. Stateful services allow for replicated state to be stored in the Service
Fabric cluster. Stateless services do not.
The reliable actors programming model allows for the creation of services that implement the virtual actor
pattern.

All the services in the Surveys application are stateless reliable services, except for the
Tailspin.SurveyResponseService service. This service implements a ReliableConcurrentQueue to process survey
answers when they are received. Responses in the ReliableConcurrentQueue are saved into Azure Blob Storage
and passed to the Tailspin.SurveyAnalysisService for analysis. Tailspin chooses a ReliableConcurrentQueue because
responses do not require strict first-in-first-out (FIFO) ordering provided by a queue such as Azure Service Bus. A
ReliableConcurrentQueue is also designed to deliver high throughput and low latency for queue and dequeue
operations.

Note that operations to persist dequeued items from a ReliableConcurrentQueue should ideally be idempotent. If
an exception is thrown during the processing of an item from the queue, the same item may be processed more
than once. In the Surveys application, the operation to merge survey answers to the Tailspin.SurveyAnalysisService
is not idempotent because Tailspin decided that the survey analysis data is only a current snapshot of the analysis
data and does not need to be consistent. The survey answers saved to Azure Blob Storage are eventually
consistent, so the survey final analysis can always be recalculated correctly from this data.

Each service in the Surveys application communicates using a RESTful web API. RESTful APIs offer the following
benefits:

Ease of use: each service is built using ASP.NET Core MVC, which natively supports the creation of Web APIs.
Security: While each service does not require SSL, Tailspin could require each service to do so.
Versioning: clients can be written and tested against a specific version of a web API.

Services in the Survey application use the reverse proxy implemented by Service Fabric. Reverse proxy is a service
that runs on each node in the Service Fabric cluster and provides endpoint resolution, automatic retry, and handles
other types of connection failures. To use the reverse proxy, each RESTful API call to a specific service is made
using a predefined reverse proxy port. For example, if the reverse proxy port has been set to 19081, a call to the
Tailspin.SurveyAnswerService can be made as follows:

https://docs.microsoft.com/azure/service-fabric/service-fabric-reliable-services-reliable-concurrent-queue
https://docs.microsoft.com/azure/service-fabric/service-fabric-reverseproxy

static SurveyAnswerService()
{
 httpClient = new HttpClient
 {
 BaseAddress = new Uri("http://localhost:19081/Tailspin/SurveyAnswerService/")
 };
}

Performance considerations

NOTENOTE

// This method gets called by the runtime. Use this method to configure the HTTP request pipeline.
public void Configure(IApplicationBuilder app, IHostingEnvironment env, ILoggerFactory loggerFactory)
{
 //loggerFactory.AddConsole(Configuration.GetSection("Logging"));
 //loggerFactory.AddDebug();

 app.UseMvc();
}

NOTENOTE

Deployment considerations

NOTENOTE

To enable reverse proxy, specify a reverse proxy port during creation of the Service Fabric cluster. For more
information, see reverse proxy in Azure Service Fabric.

Tailspin created the ASP.NET Core services for Tailspin.Web and Tailspin.Web.Surveys.Public using Visual Studio
templates. By default, these templates include logging to the console. Logging to the console may be done during
development and debugging, but all logging to the console should be removed when the application is deployed to
production.

For more information about setting up monitoring and diagnostics for Service Fabric applications running in production, see
monitoring and diagnostics for Azure Service Fabric.

For example, the following lines in startup.cs for each of the web front end services should be commented out:

These lines may be conditionally excluded when Visual Studio is set to “release” when publishing.

Finally, when Tailspin deploys the Tailspin application to production, they switch Visual Studio to release mode.

The refactored Surveys application is composed of five stateless services and one stateful service, so cluster
planning is limited to determining the correct VM size and number of nodes. In the applicationmanifest.xml file
that describes the cluster, Tailspin sets the InstanceCount attribute of the StatelessService tag to -1 for each of the
services. A value of -1 directs Service Fabric to create an instance of the service on each node in the cluster.

Stateful services require the additional step of planning the correct number of partitions and replicas for their data.

Tailspin deploys the cluster using the Azure Portal. The Service Fabric Cluster resource type deploys all of the
necessary infrastructure, including VM scale sets and a load balancer. The recommended VM sizes are displayed in

https://docs.microsoft.com/azure/service-fabric/service-fabric-reverseproxy
https://docs.microsoft.com/azure/service-fabric/service-fabric-diagnostics-overview

NOTENOTE

Next steps

the Azure portal during the provisioning process for the Service Fabric cluster. Note that because the VMs are
deployed in a VM scale set, they can be both scaled up and out as user load increases.

As discussed earlier, in the migrated version of the Surveys application the two web front ends were self-hosted using
ASP.NET Core and Kestrel as a web server. While the migrated version of the Survey application does not use a reverse proxy,
it is strongly recommended to use a reverse proxy such as IIS, Nginx, or Apache. For more information see introduction to
Kestrel web server implementation in ASP.NET core. In the refactored Surveys application, the two web front ends are self-
hosted using ASP.NET Core with WebListener as a web server so a reverse proxy is not necessary.

The Surveys application code is available on GitHub.

If you are just getting started with Azure Service Fabric, first set up your development environment then download
the latest Azure SDK and the Azure Service Fabric SDK. The SDK includes the OneBox cluster manager so you can
deploy and test the Surveys application locally with full F5 debugging.

https://docs.microsoft.com/aspnet/core/fundamentals/servers/kestrel?tabs=aspnetcore1x
https://docs.microsoft.com/aspnet/core/fundamentals/servers/weblistener
https://github.com/mspnp/cloud-services-to-service-fabric/tree/master/servicefabric-phase-2
https://docs.microsoft.com/azure/service-fabric/service-fabric-get-started
https://azure.microsoft.com/downloads/archive-net-downloads/
https://docs.microsoft.com/azure/service-fabric/service-fabric-get-started

Designing resilient applications for Azure
3/13/2019 • 31 minutes to read • Edit Online

What is resiliency?

In a distributed system, failures will happen. Hardware can fail. The network can have transient failures. Rarely,
an entire service or region may experience a disruption, but even those must be planned for.

Building a reliable application in the cloud is different than building a reliable application in an enterprise setting.
While historically you may have purchased higher-end hardware to scale up, in a cloud environment you must
scale out instead of scaling up. Costs for cloud environments are kept low through the use of commodity
hardware. Instead of trying to prevent failures altogether, the goal is to minimize the effects of a failure within
the system.

This article provides an overview of how to build resilient applications in Microsoft Azure. It starts with a
definition of the term resiliency and related concepts. Then it describes a process for achieving resiliency, using a
structured approach over the lifetime of an application, from design and implementation to deployment and
operations.

Resiliency is the ability of a system to recover from failures and continue to function. It's not about avoiding
failures, but responding to failures in a way that avoids downtime or data loss. The goal of resiliency is to return
the application to a fully functioning state following a failure.

Two important aspects of resiliency are high availability and disaster recovery.

High availability (HA) is the ability of the application to continue running in a healthy state, without
significant downtime. By "healthy state," we mean the application is responsive, and users can connect to the
application and interact with it.
Disaster recovery (DR) is the ability to recover from rare but major incidents: non-transient, wide-scale
failures, such as service disruption that affects an entire region. Disaster recovery includes data backup and
archiving, and may include manual intervention, such as restoring a database from backup.

One way to think about HA versus DR is that DR starts when the impact of a fault exceeds the ability of the HA
design to handle it.

When you design resiliency, you must understand your availability requirements. How much downtime is
acceptable? This is partly a function of cost. How much will potential downtime cost your business? How much
should you invest in making the application highly available? You also have to define what it means for the
application to be available. For example, is the application "down" if a customer can submit an order but the
system cannot process it within the normal timeframe? Also consider the probability of a particular type of
outage occurring, and whether a mitigation strategy is cost-effective.

Another common term is business continuity (BC), which is the ability to perform essential business functions
during and after adverse conditions, such as a natural disaster or a downed service. BC covers the entire
operation of the business, including physical facilities, people, communications, transportation, and IT. This
article focuses on cloud applications, but resilience planning must be done in the context of overall BC
requirements.

Data backup is a critical part of DR. If the stateless components of an application fail, you can always redeploy
them. But if data is lost, the system can't return to a stable state. Data must be backed up, ideally in a different
region in case of a region-wide disaster.

https://github.com/mspnp/architecture-center/blob/master/docs/resiliency/index.md

Process to achieve resiliency

Define your availability requirements

Decompose by workloadDecompose by workload

RTO and RPORTO and RPO

Backup is distinct from data replication. Data replication involves copying data in near-real-time, so that the
system can fail over quickly to a replica. Many databases systems support replication; for example, SQL Server
supports SQL Server Always On Availability Groups. Data replication can reduce how long it takes to recover
from an outage, by ensuring that a replica of the data is always standing by. However, data replication won't
protect against human error. If data gets corrupted because of human error, the corrupted data just gets copied
to the replicas. Therefore, you still need to include long-term backup in your DR strategy.

Resiliency is not an add-on. It must be designed into the system and put into operational practice. Here is a
general model to follow:

1. Define your availability requirements, based on business needs.
2. Design the application for resiliency. Start with an architecture that follows proven practices, and then

identify the possible failure points in that architecture.
3. Implement strategies to detect and recover from failures.
4. Test the implementation by simulating faults and triggering forced failovers.
5. Deploy the application into production using a reliable, repeatable process.
6. Monitor the application to detect failures. By monitoring the system, you can gauge the health of the

application and respond to incidents if necessary.
7. Respond if there are failure that require manual interventions.

In the remainder of this article, we discuss each of these steps in more detail.

Resiliency planning starts with business requirements. Here are some approaches for thinking about resiliency
in those terms.

Many cloud solutions consist of multiple application workloads. The term "workload" in this context means a
discrete capability or computing task, which can be logically separated from other tasks, in terms of business
logic and data storage requirements. For example, an e-commerce app might include the following workloads:

Browse and search a product catalog.
Create and track orders.
View recommendations.

These workloads might have different requirements for availability, scalability, data consistency, and disaster
recovery. There are business decisions to be made in terms of balancing cost versus risk.

Also consider usage patterns. Are there certain critical periods when the system must be available? For example,
a tax-filing service can't go down right before the filing deadline, a video streaming service must stay up during
a big sports event, and so on. During the critical periods, you might have redundant deployments across several
regions, so the application could fail over if one region failed. However, a multi-region deployment is potentially
more expensive, so during less critical times, you might run the application in a single region. In some cases, the
additional expense can be mitigated by using modern serverless techniques, which use consumption-based
billing, so you are not charged for under-utilitzed compute resources.

Two important metrics to consider are the recovery time objective and recovery point objective, as they pertain
to disaster recovery.

Recovery time objective (RTO) is the maximum acceptable time that an application can be unavailable

MTTR and MTBFMTTR and MTBF

NOTENOTE

SLAsSLAs

NOTENOTE

after an incident. If your RTO is 90 minutes, you must be able to restore the application to a running state
within 90 minutes from the start of a disaster. If you have a very low RTO, you might keep a second
regional deployment continually running an active/passive configuration on standby, to protect against a
regional outage. In some cases you might deploy an active/active configuration to achieve even lower
RTO.

Recovery point objective (RPO) is the maximum duration of data loss that is acceptable during a
disaster. For example, if you store data in a single database, with no replication to other databases, and
perform hourly backups, you could lose up to an hour of data.

RTO and RPO are non-functional requirements of a system, and should be dictated by business requirements.
To derive these values, it's a good idea to conduct a risk assessment, and clearly understanding the cost of
downtime or data loss.

Two other common measures of availability are mean time to recover (MTTR) and mean time between failures
(MTBF). These measures are usually used internally by service providers to determine where to add redundancy
to cloud services, and which SLAs to provide to customers.

Mean time to recover (MTTR) is the average time that it takes to restore a component after a failure. MTTR is
an empirical fact about a component. Based on the MTTR of each component, you can estimate the MTTR of an
entire application. Building applications from multiple components with low MTTR values results in an
application with a low overall MTTR — one that recovers quickly from failures.

Mean time between failures (MTBF) is the runtime that a component can reasonably expect to last between
outages. This metric can help you to calculate how frequently a service will become unavailable. An unreliable
component has a low MTBF, resulting in a low SLA number for that component. However, a low MTBF can be
mitigated by deploying multiple instances of the component and implementing failover between them.

If ANY of the MTTR values of components in a high-availability setup exceed the RTO of the system, then a failure in the
system will cause an unacceptable business disruption. It won't be possible to restore the system within the defined RTO.

In Azure, the Service Level Agreement (SLA) describes Microsoft’s commitments for uptime and connectivity. If
the SLA for a particular service is 99.9%, it means you should expect the service to be available 99.9% of the
time.

The Azure SLA also includes provisions for obtaining a service credit if the SLA is not met, along with specific definitions of
"availability" for each service. That aspect of the SLA acts as an enforcement policy.

You should define your own target SLAs for each workload in your solution. An SLA makes it possible to
evaluate whether the architecture meets the business requirements. Perform a dependency mapping exercise to
identify internal and external dependencies, such as Active Directory or third-party services such as a payment
provider or e-mail messaging service. In particular, pay attention to any external dependencies that can be single
point of failure or cause bottlenecks during an event. For example, if a workload requires 99.99% uptime, but
depends on a service with a 99.9% SLA, that service cannot be a single-point of failure in the system. One
remedy is to have a fallback path in case the service fails, or take other measures to recover from a failure in that
service.

The following table shows the potential cumulative downtime for various SLA levels.

https://azure.microsoft.com/support/legal/sla/

SLA DOWNTIME PER WEEK DOWNTIME PER MONTH DOWNTIME PER YEAR

99% 1.68 hours 7.2 hours 3.65 days

99.9% 10.1 minutes 43.2 minutes 8.76 hours

99.95% 5 minutes 21.6 minutes 4.38 hours

99.99% 1.01 minutes 4.32 minutes 52.56 minutes

99.999% 6 seconds 25.9 seconds 5.26 minutes

Composite SLAsComposite SLAs

Of course, higher availability is better, everything else being equal. But as you strive for more 9s, the cost and
complexity to achieve that level of availability grows. An uptime of 99.99% translates to about 5 minutes of total
downtime per month. Is it worth the additional complexity and cost to reach five 9s? The answer depends on the
business requirements.

Here are some other considerations when defining an SLA:

To achieve four 9's (99.99%), you probably can't rely on manual intervention to recover from failures. The
application must be self-diagnosing and self-healing.
Beyond four 9's, it is challenging to detect outages quickly enough to meet the SLA.
Think about the time window that your SLA is measured against. The smaller the window, the tighter the
tolerances. It probably doesn't make sense to define your SLA in terms of hourly or daily uptime.
Consider the MTBF and MTTR measurements. The lower your SLA, the less frequently the service can go
down, and the quicker the service must recover.

Consider an App Service web app that writes to Azure SQL Database. At the time of this writing, these Azure
services have the following SLAs:

App Service Web Apps = 99.95%
SQL Database = 99.99%

What is the maximum downtime you would expect for this application? If either service fails, the whole
application fails. In general, the probability of each service failing is independent, so the composite SLA for this
application is 99.95% × 99.99% = 99.94%. That's lower than the individual SLAs, which isn't surprising, because
an application that relies on multiple services has more potential failure points.

On the other hand, you can improve the composite SLA by creating independent fallback paths. For example, if
SQL Database is unavailable, put transactions into a queue, to be processed later.

Design for resiliency

Example of identifying failure modes and detection strategyExample of identifying failure modes and detection strategy

FAILURE MODE DETECTION STRATEGY

Service is unavailable HTTP 5xx

With this design, the application is still available even if it can't connect to the database. However, it fails if the
database and the queue both fail at the same time. The expected percentage of time for a simultaneous failure is
0.0001 × 0.001, so the composite SLA for this combined path is:

Database OR queue = 1.0 − (0.0001 × 0.001) = 99.99999%

The total composite SLA is:

Web app AND (database OR queue) = 99.95% × 99.99999% = ~99.95%

But there are tradeoffs to this approach. The application logic is more complex, you are paying for the queue,
and there may be data consistency issues to consider.

SLA for multi-region deployments. Another HA technique is to deploy the application in more than one
region, and use Azure Traffic Manager to fail over if the application fails in one region. For a multi-region
deployment, the composite SLA is calculated as follows.

Let N be the composite SLA for the application deployed in one region, and R be the number of regions where
the application is deployed. The expected chance that the application will fail in all regions at the same time is ((1
− N) ^ R).

For example, if the single-region SLA is 99.95%,

The combined SLA for two regions = (1 − (0.9995 ^ 2)) = 99.999975%
The combined SLA for four regions = (1 − (0.9995 ^ 4)) = 99.999999%

You must also factor in the SLA for Traffic Manager. At the time of this writing, the SLA for Traffic Manager SLA
is 99.99%.

Also, failing over is not instantaneous in active-passive configurations, which can result in some downtime
during a failover. See Traffic Manager endpoint monitoring and failover.

The calculated SLA number is a useful baseline, but it doesn't tell the whole story about availability. Often, an
application can degrade gracefully when a non-critical path fails. Consider an application that shows a catalog of
books. If the application can't retrieve the thumbnail image for the cover, it might show a placeholder image. In
that case, failing to get the image does not reduce the application's uptime, although it affects the user
experience.

During the design phase, you should perform a failure mode analysis (FMA). The goal of an FMA is to identify
possible points of failure, and define how the application will respond to those failures.

How will the application detect this type of failure?
How will the application respond to this type of failure?
How will you log and monitor this type of failure?

For more information about the FMA process, with specific recommendations for Azure, see Azure resiliency
guidance: Failure mode analysis.

Failure point: Call to an external web service / API.

https://azure.microsoft.com/support/legal/sla/traffic-manager
https://docs.microsoft.com/azure/traffic-manager/traffic-manager-monitoring

Throttling HTTP 429 (Too Many Requests)

Authentication HTTP 401 (Unauthorized)

Slow response Request times out

FAILURE MODE DETECTION STRATEGY

Redundancy and designing for failureRedundancy and designing for failure
Failures can vary in the scope of their impact. Some hardware failures, such as a failed disk, may affect a single
host machine. A failed network switch could affect a whole server rack. Less common are failures that disrupt a
whole datacenter, such as loss of power in a datacenter. Rarely, an entire region could become unavailable.

One of the main ways to make an application resilient is through redundancy. But you need to plan for this
redundancy when you design the application. Also, the level of redundancy that you need depends on your
business requirements — not every application needs redundancy across regions to guard against a regional
outage. In general, there is a tradeoff between greater redundancy and reliability versus higher cost and
complexity.

Azure has a number of features to make an application redundant at every level of failure, from an individual
VM to an entire region.

Single VM. Azure provides an uptime SLA for single VMs. (The VM must use premium storage for all
Operating System Disks and Data Disks.) Although you can get a higher SLA by running two or more VMs, a
single VM may be reliable enough for some workloads. For production workloads, however, we recommend
using two or more VMs for redundancy.

Availability sets. To protect against localized hardware failures, such as a disk or network switch failing, deploy
two or more VMs in an availability set. An availability set consists of two or more fault domains that share a
common power source and network switch. VMs in an availability set are distributed across the fault domains,
so if a hardware failure affects one fault domain, network traffic can still be routed the VMs in the other fault
domains. For more information about Availability Sets, see Manage the availability of Windows virtual
machines in Azure.

Availability zones. An Availability Zone is a physically separate zone within an Azure region. Each Availability
Zone has a distinct power source, network, and cooling. Deploying VMs across availability zones helps to
protect an application against datacenter-wide failures. Not all regions support Availability Zones. For a list of
supported regions and services, see What are Availability Zones in Azure?.

If you are planning to use Availability Zones in your deployment, first validate that your application architecture
and code base can support this configuration. If you are deploying commercial off-the-shelf software, consult
with the software vendor and test adequately before deploying into production. An application must be able to
maintain state and prevent loss of data during an outage within the configured zone. The application must
support running in an elastic and distributed infrastructure with no hard-coded infrastructure components
specified in the code base.

Azure Site Recovery. Replicate Azure virtual machines to another Azure region for business continuity and
disaster recovery needs. You can conduct periodic DR drills to ensure you meet the compliance needs. The VM
will be replicated with the specified settings to the selected region so that you can recover your applications in
the event of outages in the source region. For more information, see Replicate Azure VMs using ASR. Consider
the RTO and RPO numbers for your solution here and ensure that when testing, the recovery time and recovery
point is appropriate for your needs.

https://azure.microsoft.com/support/legal/sla/virtual-machines
https://docs.microsoft.com/azure/virtual-machines/windows/manage-availability
https://docs.microsoft.com/azure/availability-zones/az-overview
https://docs.microsoft.com/azure/site-recovery/azure-to-azure-quickstart/

 AVAILABILITY SET AVAILABILITY ZONE
AZURE SITE
RECOVERY/PAIRED REGION

Scope of failure Rack Datacenter Region

Request routing Load Balancer Cross-zone Load Balancer Traffic Manager

Network latency Very low Low Mid to high

Virtual network VNet VNet Cross-region VNet peering

Implement resiliency strategies

Paired regions. To protect an application against a regional outage, you can deploy the application across
multiple regions, using Azure Traffic Manager to distribute internet traffic to the different regions. Each Azure
region is paired with another region. Together, these form a regional pair. With the exception of Brazil South,
regional pairs are located within the same geography in order to meet data residency requirements for tax and
law enforcement jurisdiction purposes.

When you design a multi-region application, take into account that network latency across regions is higher
than within a region. For example, if you are replicating a database to enable failover, use synchronous data
replication within a region, but asynchronous data replication across regions.

When you select paired regions, ensure both regions have required Azure services. For a list of services by
region, see Products available by region. It's also critical to select the right deployment topology for disaster
recovery, especially if your RPO/RTO are short. To ensure the failover region has enough capacity to support
your workload, select either an active/passive (full replica) topology or an active/active topology. Keep in mind
these deployment topologies might increase complexity and cost as resources in the secondary region are pre-
provisioned and may sit idle. For more information, see Deployment topologies for disaster recovery

This section provides a survey of some common resiliency strategies. Most of these are not limited to a
particular technology. The descriptions in this section summarize the general idea behind each technique, with
links to further reading.

Retry transient failures. Transient failures can be caused by momentary loss of network connectivity, a
dropped database connection, or a timeout when a service is busy. Often, a transient failure can be resolved
simply by retrying the request. For many Azure services, the client SDK implements automatic retries, in a way
that is transparent to the caller ; see Retry service specific guidance.

Each retry attempt adds to the total latency. Also, too many failed requests can cause a bottleneck, as pending
requests accumulate in the queue. These blocked requests might hold critical system resources such as memory,
threads, database connections, and so on, which can cause cascading failures. To avoid this, increase the delay
between each retry attempt, and limit the total number of failed requests.

Load balance across instances. For scalability, a cloud application should be able to scale out by adding more
instances. This approach also improves resiliency, because unhealthy instances can be removed from rotation.
For example:

https://docs.microsoft.com/azure/best-practices-availability-paired-regions
https://azure.microsoft.com/global-infrastructure/services/
https://docs.microsoft.com/en-us/azure/architecture/resiliency/disaster-recovery-azure-applications

Put two or more VMs behind a load balancer. The load balancer distributes traffic to all the VMs. See Run
load-balanced VMs for scalability and availability.
Scale out an Azure App Service app to multiple instances. App Service automatically balances load across
instances. See Basic web application.
Use Azure Traffic Manager to distribute traffic across a set of endpoints.

Replicate data. Replicating data is a general strategy for handling non-transient failures in a data store. Many
storage technologies provide built-in replication, including Azure Storage, Azure SQL Database, Cosmos DB,
and Apache Cassandra. It's important to consider both the read and write paths. Depending on the storage
technology, you might have multiple writable replicas, or a single writable replica and multiple read-only
replicas.

To maximize availability, replicas can be placed in multiple regions. However, this increases the latency when
replicating the data. Typically, replicating across regions is done asynchronously, which implies an eventual
consistency model and potential data loss if a replica fails.

You can use Azure Site Recovery to replicate Azure virtual machines from one region to another region. Site
Recovery replicates data continuously to the target region. When an outage occurs at your primary site, you fail
over to secondary location

Degrade gracefully. If a service fails and there is no failover path, the application may be able to degrade
gracefully while still providing an acceptable user experience. For example:

Put a work item on a queue, to be handled later.
Return an estimated value.
Use locally cached data.
Show the user an error message. (This option is better than having the application stop responding to
requests.)

Throttle high-volume users. Sometimes a small number of users create excessive load. That can have an
impact on other users, reducing the overall availability of your application.

When a single client makes an excessive number of requests, the application might throttle the client for a
certain period of time. During the throttling period, the application refuses some or all of the requests from that
client (depending on the exact throttling strategy). The threshold for throttling might depend on the customer's
service tier.

Throttling does not imply the client was necessarily acting maliciously, only that it exceeded its service quota. In
some cases, a consumer might consistently exceed their quota or otherwise behave badly. In that case, you
might go further and block the user. Typically, this is done by blocking an API key or an IP address range. For
more information, see Throttling Pattern.

Use a circuit breaker. The Circuit Breaker pattern can prevent an application from repeatedly trying an
operation that is likely to fail. The circuit breaker wraps calls to a service and tracks the number of recent
failures. If the failure count exceeds a threshold, the circuit breaker starts returning an error code without calling
the service. This gives the service time to recover.

Use load leveling to smooth out spikes in traffic. Applications may experience sudden spikes in traffic,
which can overwhelm services on the backend. If a backend service cannot respond to requests quickly enough,
it may cause requests to queue (back up), or cause the service to throttle the application. To avoid this, you can
use a queue as a buffer. When there is a new work item, instead of calling the backend service immediately, the
application queues a work item to run asynchronously. The queue acts as a buffer that smooths out peaks in the
load. For more information, see Queue-Based Load Leveling Pattern.

Isolate critical resources. Failures in one subsystem can sometimes cascade, causing failures in other parts of
the application. This can happen if a failure causes some resources, such as threads or sockets, not to get freed in

https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/virtual-machines-windows/multi-vm
https://azure.microsoft.com/services/traffic-manager/
https://docs.microsoft.com/azure/site-recovery/azure-to-azure-quickstart/

Test for resiliency

a timely manner, leading to resource exhaustion.

To avoid this, you can partition a system into isolated groups, so that a failure in one partition does not bring
down the entire system. This technique is sometimes called the Bulkhead pattern.

Examples:

Partition a database (for example, by tenant) and assign a separate pool of web server instances for each
partition.
Use separate thread pools to isolate calls to different services. This helps to prevent cascading failures if one
of the services fails. For an example, see the Netflix Hystrix library.
Use containers to limit the resources available to a particular subsystem.

Apply compensating transactions. A compensating transaction is a transaction that undoes the effects of
another completed transaction. In a distributed system, it can be very difficult to achieve strong transactional
consistency. Compensating transactions are a way to achieve consistency by using a series of smaller, individual
transactions that can be undone at each step.

For example, to book a trip, a customer might reserve a car, a hotel room, and a flight. If any of these steps fails,
the entire operation fails. Instead of trying to use a single distributed transaction for the entire operation, you
can define a compensating transaction for each step. For example, to undo a car reservation, you cancel the
reservation. In order to complete the whole operation, a coordinator executes each step. If any step fails, the
coordinator applies compensating transactions to undo any steps that were completed.

Generally, you can't test resiliency in the same way that you test application functionality (by running unit tests
and so on). Instead, you must test how the end-to-end workload performs under failure conditions which only
occur intermittently.

Testing is an iterative process. Test the application, measure the outcome, analyze and address any failures that
result, and repeat the process.

Fault injection testing. Test the resiliency of the system during failures, either by triggering actual failures or
by simulating them. Here are some common failure scenarios to test:

Shut down VM instances.
Crash processes.
Expire certificates.
Change access keys.
Shut down the DNS service on domain controllers.
Limit available system resources, such as RAM or number of threads.

https://medium.com/netflix-techblog/introducing-hystrix-for-resilience-engineering-13531c1ab362
https://en.wikipedia.org/wiki/Operating-system-level_virtualization

Deploy using reliable processes

Unmount disks.
Redeploy a VM.

Measure the recovery times and verify that your business requirements are met. Test combinations of failure
modes as well. Make sure that failures don't cascade, and are handled in an isolated way.

This is another reason why it's important to analyze possible failure points during the design phase. The results
of that analysis should be inputs into your test plan.

Load testing. Load testing is crucial for identifying failures that only happen under load, such as the backend
database being overwhelmed or service throttling. Test for peak load, using production data or synthetic data
that is as close to production data as possible. The goal is to see how the application behaves under real-world
conditions.

Disaster recovery drills. It is not enough if you have a good disaster recovery plan in place. You need to test it
periodically to ensure your recovery plan works fine when it matters. For Azure virtual machines, you can use
Azure Site Recovery to replicate and perform DR drills without affecting production applications or ongoing
replication.

Once an application is deployed to production, updates are a possible source of errors. In the worst case, a bad
update can cause downtime. To avoid this, the deployment process must be predictable and repeatable.
Deployment includes provisioning Azure resources, deploying application code, and applying configuration
settings. An update may involve all three, or a subset.

The crucial point is that manual deployments are prone to error. Therefore, it's recommended to have an
automated, idempotent process that you can run on demand, and re-run if something fails.

To automate provisioning of Azure resources you can use Terraform, Ansible, Chef, Puppet, PowerShell, CLI
or Azure Resource Manager templates
Use Azure Automation Desired State Configuration (DSC) to configure VMs. For Linux VMs, you can use
Cloud-init.
You can automate application deployment using Azure DevOps Services or Jenkins.

Two concepts related to resilient deployment are infrastructure as code and immutable infrastructure.

Infrastructure as code is the practice of using code to provision and configure infrastructure. Infrastructure
as code may use a declarative approach or an imperative approach (or a combination of both). Resource
Manager templates are an example of a declarative approach. PowerShell scripts are an example of an
imperative approach.
Immutable infrastructure is the principle that you shouldn’t modify infrastructure after it’s deployed to
production. Otherwise, you can get into a state where ad hoc changes have been applied, so it's hard to know
exactly what changed, and hard to reason about the system.

Another question is how to roll out an application update. We recommend techniques such as blue-green
deployment or canary releases, which push updates in highly controlled way to minimize possible impacts from
a bad deployment.

Blue-green deployment is a technique where an update is deployed into a production environment separate
from the live application. After you validate the deployment, switch the traffic routing to the updated version.
For example, Azure App Service Web Apps enables this with staging slots.
Canary releases are similar to blue-green deployments. Instead of switching all traffic to the updated version,
you roll out the update to a small percentage of users, by routing a portion of the traffic to the new
deployment. If there is a problem, back off and revert to the old deployment. Otherwise, route more of the
traffic to the new version, until it gets 100% of the traffic.

https://docs.microsoft.com/azure/site-recovery/azure-to-azure-quickstart/
https://docs.microsoft.com/azure/site-recovery/azure-to-azure-tutorial-dr-drill/
https://docs.microsoft.com/azure/virtual-machines/windows/infrastructure-automation#terraform
https://docs.microsoft.com/azure/virtual-machines/windows/infrastructure-automation#ansible
https://docs.microsoft.com/azure/virtual-machines/windows/infrastructure-automation#chef
https://docs.microsoft.com/azure/virtual-machines/windows/infrastructure-automation#puppet
https://docs.microsoft.com/powershell/azure/overview
https://docs.microsoft.com/cli/azure
https://docs.microsoft.com/azure/azure-resource-manager/resource-group-overview#template-deployment
https://docs.microsoft.com/azure/automation/automation-dsc-overview
https://docs.microsoft.com/azure/virtual-machines/windows/infrastructure-automation#cloud-init
https://docs.microsoft.com/azure/virtual-machines/windows/infrastructure-automation#azure-devops-services
https://docs.microsoft.com/azure/virtual-machines/windows/infrastructure-automation#jenkins
https://martinfowler.com/bliki/BlueGreenDeployment.html
https://docs.microsoft.com/azure/app-service/deploy-staging-slots
https://martinfowler.com/bliki/CanaryRelease.html

Monitor to detect failures

Whatever approach you take, make sure that you can roll back to the last-known-good deployment, in case the
new version is not functioning. Also have a strategy in place to roll back database changes and any other
changes to dependent services. If errors occur, the application logs must indicate which version caused the error.

Monitoring is crucial for resiliency. If something fails, you need to know that it failed, and you need insights into
the cause of the failure.

Monitoring a large-scale distributed system poses a significant challenge. Think about an application that runs
on a few dozen VMs — it's not practical to log into each VM, one at a time, and look through log files, trying to
troubleshoot a problem. Moreover, the number of VM instances is probably not static VMs get added and
removed as the application scales in and out, and occasionally an instance may fail and need to be
reprovisioned. In addition, a typical cloud application might use multiple data stores (Azure storage, SQL
Database, Cosmos DB, Redis cache), and a single user action may span multiple subsystems.

You can think of the monitoring process as a pipeline with several distinct stages:

Instrumentation. The raw data for monitoring comes from a variety of sources, including application logs,
operating systems performance metrics, Azure resources, Azure subscriptions and Azure tenants. Most
Azure services expose metrics that you can configure to analyze and determine the cause of problems.
Collection and storage. Raw instrumentation data can be held in various locations and with various
formats (e.g., application trace logs, IIS logs, performance counters). These disparate sources are collected,
consolidated, and put into reliable data stores such as Application Insights, Azure Monitor metrics, Service
Health, storage accounts and Log Analytics.
Analysis and diagnosis. After the data is consolidated in these different data stores, it can be analyzed to
troubleshoot issues and provide an overall view of application health. Generally, you can search for the data
in Application Insights and Log Analytics using Kusto queries. Azure Advisor provides recommendations
with a focus on resiliency and optimization.
Visualization and alerts. In this stage, telemetry data is presented in such a way that an operator can
quickly notice problems or trends. Examples include dashboards or email alerts. With Azure dashboards, you
can build a single-pane of glass view of monitoring graphs originating from Application Insights, Log
Analytics, Azure Monitor metrics and service health. With Azure Monitor alerts, you can create alerts on
service health and resource health.

Monitoring is not the same as failure detection. For example, your application might detect a transient error and
retry, resulting in no downtime. But it should also log the retry operation, so that you can monitor the error rate,
in order to get an overall picture of application health.

Application logs are an important source of diagnostics data. Best practices for application logging include:

Log in production. Otherwise, you lose insight where you need it most.
Log events at service boundaries. Include a correlation ID that flows across service boundaries. If a
transaction flows through multiple services and one of them fails, the correlation ID will help you pinpoint
why the transaction failed.
Use semantic logging, also known as structured logging. Unstructured logs make it hard to automate the
consumption and analysis of the log data, which is needed at cloud scale.
Use asynchronous logging. Otherwise, the logging system itself can cause the application to fail by causing
requests to back up, as they block while waiting to write a logging event.
Application logging is not the same as auditing. Auditing may be done for compliance or regulatory reasons.

https://docs.microsoft.com/azure/application-insights/app-insights-overview?toc=/azure/azure-monitor/toc.json
https://docs.microsoft.com/azure/azure-monitor/platform/agents-overview
https://docs.microsoft.com/azure/monitoring-and-diagnostics/monitoring-supported-metrics?toc=/azure/azure-monitor/toc.json
https://docs.microsoft.com/azure/service-health/service-health-overview
https://docs.microsoft.com/azure/active-directory/reports-monitoring/howto-integrate-activity-logs-with-log-analytics
https://docs.microsoft.com/azure/azure-monitor/platform/data-collection
https://docs.microsoft.com/azure/log-analytics/log-analytics-queries
https://docs.microsoft.com/azure/advisor/advisor-high-availability-recommendations
https://docs.microsoft.com/azure/advisor/advisor-performance-recommendations
https://docs.microsoft.com/azure/azure-portal/azure-portal-dashboards
https://docs.microsoft.com/azure/monitoring-and-diagnostics/monitoring-overview-alerts?toc=/azure/azure-monitor/toc.json

Respond to failures

Summary

As such, audit records must be complete, and it's not acceptable to drop any while processing transactions. If
an application requires auditing, this should be kept separate from diagnostics logging.

For more information about monitoring and diagnostics, see Monitoring and diagnostics guidance.

Previous sections have focused on automated recovery strategies, which are critical for high availability.
However, sometimes manual intervention is needed.

Alerts. Monitor your application for warning signs that may require proactive intervention. For example, if
you see that SQL Database or Cosmos DB consistently throttles your application, you might need to increase
your database capacity or optimize your queries. In this example, even though the application might handle
the throttling errors transparently, your telemetry should still raise an alert so that you can follow up. It is
recommended to configure alerts on Azure resources metrics and diagnostics logs against the services limits
and quotas thresholds. We recommend to setup alerts on metrics as they are lower latency vs. diagnostics
logs. In addition, Azure is able to provide with some out-of-the-box health status through resource health
which can help diagnose throttling of Azure services.
Failover. Configure a disaster recovery strategy for your application. The appropriate strategy will depend
on your SLAs. For most scenarous, an active-passive implementation is sufficient. For more information, see
Deployment topologies for disaster recovery . Most Azure services allow for either manual or automated
failover. For example, in an IaaS application, use Azure Site Recovery for the web and logic tiers and SQL
AlwaysOn Availability Groups for the database tier. Traffic Manager provides automated failover across
regions.
Operational readiness testing. Perform an operational readiness test for both failover to the secondary
region and failback to the primary region. Many Azure services support manual failover or test failover for
disaster recovery drills. Alternatively, you can simulate an outage by shutting down or removing services.
Data consistency check. If a failure happens in a data store, there may be data inconsistencies when the
store becomes available again, especially if the data was replicated. For Azure services that provide cross-
regional replication, look at the RTO and RPO to understand the expected data loss in a failure. Review the
SLAs for Azure services to understand whether cross-regional failover can be initiated manually or is
initiated by Microsoft. For some services, Microsoft decides when to perform the failover. Microsoft may
prioritize the recovery of data in the primary region, only failing over to a secondary region if data in the
primary region is deemed unrecoverable. For example, Geo-redundant storage and Key Vault follow this
model.
Restoring from backup. In some scenarios, restoring from backup is only possible within the same region.
This is the case for Azure VMs Backup. Other Azure services provide geo-replicated backups, such as Redis
Cache Geo-Replicas. The purpose of backups is to protect against accidental deletion or corruption of data,
restoring the application to a functional version earlier in time. Therefore, while backups can serve as a
disaster recovery solution in some cases, the inverse is not always true: Disaster recovery won't protect you
against accidental deletion or corruption a data.

Document and test your disaster recovery plan. Evaluate the business impact of application failures. Automate
the process as much as possible, and document any manual steps, such as manual failover or data restoration
from backups. Regularly test your disaster recovery process to validate and improve the plan. Set up alerts for
the Azure services consumed by your application.

This article discussed resiliency from a holistic perspective, emphasizing some of the unique challenges of the
cloud. These include the distributed nature of cloud computing, the use of commodity hardware, and the
presence of transient network faults.

Here are the major points to take away from this article:

https://docs.microsoft.com/azure/service-health/resource-health-checks-resource-types
https://docs.microsoft.com/en-us/azure/architecture/resiliency/disaster-recovery-azure-applications
https://docs.microsoft.com/azure/site-recovery/azure-to-azure-architecture
https://docs.microsoft.com/azure/virtual-machines/windows/sql/virtual-machines-windows-portal-sql-availability-group-dr
https://docs.microsoft.com/azure/traffic-manager/traffic-manager-overview
https://docs.microsoft.com/azure/storage/common/storage-redundancy-grs
https://docs.microsoft.com/azure/key-vault/key-vault-disaster-recovery-guidance
https://docs.microsoft.com/azure/backup/backup-azure-vms-first-look-arm
https://docs.microsoft.com/azure/redis-cache/cache-how-to-geo-replication

Resiliency leads to higher availability, and lower mean time to recover from failures.
Achieving resiliency in the cloud requires a different set of techniques from traditional on-premises solutions.
Resiliency does not happen by accident. It must be designed and built in from the start.
Resiliency touches every part of the application lifecycle, from planning and coding to operations.
Test and monitor!

Failure mode analysis
3/13/2019 • 17 minutes to read • Edit Online

App Service
App Service app shuts down.App Service app shuts down.

Failure mode analysis (FMA) is a process for building resiliency into a system, by identifying possible failure points
in the system. The FMA should be part of the architecture and design phases, so that you can build failure
recovery into the system from the beginning.

Here is the general process to conduct an FMA:

1. Identify all of the components in the system. Include external dependencies, such as as identity providers,
third-party services, and so on.

2. For each component, identify potential failures that could occur. A single component may have more than
one failure mode. For example, you should consider read failures and write failures separately, because the
impact and possible mitigations will be different.

3. Rate each failure mode according to its overall risk. Consider these factors:

What is the likelihood of the failure. Is it relatively common? Extrememly rare? You don't need exact
numbers; the purpose is to help rank the priority.
What is the impact on the application, in terms of availability, data loss, monetary cost, and business
disruption?

4. For each failure mode, determine how the application will respond and recover. Consider tradeoffs in cost
and application complexity.

As a starting point for your FMA process, this article contains a catalog of potential failure modes and their
mitigations. The catalog is organized by technology or Azure service, plus a general category for application-level
design. The catalog is not exhaustive, but covers many of the core Azure services.

Detection. Possible causes:

Expected shutdown

An operator shuts down the application; for example, using the Azure portal.
The app was unloaded because it was idle. (Only if the Always On setting is disabled.)

Unexpected shutdown

The app crashes.
An App Service VM instance becomes unavailable.

Application_End logging will catch the app domain shutdown (soft process crash) and is the only way to catch the
application domain shutdowns.

Recovery:

If the shutdown was expected, use the application's shutdown event to shut down gracefully. For example, in
ASP.NET, use the Application_End method.
If the application was unloaded while idle, it is automatically restarted on the next request. However, you will
incur the "cold start" cost.

https://github.com/mspnp/architecture-center/blob/master/docs/resiliency/failure-mode-analysis.md

A particular user repeatedly makes bad requests or overloads the system.A particular user repeatedly makes bad requests or overloads the system.

A bad update was deployed.A bad update was deployed.

Azure Active Directory
OpenID Connect (OIDC) authentication fails.OpenID Connect (OIDC) authentication fails.

Azure Search
Writing data to Azure Search fails.Writing data to Azure Search fails.

To prevent the application from being unloaded while idle, enable the Always On setting in the web app. See
Configure web apps in Azure App Service.
To prevent an operator from shutting down the app, set a resource lock with ReadOnly level. See Lock
resources with Azure Resource Manager.
If the app crashes or an App Service VM becomes unavailable, App Service automatically restarts the app.

Diagnostics. Application logs and web server logs. See Enable diagnostics logging for web apps in Azure App
Service.

Detection. Authenticate users and include user ID in application logs.

Recovery:

Use Azure API Management to throttle requests from the user. See Advanced request throttling with Azure API
Management
Block the user.

Diagnostics. Log all authentication requests.

Detection. Monitor the application health through the Azure Portal (see Monitor Azure web app performance) or
implement the health endpoint monitoring pattern.

Recovery:. Use multiple deployment slots and roll back to the last-known-good deployment. For more
information, see Basic web application.

Detection. Possible failure modes include:

1. Azure AD is not available, or cannot be reached due to a network problem. Redirection to the authentication
endpoint fails, and the OIDC middleware throws an exception.

2. Azure AD tenant does not exist. Redirection to the authentication endpoint returns an HTTP error code, and the
OIDC middleware throws an exception.

3. User cannot authenticate. No detection strategy is necessary; Azure AD handles login failures.

Recovery:

1. Catch unhandled exceptions from the middleware.
2. Handle AuthenticationFailed events.
3. Redirect the user to an error page.
4. User retries.

Detection. Catch Microsoft.Rest.Azure.CloudException errors.

Recovery:

The Search .NET SDK automatically retries after transient failures. Any exceptions thrown by the client SDK
should be treated as non-transient errors.

The default retry policy uses exponential back-off. To use a different retry policy, call SetRetryPolicy on the

https://docs.microsoft.com/azure/app-service-web/web-sites-configure/
https://docs.microsoft.com/azure/azure-resource-manager/resource-group-lock-resources/
https://docs.microsoft.com/azure/app-service-web/web-sites-enable-diagnostic-log/
https://docs.microsoft.com/azure/api-management/
https://docs.microsoft.com/azure/api-management/api-management-sample-flexible-throttling/
https://docs.microsoft.com/azure/application-insights/app-insights-azure-web-apps/
https://msdn.microsoft.com/library/dn589789.aspx
https://docs.microsoft.com/azure/app-service-web/web-sites-staged-publishing/
https://msdn.microsoft.com/library/dn951165.aspx

Reading data from Azure Search fails.Reading data from Azure Search fails.

Cassandra
Reading or writing to a node fails.Reading or writing to a node fails.

Cloud Service
Web or worker roles are unexpectedlybeing shut down.Web or worker roles are unexpectedlybeing shut down.

Cosmos DB
Reading data fails.Reading data fails.

SearchIndexClient or SearchServiceClient class. For more information, see Automatic Retries.

Diagnostics. Use Search Traffic Analytics.

Detection. Catch Microsoft.Rest.Azure.CloudException errors.

Recovery:

The Search .NET SDK automatically retries after transient failures. Any exceptions thrown by the client SDK
should be treated as non-transient errors.

The default retry policy uses exponential back-off. To use a different retry policy, call SetRetryPolicy on the
SearchIndexClient or SearchServiceClient class. For more information, see Automatic Retries.

Diagnostics. Use Search Traffic Analytics.

Detection. Catch the exception. For .NET clients, this will typically be System.Web.HttpException . Other client may
have other exception types. For more information, see Cassandra error handling done right.

Recovery:

Each Cassandra client has its own retry policies and capabilities. For more information, see Cassandra error
handling done right.
Use a rack-aware deployment, with data nodes distributed across the fault domains.
Deploy to multiple regions with local quorum consistency. If a non-transient failure occurs, fail over to another
region.

Diagnostics. Application logs

Detection. The RoleEnvironment.Stopping event is fired.

Recovery. Override the RoleEntryPoint.OnStop method to gracefully clean up. For more information, see The
Right Way to Handle Azure OnStop Events (blog).

Detection. Catch System.Net.Http.HttpRequestException or Microsoft.Azure.Documents.DocumentClientException .

Recovery:

The SDK automatically retries failed attempts. To set the number of retries and the maximum wait time,
configure ConnectionPolicy.RetryOptions . Exceptions that the client raises are either beyond the retry policy or
are not transient errors.
If Cosmos DB throttles the client, it returns an HTTP 429 error. Check the status code in the
DocumentClientException . If you are getting error 429 consistently, consider increasing the throughput value of

the collection.

Replicate the Cosmos DB database across two or more regions. All replicas are readable. Using the client SDKs,
If you are using the MongoDB API, the service returns error code 16500 when throttling.

https://github.com/Azure/autorest/tree/master/docs
https://docs.microsoft.com/azure/search/search-traffic-analytics/
https://msdn.microsoft.com/library/dn951165.aspx
https://github.com/Azure/autorest/tree/master/docs
https://docs.microsoft.com/azure/search/search-traffic-analytics/
https://www.datastax.com/dev/blog/cassandra-error-handling-done-right
https://wiki.apache.org/cassandra/ClientOptions
https://www.datastax.com/dev/blog/cassandra-error-handling-done-right
https://msdn.microsoft.com/library/azure/microsoft.windowsazure.serviceruntime.roleenvironment.stopping.aspx
https://msdn.microsoft.com/library/azure/microsoft.windowsazure.serviceruntime.roleentrypoint.onstop.aspx
https://azure.microsoft.com/blog/the-right-way-to-handle-azure-onstop-events/

Writing data fails.Writing data fails.

Elasticsearch
Reading data from Elasticsearch fails.Reading data from Elasticsearch fails.

Writing data to Elasticsearch fails.Writing data to Elasticsearch fails.

Queue storage

specify the PreferredLocations parameter. This is an ordered list of Azure regions. All reads will be sent to the
first available region in the list. If the request fails, the client will try the other regions in the list, in order. For
more information, see How to setup Azure Cosmos DB global distribution using the SQL API.

Diagnostics. Log all errors on the client side.

Detection. Catch System.Net.Http.HttpRequestException or Microsoft.Azure.Documents.DocumentClientException .

Recovery:

The SDK automatically retries failed attempts. To set the number of retries and the maximum wait time,
configure ConnectionPolicy.RetryOptions . Exceptions that the client raises are either beyond the retry policy or
are not transient errors.
If Cosmos DB throttles the client, it returns an HTTP 429 error. Check the status code in the
DocumentClientException . If you are getting error 429 consistently, consider increasing the throughput value of

the collection.
Replicate the Cosmos DB database across two or more regions. If the primary region fails, another region will
be promoted to write. You can also trigger a failover manually. The SDK does automatic discovery and routing,
so application code continues to work after a failover. During the failover period (typically minutes), write
operations will have higher latency, as the SDK finds the new write region. For more information, see How to
setup Azure Cosmos DB global distribution using the SQL API.
As a fallback, persist the document to a backup queue, and process the queue later.

Diagnostics. Log all errors on the client side.

Detection. Catch the appropriate exception for the particular Elasticsearch client being used.

Recovery:

Use a retry mechanism. Each client has its own retry policies.
Deploy multiple Elasticsearch nodes and use replication for high availability.

For more information, see Running Elasticsearch on Azure.

Diagnostics. You can use monitoring tools for Elasticsearch, or log all errors on the client side with the payload.
See the 'Monitoring' section in Running Elasticsearch on Azure.

Detection. Catch the appropriate exception for the particular Elasticsearch client being used.

Recovery:

Use a retry mechanism. Each client has its own retry policies.
If the application can tolerate a reduced consistency level, consider writing with write_consistency setting of
quorum .

For more information, see Running Elasticsearch on Azure.

Diagnostics. You can use monitoring tools for Elasticsearch, or log all errors on the client side with the payload.
See the 'Monitoring' section in Running Elasticsearch on Azure.

https://docs.microsoft.com/azure/cosmos-db/tutorial-global-distribution-sql-api
https://docs.microsoft.com/azure/cosmos-db/tutorial-global-distribution-sql-api
https://www.elastic.co/guide/en/elasticsearch/client/index.html
https://docs.microsoft.com/en-us/azure/architecture/elasticsearch/index
https://docs.microsoft.com/en-us/azure/architecture/elasticsearch/index
https://www.elastic.co/guide/en/elasticsearch/client/index.html
https://docs.microsoft.com/en-us/azure/architecture/elasticsearch/index
https://docs.microsoft.com/en-us/azure/architecture/elasticsearch/index

Writing a message to Azure Queue storage fails consistently.Writing a message to Azure Queue storage fails consistently.

The application cannot process a particular message from the queue.The application cannot process a particular message from the queue.

NOTENOTE

Redis Cache
Reading from the cache fails.Reading from the cache fails.

Writing to the cache fails.Writing to the cache fails.

SQL Database
Cannot connect to the database in the primary region.Cannot connect to the database in the primary region.

Detection. After N retry attempts, the write operation still fails.

Recovery:

Store the data in a local cache, and forward the writes to storage later, when the service becomes available.
Create a secondary queue, and write to that queue if the primary queue is unavailable.

Diagnostics. Use storage metrics.

Detection. Application specific. For example, the message contains invalid data, or the business logic fails for
some reason.

Recovery:

Move the message to a separate queue. Run a separate process to examine the messages in that queue.

Consider using Azure Service Bus Messaging queues, which provides a dead-letter queue functionality for this
purpose.

If you are using Storage queues with WebJobs, the WebJobs SDK provides built-in poison message handling. See How to use
Azure queue storage with the WebJobs SDK.

Diagnostics. Use application logging.

Detection. Catch StackExchange.Redis.RedisConnectionException .

Recovery:

1. Retry on transient failures. Azure Redis cache supports built-in retry through See Redis Cache retry guidelines.
2. Treat non-transient failures as a cache miss, and fall back to the original data source.

Diagnostics. Use Redis Cache diagnostics.

Detection. Catch StackExchange.Redis.RedisConnectionException .

Recovery:

1. Retry on transient failures. Azure Redis cache supports built-in retry through See Redis Cache retry guidelines.
2. If the error is non-transient, ignore it and let other transactions write to the cache later.

Diagnostics. Use Redis Cache diagnostics.

Detection. Connection fails.

Recovery:

https://msdn.microsoft.com/library/dn782843.aspx
https://docs.microsoft.com/azure/service-bus-messaging/service-bus-dead-letter-queues/
https://docs.microsoft.com/azure/app-service-web/websites-dotnet-webjobs-sdk-storage-queues-how-to/#poison
https://docs.microsoft.com/azure/redis-cache/cache-how-to-monitor/
https://docs.microsoft.com/azure/redis-cache/cache-how-to-monitor/

Client runs out of connections in the connection pool.Client runs out of connections in the connection pool.

Database connection limit is reached.Database connection limit is reached.

Service Bus Messaging
Reading a message from a Service Bus queue fails.Reading a message from a Service Bus queue fails.

Writing a message to a Service Bus queue fails.Writing a message to a Service Bus queue fails.

Prerequisite: The database must be configured for active geo-replication. See SQL Database Active Geo-
Replication.

For queries, read from a secondary replica.
For inserts and updates, manually fail over to a secondary replica. See Initiate a planned or unplanned failover
for Azure SQL Database.

The replica uses a different connection string, so you will need to update the connection string in your application.

Detection. Catch System.InvalidOperationException errors.

Recovery:

Retry the operation.
As a mitigation plan, isolate the connection pools for each use case, so that one use case can't dominate all the
connections.
Increase the maximum connection pools.

Diagnostics. Application logs.

Detection. Azure SQL Database limits the number of concurrent workers, logins, and sessions. The limits depend
on the service tier. For more information, see Azure SQL Database resource limits.

To detect these errors, catch System.Data.SqlClient.SqlException and check the value of SqlException.Number for
the SQL error code. For a list of relevant error codes, see SQL error codes for SQL Database client applications:
Database connection error and other issues.

Recovery. These errors are considered transient, so retrying may resolve the issue. If you consistently hit these
errors, consider scaling the database.

Diagnostics. - The sys.event_log query returns successful database connections, connection failures, and
deadlocks.

Create an alert rule for failed connections.
Enable SQL Database auditing and check for failed logins.

Detection. Catch exceptions from the client SDK. The base class for Service Bus exceptions is
MessagingException. If the error is transient, the IsTransient property is true.

For more information, see Service Bus messaging exceptions.

Recovery:

1. Retry on transient failures. See Service Bus retry guidelines.
2. Messages that cannot be delivered to any receiver are placed in a dead-letter queue. Use this queue to see

which messages could not be received. There is no automatic cleanup of the dead-letter queue. Messages
remain there until you explicitly retrieve them. See Overview of Service Bus dead-letter queues.

Detection. Catch exceptions from the client SDK. The base class for Service Bus exceptions is
MessagingException. If the error is transient, the IsTransient property is true.

https://docs.microsoft.com/azure/sql-database/sql-database-geo-replication-overview/
https://docs.microsoft.com/azure/sql-database/sql-database-geo-replication-failover-portal/
https://docs.microsoft.com/azure/sql-database/sql-database-resource-limits/
https://docs.microsoft.com/azure/sql-database/sql-database-develop-error-messages/#resource-governance-errors
https://msdn.microsoft.com/library/dn270018.aspx
https://docs.microsoft.com/azure/monitoring-and-diagnostics/insights-alerts-portal/
https://docs.microsoft.com/azure/sql-database/sql-database-auditing-get-started/
https://msdn.microsoft.com/library/azure/microsoft.servicebus.messaging.messagingexception.aspx
https://docs.microsoft.com/azure/service-bus-messaging/service-bus-messaging-exceptions/
https://docs.microsoft.com/azure/service-bus-messaging/service-bus-dead-letter-queues/
https://msdn.microsoft.com/library/azure/microsoft.servicebus.messaging.messagingexception.aspx

Duplicate message.Duplicate message.

The application can't process a particular message from the queue.The application can't process a particular message from the queue.

For more information, see Service Bus messaging exceptions.

Recovery:

1. The Service Bus client automatically retries after transient errors. By default, it uses exponential back-off.
After the maximum retry count or maximum timeout period, the client throws an exception. For more
information, see Service Bus retry guidelines.

2. If the queue quota is exceeded, the client throws QuotaExceededException. The exception message gives
more details. Drain some messages from the queue before retrying, and consider using the Circuit Breaker
pattern to avoid continued retries while the quota is exceeded. Also, make sure the
BrokeredMessage.TimeToLive property is not set too high.

3. Within a region, resiliency can be improved by using partitioned queues or topics. A non-partitioned queue
or topic is assigned to one messaging store. If this messaging store is unavailable, all operations on that
queue or topic will fail. A partitioned queue or topic is partitioned across multiple messaging stores.

4. For additional resiliency, create two Service Bus namespaces in different regions, and replicate the
messages. You can use either active replication or passive replication.

Active replication: The client sends every message to both queues. The receiver listens on both queues.
Tag messages with a unique identifier, so the client can discard duplicate messages.
Passive replication: The client sends the message to one queue. If there is an error, the client falls back to
the other queue. The receiver listens on both queues. This approach reduces the number of duplicate
messages that are sent. However, the receiver must still handle duplicate messages.

For more information, see GeoReplication sample and Best practices for insulating applications against
Service Bus outages and disasters.

Detection. Examine the MessageId and DeliveryCount properties of the message.

Recovery:

If possible, design your message processing operations to be idempotent. Otherwise, store message IDs of
messages that are already processed, and check the ID before processing a message.

Enable duplicate detection, by creating the queue with RequiresDuplicateDetection set to true. With this
setting, Service Bus automatically deletes any message that is sent with the same MessageId as a previous
message. Note the following:

This setting prevents duplicate messages from being put into the queue. It doesn't prevent a receiver
from processing the same message more than once.
Duplicate detection has a time window. If a duplicate is sent beyond this window, it won't be detected.

Diagnostics. Log duplicated messages.

Detection. Application specific. For example, the message contains invalid data, or the business logic fails for
some reason.

Recovery:

There are two failure modes to consider.

The receiver detects the failure. In this case, move the message to the dead-letter queue. Later, run a separate
process to examine the messages in the dead-letter queue.
The receiver fails in the middle of processing the message — for example, due to an unhandled exception. To
handle this case, use PeekLock mode. In this mode, if the lock expires, the message becomes available to other

https://docs.microsoft.com/azure/service-bus-messaging/service-bus-messaging-exceptions/
https://msdn.microsoft.com/library/azure/microsoft.servicebus.messaging.quotaexceededexception.aspx
https://msdn.microsoft.com/library/microsoft.servicebus.messaging.brokeredmessage.timetolive.aspx
https://docs.microsoft.com/azure/service-bus-messaging/service-bus-partitioning/
https://github.com/Azure-Samples/azure-servicebus-messaging-samples/tree/master/GeoReplication
https://docs.microsoft.com/azure/service-bus-messaging/service-bus-outages-disasters/

Service Fabric
A request to a service fails.A request to a service fails.

Service Fabric node is shut down.Service Fabric node is shut down.

Storage
Writing data to Azure Storage failsWriting data to Azure Storage fails

Reading data from Azure Storage fails.Reading data from Azure Storage fails.

receivers. If the message exceeds the maximum delivery count or the time-to-live, the message is automatically
moved to the dead-letter queue.

For more information, see Overview of Service Bus dead-letter queues.

Diagnostics. Whenever the application moves a message to the dead-letter queue, write an event to the
application logs.

Detection. The service returns an error.

Recovery:

Locate a proxy again (ServiceProxy or ActorProxy) and call the service/actor method again.
Stateful service. Wrap operations on reliable collections in a transaction. If there is an error, the transaction
will be rolled back. The request, if pulled from a queue, will be processed again.
Stateless service. If the service persists data to an external store, all operations need to be idempotent.

Diagnostics. Application log

Detection. A cancellation token is passed to the service's RunAsync method. Service Fabric cancels the task before
shutting down the node.

Recovery. Use the cancellation token to detect shutdown. When Service Fabric requests cancellation, finish any
work and exit RunAsync as quickly as possible.

Diagnostics. Application logs

Detection. The client receives errors when writing.

Recovery:

1. Retry the operation, to recover from transient failures. The retry policy in the client SDK handles this
automatically.

2. Implement the Circuit Breaker pattern to avoid overwhelming storage.

3. If N retry attempts fail, perform a graceful fallback. For example:

Store the data in a local cache, and forward the writes to storage later, when the service becomes
available.
If the write action was in a transactional scope, compensate the transaction.

Diagnostics. Use storage metrics.

Detection. The client receives errors when reading.

Recovery:

1. Retry the operation, to recover from transient failures. The retry policy in the client SDK handles this
automatically.

https://docs.microsoft.com/azure/service-bus-messaging/service-bus-dead-letter-queues/
https://msdn.microsoft.com/library/microsoft.windowsazure.storage.retrypolicies.aspx
https://msdn.microsoft.com/library/dn782843.aspx
https://msdn.microsoft.com/library/microsoft.windowsazure.storage.retrypolicies.aspx

Virtual machine
Connection to a backend VM fails.Connection to a backend VM fails.

VM instance becomes unavailable or unhealthy.VM instance becomes unavailable or unhealthy.

Operator accidentally shuts down a VM.Operator accidentally shuts down a VM.

WebJobs
Continuous job stops running when the SCM host is idle.Continuous job stops running when the SCM host is idle.

Application design
Application can't handle a spike in incoming requests.Application can't handle a spike in incoming requests.

2. For RA-GRS storage, if reading from the primary endpoint fails, try reading from the secondary endpoint. The
client SDK can handle this automatically. See Azure Storage replication.

3. If N retry attempts fail, take a fallback action to degrade gracefully. For example, if a product image can't be
retrieved from storage, show a generic placeholder image.

Diagnostics. Use storage metrics.

Detection. Network connection errors.

Recovery:

Deploy at least two backend VMs in an availability set, behind a load balancer.
If the connection error is transient, sometimes TCP will successfully retry sending the message.
Implement a retry policy in the application.
For persistent or non-transient errors, implement the Circuit Breaker pattern.
If the calling VM exceeds its network egress limit, the outbound queue will fill up. If the outbound queue is
consistently full, consider scaling out.

Diagnostics. Log events at service boundaries.

Detection. Configure a Load Balancer health probe that signals whether the VM instance is healthy. The probe
should check whether critical functions are responding correctly.

Recovery. For each application tier, put multiple VM instances into the same availability set, and place a load
balancer in front of the VMs. If the health probe fails, the Load Balancer stops sending new connections to the
unhealthy instance.

Diagnostics. - Use Load Balancer log analytics.

Configure your monitoring system to monitor all of the health monitoring endpoints.

Detection. N/A

Recovery. Set a resource lock with ReadOnly level. See Lock resources with Azure Resource Manager.

Diagnostics. Use Azure Activity Logs.

Detection. Pass a cancellation token to the WebJob function. For more information, see Graceful shutdown.

Recovery. Enable the Always On setting in the web app. For more information, see Run Background tasks with
WebJobs.

Detection. Depends on the application. Typical symptoms:

The website starts returning HTTP 5xx error codes.

https://docs.microsoft.com/azure/storage/storage-redundancy/
https://msdn.microsoft.com/library/dn782843.aspx
https://msdn.microsoft.com/library/dn589784.aspx
https://docs.microsoft.com/azure/load-balancer/load-balancer-custom-probe-overview/#learn-about-the-types-of-probes
https://docs.microsoft.com/azure/load-balancer/load-balancer-monitor-log/
https://docs.microsoft.com/azure/azure-resource-manager/resource-group-lock-resources/
https://docs.microsoft.com/azure/monitoring-and-diagnostics/monitoring-overview-activity-logs/
https://docs.microsoft.com/azure/app-service-web/websites-dotnet-webjobs-sdk-storage-queues-how-to/#graceful
https://docs.microsoft.com/azure/app-service-web/web-sites-create-web-jobs/

One of the operations in a workflow or distributed transaction fails.One of the operations in a workflow or distributed transaction fails.

A call to a remote service fails.A call to a remote service fails.

Next steps

Dependent services, such as database or storage, start to throttle requests. Look for HTTP errors such as HTTP
429 (Too Many Requests), depending on the service.
HTTP queue length grows.

Recovery:

Scale out to handle increased load.

Mitigate failures to avoid having cascading failures disrupt the entire application. Mitigation strategies
include:

Implement the Throttling pattern to avoid overwhelming backend systems.
Use queue-based load leveling to buffer requests and process them at an appropriate pace.
Prioritize certain clients. For example, if the application has free and paid tiers, throttle customers on the
free tier, but not paid customers. See Priority queue pattern.

Diagnostics. Use App Service diagnostic logging. Use a service such as Azure Log Analytics, Application Insights,
or New Relic to help understand the diagnostic logs.

Detection. After N retry attempts, it still fails.

Recovery:

As a mitigation plan, implement the Scheduler Agent Supervisor pattern to manage the entire workflow.
Don't retry on timeouts. There is a low success rate for this error.
Queue work, in order to retry later.

Diagnostics. Log all operations (successful and failed), including compensating actions. Use correlation IDs, so
that you can track all operations within the same transaction.

Detection. HTTP error code.

Recovery:

1. Retry on transient failures.
2. If the call fails after N attempts, take a fallback action. (Application specific.)
3. Implement the Circuit Breaker pattern to avoid cascading failures.

Diagnostics. Log all remote call failures.

For more information about the FMA process, see Resilience by design for cloud services (PDF download).

https://msdn.microsoft.com/library/dn589798.aspx
https://msdn.microsoft.com/library/dn589783.aspx
https://msdn.microsoft.com/library/dn589794.aspx
https://docs.microsoft.com/azure/app-service-web/web-sites-enable-diagnostic-log/
https://docs.microsoft.com/azure/log-analytics/log-analytics-overview/
https://docs.microsoft.com/azure/application-insights/app-insights-overview/
https://newrelic.com/
https://msdn.microsoft.com/library/dn589780.aspx
https://msdn.microsoft.com/library/dn589784.aspx
https://download.microsoft.com/download/D/8/C/D8C599A4-4E8A-49BF-80EE-FE35F49B914D/Resilience_by_Design_for_Cloud_Services_White_Paper.pdf

Availability checklist
3/13/2019 • 11 minutes to read • Edit Online

Application design

Availability is the proportion of time that a system is functional and working, and is one of the pillars of software
quality. Use this checklist to review your application architecture from an availability standpoint.

Avoid any single point of failure. All components, services, resources, and compute instances should be
deployed as multiple instances to prevent a single point of failure from affecting availability. This includes
authentication mechanisms. Design the application to be configurable to use multiple instances, and to
automatically detect failures and redirect requests to non-failed instances where the platform does not do this
automatically.

Decompose workloads by service-level objective. If a service is composed of critical and less-critical
workloads, manage them differently and specify the service features and number of instances to meet their
availability requirements.

Minimize and understand service dependencies. Minimize the number of different services used where
possible, and ensure you understand all of the feature and service dependencies that exist in the system. This
includes the nature of these dependencies, and the impact of failure or reduced performance in each one on the
overall application.

Design tasks and messages to be idempotent where possible. An operation is idempotent if it can be
repeated multiple times and produce the same result. Idempotency can ensure that duplicated requests don't
cause problems. Message consumers and the operations they carry out should be idempotent so that repeating a
previously executed operation does not render the results invalid. This may mean detecting duplicated messages,
or ensuring consistency by using an optimistic approach to handling conflicts.

Use a message broker that implements high availability for critical transactions. Many cloud applications
use messaging to initiate tasks that are performed asynchronously. To guarantee delivery of messages, the
messaging system should provide high availability. Azure Service Bus Messaging implements at least once
semantics. This means that a message posted to a queue will not be lost, although duplicate copies may be
delivered under certain circumstances. If message processing is idempotent (see the previous item), repeated
delivery should not be a problem.

Design applications to gracefully degrade. The load on an application may exceed the capacity of one or
more parts, causing reduced availability and failed connections. Scaling can help to alleviate this, but it may reach
a limit imposed by other factors, such as resource availability or cost. When an application reaches a resource
limit, it should take appropriate action to minimize the impact for the user. For example, in an ecommerce system,
if the order-processing subsystem is under strain or fails, it can be temporarily disabled while allowing other
functionality, such as browsing the product catalog. It might be appropriate to postpone requests to a failing
subsystem, for example still enabling customers to submit orders but saving them for later processing, when the
orders subsystem is available again.

Gracefully handle rapid burst events. Most applications need to handle varying workloads over time. Auto-
scaling can help to handle the load, but it may take some time for additional instances to come online and handle
requests. Prevent sudden and unexpected bursts of activity from overwhelming the application: design it to queue
requests to the services it uses and degrade gracefully when queues are near to full capacity. Ensure that there is
sufficient performance and capacity available under non-burst conditions to drain the queues and handle
outstanding requests. For more information, see the Queue-Based Load Leveling pattern.

https://github.com/mspnp/architecture-center/blob/master/docs/checklist/availability.md
https://docs.microsoft.com/azure/service-bus-messaging

Deployment and maintenance

Data management

Deploy multiple instances of services. If your application depends on a single instance of a service, it creates a
single point of failure. Provisioning multiple instances improves both resiliency and scalability. For Azure App
Service, select an App Service Plan that offers multiple instances. For Azure Cloud Services, configure each of
your roles to use multiple instances. For Azure Virtual Machines (VMs), ensure that your VM architecture
includes more than one VM and that each VM is included in an availability set.

Consider deploying your application across multiple regions. If your application is deployed to a single
region, in the rare event the entire region becomes unavailable, your application will also be unavailable. This may
be unacceptable under the terms of your application's SLA. If so, consider deploying your application and its
services across multiple regions.

Automate and test deployment and maintenance tasks. Distributed applications consist of multiple parts
that must work together. Deployment should be automated, using tested and proven mechanisms such as scripts.
These can update and validate configuration, and automate the deployment process. Use Azure Resource
Manager templates to provision Azure resource. Also use automated techniques to perform application updates.
It is vital to test all of these processes fully to ensure that errors do not cause additional downtime. All
deployment tools must have suitable security restrictions to protect the deployed application; define and enforce
deployment policies carefully and minimize the need for human intervention.

Use staging and production features of the platform.. For example, Azure App Service supports deployment
slots, which you can use to stage a deployment before swapping it to production. Azure Service Fabric supports
rolling upgrades to application services.

Place virtual machines (VMs) in an availability set. To maximize availability, create multiple instances of each
VM role and place these instances in the same availability set. If you have multiple VMs that serve different roles,
such as different application tiers, create an availability set for each VM role. For example, create an availability set
for the web tier and another for the data tier.

Replicate VMs using Azure Site Recovery. To maximize availability, replicate all your virtual machines into
another Azure region using Site Recovery. Ensure that all the VMs across all the tiers of your application are
replicated. If there is a disruption in the source region, you can fail over the VMs into the other region within
minutes.

Geo-replicate data in Azure Storage. Data in Azure Storage is automatically replicated within in a datacenter.
For even higher availability, use Read-access geo-redundant storage (-RAGRS), which replicates your data to a
secondary region and provides read-only access to the data in the secondary location. The data is durable even in
the case of a complete regional outage or a disaster. For more information, see Azure Storage replication.

Geo-replicate databases. Azure SQL Database and Cosmos DB both support geo-replication, which enables
you to configure secondary database replicas in other regions. Secondary databases are available for querying
and for failover in the case of a data center outage or the inability to connect to the primary database. For more
information, see Failover groups and active geo-replication (SQL Database) and How to distribute data globally
with Azure Cosmos DB.

Use optimistic concurrency and eventual consistency. Transactions that block access to resources through
locking (pessimistic concurrency) can cause poor performance and considerably reduce availability. These
problems can become especially acute in distributed systems. In many cases, careful design and techniques such
as partitioning can minimize the chances of conflicting updates occurring. Where data is replicated, or is read
from a separately updated store, the data will only be eventually consistent. But the advantages usually far
outweigh the impact on availability of using transactions to ensure immediate consistency.

Use periodic backup and point-in-time restore. Regularly and automatically back up data that is not

https://docs.microsoft.com/azure/app-service/app-service-value-prop-what-is/
https://docs.microsoft.com/azure/app-service/azure-web-sites-web-hosting-plans-in-depth-overview/
https://docs.microsoft.com/azure/cloud-services/cloud-services-choose-me/#scaling-and-management
https://docs.microsoft.com/azure/virtual-machines/virtual-machines-windows-about/?toc=%2fazure%2fvirtual-machines%2fwindows%2ftoc.json
https://docs.microsoft.com/azure/virtual-machines/virtual-machines-windows-manage-availability/
https://docs.microsoft.com/azure/azure-resource-manager/resource-group-authoring-templates
https://docs.microsoft.com/azure/app-service/web-sites-staged-publishing
https://docs.microsoft.com/azure/service-fabric/service-fabric-application-upgrade
https://docs.microsoft.com/azure/site-recovery/
https://docs.microsoft.com/azure/storage/storage-redundancy
https://docs.microsoft.com/azure/sql-database/sql-database-geo-replication-overview
https://docs.microsoft.com/azure/cosmos-db/distribute-data-globally

Errors and failures

Monitoring and disaster recovery

preserved elsewhere, and verify you can reliably restore both the data and the application itself should a failure
occur. Ensure that backups meet your Recovery Point Objective (RPO). Data replication is not a backup feature,
because human error or malicious operations can corrupt data across all the replicas. The backup process must be
secure to protect the data in transit and in storage. Databases or parts of a data store can usually be recovered to
a previous point in time by using transaction logs. For more information, see Recover from data corruption or
accidental deletion

Replicate VM disks using Azure Site Recovery. When you replicate Azure VMs using Site Recovery, all the
VM disks are continuously replicated to the target region asynchronously. The recovery points are created every
few minutes. This gives you an RPO in the order of minutes.

Configure request timeouts. Services and resources may become unavailable, causing requests to fail. Ensure
that the timeouts you apply are appropriate for each service or resource as well as the client that is accessing
them. In some cases, you might allow a longer timeout for a particular instance of a client, depending on the
context and other actions that the client is performing. Very short timeouts may cause excessive retry operations
for services and resources that have considerable latency. Very long timeouts can cause blocking if a large
number of requests are queued, waiting for a service or resource to respond.

Retry failed operations caused by transient faults. Design a retry strategy for access to all services and
resources where they do not inherently support automatic connection retry. Use a strategy that includes an
increasing delay between retries as the number of failures increases, to prevent overloading of the resource and
to allow it to gracefully recover and handle queued requests. Continual retries with very short delays are likely to
exacerbate the problem. For more information, see Retry guidance for specific services.

Implement circuit breaking to avoid cascading failures. There may be situations in which transient or other
faults, ranging in severity from a partial loss of connectivity to the complete failure of a service, take much longer
than expected to return to normal. , if a service is very busy, failure in one part of the system may lead to
cascading failures, and result in many operations becoming blocked while holding onto critical system resources
such as memory, threads, and database connections. Instead of continually retrying an operation that is unlikely
to succeed, the application should quickly accept that the operation has failed, and gracefully handle this failure.
Use the Circuit Breaker pattern to reject requests for specific operations for defined periods. For more
information, see the Circuit Breaker pattern.

Compose or fall back to multiple components. Design applications to use multiple instances without
affecting operation and existing connections where possible. Use multiple instances and distribute requests
between them, and detect and avoid sending requests to failed instances, in order to maximize availability.

Fall back to a different service or workflow. For example, if writing to SQL Database fails, temporarily store
data in blob storage or Redis Cache. Provide a way to replay the writes to SQL Database when the service
becomes available. In some cases, a failed operation may have an alternative action that allows the application to
continue to work even when a component or service fails. If possible, detect failures and redirect requests to other
services that can offer a suitable alternative functionality, or to back up or reduced functionality instances that can
maintain core operations while the primary service is offline.

Provide rich instrumentation for likely failures and failure events to report the situation to operations staff.
For failures that are likely but have not yet occurred, provide sufficient data to enable operations staff to
determine the cause, mitigate the situation, and ensure that the system remains available. For failures that have
already occurred, the application should return an appropriate error message to the user but attempt to continue
running, albeit with reduced functionality. In all cases, the monitoring system should capture comprehensive
details to enable operations staff to effect a quick recovery, and if necessary, for designers and developers to
modify the system to prevent the situation from arising again.

https://docs.microsoft.com/en-us/azure/architecture/resiliency/recovery-data-corruption
https://docs.microsoft.com/azure/site-recovery/

Monitor system health by implementing checking functions. The health and performance of an application
can degrade over time, without being noticeable until it fails. Implement probes or check functions that are
executed regularly from outside the application. These checks can be as simple as measuring response time for
the application as a whole, for individual parts of the application, for individual services that the application uses,
or for individual components. Check functions can execute processes to ensure they produce valid results,
measure latency and check availability, and extract information from the system.

Regularly test all failover and fallback systems. Changes to systems and operations may affect failover and
fallback functions, but the impact may not be detected until the main system fails or becomes overloaded. Test it
before it is required to compensate for a live problem at runtime. If you are using Azure Site Recovery to replicate
VMs, run disaster recovery drills periodically by doing a test failover. For more information, see Run a disaster
recovery drill to Azure.

Test the monitoring systems. Automated failover and fallback systems, and manual visualization of system
health and performance by using dashboards, all depend on monitoring and instrumentation functioning
correctly. If these elements fail, miss critical information, or report inaccurate data, an operator might not realize
that the system is unhealthy or failing.

Track the progress of long-running workflows and retry on failure. Long-running workflows are often
composed of multiple steps. Ensure that each step is independent and can be retried to minimize the chance that
the entire workflow will need to be rolled back, or that multiple compensating transactions need to be executed.
Monitor and manage the progress of long-running workflows by implementing a pattern such as Scheduler
Agent Supervisor pattern.

Plan for disaster recovery. Create an accepted, fully-tested plan for recovery from any type of failure that may
affect system availability. Choose a multi-site disaster recovery architecture for any mission-critical applications.
Identify a specific owner of the disaster recovery plan, including automation and testing. Ensure the plan is well-
documented, and automate the process as much as possible. Establish a backup strategy for all reference and
transactional data, and test the restoration of these backups regularly. Train operations staff to execute the plan,
and perform regular disaster simulations to validate and improve the plan. If you are using Azure Site Recovery
to replicate VMs, create a fully automated recovery plan to failover the entire application within minutes.

https://docs.microsoft.com/azure/site-recovery/
https://docs.microsoft.com/azure/site-recovery/site-recovery-test-failover-to-azure
https://docs.microsoft.com/azure/site-recovery/

DevOps Checklist
3/13/2019 • 14 minutes to read • Edit Online

Culture

Development

DevOps is the integration of development, quality assurance, and IT operations into a unified culture and set of
processes for delivering software. Use this checklist as a starting point to assess your DevOps culture and process.

Ensure business alignment across organizations and teams. Conflicts over resources, purpose, goals, and
priorities within an organization can be a risk to successful operations. Ensure that the business, development, and
operations teams are all aligned.

Ensure the entire team understands the software lifecycle. Your team needs to understand the overall
lifecycle of the application, and which part of the lifecycle the application is currently in. This helps all team
members know what they should be doing now, and what they should be planning and preparing for in the future.

Reduce cycle time. Aim to minimize the time it takes to move from ideas to usable developed software. Limit the
size and scope of individual releases to keep the test burden low. Automate the build, test, configuration, and
deployment processes whenever possible. Clear any obstacles to communication among developers, and between
developers and operations.

Review and improve processes. Your processes and procedures, both automated and manual, are never final.
Set up regular reviews of current workflows, procedures, and documentation, with a goal of continual
improvement.

Do proactive planning. Proactively plan for failure. Have processes in place to quickly identify issues when they
occur, escalate to the correct team members to fix, and confirm resolution.

Learn from failures. Failures are inevitable, but it's important to learn from failures to avoid repeating them. If an
operational failure occurs, triage the issue, document the cause and solution, and share any lessons that were
learned. Whenever possible, update your build processes to automatically detect that kind of failure in the future.

Optimize for speed and collect data. Every planned improvement is a hypothesis. Work in the smallest
increments possible. Treat new ideas as experiments. Instrument the experiments so that you can collect
production data to assess their effectiveness. Be prepared to fail fast if the hypothesis is wrong.

Allow time for learning. Both failures and successes provide good opportunities for learning. Before moving on
to new projects, allow enough time to gather the important lessons, and make sure those lessons are absorbed by
your team. Also give the team the time to build skills, experiment, and learn about new tools and techniques.

Document operations. Document all tools, processes, and automated tasks with the same level of quality as your
product code. Document the current design and architecture of any systems you support, along with recovery
processes and other maintenance procedures. Focus on the steps you actually perform, not theoretically optimal
processes. Regularly review and update the documentation. For code, make sure that meaningful comments are
included, especially in public APIs, and use tools to automatically generate code documentation whenever possible.

Share knowledge. Documentation is only useful if people know that it exists and can find it. Ensure the
documentation is organized and easily discoverable. Be creative: Use brown bags (informal presentations), videos,
or newsletters to share knowledge.

Provide developers with production-like environments. If development and test environments don't match

https://github.com/mspnp/architecture-center/blob/master/docs/checklist/dev-ops.md

Testing

the production environment, it is hard to test and diagnose problems. Therefore, keep development and test
environments as close to the production environment as possible. Make sure that test data is consistent with the
data used in production, even if it's sample data and not real production data (for privacy or compliance reasons).
Plan to generate and anonymize sample test data.

Ensure that all authorized team members can provision infrastructure and deploy the application.
Setting up production-like resources and deploying the application should not involve complicated manual tasks
or detailed technical knowledge of the system. Anyone with the right permissions should be able to create or
deploy production-like resources without going to the operations team.

This recommendation doesn't imply that anyone can push live updates to the production deployment. It's
about reducing friction for the development and QA teams to create production-like environments.

Instrument the application for insight. To understand the health of your application, you need to know how it's
performing and whether it's experiencing any errors or problems. Always include instrumentation as a design
requirement, and build the instrumentation into the application from the start. Instrumentation must include event
logging for root cause analysis, but also telemetry and metrics to monitor the overall health and usage of the
application.

Track your technical debt. In many projects, release schedules can get prioritized over code quality to one
degree or another. Always keep track when this occurs. Document any shortcuts or other nonoptimal
implementations, and schedule time in the future to revisit these issues.

Consider pushing updates directly to production. To reduce the overall release cycle time, consider pushing
properly tested code commits directly to production. Use feature toggles to control which features are enabled.
This allows you to move from development to release quickly, using the toggles to enable or disable features.
Toggles are also useful when performing tests such as canary releases, where a particular feature is deployed to a
subset of the production environment.

Automate testing. Manually testing software is tedious and susceptible to error. Automate common testing tasks
and integrate the tests into your build processes. Automated testing ensures consistent test coverage and
reproducibility. Integrated UI tests should also be performed by an automated tool. Azure offers development and
test resources that can help you configure and execute testing. For more information, see Development and test.

Test for failures. If a system can't connect to a service, how does it respond? Can it recover once the service is
available again? Make fault injection testing a standard part of review on test and staging environments. When
your test process and practices are mature, consider running these tests in production.

Test in production. The release process doesn't end with deployment to production. Have tests in place to ensure
that deployed code works as expected. For deployments that are infrequently updated, schedule production testing
as a regular part of maintenance.

Automate performance testing to identify performance issues early. The impact of a serious performance
issue can be just as severe as a bug in the code. While automated functional tests can prevent application bugs,
they might not detect performance problems. Define acceptable performance goals for metrics like latency, load
times, and resource usage. Include automated performance tests in your release pipeline, to make sure the
application meets those goals.

Perform capacity testing. An application might work fine under test conditions, and then have problems in
production due to scale or resource limitations. Always define the maximum expected capacity and usage limits.
Test to make sure the application can handle those limits, but also test what happens when those limits are
exceeded. Capacity testing should be performed at regular intervals.

After the initial release, you should run performance and capacity tests whenever updates are made to production

https://www.martinfowler.com/articles/feature-toggles.html
https://martinfowler.com/bliki/CanaryRelease.html
https://azure.microsoft.com/solutions/dev-test/

Release

code. Use historical data to fine tune tests and to determine what types of tests need to be performed.

Perform automated security penetration testing. Ensuring your application is secure is as important as testing
any other functionality. Make automated penetration testing a standard part of the build and deployment process.
Schedule regular security tests and vulnerability scanning on deployed applications, monitoring for open ports,
endpoints, and attacks. Automated testing does not remove the need for in-depth security reviews at regular
intervals.

Perform automated business continuity testing. Develop tests for large scale business continuity, including
backup recovery and failover. Set up automated processes to perform these tests regularly.

Automate deployments. Automate deploying the application to test, staging, and production environments.
Automation enables faster and more reliable deployments, and ensures consistent deployments to any supported
environment. It removes the risk of human error caused by manual deployments. It also makes it easy to schedule
releases for convenient times, to minimize any effects of potential downtime.

Use continuous integration. Continuous integration (CI) is the practice of merging all developer code into a
central codebase on a regular schedule, and then automatically performing standard build and test processes. CI
ensures that an entire team can work on a codebase at the same time without having conflicts. It also ensures that
code defects are found as early as possible. Preferably, the CI process should run every time that code is
committed or checked in. At the very least, it should run once per day.

Consider adopting a trunk based development model. In this model, developers commit to a single branch (the
trunk). There is a requirement that commits never break the build. This model facilitates CI, because all feature
work is done in the trunk, and any merge conflicts are resolved when the commit happens.

Consider using continuous delivery. Continuous delivery (CD) is the practice of ensuring that code is always
ready to deploy, by automatically building, testing, and deploying code to production-like environments. Adding
continuous delivery to create a full CI/CD pipeline will help you detect code defects as soon as possible, and
ensures that properly tested updates can be released in a very short time.

Continuous deployment is an additional process that automatically takes any updates that have passed
through the CI/CD pipeline and deploys them into production. Continuous deployment requires robust
automatic testing and advanced process planning, and may not be appropriate for all teams.

Make small incremental changes. Large code changes have a greater potential to introduce bugs. Whenever
possible, keep changes small. This limits the potential effects of each change, and makes it easier to understand
and debug any issues.

Control exposure to changes. Make sure you're in control of when updates are visible to your end users.
Consider using feature toggles to control when features are enabled for end users.

Implement release management strategies to reduce deployment risk. Deploying an application update to
production always entails some risk. To minimize this risk, use strategies such as canary releases or blue-green
deployments to deploy updates to a subset of users. Confirm the update works as expected, and then roll the
update out to the rest of the system.

Document all changes. Minor updates and configuration changes can be a source of confusion and versioning
conflict. Always keep a clear record of any changes, no matter how small. Log everything that changes, including
patches applied, policy changes, and configuration changes. (Don't include sensitive data in these logs. For
example, log that a credential was updated, and who made the change, but don't record the updated credentials.)
The record of the changes should be visible to the entire team.

https://trunkbaseddevelopment.com/
https://martinfowler.com/bliki/CanaryRelease.html
https://martinfowler.com/bliki/BlueGreenDeployment.html

Monitoring

Management

Automate Deployments. Automate all deployments, and have systems in place to detect any problems during
rollout. Have a mitigation process for preserving the existing code and data in production, before the update
replaces them in all production instances. Have an automated way to roll forward fixes or roll back changes.

Consider making infrastructure immutable. Immutable infrastructure is the principle that you shouldn’t
modify infrastructure after it’s deployed to production. Otherwise, you can get into a state where ad hoc changes
have been applied, making it hard to know exactly what changed. Immutable infrastructure works by replacing
entire servers as part of any new deployment. This allows the code and the hosting environment to be tested and
deployed as a block. Once deployed, infrastructure components aren't modified until the next build and deploy
cycle.

Make systems observable. The operations team should always have clear visibility into the health and status of a
system or service. Set up external health endpoints to monitor status, and ensure that applications are coded to
instrument the operations metrics. Use a common and consistent schema that lets you correlate events across
systems. Azure Diagnostics and Application Insights are the standard method of tracking the health and status of
Azure resources. Microsoft Operation Management Suite also provides centralized monitoring and management
for cloud or hybrid solutions.

Aggregate and correlate logs and metrics. A properly instrumented telemetry system will provide a large
amount of raw performance data and event logs. Make sure that telemetry and log data is processed and
correlated in a short period of time, so that operations staff always have an up-to-date picture of system health.
Organize and display data in ways that give a cohesive view of any issues, so that whenever possible it's clear when
events are related to one another.

Consult your corporate retention policy for requirements on how data is processed and how long it should be
stored.

Implement automated alerts and notifications. Set up monitoring tools like Azure Monitor to detect patterns
or conditions that indicate potential or current issues, and send alerts to the team members who can address the
issues. Tune the alerts to avoid false positives.

Monitor assets and resources for expirations. Some resources and assets, such as certificates, expire after a
given amount of time. Make sure to track which assets expire, when they expire, and what services or features
depend on them. Use automated processes to monitor these assets. Notify the operations team before an asset
expires, and escalate if expiration threatens to disrupt the application.

Automate operations tasks. Manually handling repetitive operations processes is error-prone. Automate these
tasks whenever possible to ensure consistent execution and quality. Code that implements the automation should
be versioned in source control. As with any other code, automation tools must be tested.

Take an infrastructure-as-code approach to provisioning. Minimize the amount of manual configuration
needed to provision resources. Instead, use scripts and Azure Resource Manager templates. Keep the scripts and
templates in source control, like any other code you maintain.

Consider using containers. Containers provide a standard package-based interface for deploying applications.
Using containers, an application is deployed using self-contained packages that include any software,
dependencies, and files needed to run the application, which greatly simplifies the deployment process.

Containers also create an abstraction layer between the application and the underlying operating system, which
provides consistency across environments. This abstraction can also isolate a container from other processes or
applications running on a host.

https://docs.microsoft.com/azure/monitoring-and-diagnostics/azure-diagnostics
https://docs.microsoft.com/azure/application-insights/
https://www.microsoft.com/cloud-platform/operations-management-suite
https://docs.microsoft.com/azure/monitoring-and-diagnostics/monitoring-overview
https://docs.microsoft.com/azure/azure-resource-manager/

Implement resiliency and self-healing. Resiliency is the ability of an application to recover from failures.
Strategies for resiliency include retrying transient failures, and failing over to a secondary instance or even another
region. For more information, see Designing resilient applications for Azure. Instrument your applications so that
issues are reported immediately and you can manage outages or other system failures.

Have an operations manual. An operations manual or runbook documents the procedures and management
information needed for operations staff to maintain a system. Also document any operations scenarios and
mitigation plans that might come into play during a failure or other disruption to your service. Create this
documentation during the development process, and keep it up to date afterwards. This is a living document, and
should be reviewed, tested, and improved regularly.

Shared documentation is critical. Encourage team members to contribute and share knowledge. The entire team
should have access to documents. Make it easy for anyone on the team to help keep documents updated.

Document on-call procedures. Make sure on-call duties, schedules, and procedures are documented and shared
to all team members. Keep this information up-to-date at all times.

Document escalation procedures for third-party dependencies. If your application depends on external
third-party services that you don't directly control, you must have a plan to deal with outages. Create
documentation for your planned mitigation processes. Include support contacts and escalation paths.

Use configuration management. Configuration changes should be planned, visible to operations, and recorded.
This could take the form of a configuration management database, or a configuration-as-code approach.
Configuration should be audited regularly to ensure that what's expected is actually in place.

Get an Azure support plan and understand the process. Azure offers a number of support plans. Determine
the right plan for your needs, and make sure the entire team knows how to use it. Team members should
understand the details of the plan, how the support process works, and how to open a support ticket with Azure. If
you are anticipating a high-scale event, Azure support can assist you with increasing your service limits. For more
information, see the Azure Support FAQs.

Follow least-privilege principles when granting access to resources. Carefully manage access to resources.
Access should be denied by default, unless a user is explicitly given access to a resource. Only grant a user access
to what they need to complete their tasks. Track user permissions and perform regular security audits.

Use role-based access control. Assigning user accounts and access to resources should not be a manual process.
Use Role-Based Access Control (RBAC) grant access based on Azure Active Directory identities and groups.

Use a bug tracking system to track issues. Without a good way to track issues, it's easy to miss items, duplicate
work, or introduce additional problems. Don't rely on informal person-to-person communication to track the
status of bugs. Use a bug tracking tool to record details about problems, assign resources to address them, and
provide an audit trail of progress and status.

Manage all resources in a change management system. All aspects of your DevOps process should be
included in a management and versioning system, so that changes can be easily tracked and audited. This includes
code, infrastructure, configuration, documentation, and scripts. Treat all these types of resources as code
throughout the test/build/review process.

Use checklists. Create operations checklists to ensure processes are followed. It’s common to miss something in a
large manual, and following a checklist can force attention to details that might otherwise be overlooked. Maintain
the checklists, and continually look for ways to automate tasks and streamline processes.

For more about DevOps, see What is DevOps? on the Visual Studio site.

https://azure.microsoft.com/support/plans/
https://azure.microsoft.com/support/faq/
https://docs.microsoft.com/azure/active-directory/role-based-access-control-what-is
https://azure.microsoft.com/services/active-directory/
https://www.visualstudio.com/learn/what-is-devops/

Resiliency checklist
3/13/2019 • 17 minutes to read • Edit Online

Requirements

Application Design

Resiliency is the ability of a system to recover from failures and continue to function, and is one of the pillars of
software quality. Designing your application for resiliency requires planning for and mitigating a variety of failure
modes that could occur. Use this checklist to review your application architecture from a resiliency standpoint. Also
review the Resiliency checklist for specific Azure services.

Define your customer's availability requirements. Your customer will have availability requirements for the
components in your application and this will affect your application's design. Get agreement from your customer
for the availability targets of each piece of your application, otherwise your design may not meet the customer's
expectations. For more information, see Designing resilient applications for Azure.

Perform a failure mode analysis (FMA) for your application. FMA is a process for building resiliency into an
application early in the design stage. For more information, see Failure mode analysis. The goals of an FMA
include:

Identify what types of failures an application might experience.
Capture the potential effects and impact of each type of failure on the application.
Identify recovery strategies.

Deploy multiple instances of services. If your application depends on a single instance of a service, it creates a
single point of failure. Provisioning multiple instances improves both resiliency and scalability. For Azure App
Service, select an App Service Plan that offers multiple instances. For Azure Cloud Services, configure each of your
roles to use multiple instances. For Azure Virtual Machines (VMs), ensure that your VM architecture includes more
than one VM and that each VM is included in an availability set.

Use autoscaling to respond to increases in load. If your application is not configured to scale out automatically
as load increases, it's possible that your application's services will fail if they become saturated with user requests.
For more details, see the following:

General: Scalability checklist
Azure App Service: Scale instance count manually or automatically
Cloud Services: How to auto scale a cloud service
Virtual Machines: Automatic scaling and virtual machine scale sets

Use load balancing to distribute requests. Load balancing distributes your application's requests to healthy
service instances by removing unhealthy instances from rotation. If your service uses Azure App Service or Azure
Cloud Services, it is already load balanced for you. However, if your application uses Azure VMs, you will need to
provision a load balancer. See the Azure Load Balancer overview for more details.

Configure Azure Application Gateways to use multiple instances. Depending on your application's
requirements, an Azure Application Gateway may be better suited to distributing requests to your application's
services. However, single instances of the Application Gateway service are not guaranteed by an SLA so it's
possible that your application could fail if the Application Gateway instance fails. Provision more than one medium
or larger Application Gateway instance to guarantee availability of the service under the terms of the SLA.

https://github.com/mspnp/architecture-center/blob/master/docs/checklist/resiliency.md
https://docs.microsoft.com/azure/app-service/app-service-value-prop-what-is/
https://docs.microsoft.com/azure/app-service/azure-web-sites-web-hosting-plans-in-depth-overview/
https://docs.microsoft.com/azure/cloud-services/cloud-services-choose-me/#scaling-and-management
https://docs.microsoft.com/azure/virtual-machines/virtual-machines-windows-about/?toc=%2fazure%2fvirtual-machines%2fwindows%2ftoc.json
https://docs.microsoft.com/azure/virtual-machines/virtual-machines-windows-manage-availability/
https://docs.microsoft.com/azure/monitoring-and-diagnostics/insights-how-to-scale/
https://docs.microsoft.com/azure/cloud-services/cloud-services-how-to-scale/
https://docs.microsoft.com/azure/virtual-machine-scale-sets/virtual-machine-scale-sets-autoscale-overview/
https://docs.microsoft.com/azure/load-balancer/load-balancer-overview/
https://docs.microsoft.com/azure/application-gateway/application-gateway-introduction/
https://azure.microsoft.com/support/legal/sla/application-gateway/

Use Availability Sets for each application tier. Placing your instances in an availability set provides a higher
SLA.

Replicate VMs using Azure Site Recovery. When you replicate Azure VMs using Site Recovery, all the VM
disks are continuously replicated to the target region asynchronously. The recovery points are created every few
minutes. This gives you a Recovery Point Objective (RPO) in the order of minutes.

Consider deploying your application across multiple regions. If your application is deployed to a single
region, in the rare event the entire region becomes unavailable, your application will also be unavailable. This may
be unacceptable under the terms of your application's SLA. If so, consider deploying your application and its
services across multiple regions. A multi-region deployment can use an active-active pattern (distributing requests
across multiple active instances) or an active-passive pattern (keeping a "warm" instance in reserve, in case the
primary instance fails). We recommend that you deploy multiple instances of your application's services across
regional pairs. For more information, see Business continuity and disaster recovery (BCDR): Azure Paired Regions.

Use Azure Traffic Manager to route your application's traffic to different regions. Azure Traffic Manager
performs load balancing at the DNS level and will route traffic to different regions based on the traffic routing
method you specify and the health of your application's endpoints. Without Traffic Manager, you are limited to a
single region for your deployment, which limits scale, increases latency for some users, and causes application
downtime in the case of a region-wide service disruption.

Configure and test health probes for your load balancers and traffic managers. Ensure that your health
logic checks the critical parts of the system and responds appropriately to health probes.

The health probes for Azure Traffic Manager and Azure Load Balancer serve a specific function. For Traffic
Manager, the health probe determines whether to fail over to another region. For a load balancer, it
determines whether to remove a VM from rotation.

For a Traffic Manager probe, your health endpoint should check any critical dependencies that are deployed
within the same region, and whose failure should trigger a failover to another region.

For a load balancer, the health endpoint should report the health of the VM. Don't include other tiers or
external services. Otherwise, a failure that occurs outside the VM will cause the load balancer to remove the
VM from rotation.

For guidance on implementing health monitoring in your application, see Health Endpoint Monitoring
pattern.

Monitor third-party services. If your application has dependencies on third-party services, identify where and
how these third-party services can fail and what effect those failures will have on your application. A third-party
service may not include monitoring and diagnostics, so it's important to log your invocations of them and correlate
them with your application's health and diagnostic logging using a unique identifier. For more information on
proven practices for monitoring and diagnostics, see Monitoring and Diagnostics guidance.

Ensure that any third-party service you consume provides an SLA. If your application depends on a third-
party service, but the third party provides no guarantee of availability in the form of an SLA, your application's
availability also cannot be guaranteed. Your SLA is only as good as the least available component of your
application.

Implement resiliency patterns for remote operations where appropriate. If your application depends on
communication between remote services, follow design patterns for dealing with transient failures, such as the
Retry pattern and the Circuit Breaker pattern.

Implement asynchronous operations whenever possible. Synchronous operations can monopolize resources
and block other operations while the caller waits for the process to complete. Design each part of your application
to allow for asynchronous operations whenever possible. For more information on how to implement
asynchronous programming in C#, see Asynchronous Programming with async and await.

https://docs.microsoft.com/azure/virtual-machines/virtual-machines-windows-manage-availability/
https://azure.microsoft.com/support/legal/sla/virtual-machines/
https://docs.microsoft.com/azure/site-recovery/
https://docs.microsoft.com/azure/best-practices-availability-paired-regions
https://docs.microsoft.com/azure/traffic-manager/traffic-manager-overview/
https://docs.microsoft.com/azure/traffic-manager/traffic-manager-routing-methods/
https://docs.microsoft.com/azure/traffic-manager/traffic-manager-overview/
https://docs.microsoft.com/azure/load-balancer/load-balancer-overview/
https://docs.microsoft.com/dotnet/articles/csharp/async

Data management

NOTENOTE

Security

Testing

Understand the replication methods for your application's data sources. Your application data will be stored
in different data sources and have different availability requirements. Evaluate the replication methods for each
type of data storage in Azure, including Azure Storage Replication and SQL Database Active Geo-Replication to
ensure that your application's data requirements are satisfied. If you replicate Azure VMs using Site Recovery, all
the VM disks are continuously replicated to the target region asynchronously. The recovery points are created
every few minutes.

Ensure that no single user account has access to both production and backup data. Your data backups are
compromised if one single user account has permission to write to both production and backup sources. A
malicious user could purposely delete all your data, while a regular user could accidentally delete it. Design your
application to limit the permissions of each user account so that only the users that require write access have write
access and it's only to either production or backup, but not both.

Document your data source fail over and fail back process and test it. In the case where your data source
fails catastrophically, a human operator will have to follow a set of documented instructions to fail over to a new
data source. If the documented steps have errors, an operator will not be able to successfully follow them and fail
over the resource. Regularly test the instruction steps to verify that an operator following them is able to
successfully fail over and fail back the data source.

Validate your data backups. Regularly verify that your backup data is what you expect by running a script to
validate data integrity, schema, and queries. There's no point having a backup if it's not useful to restore your data
sources. Log and report any inconsistencies so the backup service can be repaired.

Consider using a storage account type that is geo-redundant. Data stored in an Azure Storage account is
always replicated locally. However, there are multiple replication strategies to choose from when a Storage
Account is provisioned. Select Azure Read-Access Geo Redundant Storage (RA-GRS) to protect your application
data against the rare case when an entire region becomes unavailable.

For VMs, do not rely on RA-GRS replication to restore the VM disks (VHD files). Instead, use Azure Backup.

Implement application-level protection against distributed denial of service (DDoS) attacks. Azure
services are protected against DDos attacks at the network layer. However, Azure cannot protect against
application-layer attacks, because it is difficult to distinguish between true user requests from malicious user
requests. For more information on how to protect against application-layer DDoS attacks, see the "Protecting
against DDoS" section of Microsoft Azure Network Security (PDF download).

Implement the principle of least privilege for access to the application's resources. The default for access
to the application's resources should be as restrictive as possible. Grant higher level permissions on an approval
basis. Granting overly permissive access to your application's resources by default can result in someone purposely
or accidentally deleting resources. Azure provides role-based access control to manage user privileges, but it's
important to verify least privilege permissions for other resources that have their own permissions systems such
as SQL Server.

Perform failover and failback testing for your application. If you haven't fully tested failover and failback,
you can't be certain that the dependent services in your application come back up in a synchronized manner
during disaster recovery. Ensure that your application's dependent services failover and fail back in the correct

https://docs.microsoft.com/azure/storage/storage-redundancy/
https://docs.microsoft.com/azure/sql-database/sql-database-geo-replication-overview/
https://docs.microsoft.com/azure/site-recovery/
https://docs.microsoft.com/azure/storage/storage-redundancy/#read-access-geo-redundant-storage
https://docs.microsoft.com/azure/backup
https://download.microsoft.com/download/C/A/3/CA3FC5C0-ECE0-4F87-BF4B-D74064A00846/AzureNetworkSecurity_v3_Feb2015.pdf
https://docs.microsoft.com/azure/active-directory/role-based-access-built-in-roles/

Deployment

Operations

order. If you are using Azure Site Recovery to replicate VMs, run disaster recovery drills periodically by doing a
test failover. For more information, see Run a disaster recovery drill to Azure.

Perform fault-injection testing for your application. Your application can fail for many different reasons, such
as certificate expiration, exhaustion of system resources in a VM, or storage failures. Test your application in an
environment as close as possible to production, by simulating or triggering real failures. For example, delete
certificates, artificially consume system resources, or delete a storage source. Verify your application's ability to
recover from all types of faults, alone and in combination. Check that failures are not propagating or cascading
through your system.

Run tests in production using both synthetic and real user data. Test and production are rarely identical, so
it's important to use blue/green or a canary deployment and test your application in production. This allows you to
test your application in production under real load and ensure it will function as expected when fully deployed.

Document the release process for your application. Without detailed release process documentation, an
operator might deploy a bad update or improperly configure settings for your application. Clearly define and
document your release process, and ensure that it's available to the entire operations team.

Automate your application's deployment process. If your operations staff is required to manually deploy your
application, human error can cause the deployment to fail.

Design your release process to maximize application availability. If your release process requires services to
go offline during deployment, your application will be unavailable until they come back online. Use the blue/green
or canary release deployment technique to deploy your application to production. Both of these techniques involve
deploying your release code alongside production code so users of release code can be redirected to production
code in the event of a failure.

Log and audit your application's deployments. If you use staged deployment techniques such as blue/green
or canary releases there will be more than one version of your application running in production. If a problem
should occur, it's critical to determine which version of your application is causing a problem. Implement a robust
logging strategy to capture as much version-specific information as possible.

Have a rollback plan for deployment. It's possible that your application deployment could fail and cause your
application to become unavailable. Design a rollback process to go back to a last known good version and
minimize downtime.

Implement best practices for monitoring and alerting in your application. Without proper monitoring,
diagnostics, and alerting, there is no way to detect failures in your application and alert an operator to fix them. For
more information, see Monitoring and Diagnostics guidance.

Measure remote call statistics and make the information available to the application team. If you don't
track and report remote call statistics in real time and provide an easy way to review this information, the
operations team will not have an instantaneous view into the health of your application. And if you only measure
average remote call time, you will not have enough information to reveal issues in the services. Summarize remote
call metrics such as latency, throughput, and errors in the 99 and 95 percentiles. Perform statistical analysis on the
metrics to uncover errors that occur within each percentile.

Track the number of transient exceptions and retries over an appropriate timeframe. If you don't track and
monitor transient exceptions and retry attempts over time, it's possible that an issue or failure could be hidden by
your application's retry logic. That is, if your monitoring and logging only shows success or failure of an operation,
the fact that the operation had to be retried multiple times due to exceptions will be hidden. A trend of increasing
exceptions over time indicates that the service is having an issue and may fail. For more information, see Retry

https://docs.microsoft.com/azure/site-recovery/
https://docs.microsoft.com/azure/site-recovery/site-recovery-test-failover-to-azure
https://martinfowler.com/bliki/BlueGreenDeployment.html
https://martinfowler.com/bliki/CanaryRelease.html

service specific guidance.

Implement an early warning system that alerts an operator. Identify the key performance indicators of your
application's health, such as transient exceptions and remote call latency, and set appropriate threshold values for
each of them. Send an alert to operations when the threshold value is reached. Set these thresholds at levels that
identify issues before they become critical and require a recovery response.

Ensure that more than one person on the team is trained to monitor the application and perform any
manual recovery steps. If you only have a single operator on the team who can monitor the application and kick
off recovery steps, that person becomes a single point of failure. Train multiple individuals on detection and
recovery and make sure there is always at least one active at any time.

Ensure that your application does not run up against Azure subscription limits. Azure subscriptions have
limits on certain resource types, such as number of resource groups, number of cores, and number of storage
accounts. If your application requirements exceed Azure subscription limits, create another Azure subscription and
provision sufficient resources there.

Ensure that your application does not run up against per-service limits. Individual Azure services have
consumption limits — for example, limits on storage, throughput, number of connections, requests per second, and
other metrics. Your application will fail if it attempts to use resources beyond these limits. This will result in service
throttling and possible downtime for affected users. Depending on the specific service and your application
requirements, you can often avoid these limits by scaling up (for example, choosing another pricing tier) or scaling
out (adding new instances).

Design your application's storage requirements to fall within Azure storage scalability and performance
targets. Azure storage is designed to function within predefined scalability and performance targets, so design
your application to utilize storage within those targets. If you exceed these targets your application will experience
storage throttling. To fix this, provision additional Storage Accounts. If you run up against the Storage Account
limit, provision additional Azure Subscriptions and then provision additional Storage Accounts there. For more
information, see Azure Storage Scalability and Performance Targets.

Select the right VM size for your application. Measure the actual CPU, memory, disk, and I/O of your VMs in
production and verify that the VM size you've selected is sufficient. If not, your application may experience capacity
issues as the VMs approach their limits. VM sizes are described in detail in Sizes for virtual machines in Azure.

Determine if your application's workload is stable or fluctuating over time. If your workload fluctuates over
time, use Azure VM scale sets to automatically scale the number of VM instances. Otherwise, you will have to
manually increase or decrease the number of VMs. For more information, see the Virtual Machine Scale Sets
Overview.

Select the right service tier for Azure SQL Database. If your application uses Azure SQL Database, ensure
that you have selected the appropriate service tier. If you select a tier that is not able to handle your application's
database transaction unit (DTU) requirements, your data use will be throttled. For more information on selecting
the correct service plan, see SQL Database options and performance: Understand what's available in each service
tier.

Create a process for interacting with Azure support. If the process for contacting Azure support is not set
before the need to contact support arises, downtime will be prolonged as the support process is navigated for the
first time. Include the process for contacting support and escalating issues as part of your application's resiliency
from the outset.

Ensure that your application doesn't use more than the maximum number of storage accounts per
subscription. Azure allows a maximum of 200 storage accounts per subscription. If your application requires
more storage accounts than are currently available in your subscription, you will have to create a new subscription
and create additional storage accounts there. For more information, see Azure subscription and service limits,
quotas, and constraints.

https://docs.microsoft.com/azure/azure-subscription-service-limits/
https://docs.microsoft.com/azure/azure-subscription-service-limits/
https://docs.microsoft.com/azure/storage/storage-scalability-targets/
https://docs.microsoft.com/azure/virtual-machines/virtual-machines-windows-sizes/?toc=%2fazure%2fvirtual-machines%2fwindows%2ftoc.json
https://docs.microsoft.com/azure/virtual-machine-scale-sets/virtual-machine-scale-sets-overview/
https://docs.microsoft.com/azure/sql-database/sql-database-service-tiers/
https://azure.microsoft.com/support/plans/
https://docs.microsoft.com/azure/azure-subscription-service-limits/#storage-limits

Telemetry

Azure Resources

Next steps

Ensure that your application doesn't exceed the scalability targets for virtual machine disks. An Azure
IaaS VM supports attaching a number of data disks depending on several factors, including the VM size and type
of storage account. If your application exceeds the scalability targets for virtual machine disks, provision additional
storage accounts and create the virtual machine disks there. For more information, see Azure Storage Scalability
and Performance Targets

Log telemetry data while the application is running in the production environment. Capture robust
telemetry information while the application is running in the production environment or you will not have
sufficient information to diagnose the cause of issues while it's actively serving users. For more information, see
Monitoring and Diagnostics.

Implement logging using an asynchronous pattern. If logging operations are synchronous, they might block
your application code. Ensure that your logging operations are implemented as asynchronous operations.

Correlate log data across service boundaries. In a typical n-tier application, a user request may traverse several
service boundaries. For example, a user request typically originates in the web tier and is passed to the business
tier and finally persisted in the data tier. In more complex scenarios, a user request may be distributed to many
different services and data stores. Ensure that your logging system correlates calls across service boundaries so
you can track the request throughout your application.

Use Azure Resource Manager templates to provision resources. Resource Manager templates make it easier
to automate deployments via PowerShell or the Azure CLI, which leads to a more reliable deployment process. For
more information, see Azure Resource Manager overview.

Give resources meaningful names. Giving resources meaningful names makes it easier to locate a specific
resource and understand its role. For more information, see Naming conventions for Azure resources

Use role-based access control (RBAC). Use RBAC to control access to the Azure resources that you deploy.
RBAC lets you assign authorization roles to members of your DevOps team, to prevent accidental deletion or
changes to deployed resources. For more information, see Get started with access management in the Azure
portal

Use resource locks for critical resources, such as VMs. Resource locks prevent an operator from accidentally
deleting a resource. For more information, see Lock resources with Azure Resource Manager

Choose regional pairs. When deploying to two regions, choose regions from the same regional pair. In the event
of a broad outage, recovery of one region is prioritized out of every pair. Some services such as Geo-Redundant
Storage provide automatic replication to the paired region. For more information, see Business continuity and
disaster recovery (BCDR): Azure Paired Regions

Organize resource groups by function and lifecycle. In general, a resource group should contain resources
that share the same lifecycle. This makes it easier to manage deployments, delete test deployments, and assign
access rights, reducing the chance that a production deployment is accidentally deleted or modified. Create
separate resource groups for production, development, and test environments. In a multi-region deployment, put
resources for each region into separate resource groups. This makes it easier to redeploy one region without
affecting the other region(s).

Resiliency checklist for specific Azure services
Failure mode analysis

https://docs.microsoft.com/azure/storage/storage-scalability-targets/#scalability-targets-for-virtual-machine-disks
https://docs.microsoft.com/azure/azure-resource-manager/resource-group-overview/
https://docs.microsoft.com/azure/active-directory/role-based-access-control-what-is/
https://docs.microsoft.com/azure/azure-resource-manager/resource-group-lock-resources/
https://docs.microsoft.com/azure/best-practices-availability-paired-regions

Resiliency checklist for specific Azure services
3/13/2019 • 14 minutes to read • Edit Online

App Service

Resiliency is the ability of a system to recover from failures and continue to function, and is one of the pillars of
software quality. Every technology has its own particular failure modes, which you must consider when designing
and implementing your application. Use this checklist to review the resiliency considerations for specific Azure
services. Also review the general resiliency checklist.

Use Standard or Premium tier. These tiers support staging slots and automated backups. For more information,
see Azure App Service plans in-depth overview

Avoid scaling up or down. Instead, select a tier and instance size that meet your performance requirements
under typical load, and then scale out the instances to handle changes in traffic volume. Scaling up and down may
trigger an application restart.

Store configuration as app settings. Use app settings to hold configuration settings as app settings. Define the
settings in your Resource Manager templates, or using PowerShell, so that you can apply them as part of an
automated deployment / update process, which is more reliable. For more information, see Configure web apps in
Azure App Service.

Create separate App Service plans for production and test. Don't use slots on your production deployment
for testing. All apps within the same App Service plan share the same VM instances. If you put production and test
deployments in the same plan, it can negatively affect the production deployment. For example, load tests might
degrade the live production site. By putting test deployments into a separate plan, you isolate them from the
production version.

Separate web apps from web APIs. If your solution has both a web front-end and a web API, consider
decomposing them into separate App Service apps. This design makes it easier to decompose the solution by
workload. You can run the web app and the API in separate App Service plans, so they can be scaled
independently. If you don't need that level of scalability at first, you can deploy the apps into the same plan, and
move them into separate plans later, if needed.

Avoid using the App Service backup feature to back up Azure SQL databases. Instead, use SQL Database
automated backups. App Service backup exports the database to a SQL .bacpac file, which costs DTUs.

Deploy to a staging slot. Create a deployment slot for staging. Deploy application updates to the staging slot,
and verify the deployment before swapping it into production. This reduces the chance of a bad update in
production. It also ensures that all instances are warmed up before being swapped into production. Many
applications have a significant warmup and cold-start time. For more information, see Set up staging
environments for web apps in Azure App Service.

Create a deployment slot to hold the last-known-good (LKG) deployment. When you deploy an update to
production, move the previous production deployment into the LKG slot. This makes it easier to roll back a bad
deployment. If you discover a problem later, you can quickly revert to the LKG version. For more information, see
Basic web application.

Enable diagnostics logging, including application logging and web server logging. Logging is important for
monitoring and diagnostics. See Enable diagnostics logging for web apps in Azure App Service

Log to blob storage. This makes it easier to collect and analyze the data.

https://github.com/mspnp/architecture-center/blob/master/docs/checklist/resiliency-per-service.md
https://docs.microsoft.com/azure/app-service/azure-web-sites-web-hosting-plans-in-depth-overview/
https://docs.microsoft.com/azure/app-service-web/web-sites-scale/
https://docs.microsoft.com/azure/app-service-web/web-sites-configure/
https://docs.microsoft.com/azure/sql-database/sql-database-automated-backups/
https://docs.microsoft.com/azure/app-service-web/web-sites-staged-publishing/
https://docs.microsoft.com/azure/app-service-web/web-sites-enable-diagnostic-log/

Application Gateway

Cosmos DB

Event Hubs

Redis Cache

Create a separate storage account for logs. Don't use the same storage account for logs and application data.
This helps to prevent logging from reducing application performance.

Monitor performance. Use a performance monitoring service such as New Relic or Application Insights to
monitor application performance and behavior under load. Performance monitoring gives you real-time insight
into the application. It enables you to diagnose issues and perform root-cause analysis of failures.

Provision at least two instances. Deploy Application Gateway with at least two instances. A single instance is a
single point of failure. Use two or more instances for redundancy and scalability. In order to qualify for the SLA,
you must provision two or more medium or larger instances.

Replicate the database across regions. Cosmos DB allows you to associate any number of Azure regions with a
Cosmos DB database account. A Cosmos DB database can have one write region and multiple read regions. If
there is a failure in the write region, you can read from another replica. The Client SDK handles this automatically.
You can also fail over the write region to another region. For more information, see How to distribute data globally
with Azure Cosmos DB.

Use checkpoints. An event consumer should write its current position to persistent storage at some predefined
interval. That way, if the consumer experiences a fault (for example, the consumer crashes, or the host fails), then a
new instance can resume reading the stream from the last recorded position. For more information, see Event
consumers.

Handle duplicate messages. If an event consumer fails, message processing is resumed from the last recorded
checkpoint. Any messages that were already processed after the last checkpoint will be processed again. Therefore,
your message processing logic must be idempotent, or the application must be able to deduplicate messages.

Handle exceptions.. An event consumer typically processes a batch of messages in a loop. You should handle
exceptions within this processing loop to avoid losing an entire batch of messages if a single message causes an
exception.

Use a dead-letter queue. If processing a message results in a non-transient failure, put the message onto a
dead-letter queue, so that you can track the status. Depending on the scenario, you might retry the message later,
apply a compensating transaction, or take some other action. Note that Event Hubs does not have any built-in
dead-letter queue functionality. You can use Azure Queue Storage or Service Bus to implement a dead-letter
queue, or use Azure Functions or some other eventing mechanism.

Implement disaster recovery by failing over to a secondary Event Hubs namespace. For more
information, see Azure Event Hubs Geo-disaster recovery.

Configure Geo-replication. Geo-replication provides a mechanism for linking two Premium tier Azure Redis
Cache instances. Data written to the primary cache is replicated to a secondary read-only cache. For more
information, see How to configure Geo-replication for Azure Redis Cache

Configure data persistence. Redis persistence allows you to persist data stored in Redis. You can also take
snapshots and back up the data, which you can load in case of a hardware failure. For more information, see How
to configure data persistence for a Premium Azure Redis Cache

If you are using Redis Cache as a temporary data cache and not as a persistent store, these recommendations may

https://newrelic.com/
https://docs.microsoft.com/azure/application-insights/app-insights-overview/
https://azure.microsoft.com/support/legal/sla/application-gateway
https://docs.microsoft.com/azure/cosmos-db/distribute-data-globally
https://docs.microsoft.com/azure/event-hubs/event-hubs-features#event-consumers
https://docs.microsoft.com/azure/event-hubs/event-hubs-geo-dr
https://docs.microsoft.com/azure/redis-cache/cache-how-to-geo-replication
https://docs.microsoft.com/azure/redis-cache/cache-how-to-premium-persistence

Search

Service Bus

Storage

not apply.

Provision more than one replica. Use at least two replicas for read high-availability, or three for read-write
high-availability.

Configure indexers for multi-region deployments. If you have a multi-region deployment, consider your
options for continuity in indexing.

If the data source is geo-replicated, you should generally point each indexer of each regional Azure Search
service to its local data source replica. However, that approach is not recommended for large datasets
stored in Azure SQL Database. The reason is that Azure Search cannot perform incremental indexing from
secondary SQL Database replicas, only from primary replicas. Instead, point all indexers to the primary
replica. After a failover, point the Azure Search indexers at the new primary replica.

If the data source is not geo-replicated, point multiple indexers at the same data source, so that Azure
Search services in multiple regions continuously and independently index from the data source. For more
information, see Azure Search performance and optimization considerations.

Use Premium tier for production workloads. Service Bus Premium Messaging provides dedicated and
reserved processing resources, and memory capacity to support predictable performance and throughput.
Premium Messaging tier also gives you access to new features that are available only to premium customers at
first. You can decide the number of messaging units based on expected workloads.

Handle duplicate messages. If a publisher fails immediately after sending a message, or experiences network or
system issues, it may erroneously fail to record that the message was delivered, and may send the same message
to the system twice. Service Bus can handle this issue by enabling duplicate detection. For more information, see
Duplicate detection.

Handle exceptions. Messaging APIs generate exceptions when a user error, configuration error, or other error
occurs. The client code (senders and receivers) should handle these exceptions in their code. This is especially
important in batch processing, where exception handling can be used to avoid losing an entire batch of messages.
For more information, see Service Bus messaging exceptions.

Retry policy. Service Bus allows you to pick the best retry policy for your applications. The default policy is to
allow 9 maximum retry attempts, and wait for 30 seconds but this can be further adjusted. For more information,
see Retry policy – Service Bus.

Use a dead-letter queue. If a message cannot be processed or delivered to any receiver after multiple retries, it is
moved to a dead letter queue. Implement a process to read messages from the dead letter queue, inspect them,
and remediate the problem. Depending on the scenario, you might retry the message as-is, make changes and
retry, or discard the message. For more information, see Overview of Service Bus dead-letter queues.

Use Geo-Disaster Recovery. Geo-disaster recovery ensures that data processing continues to operate in a
different region or datacenter if an entire Azure region or datacenter becomes unavailable due to a disaster. For
more information, see Azure Service Bus Geo-disaster recovery.

For application data, use read-access geo-redundant storage (RA-GRS). RA-GRS storage replicates the data
to a secondary region, and provides read-only access from the secondary region. If there is a storage outage in the
primary region, the application can read the data from the secondary region. For more information, see Azure
Storage replication.

https://docs.microsoft.com/azure/search/search-performance-optimization/
https://docs.microsoft.com/azure/service-bus-messaging/service-bus-premium-messaging
https://docs.microsoft.com/azure/service-bus-messaging/duplicate-detection
https://docs.microsoft.com/azure/service-bus-messaging/service-bus-messaging-exceptions
https://docs.microsoft.com/azure/architecture/best-practices/retry-service-specific#service-bus
https://docs.microsoft.com/azure/service-bus-messaging/service-bus-dead-letter-queues
https://docs.microsoft.com/azure/service-bus-messaging/service-bus-geo-dr
https://docs.microsoft.com/azure/storage/storage-redundancy/

SQL Database

SQL Data Warehouse

SQL Server running in a VM

Traffic Manager

For VM disks, use Managed Disks. Managed Disks provide better reliability for VMs in an availability set,
because the disks are sufficiently isolated from each other to avoid single points of failure. Also, Managed Disks
aren't subject to the IOPS limits of VHDs created in a storage account. For more information, see Manage the
availability of Windows virtual machines in Azure.

For Queue storage, create a backup queue in another region. For Queue storage, a read-only replica has
limited use, because you can't queue or dequeue items. Instead, create a backup queue in a storage account in
another region. If there is a storage outage, the application can use the backup queue, until the primary region
becomes available again. That way, the application can still process new requests.

Use Standard or Premium tier. These tiers provide a longer point-in-time restore period (35 days). For more
information, see SQL Database options and performance.

Enable SQL Database auditing. Auditing can be used to diagnose malicious attacks or human error. For more
information, see Get started with SQL database auditing.

Use Active Geo-Replication Use Active Geo-Replication to create a readable secondary in a different region. If
your primary database fails, or simply needs to be taken offline, perform a manual failover to the secondary
database. Until you fail over, the secondary database remains read-only. For more information, see SQL Database
Active Geo-Replication.

Use sharding. Consider using sharding to partition the database horizontally. Sharding can provide fault
isolation. For more information, see Scaling out with Azure SQL Database.

Use point-in-time restore to recover from human error. Point-in-time restore returns your database to an
earlier point in time. For more information, see Recover an Azure SQL database using automated database
backups.

Use geo-restore to recover from a service outage. Geo-restore restores a database from a geo-redundant
backup. For more information, see Recover an Azure SQL database using automated database backups.

Do not disable geo-backup. By default, SQL Data Warehouse takes a full backup of your data every 24 hours
for disaster recovery. It is not recommended to turn this feature off. For more information, see Geo-backups.

Replicate the database. Use SQL Server Always On Availability Groups to replicate the database. Provides high
availability if one SQL Server instance fails. For more information, see Run Windows VMs for an N-tier
application

Back up the database. If you are already using Azure Backup to back up your VMs, consider using Azure Backup
for SQL Server workloads using DPM. With this approach, there is one backup administrator role for the
organization and a unified recovery procedure for VMs and SQL Server. Otherwise, use SQL Server Managed
Backup to Microsoft Azure.

Perform manual failback. After a Traffic Manager failover, perform manual failback, rather than automatically
failing back. Before failing back, verify that all application subsystems are healthy. Otherwise, you can create a
situation where the application flips back and forth between data centers. For more information, see Run VMs in
multiple regions for high availability.

https://docs.microsoft.com/azure/storage/storage-managed-disks-overview
https://docs.microsoft.com/azure/virtual-machines/windows/manage-availability#use-managed-disks-for-vms-in-an-availability-set
https://docs.microsoft.com/azure/sql-database/sql-database-service-tiers/
https://docs.microsoft.com/azure/sql-database/sql-database-auditing-get-started/
https://docs.microsoft.com/azure/sql-database/sql-database-geo-replication-overview/
https://docs.microsoft.com/azure/sql-database/sql-database-elastic-scale-introduction/
https://docs.microsoft.com/azure/sql-database/sql-database-recovery-using-backups/
https://docs.microsoft.com/azure/sql-database/sql-database-recovery-using-backups/
https://docs.microsoft.com/azure/sql-data-warehouse/backup-and-restore#geo-backups
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/virtual-machines-windows/n-tier
https://docs.microsoft.com/azure/backup/
https://docs.microsoft.com/azure/backup/backup-azure-backup-sql/
https://msdn.microsoft.com/library/dn449496.aspx
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/virtual-machines-windows/multi-region-application

Virtual Machines

Virtual Network

Create a health probe endpoint. Create a custom endpoint that reports on the overall health of the application.
This enables Traffic Manager to fail over if any critical path fails, not just the front end. The endpoint should return
an HTTP error code if any critical dependency is unhealthy or unreachable. Don't report errors for non-critical
services, however. Otherwise, the health probe might trigger failover when it's not needed, creating false positives.
For more information, see Traffic Manager endpoint monitoring and failover.

Avoid running a production workload on a single VM. A single VM deployment is not resilient to planned or
unplanned maintenance. Instead, put multiple VMs in an availability set or VM scale set, with a load balancer in
front.

Specify an availability set when you provision the VM. Currently, there is no way to add a VM to an
availability set after the VM is provisioned. When you add a new VM to an existing availability set, make sure to
create a NIC for the VM, and add the NIC to the back-end address pool on the load balancer. Otherwise, the load
balancer won't route network traffic to that VM.

Put each application tier into a separate Availability Set. In an N-tier application, don't put VMs from
different tiers into the same availability set. VMs in an availability set are placed across fault domains (FDs) and
update domains (UD). However, to get the redundancy benefit of FDs and UDs, every VM in the availability set
must be able to handle the same client requests.

Replicate VMs using Azure Site Recovery. When you replicate Azure VMs using Site Recovery, all the VM
disks are continuously replicated to the target region asynchronously. The recovery points are created every few
minutes. This gives you a Recovery Point Objective (RPO) in the order of minutes. You can conduct disaster
recovery drills as many times as you want, without affecting the production application or the ongoing replication.
For more information, see Run a disaster recovery drill to Azure.

Choose the right VM size based on performance requirements. When moving an existing workload to Azure,
start with the VM size that's the closest match to your on-premises servers. Then measure the performance of
your actual workload with respect to CPU, memory, and disk IOPS, and adjust the size if needed. This helps to
ensure the application behaves as expected in a cloud environment. Also, if you need multiple NICs, be aware of
the NIC limit for each size.

Use Managed Disks for VHDs. Managed Disks provide better reliability for VMs in an availability set, because
the disks are sufficiently isolated from each other to avoid single points of failure. Also, Managed Disks aren't
subject to the IOPS limits of VHDs created in a storage account. For more information, see Manage the availability
of Windows virtual machines in Azure.

Install applications on a data disk, not the OS disk. Otherwise, you may reach the disk size limit.

Use Azure Backup to back up VMs. Backups protect against accidental data loss. For more information, see
Protect Azure VMs with a recovery services vault .

Enable diagnostic logs, including basic health metrics, infrastructure logs, and boot diagnostics. Boot diagnostics
can help you diagnose a boot failure if your VM gets into a non-bootable state. For more information, see
Overview of Azure Diagnostic Logs.

Use the AzureLogCollector extension. (Windows VMs only.) This extension aggregates Azure platform logs
and uploads them to Azure storage, without the operator remotely logging into the VM. For more information, see
AzureLogCollector Extension.

To whitelist or block public IP addresses, add an NSG to the subnet. Block access from malicious users, or
allow access only from users who have privilege to access the application.

https://docs.microsoft.com/azure/traffic-manager/traffic-manager-monitoring/
https://docs.microsoft.com/azure/virtual-machine-scale-sets/virtual-machine-scale-sets-overview/
https://docs.microsoft.com/azure/site-recovery/
https://docs.microsoft.com/azure/site-recovery/site-recovery-test-failover-to-azure
https://docs.microsoft.com/azure/storage/storage-managed-disks-overview
https://docs.microsoft.com/azure/virtual-machines/windows/manage-availability#use-managed-disks-for-vms-in-an-availability-set
https://docs.microsoft.com/azure/backup/backup-azure-vms-first-look-arm/
https://azure.microsoft.com/blog/boot-diagnostics-for-virtual-machines-v2/
https://docs.microsoft.com/azure/monitoring-and-diagnostics/monitoring-overview-of-diagnostic-logs/
https://docs.microsoft.com/azure/virtual-machines/virtual-machines-windows-log-collector-extension/?toc=%2fazure%2fvirtual-machines%2fwindows%2ftoc.json

Create a custom health probe. Load Balancer Health Probes can test either HTTP or TCP. If a VM runs an HTTP
server, the HTTP probe is a better indicator of health status than a TCP probe. For an HTTP probe, use a custom
endpoint that reports the overall health of the application, including all critical dependencies. For more
information, see Azure Load Balancer overview.

Don't block the health probe. The Load Balancer Health probe is sent from a known IP address, 168.63.129.16.
Don't block traffic to or from this IP in any firewall policies or network security group (NSG) rules. Blocking the
health probe would cause the load balancer to remove the VM from rotation.

Enable Load Balancer logging. The logs show how many VMs on the back-end are not receiving network traffic
due to failed probe responses. For more information, see Log analytics for Azure Load Balancer.

https://docs.microsoft.com/azure/load-balancer/load-balancer-overview/
https://docs.microsoft.com/azure/load-balancer/load-balancer-monitor-log/

Scalability checklist
3/13/2019 • 14 minutes to read • Edit Online

Application design

Scalability is the ability of a system to handle increased load, and is one of the pillars of software quality. Use this
checklist to review your application architecture from a scalability standpoint.

Partition the workload. Design parts of the process to be discrete and decomposable. Minimize the size of each
part, while following the usual rules for separation of concerns and the single responsibility principle. This allows
the component parts to be distributed in a way that maximizes use of each compute unit (such as a role or
database server). It also makes it easier to scale the application by adding instances of specific resources. For
complex domains, consider adopting a microservices architecture.

Design for scaling. Scaling allows applications to react to variable load by increasing and decreasing the number
of instances of roles, queues, and other services they use. However, the application must be designed with this in
mind. For example, the application and the services it uses must be stateless, to allow requests to be routed to any
instance. This also prevents the addition or removal of specific instances from adversely affecting current users.
You should also implement configuration or auto-detection of instances as they are added and removed, so that
code in the application can perform the necessary routing. For example, a web application might use a set of
queues in a round-robin approach to route requests to background services running in worker roles. The web
application must be able to detect changes in the number of queues, to successfully route requests and balance
the load on the application.

Scale as a unit. Plan for additional resources to accommodate growth. For each resource, know the upper scaling
limits, and use sharding or decomposition to go beyond these limits. Determine the scale units for the system in
terms of well-defined sets of resources. This makes applying scale-out operations easier, and less prone to
negative impact on the application through limitations imposed by lack of resources in some part of the overall
system. For example, adding x number of web and worker roles might require y number of additional queues and
z number of storage accounts to handle the additional workload generated by the roles. So a scale unit could
consist of x web and worker roles, y queues, and z storage accounts. Design the application so that it's easily
scaled by adding one or more scale units.

Avoid client affinity. Where possible, ensure that the application does not require affinity. Requests can thus be
routed to any instance, and the number of instances is irrelevant. This also avoids the overhead of storing,
retrieving, and maintaining state information for each user.

Take advantage of platform autoscaling features. Where the hosting platform supports an autoscaling
capability, such as Azure Autoscale, prefer it to custom or third-party mechanisms unless the built-in mechanism
can't fulfill your requirements. Use scheduled scaling rules where possible to ensure resources are available
without a start-up delay, but add reactive autoscaling to the rules where appropriate to cope with unexpected
changes in demand. You can use the autoscaling operations in the Service Management API to adjust autoscaling,
and to add custom counters to rules. For more information, see Auto-scaling guidance.

Offload intensive CPU/IO tasks as background tasks. If a request to a service is expected to take a long time
to run or absorb considerable resources, offload the processing for this request to a separate task. Use worker
roles or background jobs (depending on the hosting platform) to execute these tasks. This strategy enables the
service to continue receiving further requests and remain responsive. For more information, see Background jobs
guidance.

Distribute the workload for background tasks. Where there are many background tasks, or the tasks require

https://github.com/mspnp/architecture-center/blob/master/docs/checklist/scalability.md

Data management

considerable time or resources, spread the work across multiple compute units (such as worker roles or
background jobs). For one possible solution, see the Competing Consumers pattern.

Consider moving towards a shared-nothing architecture. A shared-nothing architecture uses independent,
self-sufficient nodes that have no single point of contention (such as shared services or storage). In theory, such a
system can scale almost indefinitely. While a fully shared-nothing approach is generally not practical for most
applications, it may provide opportunities to design for better scalability. For example, avoiding the use of server-
side session state, client affinity, and data partitioning are good examples of moving towards a shared-nothing
architecture.

Use data partitioning. Divide the data across multiple databases and database servers, or design the application
to use data storage services that can provide this partitioning transparently (examples include Azure SQL
Database Elastic Database, and Azure Table storage). This approach can help to maximize performance and allow
easier scaling. There are different partitioning techniques, such as horizontal, vertical, and functional. You can use
a combination of these to achieve maximum benefit from increased query performance, simpler scalability, more
flexible management, better availability, and to match the type of store to the data it will hold. Also, consider using
different types of data store for different types of data, choosing the types based on how well they are optimized
for the specific type of data. This may include using table storage, a document database, or a column-family data
store, instead of, or as well as, a relational database. For more information, see Data partitioning guidance.

Design for eventual consistency. Eventual consistency improves scalability by reducing or removing the time
needed to synchronize related data partitioned across multiple stores. The cost is that data is not always
consistent when it is read, and some write operations may cause conflicts. Eventual consistency is ideal for
situations where the same data is read frequently but written infrequently. For more information, see the Data
Consistency Primer.

Reduce chatty interactions between components and services. Avoid designing interactions in which an
application is required to make multiple calls to a service (each of which returns a small amount of data), rather
than a single call that can return all of the data. Where possible, combine several related operations into a single
request when the call is to a service or component that has noticeable latency. This makes it easier to monitor
performance and optimize complex operations. For example, use stored procedures in databases to encapsulate
complex logic, and reduce the number of round trips and resource locking.

Use queues to level the load for high velocity data writes. Surges in demand for a service can overwhelm
that service and cause escalating failures. To prevent this, consider implementing the Queue-Based Load Leveling
pattern. Use a queue that acts as a buffer between a task and a service that it invokes. This can smooth
intermittent heavy loads that may otherwise cause the service to fail or the task to time out.

Minimize the load on the data store. The data store is commonly a processing bottleneck, a costly resource,
and often not easy to scale out. Where possible, remove logic (such as processing XML documents or JSON
objects) from the data store, and perform processing within the application. For example, instead of passing XML
to the database (other than as an opaque string for storage), serialize or deserialize the XML within the application
layer and pass it in a form that is native to the data store. It's typically much easier to scale out the application than
the data store, so you should attempt to do as much of the compute-intensive processing as possible within the
application.

Minimize the volume of data retrieved. Retrieve only the data you require by specifying columns and using
criteria to select rows. Make use of table value parameters and the appropriate isolation level. Use mechanisms
like entity tags to avoid retrieving data unnecessarily.

Aggressively use caching. Use caching wherever possible to reduce the load on resources and services that
generate or deliver data. Caching is typically suited to data that is relatively static, or that requires considerable
processing to obtain. Caching should occur at all levels where appropriate in each layer of the application,

https://msdn.microsoft.com/library/dn589800.aspx

Implementation

including data access and user interface generation. For more information, see the Caching Guidance.

Handle data growth and retention. The amount of data stored by an application grows over time. This growth
increases storage costs as well as latency when accessing the data, affecting application throughput and
performance. It may be possible to periodically archive some of the old data that is no longer accessed, or move
data that is rarely accessed into long-term storage that is more cost efficient, even if the access latency is higher.

Optimize Data Transfer Objects (DTOs) using an efficient binary format. DTOs are passed between the
layers of an application many times. Minimizing the size reduces the load on resources and the network. However,
balance the savings with the overhead of converting the data to the required format in each location where it is
used. Adopt a format that has the maximum interoperability to enable easy reuse of a component.

Set cache control. Design and configure the application to use output caching or fragment caching where
possible, to minimize processing load.

Enable client side caching. Web applications should enable cache settings on the content that can be cached.
This is commonly disabled by default. Configure the server to deliver the appropriate cache control headers to
enable caching of content on proxy servers and clients.

Use Azure blob storage and the Azure Content Delivery Network to reduce the load on the application.
Consider storing static or relatively static public content, such as images, resources, scripts, and style sheets, in
blob storage. This approach relieves the application of the load caused by dynamically generating this content for
each request. Additionally, consider using the Content Delivery Network to cache this content and deliver it to
clients. Using the Content Delivery Network can improve performance at the client because the content is
delivered from the geographically closest datacenter that contains a Content Delivery Network cache. For more
information, see the Content Delivery Network Guidance.

Optimize and tune SQL queries and indexes. Some T-SQL statements or constructs may have an adverse
effect on performance that can be reduced by optimizing the code in a stored procedure. For example, avoid
converting datetime types to a varchar before comparing with a datetime literal value. Use date/time
comparison functions instead. Lack of appropriate indexes can also slow query execution. If you use an
object/relational mapping framework, understand how it works and how it may affect performance of the data
access layer. For more information, see Query Tuning.

Consider de-normalizing data. Data normalization helps to avoid duplication and inconsistency. However,
maintaining multiple indexes, checking for referential integrity, performing multiple accesses to small chunks of
data, and joining tables to reassemble the data imposes an overhead that can affect performance. Consider if
some additional storage volume and duplication is acceptable in order to reduce the load on the data store. Also,
consider if the application itself (which is typically easier to scale) can be relied upon to take over tasks such as
managing referential integrity in order to reduce the load on the data store. For more information, see Data
partitioning guidance.

Review the performance antipatterns. See Performance antipatterns for cloud applications for common
practices that are likely to cause scalability problems when an application is under pressure.

Use asynchronous calls. Use asynchronous code wherever possible when accessing resources or services that
may be limited by I/O or network bandwidth, or that have a noticeable latency, in order to avoid locking the
calling thread.

Avoid locking resources, and use an optimistic approach instead. Never lock access to resources such as
storage or other services that have noticeable latency, because this is a primary cause of poor performance.
Always use optimistic approaches to managing concurrent operations, such as writing to storage. Use features of
the storage layer to manage conflicts. In distributed applications, data may be only eventually consistent.

Compress highly compressible data over high latency, low bandwidth networks. In the majority of cases in

https://technet.microsoft.com/library/ms176005.aspx

NOTENOTE

a web application, the largest volume of data generated by the application and passed over the network is HTTP
responses to client requests. HTTP compression can reduce this considerably, especially for static content. This can
reduce cost as well as reducing the load on the network, though compressing dynamic content does apply a
fractionally higher load on the server. In other, more generalized environments, data compression can reduce the
volume of data transmitted and minimize transfer time and costs, but the compression and decompression
processes incur overhead. As such, compression should only be used when there is a demonstrable gain in
performance. Other serialization methods, such as JSON or binary encodings, may reduce the payload size while
having less impact on performance, whereas XML is likely to increase it.

Minimize the time that connections and resources are in use. Maintain connections and resources only for
as long as you need to use them. For example, open connections as late as possible, and allow them to be
returned to the connection pool as soon as possible. Acquire resources as late as possible, and dispose of them as
soon as possible.

Minimize the number of connections required. Service connections absorb resources. Limit the number that
are required and ensure that existing connections are reused whenever possible. For example, after performing
authentication, use impersonation where appropriate to run code as a specific identity. This can help to make best
use of the connection pool by reusing connections.

APIs for some services automatically reuse connections, provided service-specific guidelines are followed. It's important that
you understand the conditions that enable connection reuse for each service that your application uses.

Send requests in batches to optimize network use. For example, send and read messages in batches when
accessing a queue, and perform multiple reads or writes as a batch when accessing storage or a cache. This can
help to maximize efficiency of the services and data stores by reducing the number of calls across the network.

Avoid a requirement to store server-side session state where possible. Server-side session state management
typically requires client affinity (that is, routing each request to the same server instance), which affects the ability
of the system to scale. Ideally, you should design clients to be stateless with respect to the servers that they use.
However, if the application must maintain session state, store sensitive data or large volumes of per-client data in
a distributed server-side cache that all instances of the application can access.

Optimize table storage schemas. When using table stores that require the table and column names to be
passed and processed with every query, such as Azure table storage, consider using shorter names to reduce this
overhead. However, do not sacrifice readability or manageability by using overly compact names.

Create resource dependencies during deployment or at application startup. Avoid repeated calls to
methods that test the existence of a resource and then create the resource if it does not exist. Methods such as
CloudTable.CreateIfNotExists and CloudQueue.CreateIfNotExists in the Azure Storage Client Library follow this
pattern. These methods can impose considerable overhead if they are invoked before each access to a storage
table or storage queue. Instead:

Create the required resources when the application is deployed, or when it first starts (a single call to
CreateIfNotExists for each resource in the startup code for a web or worker role is acceptable). However, be
sure to handle exceptions that may arise if your code attempts to access a resource that doesn't exist. In these
situations, you should log the exception, and possibly alert an operator that a resource is missing.
Under some circumstances, it may be appropriate to create the missing resource as part of the exception
handling code. But you should adopt this approach with caution as the non-existence of the resource might be
indicative of a programming error (a misspelled resource name for example), or some other infrastructure-
level issue.

Use lightweight frameworks. Carefully choose the APIs and frameworks you use to minimize resource usage,
execution time, and overall load on the application. For example, using Web API to handle service requests can

reduce the application footprint and increase execution speed, but it may not be suitable for advanced scenarios
where the additional capabilities of Windows Communication Foundation are required.

Consider minimizing the number of service accounts. For example, use a specific account to access resources
or services that impose a limit on connections, or perform better where fewer connections are maintained. This
approach is common for services such as databases, but it can affect the ability to accurately audit operations due
to the impersonation of the original user.

Carry out performance profiling and load testing during development, as part of test routines, and before
final release to ensure the application performs and scales as required. This testing should occur on the same type
of hardware as the production platform, and with the same types and quantities of data and user load as it will
encounter in production. For more information, see Testing the performance of a cloud service.

https://docs.microsoft.com/azure/vs-azure-tools-performance-profiling-cloud-services/

Product Truths

Audience

How to use the Microsoft Cloud Adoption Framework for Azure

The cloud presents a fundamental shift in the way that enterprises procure and use technology resources. In the past, enterprises
assumed ownership and responsibility of all levels of technology from infrastructure to software. Now, the cloud offers the
potential to transform the way enterprises use technology by provisioning and consuming resources as needed. While the cloud
offers nearly unlimited flexibility in terms of design choices, enterprises seek proven and consistent methodology for the adoption
of cloud technologies. The Cloud Adoption Framework (CAF) provides the desired framework to guide decisions throughout
adoption.

However, adoption of the cloud is a means, it is not the end goal. Truly effective cloud adoption begins well before a cloud platform
vendor is selected. Cloud adoption begins when decisions makers in IT and Business realize that the cloud can accelerate a specific
business transformation objective. The Cloud Adoption Framework (CAF) aids in aligning strategies for business, culture, and
technical change to empower the desired business outcomes. The Cloud Adoption Framework provides technical guidance related
to Microsoft Azure. Respecting that customers may still be in the process of choosing a cloud vendor, this framework provides
cloud agnostic guidance to facilitate higher level decisions, when possible.

CAF is currently offered as a Public Preview. The framework will reach general availability (GA), when the aspirational objectives
above have been realized. In the current preview release of CAF, the primary focus is on Cloud Governance. CAF will be expanded
frequently, as the team moves closer to GA release.

The content in CAF impacts the business, technology, and culture of enterprises. The roles affected include line-of-business
leaders, business decision makers, IT decision makers, finance, enterprise administrators, IT operations, IT security and compliance,
IT governance, workload development owners, and workload operations owners. Each of these functions and personas uses
different jargon. They each have different objectives and key performance indicators. It's impossible for a single set of content to
interact with each of these audiences directly.

Enter the Cloud Architect: The Cloud Architect serves as the thought leader and facilitator to bring these audiences together. The
content in this collection of guides is designed to help the Cloud Architect facilitate the right conversation, with the right audience,
to drive necessary decisions. Business transformation that is empowered by the cloud is dependent upon the Cloud Architect role
to help guide decisions throughout the business and IT.

Cloud Architect Specializations: Each section of CAF represents a different specialization or variant of the Cloud Architect role.
Those sections also create opportunities to share the cloud architect load amongst a team of cloud architects. Example of a
specialization: The Governance section of CAF is designed for Cloud Architects with a passion for mitigating technical risks. Many
cloud providers refer to these specialists as Cloud Custodians, we prefer Cloud Guardian or collectively Cloud Governance Team.

If your enterprise is new to Azure, begin with the overview in the getting started section. This document includes prescriptive
guidance for your enterprise's digital transformation, walking through each step of the process.

If your enterprise has experience in Azure and is seeking more in-depth guidance and best practices for specific areas, there are
sections for governance and Decision Guides. Additional sections will be made available, as the GA release approaches.

Get Started

Getting started with the Cloud Adoption Framework
3/13/2019 • 11 minutes to read • Edit Online

The digital transformation process

Step 1: Create a cloud strategy team

The digital transformation to cloud computing represents a shift from operating on-premises to operating in
the cloud. This shift includes new ways of doing business - for example, the digital transformation shifts from
capital expenditures for software and datacenter hardware to operating expenditures for usage of cloud resources.
Let's see how to get started using the Microsoft Cloud Adoption Framework for Azure.

To be successful in adopting the cloud, an enterprise must prepare its organization, people, and processes to be
ready for this digital transformation. Every enterprise's organizational structure is different, so there is no one-size-
fits-all approach to organizational readiness. This document outlines the high-level steps your enterprise can take
to get ready. Your organization will have to spend time developing a detailed plan to accomplish each of the listed
steps.

The high-level process for the digital transformation is:

1. Create a cloud strategy team. This team is responsible for leading the digital transformation. It's also important
at this stage to form a governance team and a security team for the digital transformation.

2. Members of the cloud strategy team learn what's new and different about cloud technologies.
3. The cloud strategy team prepares the enterprise by building the business case for digital transformation -

enumerates all the current gaps in business strategy and determines the high-level solutions to eliminate them.
4. Align high-level solutions with business groups. Identify stakeholders in each business group to own the

design and implementation for each solution.
5. Translate existing roles, skills and process to include cloud roles, skills, and process.

The first step in your enterprise's digital transformation is engaging business leaders from across the organization
to create a cloud strategy team (CST). This team consists of business leaders from finance, IT infrastructure, and
application groups. These teams can help with the cloud analysis and experimentation phase.

For instance, a Cloud Strategy Team could be driven by the CTO and consist of members of the enterprise
architecture team, IT finance, senior technologists from various IT applications groups (HR, finance, and so on),
and leaders from the infrastructure, security, and networking teams.

It's also important to form two other high-level teams: a governance team, and a security team. These teams are
responsible for designing, implementing, and the ongoing audit of the enterprise's governance and security
policies. The governance team requires members that have worked with asset protection, cost management, group
policy and related topics. The security team requires members that are well versed in current industry security
standards as well as the enterprise's security requirements.

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/getting-started/overview.md

Step 2: Learn what's new in the cloud

The governance team is responsible for designing and implementing the enterprise's governance model in the
cloud, as well as deploying and maintaining the shared infrastructure assets that are part of the digital
transformation. These assets include hardware, software, and cloud resources necessary to connect the on-
premises network to virtual networking in the cloud.

The security team is responsible for designing and implementing the enterprise's security policy in the cloud,
working closely with the governance team. The security team owns the extension of the security boundary of the
on-premises network to include virtual networking in the cloud. This may take the form of owning and
maintaining the inbound and outbound firewalls on the cloud virtual network as well as ensuring that tools and
policy prevent the deployment of unauthorized resources.

The next step in your enterprise's digital transformation is for the members of the cloud strategy team to learn
about how cloud technology will change the way the enterprise does business. This is preparation and planning
for the changes to your business, people, and technology. It's important for the members of the cloud strategy
team to understand what's new and different in the cloud as compared to on-premises.

Step 3: Identify gaps in business strategy

CATEGORY DESCRIPTION

Cost management Represents a gap in the way the Enterprise pays for
technology.

Governance Represents a gap in the processes used by the Enterprise to
protect its assets from improper usage that might result in
cost overruns, security issues, or compliance issues.

Compliance Represents a gap in the way the enterprise adheres to its own
internal processes and policies as well as external laws,
regulations, and standards.

Security Represents a gap in the way the enterprise protects its
technology and data assets from external threats.

Data governance Represents a gap in the way an enterprise manages its data,
especially customer data. For example, new General Data
Protection Regulation (GDPR) in the European Union has strict
requirements for the protection of customer data that may
require new hardware and software.

The starting point for understanding the cloud is learning how Azure works at a high level. Next, learn about the
basics of governance in Azure in preparation for understanding resource access management.

For advanced learning, the governance team should review the concepts and design guides in the governance
section of the table of contents. The infrastructure and workloads sections are useful for learning about typical
architectures and workloads in the cloud.

The next step is for the cloud strategy team to enumerate the business problems that require a digital
transformation solution. For example, an enterprise may have an existing on-premises datacenter with end-of-life
hardware that requires replacement. In another example, an enterprise may be experiencing difficulty with time-
to-market for new features and services and may be falling behind to competition. These gaps represent the goals
of your enterprise's digital transformation.

Gaps in business strategy can be classified into the following categories:

BUSINESS STRATEGY GAP CATEGORY SOLUTION

Services currently hosted on-premises
experience issues with availability,
resiliency, and scalability during time of
peak demand, which is approximately
ten percent of usage. Servers in on-
premises datacenter are end-of-life.
Enterprise IT recommends purchasing
new on-premises hardware for
datacenter with specifications to handle
peak demand.

Cost management Migrate affected existing on-premises
workloads to scalable resources in the
cloud, paying for usage only.

External data management laws and
regulations require the enterprise to
adhere to set of standard controls that
require encryption of data at rest,
requiring new hardware and software.

Data governance Move data to Azure storage service
encryption for data at rest.

Services hosted in on-premises
datacenter been experiencing
distributed denial of service (DDoS)
attacks on public-facing services. The
attacks are difficult to mitigate and
require new hardware, software, and
security personnel to deal with
effectively.

Security Migrate services to Azure, and take
advantage of Azure DDoS protection.

Step 4: Align high-level solutions with business groups to design
solutions

Once your enterprise has classified all business strategy gaps into these categories, the next step is to determine a
high-level solution for each problem.

The following table illustrates several examples:

When all of the gaps in business strategy have been enumerated and high-level solutions have been determined,
prioritize the list. The list can be prioritized by aligning the business strategy gaps with the enterprise's short and
long-term goals in each category. For example, if the enterprise has a short-term goal to reduce IT spend in the
next two fiscal quarters, the business gaps in the cost management category may be prioritized by the projected
cost saving associated with each.

The output of this process is a stack-ranked list of high-level solutions aligned with business categories.

Now that the goals of the digital transformation have been enumerated, prioritized, and high-level solutions
proposed, the next step is for the cloud strategy team to align each of the high-level solutions with design and
implementation teams in each of the business groups.

The teams take the prioritized lists and work through each high-level solution to design each solution. The design
process will involve the specification of new infrastructure and new workloads. There may also be changes to the
roles of the people and the processes they follow. It's also extremely important at this stage for each of the design
teams to include both the governance and security teams for review of each design. Each design must fall within
with the policies and procedures defined by the governance and security teams, and these teams must be included
in the final sign off of each design.

Step 5: Translate existing roles, skills, and process for the cloud

The design of each solution is a non-trivial task and as designs are created, must be considered in context with
other solution designs from other teams. For example, if several of the designs result in a migration of existing on-
premises applications and services to the cloud, it may be more efficient to group these together and design an
overall migration strategy. In another example, it may not be possible to migrate some existing on-premises
applications and services and the solution may be to replace them with either new development or third-party
services. In this case, it may be more efficient to group these together and determine the overlap between them to
determine if a third-party service can be used for more than one solution.

Once the design of the solution is complete, the team moves on to the implementation phase for each design. The
implementation phase for each solution design can be run using standard project management processes.

At each evolutionary phase during the history of the IT industry, the most notable industry changes are often
marked by changes in staff roles. During the transition from mainframes to the client/server model, the role of the
computer operator largely disappeared, replaced by the system administrator. When the age of virtualization
arrived, the requirement for individuals working with physical servers diminished, replaced with a need for
virtualization specialists. Similarly, as institutions shift to cloud computing, roles will likely change again. For
example, datacenter specialists might be replaced with cloud financial analysts. Even in cases where IT job titles
have not changed, the daily work roles have evolved significantly.

IT staff members may feel anxious about their roles and positions as they realize that a different set of skills is
needed for the support of cloud solutions. But agile employees who explore and learn new cloud technologies
don’t need to have that fear. They can lead the adoption of cloud services and help the organization understand
and embrace the associated changes.

Capturing concernsCapturing concerns

Identify gapsIdentify gaps

Partner across teamsPartner across teams

Next steps

During the digital transformation, each team should capture any staff concerns as they arise. When capturing
concerns, identify the following:

The type of concern. For example, workers may be resistant to the changes in job duties that accompany the
digital transformation.
The effect if the concern is not addressed. For example, resistance to the digital transformation may be result in
workers being slow to execute the changes necessary.
The area equipped to address the concern. For example, if workers in the IT department are reluctant to acquire
new skills, the IT stakeholder's area is best equipped to address this concern. Identifying the area may be clear
for some concerns, and in these cases you may need to escalate to executive leadership.

Another aspect of working through the issues with your enterprise's digital transformation is identifying gaps. A
gap is a role, skill, or process required for your digital transformation that does not currently exist in your
enterprise.

Begin by enumerating the new responsibilities that accompany the digital transformation, with an emphasis on
new responsibilities and current responsibilities to be retired. Identify the area that is aligned with each
responsibility. For new responsibilities, determine how closely aligned it is with the area. Some responsibilities
may span several areas, and this represents an opportunity for better alignment that should be captured as a
concern. In the case where no area is identified as being responsible, capture this as a gap.

Next, identify the skills necessary to support the responsibility. Determine if your enterprise has existing resources
with these skills. If there are no existing resources, determine what training programs or talent acquisition is
necessary. Determine the time frame by which the responsibility must be supported to keep your digital
transformation on track.

Finally, identify the roles that will execute these skills. Some of your existing workforce will assume parts of the
role, and in other cases an entirely new role may be necessary.

The skills necessary to fill the gaps in your organization's digital transformation will typically not be confined to a
single role, or even a single department. Skills will have relationships and dependencies that can span a single role
or multiple roles, and those roles may exist in several departments. For example, a workload owner may require
someone in an IT role to provision core resources such as subscriptions and resource groups.

These dependencies represent new processes that your organization implements to manage the workflow
between roles. In the above example, there are several different types of process that can support the relationship
between the workload owner and the IT role. For example, a workflow tool can be created to manage the process,
or, a simple email template can be used.

Track these dependencies and make note of the processes that will support them, and whether or not the process
currently exists. For process that require tooling, ensure that the timeline for deploying any tools aligns with the
overall digital transformation schedule.

The digital transformation is an iterative process, and with each iteration the teams involved will become more
efficient.

Understand how Azure works

How does Azure work?
3/13/2019 • 2 minutes to read • Edit Online

Next steps

Azure is Microsoft's public cloud platform. Azure offers a large collection of services including platform as a
service (PaaS), infrastructure as a service (IaaS), database as a service (DBaaS), and many others. But what exactly
is Azure, and how does it work?

Azure, like other cloud platforms, relies on a technology known as virtualization. Most computer hardware can
be emulated in software, because most computer hardware is simply a set of instructions permanently or semi-
permanently encoded in silicon. Using an emulation layer that maps software instructions to hardware
instructions, virtualized hardware can execute in software as if it were the actual hardware itself.

Essentially, the cloud is a set of physical servers in one or more datacenters that execute virtualized hardware on
behalf of customers. So how does the cloud create, start, stop, and delete millions of instances of virtualized
hardware for millions of customers simultaneously?

To understand this, let's look at the architecture of the hardware in the datacenter. Within each datacenter is a
collection of servers sitting in server racks. Each server rack contains many server blades as well as a network
switch providing network connectivity and a power distribution unit (PDU) providing power. Racks are sometimes
grouped together in larger units known as clusters.

Within each rack or cluster, most of the servers are designated to run these virtualized hardware instances on
behalf of the user. However, a number of the servers run cloud management software known as a fabric controller.
The fabric controller is a distributed application with many responsibilities. It allocates services, monitors the
health of the server and the services running on it, and heals servers when they fail.

Each instance of the fabric controller is connected to another set of servers running cloud orchestration software,
typically known as a front end. The front end hosts the web services, RESTful APIs, and internal Azure databases
used for all functions the cloud performs.

For example, the front end hosts the services that handle customer requests to allocate Azure resources such as
virtual networks, virtual machines, and services like Cosmos DB. First, the front end validates the user and verifies
the user is authorized to allocate the requested resources. If so, the front end consults a database to locate a server
rack with sufficient capacity, and then instructs the fabric controller on the rack to allocate the resource.

So, very simply, Azure is a huge collection of servers and networking hardware, along with a complex set of
distributed applications that orchestrate the configuration and operation of the virtualized hardware and software
on those servers. And it is this orchestration that makes Azure so powerful - users are no longer responsible for
maintaining and upgrading hardware, Azure does all this behind the scenes.

Now that you understand the internal functioning of Azure, learn about cloud resource governance.

Learn about resource governance

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/getting-started/what-is-azure.md
https://www.microsoft.com/en-us/videoplayer/embed/RE2ixGo
https://docs.microsoft.com/azure/virtual-network/virtual-networks-overview
https://docs.microsoft.com/azure/virtual-machines/
https://docs.microsoft.com/azure/cosmos-db/introduction

What is cloud resource governance?
3/13/2019 • 2 minutes to read • Edit Online

Next steps

In how does Azure work?, you learned that Azure is a collection of servers and networking hardware running
virtualized hardware and software on behalf of users. Azure enables your organization's development and IT
departments to be agile by making it easy to create, read, update, and delete resources as needed.

However, while giving unrestricted resource access to developers can make them very agile, it can also lead to
unintended cost consequences. For example, a development team might be approved to deploy a set of resources
for testing but forget to delete them when testing is complete. These resources will continue to accrue costs even
though their use is no longer approved or necessary.

The solution to this problem is resource access governance. Governance refers to the ongoing process of
managing, monitoring, and auditing the use of Azure resources to meet the goals and requirements of your
organization.

These goals and requirements are unique to each organization so it's not possible to have a one-size-fits-all
approach to governance. Rather, Azure implements two primary governance tools, role based access control
(RBAC), and resource policy, and it's up to each organization to design their governance model using them.

RBAC defines roles, and roles define the capabilities for a user that is assigned the role. For example, the owner
role enables all capabilites (create, read, update, and delete) for a resource, while the reader roles enables only the
read capability. Roles can be defined with a broad scope that applies to many resources types, or a narrow scope
that applies to a few.

Resource policies define rules for resource creation. For example, a resource policy can limit the SKU of a VM to a
particular pre-appproved size. Or, a resource policy can enforce the addition of a tag with a cost center when the
request is made to create the resource.

When configuring these tools, an important consideration is balancing governance versus organizational agility.
That is, the more restrictive your governance policy, the less agile your developers and IT workers become. This is
because a restrictive goverance policy may require more manual steps, such as requiring a developer to fill out a
form or send an email to a person on the governance team to manually create a resource. The goverance team has
finite capabilities and may become backlogged, resulting in unproductive development teams waiting for their
resources to be created and unneeded resources accruing costs while they wait to be deleted.

Now that you understand the concept of cloud resource goverance, learn more about how resource access is
managed in Azure.

Learn about resource access in Azure

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/getting-started/what-is-governance.md
https://www.microsoft.com/en-us/videoplayer/embed/RE2ii94

Resource access management in Azure
3/13/2019 • 4 minutes to read • Edit Online

What is an Azure resource?

What is an Azure resource group?

In what is resource governance?, you learned that governance refers to the ongoing process of managing,
monitoring, and auditing the use of Azure resources to meet the goals and requirements of your organization.
Before you move on to learn how to design a governance model, it's important to understand the resource access
management controls in Azure. The configuration of these resource access management controls forms the basis
of your governance model.

Let's begin by taking a closer look at how resources are deployed in Azure.

In Azure, the term resource refers to an entity managed by Azure. For example, virtual machines, virtual
networks, and storage accounts are all referred to as Azure resources.

 Figure 1. A resource.

Each resource in Azure must belong to a resource group. A resource group is simply a logical construct that
groups multiple resources together so they can be managed as a single entity. For example, resources that share a
similar lifecycle, such as the resources for an n-tier application may be created or deleted as a group.

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/getting-started/azure-resource-access.md
https://docs.microsoft.com/azure/azure-resource-manager/resource-group-overview#resource-groups
https://docs.microsoft.com/azure/architecture/guide/architecture-styles/n-tier

What is an Azure subscription?

 Figure
2. A resource group contains a resource.

Resource groups and the resources they contain are associated with an Azure subscription.

An Azure subscription is similar to a resource group in that it's a logical construct that groups together resource
groups and their resources. However, an Azure subscription is also associated with the controls used by Azure
Resource Manager. What does this mean? Let's take a closer look at Resource Manager to learn about the
relationship between it and an Azure subscription.

What is Azure Resource Manager?

Figure 3. An Azure subscription.

In how does Azure work? you learned that Azure includes a "front end" with many services that orchestrate all the
functions of Azure. One of these services is Resource Manager, and this service hosts the RESTful API used by
clients to manage resources.

https://docs.microsoft.com/azure/azure-resource-manager/

Figure 4. Azure Resource Manager.

The following figure shows three clients: PowerShell, the Azure portal, and the Azure command line interface
(CLI):

https://docs.microsoft.com/powershell/azure/overview
https://portal.azure.com
https://docs.microsoft.com/cli/azure

Figure 5. Azure clients connect to the Resource Manager RESTful API.

While these clients connect to Resource Manager using the RESTful API, Resource Manager does not include
functionality to manage resources directly. Rather, most resource types in Azure have their own resource
provider.

https://docs.microsoft.com/azure/azure-resource-manager/resource-group-overview#terminology

Figure 6. Azure resource providers.

When a client makes a request to manage a specific resource, Resource Manager connects to the resource
provider for that resource type to complete the request. For example, if a client makes a request to manage a
virtual machine resource, Resource Manager connects to the Microsoft.Compute resource provider.

Figure 7. Resource Manager connects to the Microsoft.Compute resource provider to manage the resource
specified in the client request.

Resource Manager requires the client to specify an identifier for both the subscription and the resource group in
order to manage the virtual machine resource.

Now that you have an understanding of how Resource Manager works, let's return to our discussion of how an
Azure subscription is associated with the controls used by Azure Resource Manager. Before any resource
management request can be executed by Resource Manager, a set of controls are checked.

The first control is that a request must be made by a validated user, and Resource Manager has a trusted
relationship with Azure Active Directory (Azure AD) to provide user identity functionality.

Figure 8. Azure Active Directory.

In Azure AD, users are segmented into tenants. A tenant is a logical construct that represents a secure, dedicated
instance of Azure AD typically associated with an organization. Each subscription is associated with an Azure AD
tenant.

https://docs.microsoft.com/azure/active-directory/

Figure 9. An Azure AD tenant associated with a subscription.

Each client request to manage a resource in a particular subscription requires that the user has an account in the
associated Azure AD tenant.

The next control is a check that the user has sufficient permission to make the request. Permissions are assigned to
users using role-based access control (RBAC).

https://docs.microsoft.com/azure/role-based-access-control/

Figure 10. Each user in the tenant is assigned one or more RBAC roles.

An RBAC role specifies a set of permissions a user may take on a specific resource. When the role is assigned to
the user, those permissions are applied. For example, the built-in owner role allows a user to perform any action
on a resource.

The next control is a check that the request is allowed under the settings specified for Azure resource policy. Azure
resource policies specify the operations allowed for a specific resource. For example, an Azure resource policy can
specify that users are only allowed to deploy a specific type of virtual machine.

https://docs.microsoft.com/azure/role-based-access-control/built-in-roles#owner
https://docs.microsoft.com/azure/governance/policy/

Figure 11. Azure resource policy.

The next control is a check that the request does not exceed an Azure subscription limit. For example, each
subscription has a limit of 980 resource groups per subscription. If a request is received to deploy an additional
resource group once the limit has been reached, it is denied.

https://docs.microsoft.com/azure/azure-subscription-service-limits

Figure 12. Azure resource limits.

The final control is a check that the request is within the financial commitment associated with the subscription.
For example, if the request is to deploy a virtual machine, Resource Manager verifies that the subscription has
sufficient payment information.

Summary

Next steps

Figure 13. A financial commitment is associated with a subscription.

In this article, you learned about how resource access is managed in Azure using Azure Resource Manager.

Now that you understand how resource access is managed in Azure, move on to learn how to design a
governance model.

Cloud governance

Build a business justification for cloud migration
3/13/2019 • 8 minutes to read • Edit Online

Dispelling cloud migration myths

Cloud migrations can generate early return on investment (ROI) from cloud transformation efforts. However,
developing a clear business justification with tangible, relevant costs and returns can be a complex process. This
article will help you think about what data is needed to create a financial model that aligns with cloud migration
outcomes. First, let's dispel a few myths about cloud migration, so your organization can avoid some common
mistakes.

Myth: Cloud is always cheaper. It's a common belief that operating a datacenter in the cloud is always cheaper
than on-premises. While this can be true, it's not an absolute. In some cases, cloud operating costs can actually be
higher. Often this is caused by poor cost governance, misalignment of system architectures, duplication of
processes, unusual system configurations, or increased staffing costs. Luckily, many of these problems can be
mitigated to create early ROI. Following the guidance in Building the business justification can help detect and
avoid these misalignments. Dispelling the other myths listed here can also help.

Myth: Everything should go into the cloud. In fact, there are a number of business drivers that may lead you to
choose a hybrid solution. Before finalizing the business model, it's wise to complete a first round quantitative
analysis as described in the Digital Estate articles. For additional information on the individual quantitative drivers
involved in rationalization, see The 5 Rs of rationalization. Either approach will use easily obtained inventory data
and a brief quantitative analysis to identify workloads or applications that could result in higher costs in the cloud.
These approaches could also identify dependencies or traffic patterns that would necessitate a hybrid solution.

Myth: Mirroring my on-premises environment will help me save money in the cloud. During Digital Estate
planning, it's not unheard of for customers to detect unused capacity in excess of 50% of the provisioned
environment. If assets are provisioned in the cloud to match current provisioning, cost savings will be hard to
realize. Consider reducing the size of the deployed assets to align with usage patterns, not provisioning patterns.

Myth: Server costs drive the business cases for cloud migration. Sometimes this is true. For some companies,
it's important to reduce ongoing capital expenses related to servers. However, this depends on several factors.
Companies with a five- to eight-year hardware refresh cycle are unlikely to see fast returns on their cloud
migration. Companies with standardized or enforced refresh cycles can hit a break-even point quickly. In either
case, other expenses may be the financial triggers that justify the migration. The following are a few examples of
costs that are commonly overlooked when taking a server-only or VM-only view of costs:

Software costs of virtualization, servers, and middleware can be extensive. Cloud providers eliminate some of
these costs. Two examples of a cloud provider reducing virtualization costs are the Azure Hybrid Benefits and
Reservations programs.
Business losses due to outages can quickly exceed hardware or software costs. If the current datacenter is
unstable, work with the business to quantify the effect of outages in terms of opportunity costs or actual
business costs.
Environmental costs can also be significant. For the average American family, their home is the biggest
investment and highest cost in their budget. The same is often true for datacenters. Real estate, facilities, and
utility costs represent a fair portion of on-premises costs. When datacenters are retired, those facilities can be
repurposed by the business, or potentially the business could be released from the costs entirely.

Myth: Operating Expense (OpEx) is better than Capital Expense (CapEx). As explained in the fiscal
outcomes article, OpEx can be a good thing. However, there are a number of industries that can see OpEx as a

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/business-strategy/cloud-migration-business-case.md
https://azure.microsoft.com/pricing/hybrid-benefit/#services
https://azure.microsoft.com/reservations/

 Building the business justification

negative. The following are a few examples that would trigger tighter integration with the accounting and business
units regarding the OpEx conversation:

When the business sees capital assets as a driver for business valuation, CapEx reductions could be a negative
outcome. While not a universal standard, this sentiment is most commonly seen in retail, manufacturing, and
construction industries.
OpEx increases can also be seen as a negative outcome in businesses owned by a private equity firm or seeking
capital influx.
If the business is focused heavily on improving sales margins or reducing Cost of Goods Sold (COGS), the
OpEx could be a negative outcome.

OpEx is not always a bad thing. Businesses are more likely to see OpEx as more favorable than CapEx. For instance,
this approach can be well received by businesses that are attempting to improve cash flow, reduce capital
investments, or decrease asset holdings.

Before providing a business justification that focuses on a conversion from CapEx to OpEx, understand which is
better for the business. Accounting and procurement can often help best align the message to financial objectives.

Myth: Moving to the cloud is like flipping a switch. Migrations are a manually intense technical
transformation. When developing a business justification, especially justifications that are time sensitive, consider
the following aspects that could increase the time it takes to migrate assets:

Bandwidth limitations: The amount of bandwidth between the current datacenter and the Cloud provider will
drive timelines during migration.
Business testing timelines: Testing applications with the business to certify readiness and performance can be
time consuming. Aligning power users and testing processes is critical.
Migration execution timelines: The amount of time and human effort required to execute the migration can
increase costs and delay timelines. Allocating employees or contracting partners can also delay the process and
should be accounted for in the plan.

Technical and cultural impediments can slow cloud adoption. When time is an important aspect of the business
justification, the best mitigation is proper planning. There are two suggested approaches during planning which
can help mitigate timeline risks.

First, invest the time and energy in understanding technical adoption constraints. While pressure to move
quickly may be high, it is important to account for realistic execution timelines.
Second, if culture or people impediments arise, they will have more serious impacts than the technical
constraints. Cloud adoption creates change, which produces the desired transformation. Unfortunately, people
sometimes fear change and may need additional support to align with the plan. Identify key people on the team
that are opposed to change and engage them early.

To maximize readiness and mitigation of timeline risks, prepare executive stakeholders by firmly aligning business
value and business outcomes. Help those stakeholders understand the changes that will come with this
transformation. Be clear and set realistic expectations from the beginning. When people or technology slow the
process, executive support will be easier to enlist.

The following process defines an approach to developing the business justification for cloud migrations. While
reading this content, if the calculations or financial terms require additional explanation, see the article on Financial
Models for additional clarification.

At the highest level, the formula for business justification is simple. However, the subtle data points required to
populate the formula can be difficult to align. At the highest level, the business justification focuses on the return on
investment (ROI) associated with the proposed technical change. The generic formula for ROI is:

Migration-specific initial investment

Migration-specific revenue deltas

Migration-specific cost deltas

When ROI results are surprising

ROI = (Gain from Investment − Initial Investment) / Initial Investment

Unpacking this formula creates a migration-specific view of the formulas that drive each of the input variables on
the right side of this equation. The remaining sections of this article offer some considerations to take into account.

Cloud providers such as Azure offer calculators to estimate cloud investments. An example of such a calculator
is the Azure Pricing calculator.
Some cloud providers also support cost delta calculators. An example of a cost delta calculator is the Azure Total
Cost of Ownership (TCO) Calculator.
For more refined cost structures, consider a Digital Estate Planning exercise.
Estimate the cost of migration.
Estimate the cost of any expected training opportunities. Microsoft Learn may be able to help mitigate those
costs.
In some companies, the time invested by existing staff members may need to be included in the initial costs.
Consult the finance office for guidance.
Discuss any additional costs or burden costs with the finance office for validation.

This aspect is often overlooked when creating a migration business justification. In some areas, the cloud can cut
costs. However, the ultimate goal of any transformation is to yield better results over time. Consider the
downstream impacts to understand long-term revenue improvements. What new technologies will be available to
the business after this migration that can't be used today? What projects or business objectives are blocked by
dependencies on legacy technologies? What programs are on-hold, pending high cap-ex technology costs?

After considering the opportunities unlocked by the cloud, work with the business to calculate the revenue
increases that could come from those opportunities.

Calculate any changes to costs that will come from the proposed migration. See Financial Models for details of the
different types of cost deltas. Cloud providers often provide tools for cost delta calculations. An example of a cost
delta calculator is the Azure Total Cost of Ownership (TCO) Calculator.

Other examples of costs that may be reduced by a cloud migration:

Datacenter termination or reduction (environmental costs)
Reduction in power consumed (environmental costs)
Rack termination (physical asset recovery)
Hardware refresh prevention (cost avoidance)
Software renewal avoidance (operational cost reduction or cost avoidance)
Vendor consolidation (operational cost reduction and potential soft cost reduction)

If the ROI for a cloud migration doesn't match expectations, it may be valuable to revisit the common myths listed

https://azure.microsoft.com/pricing
https://azure.com/tco
https://docs.microsoft.com/learn
https://azure.com/tco

Next steps

at the begining of this article.

However, it's important to understand that a cost savings outcome is not always possible. There are applications
that cost more to operate in the cloud than on-premises. These applications can significantly skew results in an
analysis.

When the ROI is below 20%, consider a Digital Estate Planning exercise, with specific attention to rationalization.
During quantitative analysis, perform a review of each application to find workloads that skew the results. It could
be wise to remove those workloads from the plan. If usage data is available, consider reducing the size of VMs to
match usage.

If the ROI is still misaligned, seek help from your Microsoft sales representative or engage an experienced partner.

Create a financial model for cloud transformation

https://azure.microsoft.com/migration/support

Create a financial model for cloud transformation
3/13/2019 • 5 minutes to read • Edit Online

Return on investment (ROI)

Calculating initial investment

Calculating the gain from investment

Revenue delta

Creating a financial model that accurately represents the full business value of any cloud transformation can be
complicated. Financial models and business justifications tend to be different from one organization to the next.
This article establishes some formulas and points out a few things that are commonly missed when creating a
financial model.

Return on investment (ROI) is often an important criteria with the C-Suite or the board. ROI is used to compare
different ways to invest limited capital resources. The formula for ROI is fairly simple. The details required to
create each input to the formula may not be as simple. Essentially, ROI is the amount of return produced from an
initial investment. Usually it is represented as a percentage:

ROI = (Gain from Investment − Initial Investment) / Initial Investment

In the next sections, we will walk through the data needed to calculate the initial investment and the gain from
investment (earnings).

Initial investment is the capital expenditure (CapEx) and operating expenditure (OpEx) required to complete a
transformation. The classification of costs can vary depending on accounting models and CFO preference.
However, this category would include things like: Professional services to transform, software licenses that are
used solely during the transformation, cost of cloud services during the transformation, and potentially the cost of
the salaried employees during the transformation.

Add these costs together to create an estimate of the initial investment.

Gain from investment often requires a second formula for calculation, which is very specific to the business
outcomes and associated technical changes. Earnings are not as simple as calculating reduction in costs.

To calculate earnings, two variables are required:

Gain from Investment = Revenue Deltas + Cost Deltas

Each is described below.

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/business-strategy/financial-models.md

Cost deltas

Depreciation reductions or accelerationDepreciation reductions or acceleration

Physical asset recoveryPhysical asset recovery

Operational cost reductionsOperational cost reductions

Cost avoidanceCost avoidance

Soft cost reductionsSoft cost reductions

Headcount reductionsHeadcount reductions

Revenue delta should be forecasted in partnership with the business. Once the business stakeholders agree on a
revenue impact, that can be used to improve the earning position.

Cost deltas are the amount of increase or decrease that will come as a result of the transformation. There are a
number of independent variables that can affect cost deltas. Earnings are largely based on hard costs like capital
expense reductions, cost avoidance, operational cost reductions, and depreciation reductions. The following
sections are examples of cost deltas to consider.

For guidance on depreciation, speak with the CFO or finance team. The following is meant to serve as a general
reference on the topic of depreciation.

When capital is invested in the acquisition of an asset, that investment could be used for financial or tax purposes
to produce ongoing benefits over the expected lifespan of the asset. Some companies see depreciation as a
positive tax advantage. Others see it as committed, ongoing expense similar to other recurring expenses attributed
to the annual IT budget.

Speak with the finance office to see if elimination of depreciation is possible, and if it would make a positive
contribution to cost deltas.

In some cases, retired assets can be sold as a source of revenue. Often, this revenue is lumped into cost reduction
for simplicity. However, it's truly an increase in revenue and may be taxed as such. Speak with the finance office to
understand the viability of this option and how to account for the resulting revenue.

Recurring expenses required to operate the business are often referred to as operational expenses (OpEx). OpEx is
a very broad category. In most accounting models, it would include software licensing, hosting expenses, electric
bills, real estate rentals, cooling expenses, temporary staff required for operations, equipment rentals, replacement
parts, maintenance contracts, repair services, Business Continuity/Disaster Recovery (BC/DR) services, and a
number of other expenses that don't require capital expense approvals.

This category is one of the largest earnings areas when considering an Operational Transformation. Time invested
in making this list exhaustive is seldom wasted. Ask questions of the CIO and finance team to ensure all
operational costs are accounted for.

When an operational expense (OpEx) is expected, but not yet in an approved budget, it may not fit into a cost
reduction category. For instance, if VMWare and Microsoft licenses need to be renegotiated and paid next year,
they aren't fully qualified costs yet. Reductions in those expected costs would be treated like operational costs for
the sake of cost delta calculations. Informally, however, they should be referred to as "cost avoidance," until
negotiation and budget approval is complete.

In some companies, soft costs such as reductions in operational complexity or reduction in full-time staff to
operate a datacenter could also be included. However, including soft costs can be ill-advised. Including soft costs
inserts an undocumented assumption that the reduction in costs will equate to tangible cost savings. Technology
projects seldom result in actual soft cost recovery.

Time savings for staff are often included under soft cost reduction. When those time savings map to actual
reduction of IT salary or staffing, it could be calculated separately as a headcount reduction.

Capital expense reductions or avoidanceCapital expense reductions or avoidance

Next steps

That said, the skills needed on-premises generally map to a similar (or higher level) set of skills needed in the
cloud. That means people generally don't get laid off after a cloud migration.

An exception is when operational capacity is provided by a third party or managed services provider (MSP). If IT
systems are managed by a third party, the costs to operate could be replaced by a cloud-native solution or cloud-
native MSP. A cloud native MSP is likely to operate more efficiently and potentially at a lower cost. If that's the
case, operational cost reductions belong in the hard cost calculations.

Capital expenses (CapEx) are slightly different that operational expenses. Generally, this category is driven by
refresh cycles or datacenter expansion. An example of a datacenter expansion would be a new high-performance
cluster to host a Big Data solution or data warehouse, and would generally fit into a CapEx category. More
common are the basic refresh cycles. Some companies have rigid hardware refresh cycles, meaning assets are
retired and replaced on a regular cycle (usually every three, five, or eight years). These cycles often coincide with
asset lease cycles or forecasted lifespan of equipment. When a refresh cycle hits, IT draws CapEx to acquire new
equipment.

If a refresh cycle is approved and budgeted, the Cloud Transformation could help eliminate that cost. If a refresh
cycle is planned but not yet approved, the Cloud Transformation could create a CapEx cost avoidance. Both
scenarios would be added to the cost delta.

Read some example fiscal outcomes in the context of a cloud transformation.

Examples of fiscal outcomes

Examples of fiscal outcomes
3/13/2019 • 7 minutes to read • Edit Online

NOTENOTE

Revenue outcomes
New revenue streamsNew revenue streams

Revenue increasesRevenue increases

Profit increasesProfit increases

Cost outcomes
Cost reductionCost reduction

At the top level, fiscal conversations consist of three basic concepts:

Revenue: Will more money come into the business as a result of the sales of goods or services.
Cost: Will less money be spent in the creation, marketing, sales, or delivery of goods or services.
Profit: While rare, some transformations can both increase revenue and decrease costs. This is a profit outcome.

The remainder of this article will explain these fiscal outcomes in the context of a cloud transformation.

The following examples are hypothetical and should not be seen as a guarantee of returns when adopting any cloud
strategy.

The cloud allows for opportunities to deliver new products to customers or deliver existing products in a new way.
New Revenue Streams are innovative, entrepreneurial, and exciting to many people in the business world. New
revenue streams are also prone failure and are seen in many companies as high risk. When they are proposed by
IT, there is a high likelihood of push back. To add credibility to these outcomes, partner with business leader who is
a proven innovator. Validation of the revenue stream early in the process will help avoid roadblocks from the
business.

Example: A company has been selling books for over a hundred years. An employee of the company realizes
that the content can be delivered electronically and creates a device that can be sold in the bookstore, which
allows the same books to be downloaded directly, driving $X in new book sales.

With global scale and digital reach, the cloud allows businesses to increase revenue of existing revenue streams.
Often times, this type of outcome would come from an alignment with sales or marketing leadership.

Example: A company that sells widgets could sell more widgets, if the sales people had the ability to securely
access the company’s digital catalog and stock levels. Unfortunately, that data is only in the company’s ERP
system, which can only be accessed via a network connected device. Creating a service façade to interface with
the ERP, exposing the catalog list and non-sensitive stock levels to an application in the cloud would allow the
sales people to access the data they need while onsite with a customer. Extending AD using Azure AD and
integrating role-based access into the application would allow the company to ensure the data stays safe. This
simple project could impact revenue from an existing product line by X%.

Seldom does a single effort simultaneously increase revenue and decrease costs. However, when it does, align the
outcome statements from one or more of the revenue outcomes with one ore more of the cost outcomes to
communicate the desired outcome.

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/business-strategy/business-outcomes/fiscal-outcomes.md

CoverdellCoverdell

Cost avoidanceCost avoidance

CapEx versus OpExCapEx versus OpEx

Cloud computing can reduce capital expenses (CapEx) related to buying hardware and software, setting up
datacenters, running on-site datacenters, etc.… The racks of servers, round-the-clock electricity for power and
cooling, and IT experts for managing the infrastructure adds up fast. Shutting down a datacenter can reduce CapEx
commitments. This is sometimes referred to as "getting out of the datacenter business". Cost reduction is generally
measured in dollars in the current budget, which could span one to five years depending on how the CFO
manages finances.

Example 1: A company’s datacenter accounts for a large percentage of the annual IT budget. IT chooses to
execute an Operational Transformation an migrates the assets in that datacenter to infrastructure as a service
(IaaS) solutions, creating a three-year cost reduction.
Example 2: A holding company recently acquired a new company. In the acquisition, the terms dictate that the
new entity be removed from the current datacenters within six months. Failure to do so will result in a
$1M/month fine to the holding company. Moving the digital assets to the cloud in an Operational
Transformation could allow for a quick decommission of the old assets.
Example 3: An income tax company that caters to consumers experiences 70% of annual revenue during the
first three months of the year. The remainder of the year, their large IT investment sits relatively dormant. An
Operational Transformation would allow IT to deploy the compute/hosting capacity required for those three
months. During the remaining nine months, the IaaS costs could be significantly reduced by shrinking the
compute footprint.

Coverdell modernizes their infrastructure to drive record cost savings with Azure. Coverdell’s decision to invest in
Azure, and to unite their network of websites, applications, data, and infrastructure within this environment, led to
more cost savings than the company could have ever expected. The migration to an Azure-only environment
eliminated $54,000 USD in monthly costs for colocation services. With the company’s new, united infrastructure
alone, Coverdell expects to save an estimated $1M USD over the next two to three years. "Having access to the
Azure technology stack opens the door for some scalable, easy-to-implement, and highly available solutions that
are cost effective. This allows our architects to be much more creative with the solutions they provide." Ryan
Sorensen, Director of Application Development and Enterprise Architecture Coverdell

Terminating datacenters can also result in cost avoidance by preventing future refresh cycles. A refresh cycle is the
process of buying new hardware and software to replace aging on-premises systems. In Azure, hardware and OS
are routinely maintained, patched, and refreshed at no additional cost to customers. This allows a CFO to remove
planned future spend from long term financial forecasts. Cost is avoidance is measured in dollars. It differs from
Cost Reduction, in that it generally focuses on a future budget that has not been fully approved yet.

Example: A company’s datacenter is up for a lease renewal in six months. That datacenter has been in service
for eight years. Four years ago, all of the servers were refreshed and virtualized costing the company $ millions.
Next year, the company plans on refreshing the hardware and software again. Migrating the assets in that
datacenter, as part of an Operational Transformation, would create cost avoidance, by removing the planned
refresh from next year’s forecasted budget. It could also produce cost reduction by decreasing or eliminating
the real estate lease costs.

Before discussing Cost Outcomes, it is important to understand the two primary cost options: Capital Expenses
(CapEx) and Operational Expenses (OpEx).

The following terms are intended to create an understanding of the differences between CapEx and OpEx when
speaking with the business about your Transformation Journey.

Capital is the money or assets owned by a business to contribute to a particular purpose, such as, increase
server capacity or building an application.
Capital Expense (CapEx) is an expense that that generates benefits over a long period. Such an expense is

generally non-recurring and results in the acquisition of permanent assets. Building an application could qualify
as a capital expense.
Operating Expense (OpEx) is an expense that is an ongoing cost of doing business. Consuming cloud
services in a pay as you go model could qualify as an operating expense.
Asset is an economic resource that can be owned or controlled to produce value. Servers, Data Lakes, and
Applications could all be considered assets.
Depreciation is how the value of an asset decreases over time. More relevant to CapEx/OpEx conversation, it
is how the costs of an asset are allocated across the periods in which they are used. For instance, if you build an
application this year but it is expected to have an average shelf-life of five years (like most commercial
applications), then the cost of the dev team and necessary tools required to create and deploy the code base
would be depreciated evenly over five years.
Valuation is the process of estimating how much a company is worth. In most industries, valuation is based on
the company’s ability to generate revenue and profit, while respecting the operating costs required to create the
goods that provide that revenue. In some industries like retail, or in some transaction types like private equity,
Assets and depreciation can play a big part in the company’s valuation.

It is often a safe bet that various executives, including the CIO, debate the best use of capital to grow the company
in the desired direction. Giving the CIO a means of converting highly competitive CapEx conversations into clear
OpEx accountability could be an attractive outcome by itself. In many industries, chief financial officers (CFOs) are
actively seeking ways of better associating fiscal accountability to the cost of goods being sold.

However, before associating any Transformation Journey with this type of CapEx to OpEx conversion, it is wise to
meet with members of the CFO or CIO teams to see if the business prefers CapEx or OpEx cost structures. In
some organizations, the though of reducing CapEx in favor of OpEx, is actually a highly undesirable outcome. As
mentioned above, this is sometimes seen in retail, holding, and private equity companies that place higher value
on traditional asset accounting models, which place little value on IP. It can also be seen in organizations that had
negative experiences when outsourcing IT staff or other functions in the past.

If OpEx is desirable, the following example could be a viable business outcome:

Example: The company’s datacenter is currently depreciating at $X per year for the next three years. It is
expected to require an additional $Y to refresh the hardware next years. We can convert all of that CapEx to an
OpEx model at an even rate of $Z/month, allowing for better management and accountability of the operating
costs of technology.

The 5 Rs of rationalization
3/13/2019 • 3 minutes to read • Edit Online

Rehost

Refactor

Cloud Rationalization is the process of evaluating assets to determine the best approach to migrating or
modernizing each asset in the cloud. For more information about the process of rationalization, see What is a
digital estate?

The "5 Rs of rationalization" listed here describe the most common options for rationalization.

Also known as "lift and shift," a rehost effort moves the current state asset to the chosen cloud provider, with
minimal change to overall architecture.

Common drivers could include:

Reduce CapEx
Free up datacenter space
Quick cloud ROI

Quantitative analysis factors:

VM size (CPU, memory, storage)
Dependencies (network traffic)
Asset compatibility

Qualitative analysis factors:

Tolerance for change
Business priorities
Critical business events
Process dependencies

Platform as a service (PaaS) options can reduce operational costs associated with many applications. It can be
prudent to slightly refactor an application to fit a PaaS based model.

Refactor also refers to the application development process of refactoring code to allow an application to deliver
on new business opportunities.

Common drivers could include:

Faster, shorter, updates
Code portability
Greater cloud efficiency (resources, speed, cost)

Quantitative analysis factors:

Application asset size (CPU, memory, storage)
Dependencies (network traffic)
User traffic (page views, time on page, load time)

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/digital-estate/5-rs-of-rationalization.md

Rearchitect

Rebuild

Development platform (languages, data platform, middle tier services)

Qualitative analysis factors:

Continued business investments
Bursting options/timelines
Business process dependencies

Some aging applications aren't compatible with cloud providers because of the architectural decisions made when
the application was built. In these cases, the application may need to be rearchitected before transformation.

In other cases, applications that are cloud compatible, but not cloud native benefits, may produce cost efficiencies
and operational efficiencies by rearchitecting the solution to be a cloud native application.

Common drivers could include:

Application scale and agility
Easier adoption of new cloud capabilities
Mix of technology stacks

Quantitative analysis factors:

Application asset size (CPU, memory, storage)
Dependencies (network traffic)
User traffic (page views, time on page, load time)
Development platform (languages, data platform, middle tier services)

Qualitative analysis factors:

Growing business investments
Operational costs
Potential feedback loops and DevOps investments

In some scenarios, the delta that must be overcome to carry forward an application can be too large to justify
further investment. This is especially true for applications that used to meet the needs of the business, but are now
unsupported or misaligned with how the business processes are executed today. In this case, a new code base is
created to align with a cloud native approach.

Common drivers could include:

Accelerate innovation
Build apps faster
Reduce operational cost

Quantitative analysis factors:

Application asset size (CPU, memory, storage)
Dependencies (network traffic)
User traffic (page views, time on page, load time)
Development platform (languages, data platform, middle tier services)

Qualitative analysis Factors:

https://azure.microsoft.com/overview/cloudnative/

Replace

Next steps

Declining end user satisfaction
Business processes limited by functionality
Potential cost, experience, or revenue gains

Solutions are generally implemented using the best technology and approach available at the time. In some cases,
software as a service (SaaS) applications can meet all of the functionality required of the hosted application. In
these scenarios, a workload could be slated for future replacement, effectively removing it from the transformation
effort.

Common drivers could include:

Standardize around industry-best practices
Accelerate adoption of business process driven approaches
Reallocate development investments into applications that create competitive differentiation or advantages

Quantitative analysis factors:

General operating cost reductions
VM size (CPU, memory, storage)
Dependencies (network traffic)
Assets to be retired

Qualitative analysis factors:

Cost benefit analysis of the current architecture versus a SaaS solution
Business process maps
Data schemas
Custom or automated processes

Collectively, these 5 Rs of Rationalization can be applied to a digital estate to make rationalization decisions
regarding the future state of each application.

What is a digital estate?

CAF: What is a digital estate?
3/13/2019 • 2 minutes to read • Edit Online

How can a digital estate be measured?

TIPTIP

How can a financial model be updated to reflect the digital estate?

Every modern company has some form of digital estate. Much like a physical estate, a digital estate is an abstract
reference to a number of tangible, owned assets. In a digital estate, those assets are comprised of virtual machines
(VMs), servers, applications, data, and so on. Essentially, a digital estate is the collection of IT assets that power
business processes and supporting operations.

The importance of a digital estate is most obvious during planning and execution of Digital Transformation
efforts. During transformation journeys, the digital estate is how Cloud Strategy teams map the business
outcomes to release plans and technical efforts. That all starts with an inventory and measurement of the digital
assets the organization owns today.

The measurement of a digital estate changes depending on the desired business outcomes.

Infrastructure migrations. When an organization is inward facing and seeks to optimize cost, operational
processes, agility, or other aspects of optimizing operations, the digital estate focuses on VMs, servers, and
supporting workloads.

Application innovation. For customer-obsessed transformations, the lens is a bit different. The focus
should be placed in the applications, APIs, and transactional data that support the customers. VMs and
network appliances are often of less focus.

Data-driven innovation. In today's digitally driven market, it's difficult to launch a new product or service
without a strong foundation in data. During disruptive transformation, the focus is more on the silos of
data across the organization.

Once an organization understands the most important form of transformation, digital estate planning becomes
much easier to manage.

Each type of transformation could be measured with any of the three views. Further, it is common for companies to execute
all three transformations in parallel. It is highly suggested that the leadership and Cloud Strategy team be firmly aligned
regarding the transformation that is most important for business success. That understanding will serve as the basis for
common language and metrics across multiple initiatives.

An analysis of the digital estate will drive cloud adoption activities. It will also inform financial models by
providing cloud costing models, which will in turn drive the return on investment (ROI).

To complete the digital estate analysis, perform the following steps:

1. Determine analysis approach
2. Collect current state inventory
3. Rationalize the assets in the digital estate
4. Align assets to cloud offerings to calculate pricing

Financial models and migration backlogs can be modified to reflect the rationalized and priced estate.

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/digital-estate/overview.md

Next steps
Before digital estate planning can begin, you must determine what approach to use.

Approaches to digital estate planning

Approaches to digital estate planning
3/13/2019 • 3 minutes to read • Edit Online

Workload-driven approach

TIPTIP

Asset-driven approach

TIPTIP

Digital estate planning can take a number of shapes, depending on the desired outcomes and size of the existing
estate. There are also a number of options regarding the approach taken. It's important to set expectations
regarding the approach early in planning cycles. Unclear expectations often lead to delays associated with
additional inventory gathering exercises. This article outlines three approaches to analysis.

The top-down assessment approach evaluates the security aspects, such as the categorization of data (high,
medium, or low business impact), compliance, sovereignty, and security risk requirements. This approach then
assesses high-level architectural complexity, evaluating aspects such as authentication, data structure, latency
requirements, dependencies, and application life expectancy. Next, the top-down approach measures the
operational requirements of the application, such as service levels, integration, maintenance windows, monitoring,
and insight. When all of these aspects have been analyzed and taken into consideration, the result is a score that
reflects the relative difficulty to migrate this application to each of the cloud platforms: IaaS, PaaS, and SaaS.

Second, the top-down assessment evaluates the financial benefits of the application, such as operational
efficiencies, TCO, return on investment, or any other appropriate financial metrics. In addition, the assessment also
examines the seasonality of the application (are there times of the year when demand spikes) and overall compute
load. Also, it looks at the types of users it supports (casual/expert, always/occasionally logged on), and
consequently the required scalability and elasticity. Finally, the assessment concludes by examining business
continuity and resiliency requirements that the application might have, as well as dependencies to run the
application if a disruption of service should occur.

This approach requires interviews and anecdotal feedback from business and technical stakeholders. Availability of key
individuals is the biggest risk to timing. The anecdotal nature of the data sources makes it more difficult to produce accurate
cost or timing estimates. Plan schedules in advance and validate any data collected.

The asset-driven approach provides a plan based on the assets that support an application to migrate. In this
approach, statistical usage data is pulled from a Configuration Management Database (CMDB) or other
infrastructure assessment tools. This approach usually assumes an IaaS model of deployment as a baseline. In this
process, the analysis evaluates the attributes of each asset: memory, number of processors (CPU cores), operating
system storage space, data drives, network interface cards (NICs), IPv6, network load balancing, clustering, version
of the operating system, version of the database (if required), domains supported, and third-party components or
software packages, among others. The assets inventoried in this approach are then aligned with workloads or
applications for grouping and dependency mapping purposes.

This approach requires a rich source of statistical usage data. The time to scan the inventory and collect data is the biggest
risk to timing. The low-level data sources can miss dependencies between assets or applications. Plan for at least one month
to scan the inventory. Validate dependencies before deployment.

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/digital-estate/approach.md

Incremental approach

TIPTIP

Next steps

Like much of CAF, an incremental approach is highly suggested. In the case of digital estate planning, that equates
to a multi-phase process, as follows:

Initial cost analysis: If financial validation is required, start with an asset-driven approach, described above,
to get an initial cost calculation for the entire digital estate, with no rationalization. This establishes a worst-
case scenario benchmark.

Migration planning: Once a Cloud Strategy team has been assigned, build an initial migration backlog
using a workload-driven approach, based solely on their collective knowledge and limited stakeholder
interviews. This approach quickly builds a light-weight workload assessment to foster collaboration.

Release planning: At each release, the migration backlog is pruned and re-prioritized to focus on the most
relevant business impact. During this process, the next 5–10 workloads would be selected as prioritized
releases. At this point, the Cloud Strategy team would invest the time in completing an exhaustive
workload-driven approach. Delaying this assessment until a release is aligned, better respects the time of
stakeholders. It also delays the investment in full analysis until the business starts to see results from earlier
efforts.

Execution analysis: Before migrating, modernizing, or replicating any asset, each should be assessed both
individually and as part of a collective release. At this point, the data from the initial asset-driven approach
can be scrutinized to ensure accurate sizing and operational constraints.

This incremental approach allows for streamlined planning and accelerated results. It is very important that all parties
involved understand the approach to delayed decision making. It is equally important that assumptions made at each stage
be documented to avoid loss of details.

Once an approach is selected, the inventory can be collected.

Gather inventory data

Gather inventory data for a digital estate
3/13/2019 • 2 minutes to read • Edit Online

Take inventory of a digital estate

Accuracy and completeness of an inventory

Next steps

Developing an inventory is the first step in Digital Estate Planning. In this process, a list of IT assets that support
specific business functions would be collected for later analysis and rationalization. This article assumes that a
bottom-up approach to analysis is most appropriate for planning needs. For more information, see Approaches to
digital estate planning.

The inventory supporting a digital estate changes depending on the desired digital transformation and
corresponding transformation journey.

Operational transformation. During an operational transformation, it is often advised that the inventory
be collected from scanning tools which can create a centralized list of all VMs and servers. Some tools can
also create network mappings and dependencies, which will help define workload alignment.

Incremental transformation. Inventory for an incremental transformation begins with the customer.
Mapping the customer experience from start to finish is a good place to begin. Aligning that map to
applications, APIs, data, and other assets will create a detailed inventory for analysis.

Disruptive transformation. Disruptive transformation focuses on the product or service. From there an
inventory would include a mapping of the opportunities to disrupt the market and the capabilities needed.

An inventory is seldom fully complete in its first iteration. It is highly advised that various members of the Cloud
Strategy team align stakeholders and power users to validate the inventory. When possible, additional tools like
network and dependency analysis can be used to identify assets that are being sent traffic, but are not in the
inventory.

Once an inventory is compiled and validated, it can rationalized. Inventory Rationalization is the next step to
digital estate planning.

Rationalize the digital estate

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/digital-estate/inventory.md

Rationalize the digital estate
3/13/2019 • 10 minutes to read • Edit Online

Traditional view of rationalization

Rationalization at enterprise scale

Incremental rationalization

Cloud rationalization is the process of evaluating assets to determine the best approach to hosting them in the
cloud. Once an approach has been determined and inventory has been aggregated, cloud rationalization can
begin. The 5 Rs of rationalization discusses the most common rationalization options.

It's easy to understand rationalization, when visualizing the traditional process of rationalization like a complex
decision tree. Each asset in the digital estate is fed through a process that results in one of five answers (the 5 Rs).
For small estates, this process works well. For larger estates, it's not very efficient and can lead to significant
delays. Let's examine the process to see why. Then we'll present a more efficient model.

Inventory. A thorough inventory of assets, including applications, software, hardware, operating systems, and
system performance metrics is required to complete a full rationalization using traditional models.

Quantitative analysis. In the decision tree, quantitative questions drive the first layer of decisions. Common
questions: Is the asset in use today? If so, is it optimized and sized properly? What dependencies exist between
assets? These questions are vital to classification of the inventory.

Qualitative analysis. The next set of decisions require human intelligence in the form of qualitative analysis.
Often, these questions are unique to the solution and can only be answered by business stakeholders and power
users. These decisions are where the process is generally delayed, slowing things down considerably. This analysis
generally consumes 40–80 FTE hours per application. For guidance on building a list of qualitative analysis
questions, see Approaches to digital estate planning.

Rationalization decision. In the hands of an experienced rationalization team, the qualitative and quantitative
data creates clear decisions. Unfortunately, teams with a high degree of rationalization experience are expensive to
hire or take months to train.

If this effort is time consuming and daunting for a 50-VM digital estate, imagine the effort required to drive
business transformation in an environment with thousands of VMs and hundreds of applications. The human
effort required can easily exceed 1,500 FTE hours and nine months of planning.

While full rationalization is the end state and a great direction to move towards, it seldom produces a high ROI
relative to the time and energy required.

When rationalization is essential to financial decisions, it is worth considering a professional services organization
that specializes in cloud rationalization to accelerate the process. Even then, full rationalization can be a costly and
time-consuming effort that could delay transformation or business outcomes.

The remainder of this article describes an alternative approach, known as incremental rationalization.

The complete rationalization of a large digital estate is prone to risk and can suffer delays associated with
complexity. The assumption behind the incremental approach is that delayed decisions will stagger the load on the
business to reduce the risk of roadblocks. Over time, this approach creates an organic model for developing the
processes and experience required to make qualified rationalization decisions and do so more efficiently.

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/digital-estate/rationalize.md

Inventory: Reduce discovery data pointsInventory: Reduce discovery data points

Quantitative analysis: Streamline decisionsQuantitative analysis: Streamline decisions

Qualitative analysis: Temporary assumptionsQualitative analysis: Temporary assumptions

Challenging assumptions

Retiring assetsRetiring assets

Very few organizations invest the time, energy, and expense to maintain an accurate, real-time inventory of the full
digital estate. Loss, theft, refresh cycles, and employee on-boarding often justify detailed asset tracking of end-user
devices. However, the return on investment (ROI) of maintaining an accurate server and application inventory in a
traditional, on-premises datacenter is often low. Most IT organizations have other more pressing issues to address
than tracking the usage of fixed assets in a datacenter.

In a Cloud Transformation, inventory directly correlates to operating costs. Accurate inventory data is required for
proper planning. Unfortunately, current environmental scanning options can delay decisions by weeks or months,
to scan and catalog the full inventory. Fortunately, there are a few tricks to accelerating data collection.

Agent-based scanning is the most frequently cited delay. The robust data required for a traditional rationalization
often depends on data that can only be collected with an agent running on each asset. This dependency on agents
often slows progress, as it can require feedback from security, operations, and administration functions.

In an incremental rationalization process, an agent-less solution could be used for an initial discovery to accelerate
early decisions. Depending on the level of complexity in the environment, an agent-based solution may still be
required, but it can be removed from the critical path to business change.

Regardless of the approach to inventory discovery, quantitative analysis can drive a number of initial decisions
and assumptions. This is especially true when trying to identify the first workload or when the goal of
rationalization is a high-level cost comparison. In an incremental rationalization process, the Cloud Strategy and
Cloud Adoption teams limit the 5 Rs of Rationalization to two concise decisions and only apply those quantitative
factors, streamlining the analysis and reducing the amount of initial data required to drive change.

For example, if an organization is in the midst of an IaaS migration to the cloud, it can be assumed that most
workloads will either be retired or rehosted.

By reducing the number of potential outcomes, it’s easier to reach an initial decision about the future state of an
asset. When the options are reduced, the number of questions asked of the business at this early stage is also
reduced.

Continuing with the example above, if the options are limited to rehost or retire, there is really only one question
to ask the business during initial rationalization — namely, whether to retire.

"Analysis suggests that there are no users actively using this asset. Is that accurate or have we overlooked
something?" Such a binary question is generally much easier to run through a qualitative analysis.

This streamlined approach produces baselines, financial plans, strategy, and direction. In later activities, each asset
would go through further rationalization and qualitative analysis to evaluate other options. All assumptions made
in this initial rationalization would be tested before implementation.

The outcome of the prior section is a rough rationalization loaded with assumptions. Next, it's time to challenge
some of those assumptions.

In a traditional on-premises environment, hosting small unused assets seldom increases annual costs. With a few
exceptions, the cost savings associated with pruning and retiring those assets is outweighed by the FTE effort
required to analyze and retire the actual asset.

However, when moving to a cloud accounting model, retiring assets can produce significant savings in annual
operating costs and up-front migration efforts.

Program adjustmentsProgram adjustments

Selecting the first workload

Business criteriaBusiness criteria

Technical criteriaTechnical criteria

Qualitative analysisQualitative analysis

MigrationMigration

It is not uncommon for organizations to retire 20% or more of their digital estate after completing a quantitative
analysis. Further qualitative analysis is suggested before deciding on such an action. Once confirmed, the
retirement of those assets can produce the first ROI victory in the cloud migration. In many cases, this is one of
the biggest cost saving factors. As such, it's suggested that the Cloud Strategy team oversee the validation and
retirement of assets, in parallel to the build phase of the migration process, to allow for an early financial win.

A company seldom embarks on just one transformation journey. The choice between cost reduction, market
growth, and new revenue streams is rarely a binary decision. As such, it's suggested that the Cloud Strategy team
work with IT to identify assets on parallel transformation efforts that are outside of the scope of the primary
Transformation Journey.

In the IaaS Migration example used in this article:

Ask the DevOps team to identify assets that are already part of a deployment automation and remove
those from the core migration plan.

Ask the Data and R&D teams to identify assets that are powering new revenue streams and remove them
from the core migration plan.

This program-focused qualitative analysis can be executed quickly and will create alignment across multiple
migration backlogs.

Some assets may still need to be treated like rehost assets for a period of time, phasing in later rationalization,
after the initial migration.

Implementing the first workload is key to testing and learning. It is the first opportunity to demonstrate and build
a growth mindset.

Identify a workload that is supported by a member of the Cloud Strategy team’s business unit to ensure business
transparency. Preferably chose one in which the team has a vested stake and strong motivation to move to the
cloud.

Select a workload that has minimum dependencies and can be moved as a small group of assets. It's suggested
that a workload with a defined testing path be selected to ease validation.

The first workload is often deployed in an experimental environment with no operational or governance capacity.
It's very important to select a workload that does not interact with secure data.

The Cloud Adoption and Cloud Strategy teams can work together to analyze this small workload. This creates a
controlled opportunity to create and test qualitative analysis criteria. The smaller population creates an
opportunity to survey the affected users, to complete a detailed qualitative analysis in a week or less. For common
qualitative analysis factors, see the specific rationalization target in the 5 Rs of Rationalization.

In parallel to continued rationalization, the Cloud Adoption team can begin migrating the small workload to
expand learning in the following key areas:

Strengthen skills with the cloud provider’s platform.
Define the core services (and Azure standards) needed to fit the long term vision.
Better understand how operations may need to evolve later in the transformation.

Release planning

Power of TenPower of Ten

Building the first backlogsBuilding the first backlogs

Maturing the processMaturing the process

End state

Next steps

Understand any inherent business risks and the business' tolerance for those risks.
Establish a baseline or minimum viable product (MVP) for governance based on the business' risk tolerance.

While the Cloud Adoption team is executing the migration or implementation of the first workload, the Cloud
Strategy team can begin prioritizing the remaining applications/workloads.

The traditional approach to rationalization attempts to boil the ocean. Fortunately, a plan for every application is
often not required to start a transformation journey. In an incremental model, the Power of Ten provides a good
starting point. In this model, the cloud strategy team selects the first ten applications to be migrated. Those ten
workloads should contain a mixture of simple and complex workloads.

The Cloud Adoption and Cloud Strategy teams can work together on the qualitative analysis for the first ten
workloads. This creates the first prioritized migration backlog and the first prioritized release backlog. This
approach allows the teams to iterate on the approach, and provides sufficient time to create an adequate process
for qualitative analysis.

Once the two teams agree on the qualitative analysis criteria, assessment can become a task within each iteration.
Reaching consensus on assessment criteria usually requires 2–3 releases.

Once the assessment is moved into the incremental execution processes of migration, the Cloud Adoption team
can iterate on assessment and architecture faster. At this stage, the Cloud Strategy team is also abstracted,
reducing the drain on their time. This also allows the Cloud Strategy team to focus on prioritizing the applications
that are not yet in a specific release, thus ensuring tight alignment with changing market conditions.

Not all of the prioritized applications will be ready for migration. Sequencing is likely to change, as the team
performs deeper qualitative analysis and discovers business events and dependencies that would prompt for re-
prioritization of the backlog. Some releases may group together a small number of workloads. Others may just
contain a single workload.

The Cloud Adoption team is likely to run iterations that don’t produce a complete workload migration. The smaller
the workload, and the fewer dependencies, the more likely a workload is to fit into a single sprint or iteration. For
this reason, it's suggested that the first few applications in the release backlog be small and contain few external
dependencies.

Over time, the combination of the Cloud Adoption and the Cloud Strategy teams will complete a full
rationalization of the inventory. However, this incremental approach allows the teams to get continually faster at
the rationalization process. It also allows the Transformation Journey to yield tangible business results sooner,
without as large of an upfront analysis effort.

In some cases, the financial model may be too tight to make a decision to act, without additional rationalization. In
such cases, a more traditional approach to rationalization may be required.

The output of a rationalization effort is a prioritized backlog of all assets that will be affected by the chosen
transformation. This backlog is now ready to serve as the foundation for costing models of cloud services.

Align cost models with the digital estate

Align cost models with the digital estate to forecast
cloud costs
3/13/2019 • 2 minutes to read • Edit Online

Once a digital estate has been rationalized, it can be aligned to equivalent costing models with the chosen cloud
provider. Discussing cost models is difficult without focusing on a specific cloud provider. To provide tangible
examples in this article, Azure is the assumed cloud provider.

Azure pricing tools help you manage cloud spend with transparency and accuracy, to make the most of Azure and
other clouds. Providing the tools to monitor, allocate, and optimize cloud costs, empowers customers to accelerate
future investments with confidence.

Azure Migrate. Azure migrate is perhaps the most cost effective approach to cost model alignment. This
tool allows for digital estate inventory, limited rationalization, and cost calculations in one tool.

Total Cost of Ownership (TCO) Calculator. Lower the total cost of ownership of your on-premises
infrastructure with the Azure cloud platform. Use the Azure TCO calculator to estimate the cost savings you
can realize by migrating your application workloads to Azure. Simply provide a brief description of your on-
premises environment to get an instant report.

Pricing Calculator. Estimate your expected monthly bill using our pricing calculator. Track your actual
account usage and bill at any time using the billing portal. Set up automatic email billing alerts to be
notified if your spend goes above an amount you configure.

Azure Cost Management. Azure Cost Management, licensed by Microsoft subsidiary Cloudyn, is a multi-
cloud cost management solution that helps you best use and manage Azure and other cloud resources.
Collect cloud usage and billing data through application program interfaces (APIs) from Azure, Amazon
Web Services, and Google Cloud Platform. With that data, gain full visibility into resource consumption and
costs across cloud platforms in a single, unified view. Continuously monitor cloud consumption and cost
trends. Track actual cloud spend against your budget to avoid overspending. Detect spending anomalies
and usage inefficiencies. Use historical data to improve your forecasting accuracy for cloud usage and
expenditures.

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/digital-estate/calculate.md
https://docs.microsoft.com/azure/migrate/migrate-overview
https://azure.com/tco
https://azure.microsoft.com/pricing
https://azure.microsoft.com/services/cost-management/

Governance in the Microsoft CAF for Azure
3/13/2019 • 2 minutes to read • Edit Online

Audience

Using this guide

The cloud creates new paradigms regarding the technologies that support the business. These new paradigms
also cause shifts in how those technologies are adopted, managed, and governed. When entire datacenters can
be destroyed and recreated with one line of code executed from an unattended process, we have to rethink
traditional approaches. This is equally true when it comes to governance.

For organizations with existing policies governing on-premises IT environments, cloud governance should
complement those policies. However, the level of corporate policy integration between on-premises and the
cloud will vary depending on cloud governance maturity and digital estate in the cloud. As the cloud estate
evolves over time, so will cloud governance processes and policies.

The guidance in this section of the CAF is designed for two purposes:

Provide actionable customer journeys that represent common experiences that customers often encounter.
Each of these encapsulate business risks, corporate policies for risk mitigation, and design guidance to
implement technical solutions. By necessity, the design guidance is specific to Azure. All other guidance in
these journeys could be applied as part of a cloud-agnostic or multi-cloud approach.
Help readers create personalized governance solutions that can meet a variety of business needs, including
the governance of multiple public clouds, through detailed guidance on the development of corporate policies,
processes, and tooling.

This content is intended for the Cloud Governance team. It is also relevant to cloud architects that need to
develop a strong foundation in cloud governance.

The content in the CAF affects the business, technology, and culture of enterprises. This section of the CAF will
interact heavily with IT Security, IT Governance, Finance, line-of-business leaders, Networking, Identity, and
cloud adoption teams. There are various co-dependencies on these personas which will require a facilitative
approach by the Cloud Architects using this guidance. Facilitation with these teams may be a one-time effort, but
in some cases, it will result in recurring interactions with these other personas.

The Cloud Architect serves as the thought leader and facilitator to bring these audiences together. The content in
this collection of guides is designed to help the Cloud Architect facilitate the right conversation, with the right
audience, to drive necessary decisions. Business transformation that is empowered by the cloud is dependent
upon the Cloud Architect role to help guide decisions throughout the business and IT.

Cloud Architect specialization in this section: Each section of the CAF represents a different specialization or
variant of the Cloud Architect role. This section of the CAF is designed for cloud architects with a passion for
mitigating or cleaning up technical risks. Many cloud providers refer to these specialists as cloud custodians, we
prefer cloud guardians or, collectively, the Cloud Governance team. In each actionable customer journey, the
articles show how the composition and role of the Cloud Governance team may change over time.

For readers who wish to follow this guide from beginning to end, this content will aid in developing a robust
cloud governance strategy in parallel to cloud implementation. The guidance walks the reader through the theory
and implementation of such a strategy.

For a crash course on the theory and quick access to Azure implementation, get started with the Overview of

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/overview.md

Next steps

actionable governance journeys. Through this guidance, the reader can start small and evolve their governance
needs in parallel with cloud adoption efforts.

Review the actionable governance journeys.

Actionable Governance Journeys

Review and adopt cloud governance best practices

An incremental approach to cloud governance

Establishing an end stateEstablishing an end state

The governance journeys in this section illustrate the incremental approach of the CAF governance model. You can establish an
agile governance platform that will evolve to meet the needs of any cloud governance scenario.

To start down an adoption path, choose one of the following journeys. Each journey outlines a series of best practices, based on
a set of fictional customer experiences. For readers who are new to the incremental approach of the CAF governance model, it
is advised that you review the high level governance theory introduction below, before adopting either best practice.

Small-to-Medium EnterpriseSmall-to-Medium Enterprise

Large EnterpriseLarge Enterprise

A governance journey for enterprises that own fewer than five datacenters and manage costs through a central IT or
showback model.

A governance journey for enterprises that own more than five datacenters and manage costs across multiple business
units.

Adopting the cloud is a journey, not a destination. Along the way, there are clear milestones and tangible business benefits.
However, the final state of cloud adoption is usually unknown when a company begins the journey. Cloud governance creates
guardrails that keep the company on a safe path throughout the journey.

These governance journeys describe the experiences of fictional companies, based on the journeys of real customers. Each
journey follows the customer through the governance aspects of their cloud adoption.

A journey without a target destination is just wandering. It’s important to establish a rough vision of the end state before taking
the first step. The following infographic provides a frame of reference for the end state. It’s not your starting point, but it shows
your potential destination.

The CAF governance model identifies key areas of importance during the journey. Each area relates to different types of risks
the company must address as it adopts more cloud services. Within this framework, the governance journey identifies required
actions for the Cloud Governance team. Along the way, each principle of the CAF governance model is described further.
Broadly, these include:

Corporate policies. Corporate policies drive cloud governance. The governance journey focuses on specific aspects of
corporate policy:

Grow to the end stateGrow to the end state

�� N O T EN O T E

Business Risks: Identifying and understanding corporate risks.
Policy and Compliance: Converting risks into policy statements that support any compliance requirements.
Processes: Ensuring adherence to the stated policies.

Five Disciplines of Cloud Governance. These disciplines support the corporate policies. Each discipline protects the
company from potential pitfalls:

Cost Management
Security Baseline
Resource Consistency
Identity Baseline
Deployment Acceleration

Essentially, corporate policies serve as the early warning system to detect potential problems. The disciplines help the company
mitigate risks and create guardrails.

Because governance requirements will evolve throughout the cloud adoption journey, a different approach to governance is
required. Companies can no longer wait for a small team to build guardrails and roadmaps on every highway before taking the
first step. Business results are expected more quickly and smoothly. IT governance must also move quickly and keep pace with
business demands to stay relevant during cloud adoption and avoid "shadow IT."

An incremental governance approach empowers these traits. Incremental governance relies on a small set of corporate
policies, processes, and tools to establish a foundation for adoption and governance. That foundation is called a minimum
viable product (MVP). An MVP allows the governance team to quickly incorporate governance into implementations
throughout the adoption lifecycle. An MVP can be established at any point during the cloud adoption process. However, it’s a
good practice to adopt an MVP as early as possible.

The ability to respond rapidly to changing risks empowers the Cloud Governance team to engage in new ways. The Cloud
Governance team can join the Cloud Strategy team as scouts, moving ahead of the cloud adoption teams, plotting routes, and
quickly establishing guardrails to mitigate risks associated with the adoption plans. These just-in-time governance layers are
known as governance evolutions. With this approach, governance strategy evolves one step ahead of the cloud adoption
teams.

The following diagram shows a simple governance MVP and three governance evolutions. During the evolutions, additional
corporate policies are defined to mitigate new risks. The Deployment Acceleration discipline then applies those changes across
each deployment.

Governance is not a replacement for key functions such as security, networking, identity, finance, DevOps, or operations. Along
the way, there will be interactions with and dependencies on members from each function. Those members should be included

Choosing a governance journey

�� N O T EN O T E

Business characteristicsBusiness characteristics

S MALL- TO- MED IU M ENTER PR IS E L AR G E ENTER PR IS E

Geography (country or geopolitical region) Customers or staff reside largely in one
geography

Customers or staff reside in multiple
geographies

Business units affected Single business unit Multiple business units

IT budget Single IT budget Budget allocated across business units

IT investments Capital expense (CapEx)-driven investments
are planned yearly and usually cover only
basic maintenance.

CapEx-driven investments are planned yearly
and often include maintenance and a refresh
cycle of three to five years.

Current state before adopting cloud governanceCurrent state before adopting cloud governance

S MALL- TO- MED IU M ENTER PR IS E L AR G E ENTER PR IS E

Datacenter or third-party hosting providers Fewer than five datacenters More than five datacenters

Networking No WAN, or 1 – 2 WAN providers Complex network or global WAN

Identity Single forest, single domain. No requirement
for claims-based authentication or third-
party MFA devices.

Complex, multiple forests, multiple domains.
Applications require claims-based
authentication or third-party MFA devices.

Desired future state after evolving cloud governanceDesired future state after evolving cloud governance

S MALL- TO- MED IU M ENTER PR IS E L AR G E ENTER PR IS E

Cost Management – cloud accounting Showback model. Billing is centralized
through IT.

Chargeback model. Billing could be
distributed through IT procurement.

Security Baseline – protected data Company financial data and IP. Limited
customer data. No third-party compliance
requirements.

Multiple collections of customers’ financial
and PII data. May need to consider third-
party compliance.

Resource Consistency – mission-critical
applications

Outages are painful but not financially
damaging. Existing IT Operations are
relatively immature.

Outages have defined and monitored
financial impacts. IT operations are
established and mature.

on the Cloud Governance team to accelerate decisions and actions.

The journeys demonstrate how to implement a governance MVP. From there, each journey shows how the Cloud Governance
team can work ahead of the cloud adoption teams as a partner to accelerate adoption efforts. The CAF governance model
guides the application of governance from foundation through subsequent evolutions.

To begin a governance journey, choose one of the two options below. The options are based on synthesized customer
experiences. The titles are based on the size of the enterprise for ease of navigation. However, the reader's decision may be
more complex. The following tables outline the differences between the two options.

It’s unlikely that either journey aligns completely to your situation. Choose whichever journey is closest and use it as a starting
point. Throughout the journey, additional information is provided to help you customize decisions to meet specific criteria.

These two journeys represent two extremes of experience for customers who invest in cloud governance. Most companies

Next steps

reflect a combination of the two scenarios above. After reviewing the journey, use the CAF governance model to start the
governance conversation and modify the baseline journeys to more closely meet your needs.

Choose one of these journeys:

Small-to-medium enterprise governance journey

Large enterprise governance journey

Small-to-medium enterprise governance journey
3/13/2019 • 4 minutes to read • Edit Online

Best practice overview

WARNINGWARNING

Governance best practice

Resource organizationResource organization

This governance journey follows the experiences of a fictional company through various stages of governance
maturity. It is based on real customer journeys. The suggested best practices are based on the constraints and
needs of the fictional company.

As a quick starting point, this overview defines a minimum viable product (MVP) for governance based on best
practices. It also provides links to some governance evolutions that add further best practices as new business or
technical risks emerge.

This MVP is a baseline starting point, based on a set of assumptions. Even this minimal set of best practices is based on
corporate policies driven by unique business risks and risk tolerances. To see if these assumptions apply to you, read the
longer narrative that follows this article.

This best practice serves as a foundation that an organization can use to quickly and consistently add governance
guardrails across multiple Azure subscriptions.

The following diagram shows the governance MVP hierarchy for organizing resources.

Every application should be deployed in the proper area of the management group, subscription, and resource
group hierarchy. During deployment planning, the Cloud Governance team will create the necessary nodes in the
hierarchy to empower the cloud adoption teams.

1. A management group for each type of environment (such as Production, Development, and Test).
2. A subscription for each "application categorization".
3. A separate resource group for each application.
4. Consistent nomenclature should be applied at each level of this grouping hierarchy.

Here is an example of this pattern in use:

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/journeys/small-to-medium-enterprise/overview.md

Governance of resourcesGovernance of resources

Demilitarized Zone (DMZ)Demilitarized Zone (DMZ)

These patterns provide room for growth without complicating the hierarchy unnecessarily.

Enforcing governance across subscriptions will come from Azure Blueprints and the associated assets within the
blueprint.

1. Create a blueprint named governance-baseline .

2. Create an Azure policy to apply or enforce the following:

3. Publish and apply the governance-baseline blueprint to each management group.

a. Enforce the use of standard Azure roles.
b. Enforce that users can only authenticate against existing an RBAC implementation.
c. Apply this blueprint to all subscriptions within the management group.

a. Resource tagging should require values for Business Function, Data Classification, Criticality, SLA,
Environment, and Application.

b. The value of the Application tag should match the name of the resource group.
c. Validate role assignments for each resource group and resource.

These patterns enable resources to be discovered and tracked, and enforce basic role management.

It’s common for specific subscriptions to require some level of access to on-premises resources. This may be the
case for migration scenarios or development scenarios, when some dependent resources are still in the on-
premises datacenter. In this case, the governance MVP adds the following best practices:

1. Establish a cloud DMZ.

2. Create a second blueprint named dmz .

3. Apply the DMZ blueprint to any subscriptions requiring on-premises connectivity. This blueprint should be
applied in addition to the governance MVP blueprint.

a. The Cloud DMZ reference architecture establishes a pattern and deployment model for creating a VPN
Gateway in Azure.

b. Validate that proper DMZ connectivity and security requirements are in place for a local edge device in
the on-premises datacenter.

c. Validate that the local edge device is compatible with Azure VPN Gateway requirements.

a. Add the Resource Manager template for the VPN Gateway to the blueprint.

One of the biggest concerns raised by IT security and traditional governance teams, is the risk of early stage cloud
adoption compromising existing assets. The above approach allows cloud adoption teams to build and migrate

https://docs.microsoft.com/azure/architecture/reference-architectures/dmz/secure-vnet-hybrid

NOTENOTE

Governance evolutions

What does this best practice do?

Evolving the best practice

hybrid solutions, with reduced risk to on-premises assets. In later evolution, this temporary solution would be
removed.

The above is a starting point to quickly create a baseline governance MVP. This is only the beginning of the governance
journey. Further evolution will be needed as the company continues to adopt the cloud and takes on more risk in the
following areas:

Mission-critical workloads
Protected data
Cost management
Multi-cloud scenarios

Moreover, the specific details of this MVP are based on the example journey of a fictitious company, described in the articles
that follow. We highly recommend becoming familiar with the other articles in this series before implementing this best
practice.

Once this MVP has been deployed, additional layers of governance can be quickly incorporated into the
environment. Here are some ways to evolve the MVP to meet specific business needs:

Security Baseline for protected data
Resource configurations for mission-critical applications
Controls for Cost Management
Controls for multi-cloud evolution

In the MVP, practices and tools from the Deployment Acceleration discipline are established to quickly apply
corporate policy. In particular, the MVP uses Azure Blueprints, Azure Policy, and Azure management groups to
apply a few basic corporate policies, as defined in the narrative for this fictional company. Those corporate policies
are applied using Resource Manager templates and Azure policies to establish a very small baseline for identity
and security.

Over time, this governance MVP will be used to evolve the governance practices. As adoption advances, business
risk grows. Various disciplines within the CAF governance model will evolve to mitigate those risks. Later articles
in this series discuss the evolution of corporate policy affecting the fictional company. These evolutions happen

Next steps

across three disciplines:

Cost Management, as adoption scales.
Security Baseline, as protected data is deployed.
Resource Consistency, as IT Operations begins supporting mission-critical workloads.

Now that you’re familiar with the governance MVP and have an idea of the governance evolutions to follow, read
the supporting narrative for additional context.

Read the supporting narrative

Small-to-medium enterprise: The narrative behind
the governance strategy
3/13/2019 • 2 minutes to read • Edit Online

Back story

Business characteristics

Current state

The following narrative describes the use case for the small-to-medium enterprise governance journey. Before
implementing the journey, it’s important to understand the assumptions and reasoning that are reflected in this
narrative. Then you can better align the governance strategy to your own organization’s journey.

The board of directors started the year with plans to energize the business in several ways. They are pushing
leadership to improve customer experiences to gain market share. They are also pushing for new products and
services that will position the company as a thought leader in the industry. They also initiated a parallel effort to
reduce waste and cut unnecessary costs. Though intimidating, the actions of the board and leadership show that
this effort is focusing as much capital as possible on future growth.

In the past, the company’s CIO has been excluded from these strategic conversations. However, because the future
vision is intrinsically linked to technical growth, IT has a seat at the table to help guide these big plans. IT is now
expected to deliver in new ways. The team isn’t really prepared for these changes and is likely to struggle with the
learning curve.

The company has the following business profile:

All sales and operations reside in a single country, with a low percentage of global customers.
The business operates as a single business unit, with budget aligned to functions, including Sales, Marketing,
Operations, and IT.
The business views most of IT as a capital drain or a cost center.

Here is the current state of the company’s IT and cloud operations:

IT operates two hosted infrastructure environments. One environment contains production assets. The second
environment contains disaster recovery and some dev/test assets. These environments are hosted by two
different providers. IT refers to these two datacenters as Prod and DR respectively.
IT entered the cloud by migrating all end-user email accounts to Office 365. This migration was completed six
months ago. Few other IT assets have been deployed to the cloud.
The application development teams are working in a dev/test capacity to learn about cloud native capabilities.
The business intelligence (BI) team is experimenting with big data in the cloud and curation of data on new
platforms.
The company has a loosely defined policy stating that customer personally identifiable information (PII) and
financial data cannot be hosted in the cloud, which limits mission-critical applications in the current
deployments.
IT investments are controlled largely by capital expense (CapEx). Those investments are planned yearly. In the
past several years, investments have included little more than basic maintenance requirements.

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/journeys/small-to-medium-enterprise/narrative.md

Future state

Next steps

The following changes are anticipated over the next several years:

The CIO is reviewing the policy on PII and financial data to allow for the future state goals.
The application development and BI teams want to release cloud-based solutions to production over the next
24 months based on the vision for customer engagement and new products.
This year, the IT team will finish retiring the disaster recovery workloads of the DR datacenter by migrating
2,000 VMs to the cloud. This is expected to produce an estimated $25M USD cost savings over the next five
years.

The company plans to change how it makes IT investments by repositioning the committed CapEx as an
operational expense (OpEx) within IT. This change will provide greater cost control and enable IT to accelerate
other planned efforts.

The company has developed a corporate policy to shape the governance implementation. The corporate policy
drives many of the technical decisions.

Review the initial corporate policy

Small-to-medium enterprise: Initial corporate policy
behind the governance strategy
3/13/2019 • 4 minutes to read • Edit Online

NOTENOTE

Cloud Governance team

Objective

Business risks

The following corporate policy defines an initial governance position, which is the starting point for this journey.
This article defines early-stage risks, initial policy statements, and early processes to enforce policy statements.

The corporate policy is not a technical document, but it drives many technical decisions. The governance MVP described in
the overview ultimately derives from this policy. Before implementing a governance MVP, your organization should develop a
corporate policy based on your own objectives and business risks.

In this narrative, the Cloud Governance team is comprised of two systems administrators who have recognized the
need for governance. Over the next several months, they will inherit the job of cleaning up the governance of the
company’s cloud presence, earning them the title of Cloud Custodians. In subsequent evolutions, this title will
likely change.

The initial objective is to establish a foundation for governance agility. An effective Governance MVP allows the
governance team to stay ahead of cloud adoption and implement guardrails as the adoption plan evolves.

The company is at an early stage of cloud adoption, experimenting and building proofs of concept. Risks are now
relatively low, but future risks are likely. There is little definition around the final state of the technical solutions to
be deployed to the cloud. In addition, the cloud readiness of IT employees is low. A foundation for cloud adoption
will help the team safely learn and grow.

Future-proofing: There is a risk of not empowering growth, but also a risk of not providing the right protections
against future risks.

An agile yet robust governance approach is needed to support the board’s vision for corporate and technical
growth. Failure to implement such a strategy will slow technical growth, potentially risking market share growth
and future market share. The impact of such a business risk is unquestionably high. However, the role IT will play
in those potential future states is unknown, making the risk associated with current IT efforts relatively high. That
said, until more concrete plans are aligned, the business has a high tolerance for risk.

This business risk can be broken down tactically into several technical risks:

Well-intended corporate policies could slow transformation efforts or break critical business processes, if not
considered within a structured approval flow.
The application of governance to deployed assets could be difficult and costly.
Governance may not be properly applied across an application or workload, creating gaps in security.
With so many teams working in the cloud, there is a risk of inconsistency.
Costs may not properly align to business units, teams, or other budgetary management units.

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/journeys/small-to-medium-enterprise/initial-corporate-policy.md

Tolerance indicators

Policy statements

The use of multiple identities to manage various deployments could lead to security issues.
Despite current policies, there is a risk that protected data could be mistakenly deployed to the cloud.

The current tolerance for risk is high and the appetite for investing in cloud governance is low. As such, the
tolerance indicators act as an early warning system to trigger more investment of time and energy. If and when the
following indicators are observed, you should evolve the governance strategy.

Cost Management: The scale of deployment exceeds 100 assets to the cloud, or monthly spending exceeds
$1,000 USD per month.
Security Baseline: Inclusion of protected data in defined cloud adoption plans.
Resource Consistency: Inclusion of any mission-critical applications in defined cloud adoption plans.

The following policy statements establish the requirements needed to mitigate the defined risks. These policies
define the functional requirements for the governance MVP. Each will be represented in the implementation of the
governance MVP.

Deployment Acceleration:

All assets must be grouped and tagged according to defined grouping and tagging strategies.
All assets must use an approved deployment model.
Once a governance foundation has been established for a cloud provider, any deployment tooling must be
compatible with the tools defined by the governance team.

Identity Baseline:

All assets deployed to the cloud should be controlled using identities and roles approved by current governance
policies.
All groups in the on-premises Active Directory infrastructure that have elevated privileges should be mapped to
an approved RBAC role.

Security Baseline:

Any asset deployed to the cloud must have an approved data classification.
No assets identified with a protected level of data may be deployed to the cloud, until sufficient requirements
for security and governance can be approved and implemented.
Until minimum network security requirements can be validated and governed, cloud environments are seen as
a demilitarized zone and should meet similar connection requirements to other data centers or internal
networks.

Cost Management:

For tracking purposes, all assets must be assigned to an application owner within one of the core business
functions.
When cost concerns arise, additional governance requirements will be established with the Finance team.

Resource Consistency:

Because no mission-critical workloads are deployed at this stage, there are no SLA, performance, or BCDR
requirements to be governed.
When mission-critical workloads are deployed, additional governance requirements will be established with IT
operations.

Processes

Next steps

No budget has been allocated for ongoing monitoring and enforcement of these governance policies. Because of
that, the Cloud Governance team has some ad hoc ways to monitor adherence to policy statements.

Education: The Cloud Governance team is investing time to educate the cloud adoption teams on the
governance journeys that support these policies.
Deployment reviews: Before deploying any asset, the Cloud Governance team will review the governance
journey with the cloud adoption teams.

This corporate policy prepares the Cloud Governance team to implement the governance MVP, which will be the
foundation for adoption. The next step is to implement this MVP.

Best practice explained

Small-to-medium enterprise: Best practice explained
3/13/2019 • 10 minutes to read • Edit Online

Governance MVP (Cloud Adoption Foundation)

Implementation process

The governance journey starts with a set of initial corporate policies. These policies are used to establish a
governance MVP that reflects best practices.

In this article, we discuss the high-level strategies that are required to create a governance MVP. The core of the
governance MVP is the Deployment Acceleration discipline. The tools and patterns applied at this stage will enable
the incremental evolutions needed to expand governance in the future.

Rapid adoption of governance and corporate policy is achievable, thanks to a few simple principles and cloud-
based governance tooling. These are the first three disciplines to approach in any governance process. Each will be
expanded upon in this article.

To establish the starting point, this article will discuss the high-level strategies behind Identity Baseline, Security
Baseline, and Deployment Acceleration that are required to create a governance MVP, which will serve as the
foundation for all adoption.

The implementation of the governance MVP has dependencies on Identity, Security, and Networking. Once the
dependencies are resolved, the Cloud Governance team will decide a few aspects of governance. The decisions
from the Cloud Governance team and from supporting teams will be implemented through a single package of
enforcement assets.

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/journeys/small-to-medium-enterprise/best-practice-explained.md

Dependent decisions

Identity BaselineIdentity Baseline

Security Baseline: NetworkingSecurity Baseline: Networking

Security Baseline: EncryptionSecurity Baseline: Encryption

This implementation can also be described using a simple checklist:

1. Solicit decisions regarding core dependencies: Identity, Network, and Encryption.
2. Determine the pattern to be used during corporate policy enforcement.
3. Determine the appropriate governance patterns for the Resource Consistency, Resource Tagging, and Loging

and Reporting disciplines.
4. Implement the governance tools aligned to the chosen policy enforcement pattern to apply the dependent

decisions and governance decisions.

The following decisions come from teams outside of the Cloud Governance team. The implementation of each will
come from those same teams. However, the Cloud Governance team is responsible for implementing a solution to
validate that those implementations are consistently applied.

Identity Baseline is the fundamental starting point for all governance. Before attempting to apply governance,
identity must be established. The established identity strategy will then be enforced by the governance solutions. In
this governance journey, the Identity Management team implements the Directory Synchronization pattern:

RBAC will be provided by Azure Active Directory (Azure AD), using the directory synchronization or "Same
Sign-On" that was implemented during company’s migration to Office 365. For implementation guidance, see
Reference Architecture for Azure AD Integration.
The Azure AD tenant will also govern authentication and access for assets deployed to Azure.

In the governance MVP, the governance team will enforce application of the replicated tenant through subscription
governance tooling, discussed later in this article. In future evolutions, the governance team could also enforce rich
tooling in Azure AD to extend this capability.

Software Defined Network is an important initial aspect of the Security Baseline. Establishing the governance
MVP depends on early decisions from the Security Management team to define how networks can be safely
configured.

Given the lack of requirements, IT security is playing it safe and has required a Cloud DMZ Pattern. That means
governance of the Azure deployments themselves will be very light.

Azure subscriptions may connect to an existing data center via VPN, but must follow all existing on-premises IT
governance policies regarding connection of a demilitarized zone to protected resources. For implementation
guidance regarding VPN connectivity, see VPN Reference Architecture.
Decisions regarding subnet, firewall, and routing are currently being deferred to each application/workload
lead.
Additional analysis is required before releasing of any protected data or mission-critical workloads.

In this pattern, cloud networks can only connect to on-premises resources over a pre-allocated VPN that is
compatible with Azure. Traffic over that connection will be treated like any traffic coming from a demilitarized zone.
Additional considerations may be required on the on-premises edge device to securely handle traffic from Azure.

The Cloud Governance team has proactively invited members of the networking and IT security teams to regular
meetings, in order to stay ahead of networking demands and risks.

Encryption is another fundamental decision within the Security Baseline discipline. Because the company currently
does not yet store any protected data in the cloud, the Security Team has decided on a less aggressive pattern for
encryption. At this point, a Cloud Native pattern to encryption is suggested but not required of any development

https://docs.microsoft.com/azure/architecture/reference-architectures/identity/azure-ad
https://docs.microsoft.com/azure/architecture/reference-architectures/hybrid-networking/vpn

Policy enforcement

Applying the dependent patterns

Application of governance-defined patterns

Subscription modelSubscription model

team.

No governance requirements have been set regarding the use of encryption, because the current corporate
policy does not permit mission-critical or protected data in the cloud.
Additional analysis will be required before releasing any protected data or mission-critical workloads

The first decision to make regarding Deployment Acceleration is the pattern for enforcement. In this narrative, the
governance team decided to implement the Automated Enforcement pattern.

Azure Security Center will be made available to the security and identity teams to monitor security risks. Both
teams are also likely to use Security Center to identify new risks and evolve corporate policy.
RBAC is required in all subscriptions to govern authentication enforcement.
Azure Policy will be published to each management group and applied to all subscriptions. However, the level
of policies being enforced will be very limited in this initial Governance MVP.
Although Azure management groups are being used, a relatively simple hierarchy is expected.
Azure Blueprints will be used to deploy and update subscriptions by applying RBAC requirements, Resource
Manager Templates, and Azure Policy across management groups.

The following decisions represent the patterns to be enforced through the policy enforcement strategy above:

Identity Baseline. Azure Blueprints will set RBAC requirements at a subscription level to ensure that consistent
identity is configured for all subscriptions.

Security Baseline: Networking. The Cloud Governance team maintains a Resource Manager template for
establishing a VPN gateway between Azure and the on-premises VPN device. When an application team requires
a VPN connection, the Cloud Governance team will apply the gateway Resource Manager template via Azure
Blueprints.

Security Baseline: Encryption. At this point in the journey, no policy enforcement is required in this area. This
will be revisited during later evolutions.

The Cloud Governance team is responsible for the following decisions and implementations. Many require inputs
from other teams, but the Cloud Governance team is likely to own both the decision and the implementation. The
following sections outline the decisions made for this use case and details of each decision.

The Application Category pattern has been chosen for Azure subscriptions.

An application archetype is a way to group applications with similar needs. Common examples include:
Applications with protected data, governed applications (such as HIPAA or FedRAMP), low- risk applications,
applications with on-premises dependencies, SAP or other mainframes in Azure, or applications that extend on-
premises SAP or mainframes. These archetypes are unique per organization, based on data classifications and
the types of applications that power the business. Dependency mapping of the digital estate can aid in defining
the application archetypes in an organization.
Departments are not likely to be required given the current focus. Deployments are expected to be constrained
within a single billing unit. At the stage of adoption, there may not even be an enterprise agreement to
centralize billing. It's likely that this level of adoption is being managed by a single pay-as-you-go Azure
subscription.
Regardless of the use of the EA Portal or the existence of an enterprise agreement, a subscription model should

Resource ConsistencyResource Consistency

Resource taggingResource tagging

Logging and reportingLogging and reporting

Evolution of governance processes

still be defined and agreed upon to minimize administrative overheard beyond just billing.
In the Application Category pattern, subscriptions are created for each application archetype. Each
subscription belongs to an account per environment (Development, Test, and Production).
A common naming convention should be agreed on as part of the subscription design, based on the previous
two points.

The Deployment Consistency pattern has been chosen as a Resource Consistency.

Resource groups are created for each application. Management groups are created for each application
archetype. Azure Policy should be applied to all subscriptions from the associated management group.
As part of the deployment process, Azure Resource Consistency templates for the resource group should be
stored in source control.
Each resource group is associated with a specific workload or application.
Azure management groups enable updating governance designs as corporate policy matures.
Extensive implementation of Azure Policy could exceed the team’s time commitments and may not provide a
great deal of value at this time. However, a simple default policy should be created and applied to each
management group to enforce the small number of current cloud governance policy statements. This policy will
define the implementation of specific governance requirements. Those implementations can then be applied
across all deployed assets.

The Classification pattern to tagging has been chosen as a model for resource tagging.

Deployed assets should be tagged with the following values: Data Classification, Criticality, SLA, and
Environment.
These four values will drive governance, operations, and security decisions.
If this governance journey is being implemented for a business unit or team within a larger corporation, tagging
should also include metadata for the billing unit.

At this point, a Cloud Native pattern to logging and reporting is suggested but not required of any development
team.

No governance requirements have been set regarding the data to be collected for logging or reporting
purposes.
Additional analysis will be needed before releasing any protected data or mission-critical workloads.

As governance evolves, some policy statements can’t or shouldn’t be controlled by automated tooling. Other
policies will result in effort by the IT Security team and the on-premises Identity Management team over time. To
help mitigate new risks as they arise, the Cloud Governance team will oversee the following processes.

Adoption acceleration: The Cloud Governance team has been reviewing deployment scripts across multiple
teams. They maintain a set of scripts that serve as deployment templates. Those templates are used by the cloud
adoption and DevOps teams to define deployments more quickly. Each of those scripts contains the necessary
requirements to enforce a number of governance policies, with no additional effort from cloud adoption engineers.
As the curators of these scripts, the Cloud Governance team can more quickly implement policy changes. As a
result of script curation, the Cloud Governance team is seen as a source of adoption acceleration. This creates
consistency among deployments, without strictly forcing adherence.

Engineer training: The Cloud Governance team offers bi-monthly training sessions and has created two videos
for engineers. These materials help engineers quickly learn the governance culture and how things are done during

Alternative patterns

Next steps

deployments. The team is adding training assets that show the difference between production and non-production
deployments, so that engineers will understand how the new policies will affect adoption. This creates consistency
among deployments, without strictly forcing adherence.

Deployment planning: Before deploying any asset containing protected data, the Cloud Governance team will
review deployment scripts to validate governance alignment. Existing teams with previously approved
deployments will be audited using programmatic tooling.

Monthly audit and reporting: Each month, the Cloud Governance team runs an audit of all cloud deployments
to validate continued alignment to policy. When deviations are discovered, they are documented and shared with
the cloud adoption teams. When enforcement doesn't risk a business interruption or data leak, the policies are
automatically enforced. At the end of the audit, the Cloud Governance team compiles a report for the Cloud
Strategy team and each cloud adoption team to communicate overall adherence to policy. The report is also stored
for auditing and legal purposes.

Quarterly policy review: Each quarter, the Cloud Governance team and the Cloud Strategy team will review audit
results and suggest changes to corporate policy. Many of those suggestions are the result of continuous
improvements and the observation of usage patterns. Approved policy changes are integrated into governance
tooling during subsequent audit cycles.

If any of the patterns selected in this governance journey don't align with the reader's requirements, alternatives to
each pattern are available:

Encryption patterns
Identity patterns
Logging and Reporting patterns
Policy Enforcement patterns
Resource Consistency patterns
Resource Tagging patterns
Software Defined Network patterns
Subscription Design patterns

Once this guide is implemented, each cloud adoption team can go forth with a sound governance foundation. The
Cloud Governance team will work in parallel to continuously update the corporate policies and governance
disciplines.

The two teams will use the tolerance indicators to identify the next evolution needed to continue supporting cloud
adoption. For the fictional company in this journey, the next step is evolving the Security Baseline to support
moving protected data to the cloud.

Security Baseline evolution

CAF: Small-to-medium enterprise: Security Baseline
evolution
3/13/2019 • 8 minutes to read • Edit Online

Evolution of the narrative

Evolution of the Cloud Governance teamEvolution of the Cloud Governance team

Evolution of the current stateEvolution of the current state

Evolution of the future stateEvolution of the future state

This article evolves the narrative by adding security controls that support moving protected data to the cloud.

IT and business leadership have been happy with results from early stage experimentation by the IT, App
Development, and BI teams. To realize tangible business values from these experiments, those teams must be
allowed to integrate protected data into solutions. This triggers changes to corporate policy, but also requires an
evolution of the cloud governance implementations before protected data can land in the cloud.

Given the effect of the changing narrative and support provided so far, the Cloud Governance team is now viewed
differently. The two system administrators who started the team are now viewed as experienced cloud architects.
As this narrative develops, the perception of them will shift from being Cloud Custodians to more of a Cloud
Guardian role.

While the difference is subtle, it’s an important distinction when building a governance- focused IT culture. A
Cloud Custodian cleans up the messes made by innovative cloud architects. The two roles have natural friction and
opposing objectives. On the other hand, a Cloud Guardian helps keep the cloud safe, so other cloud architects can
move more quickly, with less messes. Additionally, a Cloud Guardian is involved in creating templates that
accelerate deployment and adoption, making them an innovation accelerator as well as a defender of the Five
Disciplines of Cloud Governance.

At the start of this narrative, the application development teams were still working in a dev/test capacity, and the
BI team was still in the experimental phase. IT operated two hosted infrastructure environments, named Prod and
DR.

Since then, some things have changed that will affect governance:

The application development team has implemented a CI/CD pipeline to deploy a cloud native application with
an improved user experience. That app doesn’t yet interact with protected data, so it is not production ready.
The Business Intelligence team within IT actively curates data in the cloud from logistics, inventory, and third
party. This data is being used to drive new predictions, which could shape business processes. However, those
predictions and insights are not actionable until customer and financial data can be integrated into the data
platform.
The IT team is progressing on the CIO and CFO's plans to retire the DR datacenter. More than 1,000 of the
2,000 assets in the DR datacenter have been retired or migrated.
The loosely defined policies regarding PII and financial data have been modernized. However, the new
corporate policies are contingent on the implementation of related security and governance policies. Teams are
still stalled.

Early experiments by the App Dev and BI teams show potential improvements in customer experiences and data-
driven decisions. Both teams want to expand adoption of the cloud over the next 18 months by deploying those
solutions to production.

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/journeys/small-to-medium-enterprise/security-baseline-evolution.md

Evolution of tangible risks

Evolution of the policy statements

During the remaining six months, the Cloud Governance team will implement security and governance
requirements to allow the cloud adoption teams to migrate the protected data in those datacenters.

The changes to current and future state expose new risks that require new policy statements.

Data Breach: When adopting any new data platform, there is an inherent increase in liabilities related to potential
data breaches. Technicians adopting cloud technologies have increased responsibilities to implement solutions that
can decrease this risk. A robust security and governance strategy must be implemented to ensure those
technicians fulfill those responsibilities.

This business risk can be expanded into a few technical risks:

Mission-critical applicationss or protected data might be deployed unintentionally.
Protected data might be exposed during storage due to poor encryption decisions.
Unauthorized users might access protected data.
External intrusion might result in access to protected data.
External intrusion or denial of service attacks might cause a business interruption.
Organization or employment changes might allow for unauthorized access to protected data.
New exploits could create new intrusion or access opportunities.
Inconsistent deployment processes might result in security gaps, which could lead to data leaks or
interruptions.
Configuration drift or missed patches might result in unintended security gaps, which could lead to data leaks
or interruptions.

The following changes to policy will help mitigate the new risks and guide implementation. The list looks long, but
adopting these policies may be easier than it appears.

1. All deployed assets must be categorized by criticality and data classification. Classifications are to be reviewed
by the Cloud Governance team and the application owner before deployment to the cloud.

2. Applications that store or access protected data are to be managed differently than those that don’t. At a
minimum, they should be segmented to avoid unintended access of protected data.

3. All protected data must be encrypted when at rest.
4. Elevated permissions in any segment containing protected data should be an exception. Any such exceptions

will be recorded with the Cloud Governance team and audited regularly.
5. Network subnets containing protected data must be isolated from any other subnets. Network traffic between

protected data subnets will be audited regularly.
6. No subnet containing protected data can be directly accessed over the public internet or across datacenters.

Access to those subnets must be routed through intermediate subnets. All access into those subnets must come
through a firewall solution that can perform packet scanning and blocking functions.

7. Governance tooling must audit and enforce network configuration requirements defined by the security
management team.

8. Governance tooling must limit VM deployment to approved images only.
9. Whenever possible, node configuration management should apply policy requirements to the configuration of

any guest operating system.
10. Governance tooling must enforce that automatic updates are enabled on all deployed assets. Violations must

be reviewed with operational management teams and remediated in accordance with operations policies.
Assets that are not automatically updated must be included in processes owned by IT Operations.

11. Creation of new subscriptions or management groups for any mission-critical applications or protected data

Evolution of the best practices

will require a review from the Cloud Governance team, to ensure that the proper blueprint is assigned.
12. A least-privilege access model will be applied to any management group or subscription that contains mission-

critical apps or protected data.
13. Trends and exploits that could affect cloud deployments should be reviewed regularly by the security team to

provide updates to security management tooling used in the cloud.
14. Deployment tooling must be approved by the Cloud Governance team to ensure ongoing governance of

deployed assets.
15. Deployment scripts must be maintained in a central repository accessible by the Cloud Governance team for

periodic review and auditing.
16. Governance processes must include audits at the point of deployment and at regular cycles to ensure

consistency across all assets.
17. Deployment of any applications that require customer authentication must use an approved identity provider

that is compatible with the primary identity provider for internal users.
18. Cloud governance processes must include quarterly reviews with identity management teams. These reviews

can help identify malicious actors or usage patterns that should be prevented by cloud asset configuration.

The governance MVP design will evolve to include new Azure policies and an implementation of Azure Cost
Management. Together, these two design changes will fulfill the new corporate policy statements.

1. The Networking and IT Security teams will define network requirements. The Cloud Governance team will
support the conversation.

2. The Identity and IT Security teams will define identity requirements and make any necessary changes to local
Active Directory implementation. The Cloud Governance team will review changes.

3. Create a repository in Azure DevOps to store and version all relevant Azure Resource Manager templates and
scripted configurations.

4. Azure Security Center implementation:

5. Update Azure policies for all subscriptions:

6. Update Azure policies for all subscriptions that contains protected data classifications:

a. Configure Azure Security Center for any management group that contains protected data classifications.
b. Set automatic provisioning to on by default to ensure patching compliance.
c. Establish OS security configurations. The IT Security team will define the configuration.
d. Support the IT Security team in the initial use of Security Center. Transition the use of Security Center to

the IT Security team, but maintain access for the purpose of continually improving governance.
e. Create a Resource Manager template that reflects the changes required for Security Center

configuration within a subscription.

a. Audit and enforce the criticality and data classification across all management groups and subscriptions,
to identify any subscriptions with protected data classifications.

b. Audit and enforce the use of approved images only.

a. Audit and enforce the use of standard Azure RBAC roles only.
b. Audit and enforce encryption for all storage accounts and files at rest on individual nodes.
c. Audit and enforce the application of an NSG to all NICs and subnets. The Networking and IT Security

teams will define the NSG.
d. Audit and enforce the use of approved network subnet and vNet per network interface.
e. Audit and enforce the limitation of user-defined routing tables.
f. Apply the Built-in Policies for Guest Configuration as follows:

a. Audit that Windows web servers are using secure communication protocols
b. Audit that password security settings are set correctly inside Linux and Windows machines

Conclusion

Next Steps

7. Firewall configuration:

8. Azure blueprint:

a. Identify a configuration of Azure Firewall that meets necessary security requirements. Alternatively,
identify a compatible third-party appliance that is compatible with Azure.

b. Create a Resource Manager template to deploy the firewall with required configurations.

a. Create a new blueprint named protected-data .
b. Add the firewall and Azure Security Center templates to the blueprint.
c. Add the new policies for protected data subscriptions.
d. Publish the blueprint to any management group which current plans on hosting protected data.
e. Apply the new blueprint to each affected subscription, in addition to existing blueprints.

Adding the above processes and changes to the governance MVP will help to mitigate many of the risks
associated with security governance. Together, they add the network, identity, and security monitoring tools
needed to protect data.

As cloud adoption continues to evolve and deliver additional business value, risks and cloud governance needs
also evolve. For the fictional company in this journey, the next step is to support mission-critical workloads. This is
the point when Resource Consistency controls are needed.

Resource Consistency evolution

Small-to-medium enterprise: Resource Consistency
evolution
3/13/2019 • 6 minutes to read • Edit Online

Evolution of the narrative

Evolution of the current stateEvolution of the current state

Evolution of the future stateEvolution of the future state

Evolution of tangible risks

This article evolves the narrative by adding Resource Consistency controls to support mission-critical apps.

New customer experiences, new prediction tools, and migrated infrastructure continue to progress. The business is
now ready to begin using those assets in a production capacity.

In the previous phase of this narrative, the application development and BI teams were nearly ready to integrate
customer and financial data into production workloads. The IT team was in the process of retiring the DR
datacenter.

Since then, some things have changed that will affect governance:

IT has retired 100% of the DR datacenter, ahead of schedule. In the process, a number of assets in the
Production datacenter were identified as cloud migration candidates.
The application development teams are now ready for production traffic.
The BI team is ready to feed predictions and insights back into operation systems in the Production datacenter.

Before using Azure deployments in production business processes, cloud operations must mature. In conjunction,
an additional governance evolution is required to ensure assets can be operated properly.

The changes to current and future state expose new risks that will require new policy statements.

Business Interruption: There is an inherent risk of any new platform causing interruptions to mission-critical
business processes. The IT Operations team and the teams executing on various cloud adoptions are relatively
inexperienced with cloud operations. This increases the risk of interruption and must be mitigated and governed.

This business risk can be expanded into a number of technical risks:

External intrusion or denial of service attacks might cause a business interruption
Mission-critical assets may not be properly discovered, and therefore might not be properly operated
Undiscovered or mislabeled assets might not be supported by existing operational management processes.
The configuration of deployed assets may not meet performance expectations
Logging might not be properly recorded and centralized to allow for remediation of performance issues.
Recovery policies may fail or take longer than expected.
Inconsistent deployment processes might result in security gaps that could lead to data leaks or interruptions.
Configuration drift or missed patches might result in unintended security gaps that could lead to data leaks or
interruptions.
Configuration might not enforce the requirements of defined SLAs or committed recovery requirements.
Deployed operating systems or applications might fail to meet hardening requirements
With so many teams working in the cloud, there is a risk of inconsistency.

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/journeys/small-to-medium-enterprise/resource-consistency-evolution.md

Evolution of the policy statements

Evolution of the best practices

The following changes to policy will help mitigate the new risks and guide implementation. The list looks long, but
adopting these policies may be easier than it appears.

1. All deployed assets must be categorized by criticality and data classification. Classifications are to be reviewed
by the Cloud Governance team and the application owner before deployment to the cloud

2. Subnets containing mission-critical applications must be protected by a firewall solution capable of detecting
intrusions and responding to attacks.

3. Governance tooling must audit and enforce network configuration requirements defined by the Security
Management team

4. Governance tooling must validate that all assets related to mission-critical apps or protected data are included
in monitoring for resource depletion and optimization.

5. Governance tooling must validate that the appropriate level of logging data is being collected for all mission-
critical applications or protected data.

6. Governance process must validate that backup, recovery, and SLA adherence are properly implemented for
mission-critical applications and protected data.

7. Governance tooling must limit virtual machine deployments to approved images only.
8. Governance tooling must enforce that automatic updates are prevented on all deployed assets that support

mission-critical applications. Violations must be reviewed with operational management teams and remediated
in accordance with operations policies. Assets that are not automatically updated must be included in processes
owned by IT Operations.

9. Governance tooling must validate tagging related to cost, criticality, SLA, application, and data classification. All
values must align to predefined values managed by the governance team.

10. Governance processes must include audits at the point of deployment and at regular cycles to ensure
consistency across all assets.

11. Trends and exploits that could affect cloud deployments should be reviewed regularly by the Security team to
provide updates to security management tooling used in the cloud.

12. Before release into production, all mission-critical apps and protected data must be added to the designated
operational monitoring solution. Assets that cannot be discovered by the chosen IT operations tooling, cannot
be released for production use. Any changes required to make the assets discoverable must be made to the
relevant deployment processes to ensure assets will be discoverable in future deployments.

13. Upon discovery, operational management teams will size assets, to ensure that assets meet performance
requirements

14. Deployment tooling must be approved by the Cloud Governance team to ensure ongoing governance of
deployed assets.

15. Deployment scripts must be maintained in a central repository accessible by the Cloud Governance team for
periodic review and auditing.

16. Governance review processes must validate that deployed assets are properly configured in alignment with
SLA and recovery requirements.

This section of the article will evolve the governance MVP design to include new Azure policies and an
implementation of Azure Cost Management. Together, these two design changes will fulfill the new corporate
policy statements.

1. The Cloud Operations team will define operational monitoring tooling and automated remediation tooling. The
Cloud Governance team will support those discovery processes. In this use case, the Cloud Operations team
chose Azure Monitor as the primary tool for monitoring mission-critical applications.

2. Create a repository in Azure DevOps to store and version all relevant Resource Manager templates and

Conclusion

Next steps

scripted configurations.
3. Azure Vault implementation:

4. Update Azure Policy for all subscriptions:

5. Azure Monitor implementation:

6. Update Azure Policy for all subscriptions that contain mission-critical applications.

7. Firewall configuration:

8. Azure blueprint:

a. Define and deploy Azure Vault for backup and recovery processes.
b. Create a Resource Manager template for creation of a vault in each subscription.

a. Audit and enforce criticality and data classification across all subscriptions to identify any subscriptions
with mission-critical assets.

b. Audit and enforce the use of approved images only.

a. Once a mission-critical subscription is identified, create an Azure Monitor workspace using PowerShell.
This is a pre-deployment process.

b. During deployment testing, the Cloud Operations team deploys the necessary agents and tests
discovery.

a. Audit and enforce the application of an NSG to all NICs and subnets. Networking and IT Security define
the NSG.

b. Audit and enforce the use of approved network subnets and VNets for each network interface.
c. Audit and enforce the limitation of user-defined routing tables.
d. Audit and enforce deployment of Azure Monitor agents for all virtual machines.
e. Audit and enforce that Azure Vault exists in the subscription.

a. Identify a configuration of Azure Firewall that meets security requirements. Alternatively, identify a
third-party appliance that is compatible with Azure.

b. Create a Resource Manager template to deploy the firewall with required configurations.

a. Create a new Azure blueprint named protected-data .
b. Add the firewall and Azure Vault templates to the blueprint.
c. Add the new policies for protected data subscriptions.
d. Publish the blueprint to any management group intended to host mission-critical applications.
e. Apply the new blueprint to each affected subscription as well as existing blueprints.

These additional processes and changes to the governance MVP help mitigate many of the risks associated with
resource governance. Together they add recovery, sizing, and monitoring controls that empower cloud-aware
operations.

As cloud adoption continues to evolve and deliver additional business value, risks and cloud governance needs will
also evolve. For the fictional company in this journey, the next trigger is when the scale of deployment exceeds 100
assets to the cloud or monthly spending exceeds $1,000 per month. At this point, the Cloud Governance team
adds Cost Management controls.

Cost Management evolution

Small-to-medium enterprise: Cost Management
evolution
3/13/2019 • 4 minutes to read • Edit Online

Evolution of the narrative

Evolution of the current stateEvolution of the current state

Evolution of the future stateEvolution of the future state

Evolution of tangible risks

Evolution of the policy statements

This article evolves the narrative by adding cost controls to the governance MVP.

Adoption has grown beyond the cost tolerance indicator defined in the governance MVP. This is a good thing, as it
corresponds with migrations from the "DR" datacenter. The increase in spending now justifies an investment of
time from the Cloud Governance team.

In the previous phase of this narrative, IT had retired 100% of the DR datacenter. The application development and
BI teams were ready for production traffic.

Since then, some things have changed that will affect governance:

The migration team has begun migrating VMs out of the production datacenter.
The application development teams is actively pushing production applications to the cloud through CI/CD
pipelines. Those applications can reactively scale with user demands.
The business intelligence team within IT has delivered a number of predictive analytics tools in the cloud. the
volumes of data aggregated in the cloud continues to grow.
All of this growth supports committed business outcomes. However, costs have begun to mushroom. Projected
budgets are growing faster than expected. The CFO needs improved approaches to managing costs.

Cost monitoring and reporting is to be added to the cloud solution. IT is still serving as a cost clearing house. This
means that payment for cloud services continues to come from IT procurement. However, reporting should tie
direct operational expenses to the functions that are consuming the cloud costs. This model is referred to as "Show
Back" model to cloud accounting.

The changes to current and future state expose new risks that will require new policy statements.

Budget control: There is an inherent risk that self-service capabilities will result in excessive and unexpected costs
on the new platform. Governance processes for monitoring costs and mitigating ongoing cost risks must be in
place to ensure continued alignment with the planned budget.

This business risk can be expanded into a few technical risks:

Actual costs might exceed the plan.
Business conditions change. When they do, there will be cases when a business function needs to consume
more cloud services than expected, leading to spending anomalies. There is a risk that this extra spending will
be considered overages, as opposed to a necessary adjustment to the plan.
Systems could be overprovisioned, resulting in excess spending.

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/journeys/small-to-medium-enterprise/cost-management-evolution.md

Evolution of the best practices

Conclusion

Next steps

The following changes to policy will help mitigate the new risks and guide implementation.

1. All cloud costs should be monitored against plan on a weekly basis by the governance team. Reporting on
deviations between cloud costs and plan is to be shared with IT leadership and finance monthly. All cloud costs
and plan updates should be reviewed with IT leadership and finance monthly.

2. All costs must be allocated to a business function for accountability purposes.
3. Cloud assets should be continually monitored for optimization opportunities.
4. Cloud Governance tooling must limit Asset sizing options to an approved list of configurations. The tooling

must ensure that all assets are discoverable and tracked by the cost monitoring solution.
5. During deployment planning, any required cloud resources associated with the hosting of production

workloads should be documented. This documentation will help refine budgets and prepare additional
automation to prevent the use of more expensive options. During this process consideration should be given to
different discounting tools offered by the cloud provider, such as reserved instances or license cost reductions.

6. All application owners are required to attend trained on practices for optimizing workloads to better control
cloud costs.

This section of the article will evolve the governance MVP design to include new Azure policies and an
implementation of Azure Cost Management. Together, these two design changes will fulfill the new corporate
policy statements.

1. Implement Azure Cost Management

2. Update Azure Policy

a. Establish the right scope of access to align with the subscription pattern and the Resource Consistency
discipline. Assuming alignment with the governance MVP defined in prior articles, this requires
Enrollment Account Scope access for the Cloud Governance team executing on high-level reporting.
Additional teams outside of governance may require Resource Group Scope access.

b. Establish a budget in Azure Cost Management.
c. Review and act on initial recommendations. Have a recurring process to support reporting.
d. Configure and execute Azure Cost Management Reporting, both initial and recurring.

a. Audit the tagging, management group, subscription, and resource group values to identify any deviation.
b. Establish SKU size options to limit deployments to SKUs listed in deployment planning documentation.

Adding these processes and changes to the governance MVP helps mitigate many of the risks associated with cost
governance. Together, they create the visibility, accountability, and optimization needed to control costs.

As cloud adoption continues to evolve and deliver additional business value, risks and cloud governance needs will
also evolve. For the fictional company in this journey, the next step is using this governance investment to manage
multiple clouds.

Multi-cloud evolution

Small-to-medium enterprise: Multi-cloud evolution
3/13/2019 • 4 minutes to read • Edit Online

Evolution of the narrative

Evolution of the current stateEvolution of the current state

Evolution of the future stateEvolution of the future state

Evolution of tangible risks

Evolution of the policy statements

This article evolves the narrative by adding controls for multi-cloud adoption.

Microsoft recognizes that customers are adopting multiple clouds for specific purposes. The fictional customer in
this journey is no exception. In parallel to the Azure adoption journey, the business success has led to the
acquisition of a small, but complementary business. That business is running all of their IT operations on a
different cloud provider.

This article describes how things change when integrating the new organization. For purposes of the narrative, we
assume this company has completed each of the governance evolutions outlined in this customer journey.

In the previous phase of this narrative, the company had begun actively pushing production applications to the
cloud through CI/CD pipelines.

Since then, some things have changed that will affect governance:

Identity is controlled by an on-premises instance of Active Directory. Hybrid identity is facilitated through
replication to Azure Active Directory.
IT Operations or Cloud Operations are largely managed by Azure Monitor and related automations.
Disaster Recovery / Business Continuity is controlled by Azure Vault instances.
Azure Security Center is used to monitor security violations and attacks.
Azure Security Center and Azure Monitor are both used to monitor governance of the cloud.
Azure Blueprints, Azure Policy, and Azure management groups are used to automate compliance with policy.

The goal is to integrate the acquisition company into existing operations wherever possible.

Business acquisition cost: Acquisition of the new business is slated to be profitable in approximately five years.
Because of the slow rate of return, the board wants to control acquisition costs, as much as possible. There is a risk
of cost control and technical integration conflicting with one another.

This business risk can be expanded into a few technical risks:

Cloud migration might produce additional acquisition costs
The new environment might not be properly governed which could result in policy violations.

The following changes to policy will help mitigate the new risks and guide implementation.

1. All assets in a secondary cloud must be monitored through existing operational management and security
monitoring tools

2. All Organization Units must be integrated into the existing identity provider
3. The primary identity provider should govern authentication to assets in the secondary cloud

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/journeys/small-to-medium-enterprise/multi-cloud-evolution.md

Evolution of the best practices

Conclusion

This section of the article will evolve the governance MVP design to include new Azure policies and an
implementation of Azure Cost Management. Together, these two design changes will fulfill the new corporate
policy statements.

1. Connect the networks. This step is executed by the Networking and IT Security teams, and supported by the
Cloud Governance team. Adding a connection from the MPLS/leased-line provider to the new cloud will
integrate networks. Adding routing tables and firewall configurations will control access and traffic between the
environments.

2. Consolidate identity providers. Depending on the workloads being hosted in the secondary cloud, there are a
variety of options to identity provider consolidation. The following are a few examples:

3. Add assets to Azure Site Recovery.

4. Add assets to Azure Cost Management

5. Add assets to Azure Monitor.

6. Governance enforcement tools:

a. For applications that authenticate using OAuth 2, users from Active Directory in the secondary cloud can
simply be replicated to the existing Azure AD tenant. This ensures all users can be authenticated in the
tenant.

b. At the other extreme, federation allows OUs to flow into Active Directory on-premises, then into the
Azure AD instance.

a. Azure Site Recovery was designed from the beginning as a hybrid/multi-cloud tool.
b. VMs in the secondary cloud might be able to be protected by the same Azure Site Recovery processes

used to protect on-premises assets.

a. Azure Cost Management was designed from the beginning as a multi-cloud tool.
b. Virtual machines in the secondary cloud may be compatible with Azure Cost Management for some

cloud providers. Additional costs may apply.

a. Azure Monitor was designed as a hybrid cloud tool from inception.
b. Virtual machines in the secondary cloud may be compatible with Azure Monitor agents, allowing them

to be included in Azure Monitor for operational monitoring.

a. Governance enforcement is cloud-specific.
b. The corporate policies established in the governance journey are not cloud-specific. While the

implementation may vary from cloud to cloud, the policies can be applied to the secondary provider.

As multi-cloud adoption grows, the design evolution above will continue to mature.

This series of articles outlined the evolution of governance best practices, aligned with the experiences of this
fictional company. By starting small, but with the right foundation, the company could move quickly and yet still
apply the right amount of governance at the right time. The MVP by itself did not protect the customer. Instead, it
created the foundation to mitigate risk and add protections. From there, layers of governance were applied to
mitigate tangible risks. The exact journey presented here won't align 100% with the experiences of any reader.
Rather, it serves as a pattern for incremental governance. The reader is advised to mold these best practices to fit
their own unique constraints and governance requirements.

CAF: Large enterprise governance journey
3/13/2019 • 4 minutes to read • Edit Online

Best practice overview

WARNINGWARNING

Governance best practiceGovernance best practice

Resource organizationResource organization

This governance journey follows the experiences of a fictional company through various stages of governance
maturity. It is based on real customer journeys. The suggested best practices are based on the constraints and
needs of the fictional company.

As a quick starting point, this overview defines a minimum viable product (MVP) for governance based on best
practices. It also provides links to some governance evolutions that add further best practices as new business or
technical risks emerge.

This MVP is a baseline starting point, based on a set of assumptions. Even this minimal set of best practices is based on
corporate policies driven by unique business risks and risk tolerances. To see if these assumptions apply to you, read the
longer narrative that follows this article.

This best practice serves as a foundation that an organization can use to quickly and consistently add governance
guardrails across multiple Azure subscriptions.

The following diagram shows the governance MVP hierarchy for organizing resources.

Every application should be deployed in the proper area of the management group, subscription, and resource
group hierarchy. During deployment planning, the Cloud Governance team will create the necessary nodes in the
hierarchy to empower the cloud adoption teams.

1. A management group for each business unit with a detailed hierarchy that reflects geography then
environment type (Production, Non-Production).

2. A subscription for each unique combination of business unit, geography, environment, and "Application
Categorization."

3. A separate resource group for each application.
4. Consistent nomenclature should be applied at each level of this grouping hierarchy.

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/journeys/large-enterprise/overview.md

Governance of resourcesGovernance of resources

Demilitarized Zone (DMZ)Demilitarized Zone (DMZ)

These patterns provide room for growth without complicating the hierarchy unnecessarily.

Enforcing governance across subscriptions will come from Azure Blueprints and the associated assets within the
blueprint.

1. Create a blueprint named governance-baseline .

2. Create an Azure policy to apply or enforce the following:

3. Publish and apply the governance-baseline blueprint to each management group.

a. Enforce the use of standard Azure roles.
b. Enforce that users can only authenticate against existing an RBAC implementation.
c. Apply this blueprint to all subscriptions within the management group.

a. Resource tagging should require values for Business Function, Data Classification, Criticality, SLA,
Environment, and Application.

b. The value of the Application tag should match the name of the resource group.
c. Validate role assignments for each resource group and resource.

These patterns enable resources to be discovered and tracked, and enforce basic role management.

It’s common for specific subscriptions to require some level of access to on-premises resources. This may be the
case for migration scenarios or development scenarios, when some dependent resources are still in the on-
premises datacenter. In this case, the governance MVP adds the following best practices:

1. Establish a cloud DMZ.

2. Create a second blueprint named dmz .

3. Apply the DMZ blueprint to any subscriptions requiring on-premises connectivity. This blueprint should be
applied in addition to the governance MVP blueprint.

a. The Cloud DMZ reference architecture establishes a pattern and deployment model for creating a VPN
Gateway in Azure.

b. Validate that proper DMZ connectivity and security requirements are in place for a local edge device in
the on-premises datacenter.

c. Validate that the local edge device is compatible with Azure VPN Gateway requirements.

a. Add the Resource Manager template for the VPN Gateway to the blueprint.

One of the biggest concerns raised by IT security and traditional governance teams, is the risk of early stage cloud
adoption compromising existing assets. The above approach allows cloud adoption teams to build and migrate

https://docs.microsoft.com/azure/architecture/reference-architectures/dmz/secure-vnet-hybrid

NOTENOTE

Governance evolutions

What does this best practice do?

Evolving the best practice

hybrid solutions, with reduced risk to on-premises assets. In later evolution, this temporary solution would be
removed.

The above is a starting point to quickly create a baseline governance MVP. This is only the beginning of the governance
journey. Further evolution will be needed as the company continues to adopt the cloud and takes on more risk in the
following areas:

Mission-critical workloads
Protected data
Cost management
Multi-cloud scenarios

Moreover, the specific details of this MVP are based on the example journey of a fictitious company, described in the articles
that follow. We highly recommend becoming familiar with the other articles in this series before implementing this best
practice.

Once this MVP has been deployed, additional layers of governance can be quickly incorporated into the
environment. Here are some ways to evolve the MVP to meet specific business needs:

Security Baseline for protected data
Resource configurations for mission-critical applications
Controls for Cost Management
Controls for multi-cloud evolution

In the MVP, practices and tools from the Deployment Acceleration discipline are established to quickly apply
corporate policy. In particular, the MVP uses Azure Blueprints, Azure Policy, and Azure management groups to
apply a few basic corporate policies, as defined in the narrative for this fictional company. Those corporate policies
are applied using Azure Resource Manager templates and Azure policies to establish a very small baseline for
identity and security.

Over time, this governance MVP will be used to evolve the governance practices. As adoption advances, business
risk grows. Various disciplines within the CAF governance model will evolve to mitigate those risks. Later articles
in this series discuss the evolution of corporate policy affecting the fictional company. These evolutions happen

Next steps

across three disciplines:

Identity Baseline, as migration dependencies evolve in the narrative
Cost Management, as adoption scales.
Security Baseline, as protected data is deployed.
Resource Consistency, as IT Operations begins supporting mission-critical workloads.

Now that you’re familiar with the governance MVP and have an idea of the governance evolutions to follow, read
the supporting narrative for additional context.

Read the supporting narrative

Large enterprise: The narrative behind the
governance strategy
3/13/2019 • 4 minutes to read • Edit Online

Back story

Business characteristics

Current state

The following narrative establishes a use case for a large enterprise governance journey. Before implementing the
journey, it's important to understand the assumptions and reasoning that are reflected in this narrative. Then you
can better align the governance strategy to your own organization's journey.

Customers are demanding a better experience when interacting with this company. The current experience caused
market erosion and led to the board to hire a Chief Digital Officer (CDO). The CDO is working with marketing and
sales to drive a digital transformation that will power improved experiences. Additionally, several business units
recently hired data scientists to farm data and improve many of the manual experiences through learning and
prediction. IT is supporting these efforts where it can. However, there are "shadow IT" activities occurring that fall
outside of needed governance and security controls.

The IT organization is also facing its own challenges. Finance is planning continued reductions in the IT budget
over the next five years, leading to some necessary spending cuts starting this year. Conversely, GDPR and other
data sovereignty requirements are forcing IT to invest in assets in additional countries to localize data. Two of the
existing datacenters are overdue for hardware refreshes, causing further problems with employee and customer
satisfaction. Three more datacenters require hardware refreshes during the execution the five-year plan. The CFO
is pushing the CIO to consider the cloud as an alternative for those datacenters, to free up capital expenses.

The CIO has innovative ideas that could help the company, but she and her teams are limited to fighting fires and
controlling costs. At a luncheon with the CDO and one of the business unit leaders, the cloud migration
conversation generated interest from the CIO's peers. The three leaders aim to support each other using the cloud
to achieve their business objectives, and they have begun the exploration and planning phases of cloud adoption.

The company has the following business profile:

Sales and operations span multiple geographic areas with global customers in multiple markets.
The business grew through acquisition and operates across three business units based on the target customer
base. Budgeting is a complex matrix across business units and functions.
The business views most of IT as a capital drain or a cost center.

Here is the current state of the company's IT and cloud operations:

IT operates more than 20 privately owned datacenters around the globe.
Each datacenter is connected by a series of regional leased lines, creating a loosely coupled global WAN.
IT entered the cloud by migrating all end-user email accounts to Office 365. This migration was completed
more than six months ago. Since then, only a few IT assets have been deployed to the cloud.
The CDO's primary development team is working in a dev/test capacity to learn about cloud native capabilities.
One business unit is experimenting with big data in the cloud. The BI team inside of IT is participating in that
effort.

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/journeys/large-enterprise/narrative.md

Future state

Next steps

The existing IT governance policy states that customer personally identifiable information (PII) and financial
data must be hosted on assets owned directly by the company. This policy blocks cloud adoption for any
mission-critical apps or protected data.
IT investments are controlled largely by capital expense (CapEx). Those investments are planned yearly and
often include plans for ongoing maintenance, as well as established refresh cycles of three to five years
depending on the datacenter.
Most investments in technology that don't align to the annual plan are addressed by shadow IT efforts. Those
efforts are usually managed by business units and funded through the business unit's operating expenses.

The following changes are anticipated over the next several years:

The CIO is leading an effort to modernize the policy on PII and financial data to support future goals. Two
members of the IT Governance team have visibility into this effort.
If the early experiments in App Dev and BI show leading indicators of success, they would each like to release
small-scale production solutions to the cloud in the next 24 months.
The CIO and CFO have assigned an architect and the Vice President of Infrastructure to create a cost analysis
and feasibility study. These efforts will determine if the company can and should move 5,000 assets to the
cloud over the next 36 months. A successful migration would allow the CIO to eliminate two datacenters,
reducing costs by over $100M USD during the five-year plan. If three to four datacenters can experience
similar results, the budget will be back in the black, giving the CIO budget to support more innovative
initiatives.

Along with this cost savings, the company plans to change the management of some IT investments by
repositioning the committed CapEx as an operational expense (OpEx) within IT. This change will provide
greater cost control, which IT can use to accelerate other planned efforts.

The company has developed a corporate policy to shape the governance implementation. The corporate policy
drives many of the technical decisions.

Review the initial corporate policy

Large enterprise: Initial corporate policy behind the
governance strategy
3/13/2019 • 5 minutes to read • Edit Online

NOTENOTE

Cloud Governance team

Objective

Business risks

The following corporate policy defines the initial governance position, which is the starting point for this journey.
This article defines early-stage risks, initial policy statements, and early processes to enforce policy statements.

The corporate policy is not a technical document, but it drives many technical decisions. The governance MVP described in
the overview ultimately derives from this policy. Before implementing a governance MVP, your organization should develop a
corporate policy based on your own objectives and business risks.

The CIO recently held a meeting with the IT Governance team to understand the history of the PII and mission-
critical policies and review the effect of changing those policies. She also discussed the overall potential of the
cloud for IT and the company.

After the meeting, two members of the IT Governance team requested permission to research and support the
cloud planning efforts. Recognizing the need for governance and an opportunity to limit shadow IT, the Director of
IT Governance supported this idea. With that, the Cloud Governance team was born. Over the next several
months, they will inherit the cleanup of many mistakes made during exploration in the cloud from a governance
perspective. This will earn them the moniker of Cloud Custodians. In later evolutions, this journey will show how
their roles change over time.

The initial objective is to establish a foundation for governance agility. An effective Governance MVP allows the
governance team to stay ahead of cloud adoption and implement guardrails as the adoption plan evolves.

The company is at an early stage of cloud adoption, experimenting and building proofs of concept. Risks are now
relatively low, but future risks are likely. There is little definition around the final state of the technical solutions to
be deployed to the cloud. In addition, the cloud readiness of IT employees is low. A foundation for cloud adoption
will help the team safely learn and grow.

Future-proofing: There is a risk of not empowering growth, but also a risk of not providing the right protections
against future risks.

An agile yet robust governance approach is needed to support the board’s vision for corporate and technical
growth. Failure to implement such a strategy will slow technical growth, potentially risking market share growth
and future market share. The impact of such a business risk is unquestionably high. However, the role IT will play
in those potential future states is unknown, making the risk associated with current IT efforts relatively high. That
said, until more concrete plans are aligned, the business has a high tolerance for risk.

This business risk can be broken down tactically into several technical risks:

Well-intended corporate policies could slow transformation efforts or break critical business processes, if not

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/journeys/large-enterprise/initial-corporate-policy.md

Tolerance indicators

Policy statements

considered within a structured approval flow.
The application of governance to deployed assets could be difficult and costly.
Governance may not be properly applied across an application or workload, creating gaps in security.
With so many teams working in the cloud, there is a risk of inconsistency.
Costs may not properly align to business units, teams, or other budgetary management units.
The use of multiple identities to manage various deployments could lead to security issues.
Despite current policies, there is a risk that protected data could be mistakenly deployed to the cloud.

The current risk tolerance is high and the appetite for investing in cloud governance is low. As such, the tolerance
indicators act as an early warning system to trigger the investment of time and energy. If the following indicators
are observed, it would be wise to evolve the governance strategy.

Cost Management: Scale of deployment exceeds 1,000 assets to the cloud, or monthly spending exceeds
$10,000 USD per month.
Identity Baseline: Inclusion of applications with legacy or third-party multifactor authentication (MFA)
requirements.
Security Baseline: Inclusion of protected data in defined cloud adoption plans.
Resource Consistency: Inclusion of any mission-critical applications in defined cloud adoption plans.

The following policy statements establish the requirements needed to mitigate the defined risks. These policies
define the functional requirements for the governance MVP. Each will be represented in the implementation of the
governance MVP.

Deployment Acceleration:

All assets must be grouped and tagged according to defined grouping and tagging strategies.
All assets must use an approved deployment model.
Once a governance foundation has been established for a cloud provider, any deployment tooling must be
compatible with the tools defined by the governance team.

Identity Baseline:

All assets deployed to the cloud should be controlled using identities and roles approved by current governance
policies.
All groups in the on-premises Active Directory infrastructure that have elevated privileges should be mapped to
an approved RBAC role.

Security Baseline:

Any asset deployed to the cloud must have an approved data classification.
No assets identified with a protected level of data may be deployed to the cloud, until sufficient requirements
for security and governance can be approved and implemented.
Until minimum network security requirements can be validated and governed, cloud environments are seen as
a demilitarized zone and should meet similar connection requirements to other data centers or internal
networks.

Cost Management:

For tracking purposes, all assets must be assigned to an application owner within one of the core business
functions.

Processes

Next steps

When cost concerns arise, additional governance requirements will be established with the Finance team.

Resource Consistency:

Because no mission-critical workloads are deployed at this stage, there are no SLA, performance, or BCDR
requirements to be governed.
When mission-critical workloads are deployed, additional governance requirements will be established with IT
operations.

No budget has been allocated for ongoing monitoring and enforcement of these governance policies. Because of
that, the Cloud Governance team has some ad hoc ways to monitor adherence to policy statements.

Education: The Cloud Governance team is investing time to educate the cloud adoption teams on the
governance journeys that support these policies.
Deployment reviews: Before deploying any asset, the Cloud Governance team will review the governance
journey with the cloud adoption teams.

This corporate policy prepares the Cloud Governance team to implement the governance MVP, which will be the
foundation for adoption. The next step is to implement this MVP.

Best practice explained

Large enterprise: Best practice explained
3/13/2019 • 10 minutes to read • Edit Online

Governance MVP (Cloud Adoption Foundation)

Implementation process

The governance journey starts with a set of initial corporate policies. These policies are used to establish a
minimum viable product (MVP) for governance that reflects best practices.

In this article, we discuss the high-level strategies that are required to create a governance MVP. The core of the
governance MVP is the Deployment Acceleration discipline. The tools and patterns applied at this stage will enable
the incremental evolutions needed to expand governance in the future.

Rapid adoption of governance and corporate policy is achievable, thanks to a few simple principles and cloud-
based governance tooling. These are the first of the three governance disciplines to approach in any governance
process. Each will be expanded upon in this article.

To establish the starting point, this article will discuss the high-level strategies behind Identity Baseline, Security
Baseline, and Deployment Acceleration that are required to create a governance MVP, which will serve as the
foundation for all adoption.

The implementation of the governance MVP has dependencies on Identity, Security, and Networking. Once the
dependencies are resolved, the Cloud Governance team will decide a few aspects of governance. The decisions
from the Cloud Governance team and from supporting teams will be implemented through a single package of
enforcement assets.

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/journeys/large-enterprise/best-practice-explained.md

Dependent decisions

Identity BaselineIdentity Baseline

Security Baseline: NetworkingSecurity Baseline: Networking

Security Baseline: EncryptionSecurity Baseline: Encryption

This implementation can also be described using a simple checklist:

1. Solicit decisions regarding core dependencies: Identity, Network, and Encryption.
2. Determine the pattern to be used during corporate policy enforcement.
3. Determine the appropriate governance patterns for the Resource Consistency, Resource Tagging, and Loging

and Reporting disciplines.
4. Implement the governance tools aligned to the chosen policy enforcement pattern to apply the dependent

decisions and governance decisions.

The following decisions come from teams outside of the Cloud Governance team. The implementation of each will
come from those same teams. However, the Cloud Governance team is responsible for implementing a solution to
validate that those implementations are consistently applied.

Identity Baseline is the fundamental starting point for all governance. Before attempting to apply governance,
identity must be established. The established identity strategy will then be enforced by the governance solutions. In
this governance journey, the Identity Management team implements the Directory Synchronization pattern:

RBAC will be provided by Azure Active Directory (Azure AD), using the directory synchronization or "Same
Sign-On" that was implemented during company’s migration to Office 365. For implementation guidance, see
Reference Architecture for Azure AD Integration.
The Azure AD tenant will also govern authentication and access for assets deployed to Azure.

In the governance MVP, the governance team will enforce application of the replicated tenant through subscription
governance tooling, discussed later in this article. In future evolutions, the governance team could also enforce rich
tooling in Azure AD to extend this capability.

Software Defined Network is an important initial aspect of the Security Baseline. Establishing the governance
MVP depends on early decisions from the Security Management team to define how networks can be safely
configured.

Given the lack of requirements, IT security is playing it safe and has required a Cloud DMZ Pattern. That means
governance of the Azure deployments themselves will be very light.

Azure subscriptions may connect to an existing data center via VPN, but must follow all existing on-premises IT
governance policies regarding connection of a demilitarized zone to protected resources. For implementation
guidance regarding VPN connectivity, see VPN Reference Architecture.
Decisions regarding subnet, firewall, and routing are currently being deferred to each application/workload
lead.
Additional analysis is required before releasing of any protected data or mission-critical workloads.

In this pattern, cloud networks can only connect to on-premises resources over a pre-allocated VPN that is
compatible with Azure. Traffic over that connection will be treated like any traffic coming from a demilitarized zone.
Additional considerations may be required on the on-premises edge device to securely handle traffic from Azure.

The Cloud Governance team has proactively invited members of the networking and IT security teams to regular
meetings, in order to stay ahead of networking demands and risks.

Encryption is another fundamental decision within the Security Baseline discipline. Because the company currently
does not yet store any protected data in the cloud, the Security Team has decided on a less aggressive pattern for
encryption. At this point, a Cloud Native pattern to encryption is suggested but not required of any development

https://docs.microsoft.com/azure/architecture/reference-architectures/identity/azure-ad
https://docs.microsoft.com/azure/architecture/reference-architectures/hybrid-networking/vpn

Policy enforcement

Applying the dependent patterns

Application of governance-defined patterns

Subscription ModelSubscription Model

team.

No governance requirements have been set regarding the use of encryption, because the current corporate
policy does not permit mission-critical or protected data in the cloud.
Additional analysis will be required before releasing any protected data or mission-critical workloads

The first decision to make regarding Deployment Acceleration is the pattern for enforcement. In this narrative, the
governance team decided to implement the Automated Enforcement pattern.

Azure Security Center will be made available to the security and identity teams to monitor security risks. Both
teams are also likely to use Security Center to identify new risks and evolve corporate policy.
RBAC is required in all subscriptions to govern authentication enforcement.
Azure Policy will be published to each management group and applied to all subscriptions. However, the level
of policies being enforced will be very limited in this initial Governance MVP.
Although Azure management groups are being used, a relatively simple hierarchy is expected.
Azure Blueprints will be used to deploy and update subscriptions by applying RBAC requirements, Resource
Manager Templates, and Azure Policy across management groups.

The following decisions represent the patterns to be enforced through the policy enforcement strategy above:

Identity Baseline. Azure Blueprints will set RBAC requirements at a subscription level to ensure that consistent
identity is configured for all subscriptions.

Security Baseline: Networking. The Cloud Governance team maintains a Resource Manager template for
establishing a VPN gateway between Azure and the on-premises VPN device. When an application team requires
a VPN connection, the Cloud Governance team will apply the gateway Resource Manager template via Azure
Blueprints.

Security Baseline: Encryption. At this point in the journey, no policy enforcement is required in this area. This
will be revisited during later evolutions.

The Cloud Governance team will be responsible for the following decisions and implementations. Many will
require inputs from other teams, but the Cloud Governance team is likely to own both the decision and
implementation. The following sections outline the decisions made for this use case and details of each decision.

The Mixed pattern has been chosen for Azure subscriptions.

As new requests for Azure resources arise, a "Department" should be established for each major business unit
in each operating geography. Within each of the Departments, "Subscriptions" should be created for each
application archetype.
An application archetype is a means of grouping applications with similar needs. Common examples include:
Applications with protected data, governed applications (such as HIPAA or FedRAMP), low-risk applications,
applications with on-premises dependencies, SAP or other mainframes in Azure, or applications that extend on-
premises SAP or mainframes. Each organization has unique needs based on data classifications and the types
of applications that support the business. Dependency mapping of the digital estate can help define the
application archetypes in an organization.
A common naming convention should be agreed upon as part of the subscription design, based on the above
two bullets.

Resource ConsistencyResource Consistency

Resource TaggingResource Tagging

Logging and reportingLogging and reporting

Evolution of governance processes

Hierarchical Consistency has been chosen as a Resource Consistency pattern.

Resource groups should be created for each application. Management groups should be created for each
application archetype. Azure Policy should be applied to all subscriptions in the associated management group.
As part of the deployment process, Resource Consistency templates for all assets should be stored in source
control.
Each resource group should align to a specific workload or application.
The Azure management group hierarchy defined should represent billing responsibility and application
ownership using nested groups.
Extensive implementation of Azure Policy could exceed the team’s time commitments and may not provide
much value at this point. However, a simple default policy should be created and applied to each resource
group to enforce the first few cloud governance policy statements. This serves to define the implementation of
specific governance requirements. Those implementations can then be applied across all deployed assets.

The Accounting pattern has been chosen for resource tagging.

Deployed assets should be tagged with values for the following: Department/Billing Unit, Geography, Data
Classification, Criticality, SLA, Environment, Application Archetype, Application, and Application Owner.
These values along with the Azure management group and subscription associated with a deployed asset will
drive governance, operations, and security decisions.

At this point, a Hybrid pattern for log and reporting is suggested but not required of any development team.

No governance requirements are currently set regarding the specific data points to be collected for logging or
reporting purposes. This is specific to this fictional narrative and should be considered an antipattern. Logging
standards should be determined and enforced as soon as possible.
Additional analysis is required before the release of any protected data or mission-critical workloads.
Prior to supporting protected data or mission-critical workloads, the existing on-premises operational
monitoring solution must be granted access to the workspace used for logging. Applications are required to
meet security and logging requirements associated with the use of that tenant, if the application is to be
supported with a defined SLA.

Some of the policy statements cannot or should not be controlled by automated tooling. Other policies will require
periodic effort from IT Security and on-premises Identity Baseline teams. The Cloud Governance team will need to
oversee the following processes to implement the last eight policy statements:

Corporate Policy Changes: The Cloud Governance team will make changes to the governance MVP design to
adopt the new policies. The value of the governance MVP is that it will allow for the automatic enforcement of the
new policies.

Adoption Acceleration: The Cloud Governance team has been reviewing deployment scripts across multiple
teams. They've maintained a set of scripts that serve as deployment templates. Those templates can be used by the
cloud adoption teams and DevOps teams to more quickly define deployments. Each script contains the
requirements for enforcing governance policies, and additional effort from cloud adoption engineers is not needed.
As the curators of these scripts, they can implement policy changes more quickly. Additionally, they are viewed as
accelerators of adoption. This ensures consistent deployments without strictly enforcing adherence.

Engineer Training: The Cloud Governance team offers bi-monthly training sessions and has created two videos
for engineers. Both resources help engineers get up to speed quickly on the governance culture and how

Alternative patterns

Next steps

deployments are performed. The team is adding training assets to demonstrate the difference between production
and non-production deployments, which helps engineers understand how the new policies affect adoption. This
ensures consistent deployments without strictly enforcing adherence.

Deployment Planning: Before deploying any asset containing protected data, the Cloud Governance team will
be responsible for reviewing deployment scripts to validate governance alignment. Existing teams with previously
approved deployments will be audited using programmatic tooling.

Monthly Audit and Reporting: Each month, the Cloud Governance team runs an audit of all cloud deployments
to validate continued alignment to policy. When deviations are discovered, they are documented and shared with
the cloud adoption teams. When enforcement doesn't risk a business interruption or data leak, the policies are
automatically enforced. At the end of the audit, the Cloud Governance team compiles a report for the Cloud
Strategy team and each cloud adoption team to communicate overall adherence to policy. The report is also stored
for auditing and legal purposes.

Quarterly Policy Review: Each quarter, the Cloud Governance team and Cloud Strategy team to review audit
results and suggest changes to corporate policy. Many of those suggestions are the result of continuous
improvements and the observation of usage patterns. Approved policy changes are integrated into governance
tooling during subsequent audit cycles.

If any of the patterns chosen in this governance journey don't align with the reader's requirements, alternatives to
each pattern are available:

Encryption patterns
Identity patterns
Logging and Reporting patterns
Policy Enforcement patterns
Resource Consistency patterns
Resource Tagging patterns
Software Defined Network patterns
Subscription Design patterns

Once this guidance is implemented, each cloud adoption team can proceed with a solid governance foundation.
The Cloud Governance team will work in parallel to continually update the corporate policies and governance
disciplines.

Both teams will use the tolerance indicators to identify the next evolution needed to continue supporting cloud
adoption. The next step for the company in this journey is to evolve their governance baseline to support
applications with legacy or third-party multifactor authentication (MFA) requirements.

Identity Baseline evolution

Large enterprise: Identity Baseline evolution
3/13/2019 • 4 minutes to read • Edit Online

Evolution of the narrative

Evolution of the Cloud Governance teamEvolution of the Cloud Governance team

Evolution of the current stateEvolution of the current state

Evolution of the future stateEvolution of the future state

Evolution of tangible risks

This article evolves the narrative by adding Identity Baseline controls to the governance MVP.

The business justification for the cloud migration of the two datacenters was approved by the CFO. During the
technical feasibility study, several roadblocks were discovered:

Protected data and mission-critical applications represent 25% of the workloads in the two datacenters. Neither
can be eliminated until the current governance policies regarding PII and mission-critical applications have
been modernized.
7% of the assets in those datacenters are not cloud-compatible. They will be moved to an alternate datacenter
before termination of the datacenter contract.
15% of the assets in the datacenter (750 virtual machines) have a dependency on legacy authentication or
third-party multi-factor authentication.
The VPN connection that connects existing datacenters and Azure does not offer sufficient data transmission
speeds or latency to migrate the volume of assets within the two-year timeline to retire the datacenter.

The first two roadblocks are being mitigated in parallel. This article will address the resolution of the third and
fourth roadblocks.

The Cloud Governance team is expanding. Given the need for additional support regarding identity management,
a systems administrator from the Identity Baseline team now participates in a weekly meeting to keep the existing
team members aware of changes.

The IT team has approval to move forward with the CIO and CFO's plans to retire two datacenters. However, IT is
concerned that 750 (15%) of the assets in those datacenters will have to be moved somewhere other than the
cloud.

The new future state plans require a more robust Identity Baseline solution to migrate the 750 virtual machines
with legacy authentication requirements. Beyond these two datacenters, similar percentages of assets in other
datacenters are expected to be affected by this challenge. The future state now also requires a connection from the
cloud provider to the company’s MPLS/leased-line solution.

The changes to current and future state expose new risks that will require new policy statements.

Business interruption during migration. Migration to the cloud creates a controlled, time-bound risk that can
be managed. Moving aging hardware to another part of the world is much higher risk. A mitigation strategy is
needed to avoid interruptions to business operations.

Existing identity dependencies. Dependencies on existing authentication and identity services may delay or
prevent the migration of some workloads to the cloud. Failure to return the two datacenters on time will incur
millions of dollars in datacenter lease fees.

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/journeys/large-enterprise/identity-baseline-evolution.md

Evolution of the policy statements

Evolution of the best practices

Conclusion

Next steps

This business risk can be expanded into a few technical risks:

Legacy authentication might not be available in the cloud, limiting deployment of some applications.
The current third-party MFA solution might not be available in the cloud, limiting deployment of some
applications.
Retooling or moving either could create outages and add costs.
The speed and stability of the VPN might impede migration.
Traffic coming into the cloud could cause security issues in other parts of the global network.

The following changes to policy will help mitigate the new risks and guide implementation.

1. The chosen cloud provider must offer a means of authenticating via legacy methods.
2. The chosen cloud provider must offer a means of authentication with the current third-party MFA solution.
3. A high-speed private connection should be established between the cloud provider and the company’s telco

provider, connecting the cloud provider to the global network of datacenters.
4. Until sufficient security requirements are established, no inbound public traffic may access company assets

hosted in the cloud. All ports are blocked from any source outside of the global WAN.

The governance MVP design evolves to include new Azure policies and an implementation of Active Directory on
a virtual machine. Together, these two design changes fulfill the new corporate policy statements.

Here are the new best practices:

1. DMZ blueprint: The on-premises side of the DMZ should be configured to allow communication between the
following solution and the on-premises Active Directory servers. This best practice requires a DMZ to enable
Active Directory Domain Services across network boundaries.

2. Azure Resource Manager templates:

3. Azure Policy: Apply the NSG to all resources.
4. Azure blueprint

a. Define an NSG to block external traffic and whitelist internal traffic.
b. Deploy two AD virtual machines in a load balanced pair based on a golden image. On first boot, that

image runs a PowerShell script to join the domain and register with domain services. For more
information, see Extend Active Directory Domain Services (AD DS) to Azure.

a. Create a blueprint named active-directory-virtual-machines .
b. Add each of the AD templates and policies to the blueprint.
c. Publish the blueprint to any applicable management group.
d. Apply the blueprint to any subscription requiring legacy or third-party MFA authentication.
e. The instance of AD running in Azure can now be used as an extension of the on-premises AD solution,

allowing it to integrate with the existing MFA tool and provide claims-based authentication, both
through existing Active Directory functionality.

Adding these changes to the governance MVP helps mitigate many of the risks in this article, allowing each cloud
adoption team to quickly move past this roadblock.

As cloud adoption evolves and delivers additional business value, risks and cloud governance needs will also
evolve. The following are a few evolutions that may occur. For the fictional company in this journey, the next trigger
is the inclusion of protected data in the cloud adoption plan. This change will require additional security controls.

Security Baseline evolution

Large enterprise: Security Baseline evolution
3/13/2019 • 13 minutes to read • Edit Online

Evolution of the narrative

Evolution of the Cloud Governance teamEvolution of the Cloud Governance team

Evolution of the current stateEvolution of the current state

This article evolves the narrative by adding security controls that support moving protected data to the cloud.

The CIO has spent months collaborating with colleagues and the company’s legal staff. A management consultant
with expertise in cybersecurity was engaged to help the existing IT Security and IT Governance teams draft a new
policy regarding protected data. The group was able to foster board support to replace the existing policy, allowing
PII and financial data to be hosted by approved cloud providers. This required adopting a set of security
requirements and a governance process to verify and document adherence to those policies.

For the past 12 months, the cloud adoption teams have cleared most of the 5,000 assets from the two datacenters
to be retired. The 350 incompatible assets were moved to an alternate datacenter. Only the 1,250 virtual machines
that contain protected data remain.

The Cloud Governance team continues to evolve along with the narrative. The two founding members of the team
are now among the most respected cloud architects in the company. The collection of configuration scripts has
grown as new teams tackle innovative new deployments. The Cloud Governance team has also grown. Most
recently, members of the IT Operations team have joined Cloud Governance team activities to prepare for cloud
operations. The cloud architects who helped foster this community are seen both as cloud guardians and cloud
accelerators.

While the difference is subtle, it is an important distinction when building a governance-focused IT culture. A cloud
custodian cleans up the messes made by innovative cloud architects, and the two roles have natural friction and
opposing objectives. A cloud guardian helps keep the cloud safe, so other cloud architects can move more quickly
with fewer messes. A cloud accelerator performs both functions but is also involved in the creation of templates to
accelerate deployment and adoption, becoming an innovation accelerator as well as a defender of the Five
Disciplines of Cloud Governance.

In the previous phase of this narrative, the company had begun the process of retiring two datacenters. This
ongoing effort includes migrating some applications with legacy authentication requirements, which required an
evolution of the Identity Baseline, described in the previous article.

Since then, some things have changed that will affect governance:

Thousands of IT and business assets have been deployed to the cloud.
The application development team has implemented a continuous integration and continuous deployment
(CI/CD) pipeline to deploy a cloud native application with an improved user experience. That application
doesn’t interact with protected data yet, so it’s not production ready.
The Business Intelligence team within IT actively curates data in the cloud from logistics, inventory, and third-
party data. This data is being used to drive new predictions, which could shape business processes. However,
those predictions and insights are not actionable until customer and financial data can be integrated into the
data platform.
The IT team is progressing on the CIO and CFO's plans to retire two datacenters. Almost 3,500 of the assets in
the two datacenters have been retired or migrated.
The policies regarding PII and financial data have been modernized. However, the new corporate policies are

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/journeys/large-enterprise/security-baseline-evolution.md

Evolution of the future stateEvolution of the future state

Evolution of tangible risks

Evolution of the policy statements

contingent upon the implementation of related security and governance policies. Teams are still stalled.

Early experiments from the application development and BI teams have shown potential improvements in
customer experiences and data-driven decisions. Both teams would like to expand adoption of the cloud over
the next 18 months by deploying those solutions to production.
IT has developed a business justification to migrate five more datacenters to Azure, which will further decrease
IT costs and provide greater business agility. While smaller in scale, the retirement of those datacenters is
expected to double the total cost savings.
Capital expense and operational expense budgets have approved to implement the required security and
governance policies, tools, and processes. The expected cost savings from the datacenter retirement are more
than enough to pay for this new initiative. IT and business leadership are confident this investment will
accelerate the realization of returns in other areas. The grassroots Cloud Governance team became a
recognized team with dedicated leadership and staffing.
Collectively, the cloud adoption teams, Cloud Governance team, IT Security team, and IT Governance team will
implement security and governance requirements to allow cloud adoption teams to migrate protected data into
the cloud.

Data Breach: There is an inherent increase in liabilities related to data breaches when adopting any new data
platform. Technicians adopting cloud technologies have increased responsibilities to implement solutions which
can decrease this risk. A robust security and governance strategy must be implemented to ensure those
technicians fulfill those responsibilities.

This business risk can be expanded into a few technical risks:

Mission-critical apps or protected data might be deployed unintentionally.
Protected data might be exposed during storage due to poor encryption decisions.
Unauthorized users might access protected data.
External intrusion could result in access to protected data.
External intrusion or denial of service attacks could cause a business interruption.
Organization or employment changes could allow for unauthorized access to protected data.
New exploits might create opportunities for intrusion or unauthorized access.
Inconsistent deployment processes might result in security gaps that could lead to data leaks or interruptions.
Configuration drift or missed patches might result in unintended security gaps that could lead to data leaks or
interruptions.
Disparate edge devices might increase network operations costs.
Disparate device configurations might lead to oversights in configuration and compromises in security.
The Cybersecurity team insists there is a risk of vendor lock-in from generating encryption keys on a single
cloud provider's platform. While this claim is unsubstantiated, it was accepted by the team for the time being.

The following changes to policy will help mitigate the new risks and guide implementation. The list looks long, but
the adoption of these policies may be easier than it would appear.

1. All deployed assets must be categorized by criticality and data classification. Classifications are to be reviewed
by the Cloud Governance team and the application before deployment to the cloud.

2. Applications that store or access protected data are to be managed differently than those that don’t. At a
minimum, they should be segmented to avoid unintended access of protected data.

3. All protected data must be encrypted when at rest.

Evolution of the best practices

4. Elevated permissions in any segment containing protected data should be an exception. Any such exceptions
will be recorded with the Cloud Governance team and audited regularly.

5. Network subnets containing protected data must be isolated from any other subnets. Network traffic between
protected data subnets will be audited regularly.

6. No subnet containing protected data can be directly accessed over the public internet or across datacenters.
Access to those subnets must be routed through intermediate subnet works. All access into those subnets must
come through a firewall solution that can perform packet scanning and blocking functions.

7. Governance tooling must audit and enforce network configuration requirements defined by the Security
Management team.

8. Governance tooling must limit VM deployment to approved images only.
9. Whenever possible, node configuration management should apply policy requirements to the configuration of

any guest operating system. Node configuration management should respect the existing investment in Group
Policy Object (GPO) for resource configuration.

10. Governance tooling will audit that automatic updates are enabled on all deployed assets. When possible,
automatic updates will be enforced. When not enforced by tooling, node-level violations must be reviewed with
operational management teams and remediated in accordance with operations policies. Assets that are not
automatically updated must be included in processes owned by IT Operations.

11. Creation of new subscriptions or management groups for any mission-critical applications or protected data
requires a review from the Cloud Governance team to ensure proper blueprint assignment.

12. A least-privilege access model will be applied to any subscription that contains mission-critical applications or
protected data.

13. The cloud vendor must be capable of integrating encryption keys managed by the existing on-premises
solution.

14. The cloud vendor must be capable of supporting the existing edge device solution and any required
configurations to protect any publicly exposed network boundary.

15. The cloud vendor must be capable of supporting a shared connection to the global WAN, with data
transmission routed through the existing edge device solution.

16. Trends and exploits that could affect cloud deployments should be reviewed regularly by the security team to
provide updates to Security Baseline tooling used in the cloud.

17. Deployment tooling must be approved by the Cloud Governance team to ensure ongoing governance of
deployed assets.

18. Deployment scripts must be maintained in a central repository accessible by the Cloud Governance team for
periodic review and auditing.

19. Governance processes must include audits at the point of deployment and at regular cycles to ensure
consistency across all assets.

20. Deployment of any applications that require customer authentication must use an approved identity provider
that is compatible with the primary identity provider for internal users.

21. Cloud Governance processes must include quarterly reviews with Identity Baseline teams to identify malicious
actors or usage patterns that should be prevented by cloud asset configuration.

This section of the article will evolve the governance MVP design to include new Azure policies and an
implementation of Azure Cost Management. Together, these two design changes will fulfill the new corporate
policy statements.

The new best practices fall into two categories: Corporate IT (Hub) and Cloud Adoption (Spoke).

Establishing a corporate IT hub/spoke subscription to centralize the Security Baseline: In this best
practice, the existing governance capacity is wrapped by a Hub Spoke Topology with Shared Services, with a few
key additions from the Cloud Governance team.

1. Azure DevOps repository. Create a repository in Azure DevOps to store and version all relevant Azure
Resource Manager templates and scripted configurations

2. Hub-Spoke template.

3. Create Azure policies. Create a policy named Hub NSG Enforcement to enforce the configuration of the NSG
assigned to any VNet created in this subscription. Apply the built-in Policies for guest configuration as follows:

4. Corporate IT blueprint

5. Expanding on initial management group hierarchy.

6. Integrate group policy objects (GPO) through Desired State Configuration (DSC):

a. The guidance in the Hub-Spoke with Shared Services Reference Architecture can be used to generate
Resource Manager templates for the assets required in a corporate IT hub.

b. Using those templates, this structure can be made repeatable, as part of a central governance strategy.
c. In addition to the current reference architecture, it is advised that a Network Security Group (NSG)

template should be created capturing any port blocking or whitelisting requirements for the VNet to
host the firewall. This NSG will differ from prior NSGs, because it will be the first NSG to allow public
traffic into a VNet.

a. Audit that Windows web servers are using secure communication protocols.
b. Audit that password security settings are set correctly inside Linux and Windows machines.

a. Create an Azure blueprint named corporate-it-subscription .
b. Add the hub/spoke templates and Hub NSG policy.

a. For each management group that has requested support for protected data, the
corporate-it-subscription-blueprint blueprint provides an accelerated hub solution.

b. Because management groups in this fictional example include a regional hierarchy in addition to a
business unit hierarchy, this blueprint will be deployed in each region.

c. For each region in the management group hierarchy, create a subscription named
Corporate IT Subscription .

d. Apply the corporate-it-subscription-blueprint blueprint to each regional instance.
e. This will establish a hub for each business unit in each region. Note: Further cost savings could be

achieved, but sharing hubs across business units in each region.

a. Convert GPO to DSC – The Microsoft Baseline Management project in Github can accelerate this effort.
* Be sure to store DSC in the repository in parallel with Resource Manager templates.

b. Deploy Azure Automation State Configuration to any instances of the Corporate IT subscription. Azure
Automation can be used to apply DSC to VMs deployed in supported subscriptions within the
management group.

c. The current roadmap plans to enable custom guest configuration policies. When that feature is released,
the use of Azure Automation in this best practice will no longer be required.

Applying additional governance to a Cloud Adoption Subscription (Spoke): Building on the
Corporate IT Subscription , minor changes to the governance MVP applied to each subscription dedicated to the

support of application archetypes can produce rapid evolution.

In prior evolutions of the best practice, NSGs were defined which blocked public traffic and whitelisted internal
traffic. Additionally, the Azure blueprint temporarily created DMZ and Active Directory capabilities. In this
evolution, we will tweak those assets a bit, creating a new version of the Azure blueprint.

1. Network Peering Template. This template will peer the VNet in each subscription with the Hub VNet in the
Corporate IT subscription.
a. The guidance from the prior section, Hub-Spoke with Shared Services Reference Architecture generated

a Resource Manager template for enabling VNet peering.
b. That template can be used as a guide to modify the DMZ template from the prior governance evolution.
c. Essentially, we are now adding VNet peering to the DMZ VNet that was previously connected to the

https://github.com/Microsoft/BaselineManagement

Conclusion

Next steps

2. Modify the NSG. Block all public AND direct on-premises traffic in the NSG. The only inbound traffic should be
coming through the VNet peer in the corporate IT subscription.

3. Azure Security Center implementation

4. Update Azure Policy for all subscriptions.

5. Update Azure Policy for all subscriptions that contains protected data classifications.

6. Azure blueprint:

local edge device over VPN.
d. *** It is also advised that the VPN should be removed from this template as well to ensure no traffic is

routed directly to the on-premises datacenter, without passing through the corporate IT subscription and
Firewall solution.

e. Additional network configuration will be required by Azure Automation to apply DSC to hosted VMs.

a. In the prior evolution, an NSG was created blocking all public traffic and whitelisting all internal traffic.
Now we want to shift this NSG a bit.

b. The new NSG configuration, should block all public traffic and all traffic from the local datacenter.
c. Traffic entering this VNet should only come from the VNet on the other side of the VNet peer.

a. Configure Azure Security Center for any management group that contains protected data classifications.
b. Set Automatic provisioning to on by default to ensure patching compliance.
c. Establish OS security configurations. IT Security to define the configuration.
d. Support IT Security in the initial use of Azure Security Center. Transition use of security center to IT

security, but maintain access for governance continuous improvement purposes
e. Create a Resource Manager template reflecting the changes required for Azure Security Center

configuration within a subscription.

a. Audit and enforce criticality and data classification across all management groups and subscriptions to
identify any subscriptions with protected data classifications.

b. Audit and enforce use of approved OS images only.
c. Audit and enforce guest configurations based on security requirements for each node.

a. Audit and enforce use of standard roles only
b. Audit and enforce application of encryption for all storage accounts and files at rest on individual nodes.
c. Audit and enforce the application of the new version of the DMZ NSG.
d. Audit and enforce use of approved network subnet and VNet per network interface.
e. Audit and enforce the limitation of user-defined routing tables.

a. Create an Azure blueprint named protected-data .
b. Add the VNet peer, NSG, and Azure Security Center templates to the blueprint.
c. Ensure the template for Active Directory from the previous evolution is NOT included in the blueprint.

Any dependencies on Active Directory will be provided by the corporate IT subscription.
d. Terminate any existing Active Directory VMs deployed in the previous evolution.
e. Add the new policies for protected data subscriptions.
f. Publish the blueprint to any management group intended to host protected data.
g. Apply the new blueprint to each affected subscription along with existing blueprints.

Adding these processes and changes to the governance MVP helps mitigate many of the risks associated with
security governance. Together, they add the network, identity, and security monitoring tools needed to protect
data.

As cloud adoption continues to evolve and deliver additional business value, risks and cloud governance needs

https://docs.microsoft.com/azure/automation/automation-dsc-overview#network-planning

also evolve. For the fictional company in this journey, the next step is to support mission-critical workloads. This is
the point when Resource Consistency controls are needed.

Resource Consistency evolution

Large enterprise: Resource Consistency evolution
3/13/2019 • 6 minutes to read • Edit Online

Evolution of the narrative

Evolution of current stateEvolution of current state

Evolution of the future stateEvolution of the future state

Evolution of tangible risks

This article evolves the narrative by adding Resource Consistency controls to the governance MVP to support
mission-critical applications.

The cloud adoption teams have met all requirements to move protected data. With those applications come SLA
commitments to the business and need for support from IT Operations. Right behind the team migrating the two
datacenters, multiple app dev and BI teams are ready to begin launching new solutions into production. IT
Operations is new to the thought of cloud operations and needs a way to quickly integrate existing operational
processes.

IT is actively moving production workloads with protected data into Azure. A number of low priority workloads
are serving production traffic. More can be cut over, as soon as IT Operations signs off on readiness to support
the workloads.
The application development teams are ready for production traffic.
The BI team is ready to integrate predictions and insights into the systems that run operations for the three
business units.

IT operations is new to the thought of cloud operations and needs a way to quickly integrate existing
operational processes.

The changes to current and future state expose new risks that will require new policy statements.

Business Interruption: There is an inherent risk of any new platform causing interruptions to mission-critical
business processes. The IT Operations team and the teams executing on various cloud adoptions are relatively
inexperienced with cloud operations. This increases the risk of interruption and must be mitigated and governed.

This business risk can be expanded into several technical risks:

Misaligned operational processes might lead to outages that can’t be detected or remediated quickly.
External intrusion or denial of service attacks might cause a business interruption
Mission-critical assets might not be properly discovered and therefore not properly operated.
Undiscovered or mislabeled assets might not be supported by existing operational management processes.
Configuration of deployed assets might not meet performance expectations.
Logging might not be properly recorded and centralized to allow for remediation of performance issues.
Recovery policies may fail or take longer than expected.
Inconsistent deployment processes might result in security gaps that could lead to data leaks or interruptions.
Configuration drift or missed patches might result in unintended security gaps that could lead to data leaks or
interruptions.
Configuration might not enforce the requirements of defined SLAs or committed recovery requirements.
Deployed operating systems or applications might not meet OS and application hardening requirements.
There is a risk of inconsistency due to multiple teams working in the cloud.

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/journeys/large-enterprise/resource-consistency-evolution.md

Evolution of the policy statements

Evolution of the best practices

The following changes to policy will help mitigate the new risks and guide implementation. The list looks long, but
the adoption of these policies may be easier than it would appear.

1. All deployed assets must be categorized by criticality and data classification. Classifications are to be reviewed
by the Cloud Governance team and the application owner before deployment to the cloud.

2. Subnets containing mission-critical applications must be protected by a firewall solution capable of detecting
intrusions and responding to attacks.

3. Governance tooling must audit and enforce network configuration requirements defined by the Security
Baseline team.

4. Governance tooling must validate that all assets related to mission-critical applications or protected data are
included in monitoring for resource depletion and optimization.

5. Governance tooling must validate that the appropriate level of logging data is being collected for all mission-
critical applications or protected data.

6. Governance process must validate that backup, recovery, and SLA adherence are properly implemented for
mission-critical applications and protected data.

7. Governance tooling must limit virtual machine deployment to approved images only.
8. Governance tooling must enforce that automatic updates are prevented on all deployed assets that support

mission-critical applications. Violations must be reviewed with operational management teams and remediated
in accordance with operations policies. Assets that are not automatically updated must be included in processes
owned by IT operations.

9. Governance tooling must validate tagging related to cost, criticality, SLA, application, and data classification. All
values must align to predefined values managed by the Cloud Governance team.

10. Governance processes must include audits at the point of deployment and at regular cycles to ensure
consistency across all assets.

11. Trends and exploits that could affect cloud deployments should be reviewed regularly by the security team to
provide updates to Security Baseline tooling used in the cloud.

12. Before release into production, all mission-critical applications and protected data must be added to the
designated operational monitoring solution. Assets that cannot be discovered by the chosen IT operations
tooling cannot be released for production use. Any changes required to make the assets discoverable must be
made to the relevant deployment processes to ensure assets will be discoverable in future deployments.

13. Upon discovery, asset sizing is to be validated by operational management teams to validate that the asset
meets performance requirements.

14. Deployment tooling must be approved by the Cloud Governance team to ensure ongoing governance of
deployed assets.

15. Deployment scripts must be maintained in central repository accessible by the Cloud Governance team for
periodic review and auditing.

16. Governance review processes must validate that deployed assets are properly configured in alignment with
SLA and recovery requirements.

This section of the article will evolve the governance MVP design to include new Azure policies and an
implementation of Azure Cost Management. Together, these two design changes will fulfill the new corporate
policy statements.

Following the experience of this fictional example, it is assumed that the Protected Data evolution has already
happened. Building on that best practice, the following will add operational monitoring requirements, readying a
subscription for mission-critical applications.

Corporate IT Subscription: Add the following to the Corporate IT subscription, which acts as a hub.

Conclusion

Next steps

1. As an external dependency, the Cloud Operations team will need to define operational monitoring tooling,
Business Continuity/Disaster Recovery (BCDR) tooling and automated remediation tooling. The Cloud
Governance team can then support necessary discovery processes.

2. Azure Site Recovery implementation

3. Azure Monitor implementation

a. In this use case, the Cloud Operations team chose Azure Monitor as the primary tool for monitoring
mission-critical applications.

b. The team also chose Azure Site Recovery as the primary BCDR tooling.

a. Define and deploy Azure Vault for backup and recovery processes
b. Create an Azure Resource Management template for creation of a vault in each subscription

a. Once a mission-critical subscription is identified, a log analytics workspace can be created using
PowerShell. This is a pre-deployment process.

Individual cloud adoption subscription: The following will ensure that each subscription is discoverable by the
monitoring solution and ready to be included in BCDR practices.

1. Azure Policy for mission-critical nodes

2. Azure blueprint

a. Audit and enforce use of standard roles only.
b. Audit and enforce application of encryption for all storage accounts.
c. Audit and enforce use of approved network subnet and VNet per network interface.
d. Audit and enforce the limitation of user-defined routing tables.
e. Audit and enforce the deployment of Log Analytics agents for Windows and Linux virtual machines.

a. Create a blueprint named mission-critical-workloads-and-protected-data . This blueprint will apply
assets in addition to the protected data blueprint.

b. Add the new Azure policies to the blueprint.
c. Apply the blueprint to any subscription that is expected to host a mission-critical application.

Adding these processes and changes to the governance MVP helps mitigate many of the risks associated with
resource governance. Together, they add the recovery, sizing, and monitoring controls necessary to empower
cloud-aware operations.

As cloud adoption continues to evolve and deliver additional business value, the risks and cloud governance needs
will also evolve. For the fictional company in this journey, the next trigger is when the scale of deployment exceeds
1,000 assets to the cloud or monthly spending exceeds $10,000 USD per month. At this point, the Cloud
Governance team adds Cost Management controls.

Cost Management evolution

Large enterprise: Cost Management evolution
3/13/2019 • 4 minutes to read • Edit Online

Evolution of the narrative

Evolution of current stateEvolution of current state

Evolution of future stateEvolution of future state

Evolution of tangible risks

This article evolves the narrative by adding cost controls to the minimum viable product (MVP) governance.

Adoption has grown beyond the tolerance indicator defined in the governance MVP. The increases in spending
now justifies an investment of time from the Cloud Governance team to monitor and control spending patterns.

As a clear driver of innovation, IT is no longer seen primarily as a cost center. As the IT organization delivers more
value, the CIO and CFO agree that the time is right to evolve the role IT plays in the company. Amongst other
changes, the CFO wants to test a direct pay approach to cloud accounting for the Canadian branch of one of the
business units. One of the two retired datacenters was exclusively hosted assets for that business unit’s Canadian
operations. In this model, the business unit’s Canadian subsidiary will be billed directly for the operational
expenses related to the hosted assets. This model allows IT to focus less on managing someone else’s spending
and more on creating value. However, before this transition can begin Cost Management tooling needs to be in
place.

In the previous phase of this narrative, the IT team was actively moving production workloads with protected data
into Azure.

Since then, some things have changed that will affect governance:

5,000 assets have been removed from the two datacenters flagged for retirement. Procurement and IT security
are now deprovisioning the remaining physical assets.
The application development teams have implemented CI/CD pipelines to deploy a number of cloud native
applications, significantly affecting customer experiences.
The BI team has created aggregation, curation, insight, and prediction processes driving tangible benefits for
business operations. Those predictions are now empowering creative new products and services.

Cost monitoring and reporting is to be added to the cloud solution. Reporting should tie direct operational
expenses to the functions that are consuming the cloud costs. Additional reporting should allow IT to monitor
spending and provide technical guidance on cost management. For the Canadian branch, the department will
be billed directly.

Budget control: There is an inherent risk that self-service capabilities will result in excessive and unexpected costs
on the new platform. Governance processes for monitoring costs and mitigating ongoing cost risks must be in
place to ensure continued alignment with the planned budget.

This business risk can be expanded into a few technical risks:

There is a risk of actual costs exceeding the plan.
Business conditions change. When they do, there will be cases when a business function needs to consume
more cloud services than expected, leading to spending anomalies. There is a risk that these additional costs
would be seen as overages as opposed to a required adjustment to the plan. If successful, the Canadian
experiment should help mitigate this risk.

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/journeys/large-enterprise/cost-management-evolution.md

Evolution of the policy statements

Evolution of the best practices

Conclusion

Next steps

There is a risk of systems being overprovisioned, resulting in excess spending.

The following changes to policy will help mitigate the new risks and guide implementation.

1. All cloud costs should be monitored against plan on a weekly basis by the Cloud Governance team. Reporting
on deviations between cloud costs and plan is to be shared with IT leadership and finance monthly. All cloud
costs and plan updates should be reviewed with IT leadership and finance monthly.

2. All costs must be allocated to a business function for accountability purposes
3. Cloud assets should be continually monitored for optimization opportunities
4. Cloud Governance tooling must limit Asset sizing options to an approved list of configurations. The tooling

must ensure that all assets are discoverable and tracked by the cost monitoring solution.
5. During deployment planning, any required cloud resources associated with the hosting of production

workloads should be documented. This documentation will help refine budgets and prepare additional
automations to prevent the use of more expensive options. During this process consideration should be given
to different discounting tools offered by the cloud provider, such as Reserved Instances or License cost
reductions.

6. All application owners are required to attend trained on practices for optimizing workloads to better control
cloud costs.

This section of the article will evolve the governance MVP design to include new Azure policies and an
implementation of Azure Cost Management. Together, these two design changes will fulfill the new corporate
policy statements.

1. Changes in the Azure Enterprise Portal to bill the Department administrator for the Canadian deployment.
2. Implement Azure Cost Management.

3. Update Azure Policy.

a. Establish the right level of access scope to align with the subscription pattern and resource grouping
pattern. Assuming alignment with the governance MVP defined in prior articles, this would require
Enrollment Account Scope access for the Cloud Governance team executing on high level reporting.
Additional teams outside of governance, like the Canadian procurement team, will require Resource
Group Scope access.

b. Establish a budget in Azure Cost Management.
c. Review and act on initial recommendations. It's recommended to have a recurring process to support

the reporting process.
d. Configure and execute Azure Cost Management Reporting, both initial and recurring.

a. Audit tagging, management group, subscription, and resource group values to identify any deviation.
b. Establish SKU size options to limit deployments to SKUs listed in deployment planning documentation.

Adding the above processes and changes to the governance MVP helps mitigate many of the risks associated with
cost governance. Together, they create the visibility, accountability, and optimization needed to control costs.

As cloud adoption continues to evolve and deliver additional business value, risks and cloud governance needs will
also evolve. For the fictional company in this journey, the next step is using this governance investment to manage
multiple clouds.

Multi-cloud evolution

Large enterprise: Multi-cloud evolution
3/13/2019 • 3 minutes to read • Edit Online

Evolution of the narrative

Evolution of the current stateEvolution of the current state

Evolution of the future stateEvolution of the future state

Evolution of tangible risks

Evolution of the policy statements

Evolution of the best practices

Microsoft recognizes that customers are adopting multiple clouds for specific purposes. The fictional company in
this journey is no exception. In parallel to the Azure adoption journey, the business success has led to the
acquisition of a small, but complementary business. That business is running all of their IT operations on a
different cloud provider.

This article describes how things change when integrating the new organization. For purposes of the narrative, we
assume this company has completed each of the governance evolutions outlined in this customer journey.

In the previous phase of this narrative, the company had begun to implement cost controls and cost monitoring, as
cloud spending becomes part of the company's regular operational expenses.

Since then, some things have changed that will affect governance:

Identity is controlled by an on-premises instance of Active Directory. Hybrid Identity is facilitated through
replication to Azure Active Directory.
IT Operations or Cloud Operations are largely managed by Azure Monitor and related automations.
Disaster Recovery / Business Continuity is controlled by Azure Vault instances.
Azure Security Center is used to monitor security violations and attacks.
Azure Security Center and Azure Monitor are both used to monitor governance of the cloud.
Azure Blueprints, Azure Policy, and management groups are used to automate compliance to policy.

The goal is to integrate the acquisition company into existing operations wherever possible.

Business Acquisition Cost: Acquisition of the new business is slated to be profitable in approximately five years.
Because of the slow rate of return, the board wants to control acquisition costs, as much as possible. There is a risk
of cost control and technical integration conflicting with one another.

This business risk can be expanded into a few technical risks

There is risk of cloud migration producing additional acquisition costs.
There is also a risk of the new environment not being properly governed or resulting in policy violations.

The following changes to policy will help mitigate the new risks and guide implementation.

1. All assets in a secondary cloud must be monitored through existing operational management and security
monitoring tools.

2. All organizational units must be integrated into the existing identity provider.
3. The primary identity provider should govern authentication to assets in the secondary cloud.

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/journeys/large-enterprise/multi-cloud-evolution.md

Next steps

This section of the article will evolve the governance MVP design to include new Azure policies and an
implementation of Azure Cost Management. Together, these two design changes will fulfill the new corporate
policy statements.

1. Connect the networks - Executed by Networking and IT Security, supported by governance

2. Consolidate Identity Providers. Depending on the workloads being hosted in the secondary cloud, there are a
variety of options to identity provider consolidation. The following are a few examples:

3. Add assets to Azure Site Recovery

4. Add assets to Azure Cost Management

5. Add assets to Azure Monitor

6. Governance enforcement tools

a. Adding a connection from the MPLS/Leased line provider to the new cloud will integrate networks.
Adding routing tables and firewall configurations will control access and traffic between the
environments.

a. For applications that authenticate using OAuth 2, users in the Active Directory in the secondary cloud
could simply be replicated to the existing Azure AD tenant.

b. On the other extreme, federation between the two on-premises identity providers, would allow users
from the new Active Directory domains to be replicated to Azure.

a. Azure Site Recovery was built as a hybrid/multi-cloud tool from the beginning.
b. Virtual machines in the secondary cloud might be able to be protected by the same Azure Site Recovery

processes used to protect on-premises assets.

a. Azure Cost Management was built as a multi-cloud tool from the beginning.
b. Virtual machines in the secondary cloud might be compatible with Azure Cost Management for some

cloud providers. Additional costs may apply.

a. Azure Monitor was built as a hybrid cloud tool from the beginning.
b. Virtual machines in the secondary cloud might be compatible with Azure Monitor agents, allowing them

to be included in Azure Monitor for operational monitoring.

a. Governance enforcement is cloud-specific.
b. The corporate policies established in the governance journey are not. While the implementation may

vary from cloud to cloud, the policy statements can be applied to the secondary provider.

As multi-cloud adoption grows, the design evolution above will continue to mature.

In many large enterprises, the Five Dsciplines of Cloud Governance can be blockers to adoption. The next article
has some additional thoughts on making governance a team sport to help ensure long-term success in the cloud.

Multiple layers of governance

Multiple layers of governance in large enterprises
3/13/2019 • 3 minutes to read • Edit Online

Large enterprise governance is a team sport

Requirements to supporting such a team sport

Central governance of a distributed governance hierarchy

When large enterprises require multiple layers of governance, there are greater levels of complexity that must be
factored into the governance MVP and later governance evolutions.

A few common examples of such complexities include:

Distributed governance functions.
Corporate IT supporting Business unit IT organizations.
Corporate IT supporting geographically distributed IT organizations.

This article explores some ways to navigate this type of complexity.

Large established enterprises often have teams or employees who focus on the disciplines mentioned throughout
this journey. This journey demonstrates one approach to making governance a team sport.

In many large enterprises, the Five Disciplines of Cloud Governance can be blockers to adoption. Developing cloud
expertise in identity, security, operations, deployments, and configuration across an enterprise takes time.
Holistically implementing IT governance policy and IT security can slow innovation by months or even years.
Balancing the business need to innovate and the governance need to protect existing resources is delicate.

The inherent capabilities of the cloud can remove blockers to innovation but increase risks. In this governance
journey, we showed how the example company created guardrails to mitigate the risk. Rather than tackling each of
the disciplines required to protect the environment, the Cloud Governance team leads a risk-based approach to
govern what could be deployed, while the other teams build the necessary cloud maturities. Most importantly, as
each team reaches cloud maturity, governance applies their solutions holistically. As each team matures and adds
to the overall solution, the Cloud Governance team can open stage gates, allowing additional innovation and
adoption to thrive.

This model illustrates the growth of a partnership between the Cloud Governance team and existing enterprise
teams (Security, IT Governance, Networking, Identity, and others). The journey starts with the governance MVP
and grows to a holistic end state through governance evolutions.

The first requirement of a multi-layer governance model is to understand of the governance hierarchy. Answering
the follownig questions will help you to understand the general governance hierarchy:

How is cloud accounting (billing for cloud services) allocated across business units?
How are governance responsibilities allocated across corporate IT and each business unit?
What types of environments do each of those units of IT manage?

Tools like management groups allow corporate IT to create a hierarchy structure that matches the governance
hierarchy. Tools like Azure Blueprints can apply assets to different layers of that hierarchy. Azure Blueprints can be
versioned and various versions can be applied to management groups, subscriptions, or resource groups. Each of
these concepts is described in more detail in the governance MVP.

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/journeys/large-enterprise/multiple-layers-of-governance.md

The important aspect of each of these tools is the ability to apply multiple blueprints to a hierarchy. This allows
governance to be a layered process. The following is one example of this hierarchical application of governance:

Corporate IT: Corporate IT creates a set of standards and policies that apply to all cloud adoption. This is
materialized in a "Baseline" blueprint. Corporate IT then owns the management group hierarchy, ensuring that
a version of the baseline is applied to all subscriptions in the hierarchy.
Regional or Business Unit IT: Various IT teams can apply an additional layer of governance by creating their
own blueprint. Those blueprints would create additive policies and standards. Once developed, Corporate IT
could apply those blueprints to the applicable nodes within the management group hierarchy.
Cloud adoption teams: Detailed decisions and implementation about applications or workloads can be made by
the cloud adoption teams, within the context of governance requirements. At times the team can also request
additional Azure Resource Consistency templates to accelerate adoption efforts.

The details regarding governance implementation at each level will require coordination between each team. The
governance MVP and governance evolutions outlined in this journey can aid in aligning that coordination.

Define corporate policy

Any change to business processes or technology platforms introduces risk to the business. Cloud governance teams, whose
members are sometimes known as cloud custodians, are tasked with mitigating these risks with minimal interruption to
adoption or innovation efforts.

However, cloud governance requires more than technical implementation. Subtle changes in the corporate narrative or
corporate policies can affect adoption efforts significantly. Before implementation, it's important to look beyond IT while
Defining Corporate Policy.

Figure 1. Visual of corporate policy and the Five Disciplines of Cloud Governance

Defining corporate policy focuses on identifying and mitigating business risks regardless of the cloud platform. Healthy cloud
governance strategy begins with sound corporate policy. The following three-step process guides iterative development of such
policies.

Business riskBusiness risk

Policy and compliancePolicy and compliance

ProcessesProcesses

Investigate current cloud adoption plans and data classification to identify risks to the business. Work with the business to
balance risk tolerance and mitigation costs.

Evaluate risk tolerance to inform minimally invasive policies that govern cloud adoption and mitigate risks. In some
industries, third-party compliance affects initial policy creation.

file:///T:/oehk/cloud-adoption/_images/operational-transformation-govern-highres.png

Next steps

The pace of adoption and innovation activities will naturally create policy violations. Executing relevant processes will aid in
monitoring and enforcing adherence to policies.

Sound cloud governance strategy begins with understanding business risk.

Understanding business risk

 Disciplines of Cloud Governance

Any change to business processes or technology platforms introduces risk. Cloud Governance teams, whose members are
sometimes known as cloud custodians, are tasked with mitigating these risks, with minimal interruption to adoption or
innovation efforts.

The CAF governance model guides these decisions (regardless of the chosen cloud platform) by focusing on development of
corporate policy and Disciplines of Cloud Governance. Actionable design guides demonstrate this model using Azure
services. This article serves as a landing page for the five disciplines of the CAF governance model.

Figure 1. Diagram of corporate policy and the Five Disciplines of Cloud Governance

Across each cloud provider, there are common governance disciplines that can serve as a guide to help inform policies and align
toolchains. These disciplines guide decisions regarding the proper level of automation and enforcement of corporate policy
across cloud providers.

Cost ManagementCost Management

Security BaselineSecurity Baseline

Identity BaselineIdentity Baseline

Resource ConsistencyResource Consistency

Cost is a primary concern for cloud users. Develop policies for cost control for all cloud platforms.

Security is a complex and personal topic, unique to each company. Once security requirements are established, cloud
governance policies and enforcement applies those requirements across network, data and asset configurations.

Inconsistencies in the application of identity requirements can increase the risk of breach. The Identity Baseline discipline
focuses on ways to ensure identity is consistently applied across cloud adoption efforts.

file:///T:/oehk/cloud-adoption/_images/operational-transformation-govern-highres.png

Deployment AccelerationDeployment Acceleration

Cloud operations depends on consistency in resource configuration. Through governance tooling, resources can
consistently be configured to mitigate risks related to on-boarding, drift, discoverability, and recovery.

Centralization, standardization, and consistency in deployment and configuration approaches improve governance
practices. When made available through cloud-based governance tooling, they create a cloud factor which can accelerate
deployment activities.

CAF: How can corporate IT policy become cloud-
ready?
3/13/2019 • 4 minutes to read • Edit Online

Define corporate policy to mature cloud governance

Review existing policies

Cloud governance is the product of an ongoing adoption effort over time, as a true lasting transformation doesn't
happen overnight. Attempting to deliver complete cloud governance before addressing key corporate policy
changes using a fast aggressive method seldom produces the desired results. Instead we recommend an
incremental approach.

What is different about our cloud adoption framework is the purchasing cycle and how it can enable authentic
transformation. Since there is not a big Capital Expenditure (CapEx) acquisition requirement, engineers can begin
experimentation and adoption sooner. In most corporate cultures, elimination of the CapEx barrier to adoption can
lead to tighter feedback loops, organic growth, and incremental execution.

The shift to cloud adoption requires a shift in governance. In many organizations, corporate policy transformation
allows for improved governance and higher rates of adherence through incremental policy changes and
automated enforcement of those changes, powered by newly defined capabilities that you configure with your
cloud service provider.

This article outlines key activities that can help you shape your corporate policies to enable an expanded
governance model.

In traditional governance and incremental governance, corporate policy creates the working definition of
governance. Most IT Governance actions seek to implement technology to monitor, enforce, operate, and automate
those corporate policies. Cloud governance is built on similar concepts.

Figure 1. Corporate governance and governance disciplines.

The image above demonstrates the interactions between business risk, policy and compliance, and monitor and
enforce to create a governance strategy. Followed by the five disciplines of Cloud Governance to realize your
strategy.

In the image above, the governance strategy (risk, policy and compliance, monitor and enforce) starts with
recognizing business risks. Understanding how business risk changes in the cloud is the first step to creating a
lasting cloud governance strategy. Working with your business units to gain an accurate gauge of the business's
tolerance for risk, helps you understand what level of risks need to be mitigated. Your understanding of new risks
and acceptable tolerance can fuel a review of existing policies, in order to determine the required level of
governance that is appropriate for your organization.

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/policy-compliance/overview.md

TIPTIP

An incremental approach to cloud governance

Minimum viable product (MVP) for policy

Incremental policy growth

If your organization is governed by third-party compliance, one of the biggest business risks to consider may be a risk of
adherence to regulatory compliance. Often times this risk cannot be mitigated, and instead may require a strict adherence.
Be sure to understand your third-party compliance requirements before beginning a policy review.

An incremental approach to cloud governance assumes that it is unacceptable to exceed the business' tolerance for
risk. Instead, it assumes that the role of governance is to accelerate business change, help engineers understand
architecture guidelines, and ensure that business risks are regularly communicated and mitigated. Alternatively,
the traditional role of governance can become a barrier to adoption by engineers or by the business as a whole.

With an incremental approach to cloud governance, there is sometimes a natural friction between teams building
new business solutions and teams protecting the business from risks. However, in this model those two teams can
become peers working in increments or sprints. As peers, the Cloud Governance team and the cloud adoption
teams begin to work together to expose, evaluate, and mitigate business risks. This effort can create a natural
means of reducing friction and building collaboration between teams.

The first step in an emerging partnership between your cloud governance and adoption teams is an agreement
regarding the policy MVP. Your MVP for cloud governance should acknowledge that business risks are small in
the beginning, but will likely grow as your organization adopts more cloud services over time.

For example: For a business that deploys 5 VMs that don't contain any High Business Impact (HBI) data, the
business risk is small. And several increments later, when the number reaches 1,000 VMs and the business is
starting to move HBI data, the business risk grows.

Policy MVP is an attempt to define a required foundation for policies required to deploy the first "x" VMs or the
first x number of applications. Where x is a small yet impactful quantity of the units being adopted. This policy set
requires few constraints, but would contain the foundational aspects needed to quickly grow from one increment
of work to the next. Through incremental policy development, this governance strategy would grow over time.
Through slow subtle shifts, the policy MVP would grow into feature parity with the outputs of the policy review
exercise.

Incremental policy growth is the key mechanism to growing policy and cloud governance overtime. It is also the
key requirement to adopting an incremental model to governance. For this model to work well, the governance
team must be committed to an ongoing allocation of time at each sprint, in order to evaluate and implement
changing governance disciplines.

Sprint time requirements: At the beginning of each iteration, each cloud adoption team creates a list of assets to
be migrated or adopted in the current increment. The Cloud Governance team is expected to allow sufficient time
to review the list, validate data classifications for assets, evaluate any new risks associated with each asset, update
architecture guidelines, and educate the team on the changes. These commitments commonly require 10-30 hours
per sprint. It's also expected for this level of involvement to require at least one dedicated employee to manage
governance in a large cloud adoption effort.

Release Time Requirements: At the beginning of each release, the cloud adoption teams and the Cloud Strategy
team should prioritize a list of applications or workloads to be migrated in the current iteration, along with any
business change activities. Those data points allow the Cloud Governance team to understand new business risks
early. That allows time to align with the business and gauge the business's tolerance for risk.

How does business risk change in the cloud?
3/13/2019 • 4 minutes to read • Edit Online

Relativity of risk

Understanding business risks in the cloud

What is a business risk MVP?

An understanding of business risk is one of the most important elements of any cloud transformation. Risk drives
policy, it influences monitoring and enforcement requirements. Risk heavily influences how we manage the digital
estate, on-premises or in the cloud.

Risk is relative. A small company with a few IT assets, in a closed building has little risk. Add users and an internet
connection with access to those assets, the risk is intensified. When that small company grows to Fortune 500
status, the risks are exponentially greater. As revenue, business process, employee counts, and IT assets
accumulate, risks increase and coalesce. IT assets that aid in generating revenue are at tangible risk of stopping
that revenue stream in the event of an outage. Every moment of downtime equates to losses. Likewise, as data
accumulates, the risk of harming customers grows.

In the traditional on-premises world, IT governance teams focus on assessing those risks. Creating processes to
mitigate the risk. Deploying systems to ensure mitigation measures are successful and implemented. This
balances the risks required to operate in a connected, modern business environment.

During a transformation, the same relative risks can be seen.

During early experimentation, a few assets are deployed with little to no relevant data. The risk is small.
When the first workload is deployed, risk goes up a little. This risk is easily mitigated by choosing an inherently
low risk application with a small user base.
As more workloads come online, risks change at each release. New apps go live, risks change.
When a company brings the first 10-20 applications online, the risk profile is much different that it is when the
1000th applications go into production in the cloud.

The assets that accumulated in the traditional, on-premises estate likely accumulated overtime. The maturity of
the business and IT teams was likely growing in a similar fashion. That parallel growth can tend to create some
unnecessary policy baggage.

During a cloud transformation, both the business and IT teams have an opportunity to reset those policies and
build new with a matured mindset.

Minimum viable product is an industry-standard term for defining the smallest unit of something that can
produce tangible value. In a business risk MVP, the team starts with an assumption that some assets will be
deployed to a cloud environment. It's unknown at the time what those assets are. It's also unknown what types of
data will be processed by those assets.

The Cloud Governance team could build for the worst-case scenario and map every possible policy to the cloud.
This is not advised, but is an option.

Conversely, the team could take an MVP approach and define a starting point and set of assumptions that would
be true for most/all assets. The following are a few extremely basic examples:

All assets are at risk of being terminated (through error, mistake or maintenance)

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/policy-compliance/understanding-business-risk.md

Incremental risk mitigation

Next steps

All assets are at risk of generating too much spending
All assets could be compromised by weak passwords
Any asset with all open ports exposed to the internet are at risk of compromise

The above examples are meant to establish MVP business risks as a theory. The actual list will be unique to every
environment. Once the Business Risk MVP is established, they can be converted to Policies to mitigate each risk.

Assuming a business risk MVP is the starting point, governance can mature in parallel to planned deployment (as
opposed to growing in parallel to business growth). This is a much more stable model for governance maturity. At
each iteration, new assets are replicated and staged. At each release, workloads are readied for production
promotion. Of course, the relative risk could grow with each cycle.

When the Cloud Governance team operates in parallel to the cloud adoption teams, the growth of business risks
can likewise be addressed. Each asset staged can easily be classified according to risk. Data classification
documents can be built or created in parallel to staging. Risk profile and exposure points can likewise be
documented. Overtime an extremely clear view of business risk wil come into focus across the organization.

With each iteration, the Cloud Governance team can work with Cloud Strategy team to quickly communicate new
risks, mitigation strategies, tradeoffs, and potential costs. This empowers business participants and IT leaders to
partner in mature, well-informed decisions. Those decisions then inform policy maturity. When required, the
policy changes produce new work items for the maturity of core infrastructure systems. When changes to staged
systems are required, the cloud adoption teams have ample time to make changes, while the business tests the
staged systems and develops a user adoption plan.

This approach minimizes risks, while empowering the team to move quickly. It also ensures that risks are
promptly identified and resolved before deployment.

Evaluate risk tolerance

Evaluating risk tolerance
3/13/2019 • 8 minutes to read • Edit Online

What business risks are associated with a Cloud Transformation?

Every business decision creates new risks. Making an investment in anything creates risk of losses. New products
or services create risks of market failure. Changes to current products or services could reduce market share.
Cloud Transformation does not provide a magical solution to everyday business risk. To the contrary, connected
solutions (cloud or on-premises) introduce new risks. Deploying assets to any network connected facility also
expands the potential threat profile by exposing security weaknesses to a much broader, global community.
Fortunately, Cloud Providers are aware of the changes, increases, and addition of risks. They invest heavily to
mitigate those risks on the behalf of their customers.

This article is not focused on cloud risks. Instead it discusses the business risks associated with various forms of
Cloud Transformation. Later in the article, the discussion shifts focus to discuss ways of understanding the
business' tolerance for risk.

Sadly, the true business risks will be based on the what and how behind specific transformations. Fortunately,
there are a number of very common risks that can be used as a conversation started to understand specific,
personalized risks.

** Before reading the following, beware that each of these risks can be remediated. The goal of this article is to
inform and prepare readers, such that mitigation conversations can be more effective at mitigating risks. **

Data Protection Risk: The number one risk associated with any transformation, is the protection of data. In
today's digital age of business, data is the new oil. It fuels the economy, it warms the office, it delights
customers. However, when it leaks, the outcome is equally destructive. Any changes to the way data is
stored, processed, or used creates risk. Cloud Transformations create a high degree of change regarding
data management, so the risk should not be taken lightly. Security Baseline, Data Classification, and
Incremental Rationalization can each help mitigate this risk.

Operations and Customer Experience Risk: Business operations and customer experiences rely heavily on
technical operations. Cloud Transformations will create change in technical operations (TechOps). In some
organizations, that change is small and easily adjusted. In other organizations, changes to TechOps could
require retooling, reskilling, or new approaches to support. The bigger the change, the bigger the potential
effect on Business Operations and Customer Experience. Mitigation of this risk will come from the
involvement of the business in transformation planning. Release planning and First workload selection in
the Incremental Rationalization article discuss ways to choose workloads for transformation projects. The
business's role in that activity is to communicate the Business Operations risk of changing prioritized
workloads. Helping IT choose workloads that have a lower impact on operations will reduce the overall risk.

Cost Risk: Cost models change in the Cloud. This change can create risks associated with cost overruns or
increases in Cost of Goods Sold (COGS), especially directly attributed operational expenses. When business
works closely with IT, it is feasible to create transparency regarding costs and services consumed by various
business units, programs, and projects. Cost Management provides examples of ways Business and IT can
partner on this topic.

The above are a few of the most common risks mentioned by customers. The Cloud Governance team and the
cloud adoption teams can begin to develop a risk profile, as workloads are migrated and readied for production
release. Be prepared for conversations to define, refine, and mitigate risks based on the desired business outcomes
and transformation effort.

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/policy-compliance/risk-tolerance.md

Understanding risk tolerance

Simple use case for comparison

Risk tolerance questions

Identifying risk is a fairly direct process. Risks are pretty standard across industries. However, tolerance for risk is
extremely personalize. This is the point where business and IT conversations tend to get hung up. Each side of the
conversation is essentially speaking a different language. The following comparisons and questions are designed
to start conversations that help each party better understand and calculate risk tolerance.

To help understand risk tolerance, let's examine customer data. If a company in any industry posts customer data
on an unsecured server, the risk of that data being compromised or stolen is relatively the same. However, the
nature of the data and the companies tolerance for that risk changes wildly.

Companies in healthcare and finance in the United States, are governed by rigid, third-party compliance
requirements. It is assumed that personally identifiable information (PII) or healthcare-related data is extremely
confidential. There are severe consequences for these types of companies, if they are involved in the risks
scenario above. Their tolerance will be extremely low. Any customer data published inside or outside of the
network will need to be governed by those third-party compliance policies.
A gaming company whose customer data is limited to a user name, play times, and high scores is not as likely
to suffer any significant consequences, if they engage in the risky behavior above. While any unsecured data is
at risk, the impact of that risk is small. Therefore, the tolerance for risk in this case is high.
A medium-sized enterprise that provides carpet cleaning services to thousands of customers would fall in
between these two tolerance extremes. There customer data may be more robust, containing details like
address or phone number. Both could be considered PII and should be protected. However, there may not be
any specific governance requirement mandating that the data be secured. From an IT perspective, the answer is
simple, secure the data. From a business perspective, it may not be as simple. The business would need more
details before they could determine a level of tolerance for this risk.

The next section, shares a few sample questions that could help the business determine a level of risk tolerance for
the use case above or others.

This section lists conversation provoking questions in three categories: Loss Impact, Probability of Loss, and
Mitigation Costs. When business and IT partner to address each of these areas, the decision to mitigate risk and
the overall tolerance to a particular risk can easily be determined.

Loss Impact: Questions to determine the impact of a risk. These questions can be difficult (sometimes
impossible) to answer. Quantifying the impact is best, but sometimes the conversation alone is enough to
understand tolerance. Ranges are also acceptable, especially if they include assumptions that determined those
ranges.

Does this risk violate third-party compliance requirements?
Does this risk violate internal corporate policies?
Could this risk cost customers or market share? If so, can this cost be quantified?
Could this risk create negative customer experiences? Are those experiences likely to affect sales or revenue
realization?
Could this risk create new legal liability? If so, is there a precedence for damage awards in these types of cases?
Could this risk stop business operations? If so, how long would operations be down?
Could this risk slow business operations? If so, how slow and how long?
At this stage in the transformation, is this a one-off risk or will it repeat?
Does the risk increase or decrease in frequency as the transformation progresses?
Does the risk increase or decrease in probability over time?

Next steps

Is the risk time sensitive in nature? Will the risk pass or get worse, if not addressed?

These basic questions will lead to many more. After exploring a healthy dialogue, it is suggested that the relevant
risks be recorded and when possible quantified.

Mitigation costs: Questions to determine the cost of mitigating or removing the risk. These questions can be
fairly direct, especially when represented in a range.

Is there a clear solution? What does it cost?
Are there options to solving or mitigating this risk? What is the range of costs for those solutions?
What is needed from the business to select the best, clear solution?
What is needed from the business to validate costs?
What other benefits can come from the solution that would mitigate this risk?

These questions over simplify the technical solutions needed to mitigate risks. However, these questions
communicate those solutions in ways the business can quickly integrate into a decision process.

Probability of Loss: Questions to determine how likely it is that the risk will become a reality. This is the most
difficult area to quantify. Instead it is suggested that the Cloud Governance team create categories for
communicating probability, based on the supporting data. The following questions can help create categories that
are meaningful to the team.

Has any research been done regarding the likelihood of this risk being realized?
Can the vendor provide references or statistics on the likelihood of impact?
Are there other companies in the relevant sector or vertical that have been hit by this risk?
Look further, are there other companies in general that have been hit by this risk?
Is this risk unique to something this company has done poorly?

After answering these questions along with questions as determined by the Cloud Governance team, groupings of
probability will likely emerge. The following are a few grouping samples to help get started:

No indication: Not enough research has been completed to determine probability.
Low Risk: Current research suggests the risk is not likely to be realized.
Future risk: The current probability is Low Risk. However, continued adoption would trigger a fresh analysis.
Medium Risk: It's likely that the risk will impact the business.
High Risk: Overtime, it is increasing less likely that the business will avoid impact from this risk.
Declining Risk: The risk is Medium to High. However, actions in IT or business are reducing the likelihood of an
impact.

Determining Tolerance:

The three question sets above should fuel enough data to determine initial tolerances. When risk and probability
are low, and mitigation cost is high, the business is unlikely to invest in remediation. When risk and probability are
high, the business is likely to consider an investment, as long as the costs don't exceed the potential risks.

This type of conversation can help the business and IT evaluate tolerance more effectively. These conversations
can be used during the creation of MVP policies and during incremental policy reviews.

Define corporate policy

Defining corporate policy for cloud governance
3/13/2019 • 4 minutes to read • Edit Online

How can corporate IT policy become cloud-ready?

Review existing policies

Once you've analyzed the known risks and related risk tolerances for your organization's cloud transformation
journey, your next step is to establish policy that will explicitly address those risks and define the steps needed to
mitigate them where possible.

In traditional governance and incremental governance, corporate policy creates the working definition of
governance. Most IT Governance actions seek to implement technology to monitor, enforce, operate, and
automate those corporate policies. Cloud Governance is built on similar concepts.

Figure 1. Corporate governance and governance disciplines.

The image above demonstrates the interactions between business risk, policy and compliance, and monitor and
enforce to create a Governance Strategy. Followed by the five disciplines of Cloud Governance to realize your
strategy.

Cloud governance is the product of an ongoing adoption effort over time, as a true lasting transformation doesn't
happen overnight. Attempting to deliver complete cloud governance before addressing key corporate policy
changes using a fast aggressive method seldom produces the desired results. Instead we recommend an
incremental approach.

What is different about a cloud adoption framework is the purchasing cycle and it can enable authentic
transformation. Since there is not a big Capital Expenditure (CapEx) acquisition requirement, engineers can begin
experimentation and adoption sooner. In most corporate cultures, elimination of the CapEx barrier to adoption can
lead to tighter feedback loops, organic growth, and incremental execution.

The shift to cloud adoption requires a shift in governance. In many organizations, corporate policy transformation
allows for improved governance and higher rates of adherence through incremental policy changes and
automated enforcement of those changes, powered by newly defined capabilities that you configure with your
cloud service provider.

As your cloud deployment matures and the amount of your IT estate moving to the cloud increases, your risks and
associated policy needs will also change. Governance is an ongoing process, and policy should be regularly
reviewed with IT staff and stakeholders to ensure resources hosted in the cloud continue to maintain compliance
with overall corporate goals and requirements. Your understanding of new risks and acceptable tolerance can fuel
a review of existing policies, in order to determine the required level of governance that is appropriate for your
organization.

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/policy-compliance/define-policy.md

TIPTIP

Create cloud policy statements

Incremental governance and integrating with existing policy

Next steps

If your organization is governed by third-party compliance, one of the biggest business risks to consider may be a risk of
adherence to regulatory compliance. Often times this risk cannot be mitigated, and instead may require a strict adherence.
Be sure to understand your third-party compliance requirements before beginning a policy review.

Cloud-based IT policies establish the requirements, standards, and goals that your IT staff and automated systems
will need to support. Policy decisions are a primary factor in your cloud architecture design and how you will
implement your policy adherence processes.

Individual cloud policy statements are guidelines for addressing specific risks identified during your risk
assessment process. While these policies can be integrated into your wider corporate policy documentation, cloud
policy statements discussed throughout the CAF guidance tends to be a more concise summary of the risks and
plans to deal with them. Each definition should include these pieces of information:

Business risk. A summary of the risk this policy will address.
Policy statement. A concise explanation of the policy requirements and goals.
Design or technical guidance. Actionable recommendations, specifications, or other guidance to support
and enforce this policy that IT teams and developers can use when designing and building their cloud
deployments.

If you need help getting started with defining policies, consult the governance disciplines introduced in the
governance section overview. The articles for each of these disciplines includes examples of common business
risks encountered when moving to the cloud and sample policies used to mitigate those risks (for example, see the
Cost Management discipline's sample policy definitions).

Planned additions to your cloud environment should always be vetted for compliance with existing policy, and
policy updated to account for any issues not already covered. You should also perform regular cloud policy review
to ensure your cloud policy is up-to-date and in-sync with any new corporate policy.

The need to integrate cloud policy with your legacy IT policies depends largely on the maturity of your cloud
governance processes and the size of your cloud estate. See the article on incremental governance and the policy
MVP for a broader discussion on dealing with policy integration during your cloud transformation.

After defining your policies, draft an architecture design guide to provide IT staff and developers with actionable
guidance.

Draft an architecture design guide

How do you align design guides with policy?
3/13/2019 • 2 minutes to read • Edit Online

Using the actionable governance journeys

Next steps

After you've defined cloud policies based on your identified risks, you'll need to generate actionable guidance that
aligns with these policies for your IT staff and developers to refer to. Drafting a cloud governance design guide
allows you to specify specific structural, technological, and process choices based on the policy statements you
generated for each of the five governance disciplines.

A cloud governance design guide should establish the architecture choices and design patterns for each of the core
infrastructure components of cloud deployments that best meet your policy requirements. Alongside these you
should provide a high-level explanation of the technology, tools, and processes that will support each of these
design decisions.

Although your risk analysis and policy statements may, to some degree, be cloud platform agnostic, your design
guide should provide platform-specific implementation details that your IT and dev. Focus on the architecture,
tools, and features of your chosen platform when making design decision and providing guidance.

While cloud design guides should take into account some of the technical details associated with each
infrastructure component, they are not meant to be extensive technical documents or specifications. Make sure
your guides address all of your policy statements and clearly state design decisions in a format easy for staff to
understand and reference.

If you're planning to use the Azure platform for your cloud adoption, the CAF provides governance journeys
illustrating the incremental approach of the CAF governance model. These narrative journeys cover a range of
common adoption scenarios, including the business risks, tolerance requirements, and policy statements that went
into creating a governance minimum viable product (MVP). These journeys represent a synthesis of real-world
customer experience of the cloud adoption process in Azure.

While every cloud adoption has unique goals, priorities, and challenges, these samples should provide a good
template for converting your policy into guidance. Pick the closest scenario to your situation as a starting point,
and mold it to fit your specific policy needs.

With design guidance in place, establish policy adherence processes to ensure policy compliance.

Policy adherence processes

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/policy-compliance/align-governance-journeys.md

What processes can help ensure policy adherence?
3/13/2019 • 4 minutes to read • Edit Online

Prioritize policy adherence processes

Establish Cloud Governance team processes

Assign Cloud Governance team membersAssign Cloud Governance team members

Reviews and policy iterationReviews and policy iteration

After establishing your cloud policy statements and drafting a design guide, you'll need to create a strategy for
ensuring your cloud deployment stays in compliance with your policy requirements. This strategy will need to
encompass your Cloud Governance team's ongoing review and communication processes, establish criteria for
when policy violations require action, and defining the requirements for automated monitoring and compliance
systems that will detect violations and trigger remediation actions.

See the corporate policy sections of the actionable governance journeys for examples of how policy adherence
process fit into a cloud governance plan.

How much investment in developing processes is required to support your policy goals? Depending on the size
and maturity of your cloud deployment, the effort required to establish processes that support compliance, and
the costs associated with this effort, can vary widely.

For small deployments consisting of development and test resources, policy requirements may be simple and
require few dedicated resources to address. On the other hand, a mature mission-critical cloud deployment with
high-priority security and performance needs may require a team of staff, extensive internal processes, and
custom monitoring tooling to support your policy goals.

As a first step in defining your policy adherence strategy, evaluate how the processes discussed below can support
your policy requirements. Determine how much effort is worth investing in these processes, and then use this
information to establish realistic budget and staffing plans to meet these needs.

Before defining triggers for policy compliance remediation, you need establish the overall processes that your
team will use and how information will be shared and escalated between IT staff and the Cloud Governance team.

Who will provide ongoing guidance on policy compliance and handle policy-related issues that emerge when
deploying and operating your cloud assets? The size and composition of your Cloud Governance team will
depend on the complexity of your policy requirements, and the budgeting and staffing priorities you've attached to
policy compliance.

Choose team members that have expertise in the areas covered by your defined policy statements. For initial test
deployments this can be limited to a few system administrators responsible for establishing the basics of
governance. As your deployments mature and your policies become more complex and more integrated with your
wider corporate policy requirements, your Cloud Governance team will need to change to support increasingly
complicated policy requirements.

As your governance processes mature, review the cloud guidance team's membership regularly to ensure that you
can properly address the latest policy requirements. Identify members of your IT staff with relevant experience or
interest in specific areas of governance and include them in your teams on a permanent or ad-hoc basis as-
needed.

As additional resources are deployed, the Cloud Governance team will need to ensure that new workloads or

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/policy-compliance/processes.md

EducationEducation

Establish escalation pathsEstablish escalation paths

Violation triggers and actions

Define triggersDefine triggers

Define actionsDefine actions

CLOUD GOVERNANCE DISCIPLINE SAMPLE TRIGGER SAMPLE ACTION

Cost Management Monthly cloud spending is more than
20% higher than expected.

Notify billing unit leader who will begin
a review of resource usage.

Security Baseline Detect suspicious user login activity. Notify IT security team and disable
suspect user account.

Resource Consistency CPU utilization for workload is greater
than 90%.

Notify the IT Operations team and scale
out additional resources to handle load.

Monitoring and compliance automation

assets comply with policy requirements. Plan to meet with the teams responsible for deploying any new resources
to discuss alignment with your design guides.

As your overall deployment grows, evaluate new potential risks regularly and update policy statements and design
guides as needed. Schedule regular review cycles each of the five governance disciplines to ensure policy is up-to-
date and being met.

Policy compliance requires IT staff and developers to understand the policy requirements that affect their areas of
responsibility. Plan to devote resources to document decisions and requirements, and educate all relevant teams
on the design guides that support your policy requirements.

As policy changes, regularly update documentation and training materials, and ensure education efforts
communicate updated requirements and guidance to relevant IT staff.

If a resource goes out of compliance, who gets notified? If IT staff detect a policy compliance issue, who do they
contact? Make sure the escalation process to the Cloud Governance team is clearly defined. Ensure these
communication channels are kept updated to reflect staff and organization changes.

After defining your Cloud Governance team and its processes, you need to explicitly define what qualifies as
compliance violations that will triggers actions, and what those actions should be.

For each of your policy statements, review requirements to determine what constitutes a policy violation. Generate
your triggers using the information you've already established as part of the policy definition process.

Risk tolerance - Create violation triggers based on the metrics and risk indicators you established as part of
your risk tolerance analysis.
Defined policy requirements - Policy statements may provide Service Level Agreement (SLA), Business
continuity and disaster recovery (BRCD), or performance requirements that should be used as the basis for
compliance triggers.

Each violation trigger should have a corresponding action. Triggered actions should always notify an appropriate
IT staff or Cloud Governance team member when a violation occurs. This notification can lead to a manual review
of the compliance issue or kickoff a pre-established remediation process depending on the type and severity of the
detected violation.

Some examples of violation triggers and actions:

After you've defined your compliance violation triggers and actions, you can start planning how best to use the
logging and reporting tools and other features of the cloud platform to help automate your monitoring and policy
compliance strategy.

Consult the CAF logging and reporting decision guide topic for guidance on choosing the best monitoring pattern
for your deployment.

Introduction to regulatory compliance
3/13/2019 • 3 minutes to read • Edit Online

HIPAA

PCI

PII

This is an introductory article about regulatory compliance, therefore it's not intended for implementing a
compliance strategy. It is for general awareness only. More detailed information about Azure compliance offerings
is available at the [Microsoft Trust Center]. Moreover, all downloadable documentation is available to Azure
customers under a nondisclosure agreement from the Microsoft Service Trust Portal.

Regulatory compliance refers to the discipline and process of ensuring that a company follows the laws set by
governing bodies in their geography or industry. For IT regulatory compliance, people and/or processes monitor
corporate systems in an effort to detect and prevent violations of policies and procedures established by
governing laws and regulations. This in turn applies to a very wide area of monitoring and enforcement processes.
Depending on the industry and geography, these processes can become quite lengthy and complex.

For multinational organizations (particularly those in heavily regulated industries, such as healthcare and financial
services), compliance can be very challenging. Standards and regulations abound and, of course, they change
frequently, making it difficult for businesses to keep abreast of evolving international electronic data handling laws.

As with security controls, organizations should understand the division of responsibilities regarding regulatory
compliance in the cloud. Cloud providers strive to ensure that their platforms and services are compliant. But
organizations also need to confirm that their applications, and those supplied by third parties, are compliant.
Similarly, applications in regulated industries that use cloud services might require certification from the cloud
provider.

The following are descriptions of compliance regulations in various industries and geographies:

A healthcare application that processes protected health information (PHI) is subject to both the Privacy Rule and
the Security Rule encompassed within the Health Information Portability and Accountability Act (HIPAA). At a
minimum, HIPAA could likely require that a healthcare business receive written assurances from the cloud
provider that it will safeguard any PHI received or created.

Payment Card Industry Data Security Standard (PCI DSS) is a proprietary information security standard for
organizations that handle branded credit cards from the major card schemes, including Visa, MasterCard,
American Express, Discover, and JCB. The PCI standard is mandated by the card brands and administered by the
Payment Card Industry Security Standards Council. The standard was created to increase controls around
cardholder data to reduce credit-card fraud. Validation of compliance is performed annually, either by an external
Qualified Security Assessor (QSA) or by a firm-specific Internal Security Assessor (ISA) who creates a Report on
Compliance (ROC) for organizations handling large volumes of transactions, or by a Self-Assessment
Questionnaire (SAQ) for companies.

Personally identifiable information (PII) is any datapoint that could be used to identify a consumer, employee,
partner, or any other living or legal entity. Many emerging laws, particularly those dealing with privacy and
individual PII, require that businesses themselves comply and report on compliance and any breaches that might
occur.

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/policy-compliance/what-is-regulatory-compliance.md
https://aka.ms/allcompliance
https://servicetrust.microsoft.com/

GDPR

Compliant foundation in Azure

One of the most important developments in this area is the recent enactment by the European Commission of the
General Data Protection Regulation (GDPR), designed to strengthen data protection for individuals within the
European Union. GDPR requires that data about individuals (such as "a name, a home address, a photo, an email
address, bank details, posts on social networking websites, medical information, or a computer’s IP address") be
maintained on servers within the EU and not transferred out of it. It also requires that companies notify individuals
of any data breaches, and mandates that companies have a Data Protection Officer. Other countries have, or are
developing, similar types of regulations.

To help customers meet their own compliance obligations across regulated industries and markets worldwide,
Azure maintains the largest compliance portfolio in the industry — in breadth (total number of offerings), as well
as depth (number of customer-facing services in assessment scope). Azure compliance offerings are grouped into
four segments: globally applicable, US Government, industry-specific, and region/country-specific.

Azure compliance offerings are based on various types of assurances, including formal certifications, attestations,
validations, authorizations, and assessments produced by independent third-party auditing firms, as well as
contractual amendments, self-assessments, and customer guidance documents produced by Microsoft. Each
offering description in this document provides an up-to-date scope statement indicating which Azure customer-
facing services are in scope for the assessment, as well as links to downloadable resources to assist customers with
their own compliance obligations.

More detailed information about Azure compliance offerings is available from the Microsoft Trust Center.
Moreover, all downloadable documentation is available to Azure customers under a nondisclosure agreement
from the Service Trust Portal in the following sections:

Audit reports: Includes FedRAMP, GRC assessment, ISO, PCI DSS, and SOC reports sections
Data protection resources: Includes compliance guides, FAQ and white papers, and pen test and security
assessments sections

https://docs.microsoft.com/trustcenter/compliance/complianceofferings
https://servicetrust.microsoft.com

What is a cloud policy review?
3/13/2019 • 3 minutes to read • Edit Online

Why perform a cloud policy review?

The cloud policy review process

Example of a policy review for a legacy policy

A cloud policy review is the first step toward governance maturity in the cloud. The objective of this process is
to modernize existing corporate IT policies. When completed, the updated policies provide an equivalent level of
risk mitigation for cloud-based resources. This article explains the cloud policy review process and its
importance.

Most businesses manage IT through the execution of processes which alignment with governing policies. In
small businesses, these policies may anecdotal and processes loosely defined. As businesses grow into large
enterprises, policies and processes tend to be more clearly documented and consistently executed.

As companies mature corporate IT policies, dependencies on past technical decisions have a tendency to seep
into governing policies. For instance, its common to see disaster recovery processes include policy that mandates
offsite tape backups. This inclusion assumes a dependency on one type of technology (tape backups), that may
no longer be the most relevant solution.

Cloud Transformations create a natural inflection point to reconsider the legacy policy decisions of the past.
Technical capabilities and default processes change considerably in the cloud, as do the inherit risks. Using the
prior example, the tape backup policy stemmed from the risk of a single point of failure by keeping data in one
location and the business need to minimize the risk profile by mitigating this risk. In a cloud deployment, there
are several options that deliver the same risk mitigation, with much lower recovery time objectives (RTO). For
instance:

A cloud-native solution could enable geo-replication of the SQL Azure database
A hybrid solution could use Azure Site Recovery to replicate an IaaS workload to multiple datacenters.

When executing a cloud transformation, policies often govern many of the tools, services, and processes
available to the cloud adoption teams. If those policies are based on legacy technologies, they may hinder the
team's efforts to drive change. In the worst case, important policies are entirely ignored by the migration team to
enable workarounds. Neither is an acceptable outcome.

Cloud policy reviews align existing IT governance and IT security policies with the five disciplines of Cloud
Governance: Cost Management, Security Baseline, Identity Baseline, Resource Consistency, and Deployment
Acceleration.

For each of these disciplines, the review process follows these steps:

1. Review existing on-premises policies related to the specific discipline, looking for two key data points: legacy
dependencies and identified business risks.

2. Evaluate each business risk by asking a simple question: "Does the business risk still exist in a cloud model?"
3. If the risk still exists, re-write the policy by documenting the necessary mitigation, not the technical solution.
4. Review the updated policy with the cloud adoption teams to understand potential solutions to the required

mitigation.

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/policy-compliance/what-is-a-cloud-policy-review.md

Tools to help create modern policies

To provide an example of the process, let's again use the tape backup policy in the prior section:

A corporate policy mandates offsite tape backups for all production systems. In this policy, you can see two
data points of interest:

Does the risk still exist? Yes. Even in the cloud, a dependence on a single facility does create some risk. There is
a lower probability of this risk affecting the business than was present in the on-premises solution, but the risk
still exists.
Rewrite of the policy. In the case of a datacenter-wide disaster, there must exist a means of restoring
production systems within 24 hours of the outage in a different datacenter and different geographic location.
Review with the cloud adoption teams. Depending on the solution being implemented, there are multiple
means of adhering to this Resource Consistency policy.

Legacy dependency on a tape backup solution
An assumed business risk associated with the storage of backups in the same physical location as the
production equipment.

To help accelerate the creation of modern policies, a set of sample policies is available in each of the five
disciplines of Cloud Governance. Those sample policies will each start with one of three design assumptions:

Cloud Native: The solution being deployed is cloud native and can capitalize on default solutions found in
Azure, with minimal configuration.
Enterprise: The solution being deployed is complex and requires a hybrid cloud deployment model. This
necessitates more complex implementations of certain governance disciplines.
Cloud design principle (CDP) compliant: The solution being deployed must adhere to the architecture
axes defined in CDP, requiring a much higher degree of governance.

For each discipline, a sample policy needs to be created at each of these levels. Each sample is meant to trigger
thoughts and conversations inside the corporate environment. Note that these samples are not intended to be
used as an alternative to a properly constructed corporate IT policy.

CISO cloud readiness guide
3/13/2019 • 3 minutes to read • Edit Online

How can the CISO prepare for the cloud

Resources for the Chief Information Security Officer

Microsoft guidance like the Azure Cloud Adoption Framework (CAF) is not positioned to determine or guide the
unique security constraints of the thousands of enterprises supported by this documentation. When moving to the
cloud, the role of the Chief Information Security Officer or Chief Information Security Office (CISO) isn't
supplanted by cloud technologies. Quite the contrary, the CISO and the office of the CISO, become more
engrained and integrated. This guide assumes the reader is familiar with CISO processes and is seeking to
modernize those processes to enable Cloud Transformation.

Cloud adoption enables services that weren't often considered in traditional IT environments. Self-service or
automated deployments are commonly executed by Application Development or other IT teams not traditionally
aligned to production deployment. In some organizations, business constituents similarly have self-service
capabilities. This can trigger new security requirements that weren't needed in the on-premises world. Centralized
security is more challenging, Security often becomes a shared responsibility across the business and IT culture.
This article can help a CISO prepare for that approach and engage in incremental governance.

Like most policies, Security and Governance policies within an organization tend to grow organically. When
security incidents happen, they shape policy to inform users and reduce the likelihood of repeat occurrences. While
natural, this approach creates policy bloat and technical dependencies. Cloud Transformation Journeys create a
unique opportunity to modernize and reset policies. While preparing for any transformation journey, the CISO can
create immediate and measurable value by serving as the primary stakeholder in a policy review.

In such a review, the role of the CISO is to create a safe balance between the constraints of existing
policy/compliance and the improved security posture of Cloud providers. Measuring this progress can take many
forms, often it is measured in the number of security policies that can be safely offloaded to the cloud provider.

Transferring security risks: As services are moved into infrastructure as a service (IaaS) hosting models, the
business assumes less direct risk regarding hardware provisioning. The risk isn't removed, instead it is transferred
to the cloud vendor. Should a cloud vendor's approach to hardware provisioning provide the same level of risk
mitigation, in a secure repeatable process, the risk of hardware provisioning execution is removed from corporate
policy. It may now be replaced with a new policy for validating those processes, but the risk of execution is
reallocated, reducing overall security risk.

As solutions move further "up stack" to incorporate platform as a service (PaaS) or software as a service (SaaS)
models, additional risks can be mitigated, transferred, and replaced. When risk is safely moved to a cloud provider,
the cost of executing, monitoring, and enforcing security policies or other compliance policies can be safely reduced
as well.

Growth Mindset: Change can be scary to the business, as well as, technical implementors. When the CISO leads a
growth mindset shift in an organization, we've found that those natural fears are replaced with an increased
interest in safety and policy compliance. Approaching a policy review, a Transformation Journey, or simple
implementation reviews with a growth mindset, allows the team to move quickly but not at the cost of a fair and
manageable risk profile.

Knowledge about the cloud is fundamental to approaching a policy review with a growth mindset. The following
resources can help the CISO better understand the security posture of Microsoft's Azure platform.

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/policy-compliance/how-can-a-ciso-prepare-for-the-cloud.md

Next steps

Security platform resources:

Security Development Cycle, internal audits
Mandatory security training, background checks
Penetration testing, intrusion detection, DDoS, audits, and logging
State-of-the-art datacenter , physical security, secure network
Microsoft Azure Security Response in the Cloud (PDF)

Privacy and controls:

Manage your data all the time
Control on data location
Provide data access on your terms
Responding to law enforcement
Stringent privacy standards

Compliance:

Trust Center
Common Controls Hub
The Cloud Services Due Diligence Checklist
Compliance by service, location, and industry

Transparency:

How Microsoft secures customer data in Azure services
How Microsoft manages data location in Azure services
Who in Microsoft can access your data on what terms
How Microsoft secures customer data in Azure services
Review certification for Azure services, transparency hub

The first step to taking action in any governance strategy, is a policy review. Policy and Compliance could be a
useful guide during your policy review.

Prepare for a policy review

https://www.microsoft.com/sdl/
https://downloads.cloudsecurityalliance.org/star/self-assessment/StandardResponsetoRequestforInformationWindowsAzureSecurityPrivacy.docx
https://www.microsoft.com/trustcenter/Security/AuditingAndLogging
https://www.microsoft.com/cloud-platform/global-datacenters
https://docs.microsoft.com/azure/security/security-network-overview
https://aka.ms/SecurityResponsePaper
https://www.microsoft.com/trustcenter/Privacy/You-own-your-data
https://www.microsoft.com/trustcenter/Privacy/Where-your-data-is-located
https://www.microsoft.com/trustcenter/Privacy/Who-can-access-your-data-and-on-what-terms
https://www.microsoft.com/trustcenter/Privacy/Responding-to-govt-agency-requests-for-customer-data
https://www.microsoft.com/TrustCenter/Privacy/We-set-and-adhere-to-stringent-standards
https://www.microsoft.com/trustcenter/default.aspx
https://www.microsoft.com/trustcenter/Common-Controls-Hub
https://www.microsoft.com/trustcenter/Compliance/Due-Diligence-Checklist
https://www.microsoft.com/trustcenter/Compliance/default.aspx
https://www.microsoft.com/trustcenter/Transparency/default.aspx
https://azuredatacentermap.azurewebsites.net/
https://www.microsoft.com/trustcenter/Privacy/Who-can-access-your-data-and-on-what-terms
https://www.microsoft.com/trustcenter/Transparency/default.aspx
https://www.microsoft.com/trustcenter/Compliance/default.aspx

What is data classification?
3/13/2019 • 2 minutes to read • Edit Online

Business risks and governance

Understand then mitigate

Microsoft's data classification

Tagging data classification in Azure

Next steps

This is an introductory article on the general topic of Data Classification. Data classification is a very common
starting point for all governance.

In most organizations, the primary reasons for investing in governance can be reduced to three business risks:

Liability associated with data breaches
Interruption to the business from outages
Unplanned or unexpected spending

There are many variants of these three business risks. However, these tend to be the most common.

Before any risk can be mitigated, it must be understood. In the case of data breach liability, that understanding
starts with data classification. Data classification is the process of associating a meta data characteristic to every
asset in a digital estate, which identifies the type of data associated with that asset.

Microsoft suggests that any asset which has been identified as a potential candidate for migration or deployment
to the cloud should have documented meta data to record the data classification, business criticality, and billing
responsibility. These three points of classification can go a long way to understanding and mitigating risks.

The following is a list of classifications Microsoft uses. Depending on your industry or existing security
requirements, data classifications standards may already exist within your organization. If no standard exists, we
welcome you to use this sample classification, to help you better understand your digital estate and risk profile.

Non-Business: Data from your personal life that does not belong to Microsoft
Public: Business data that is freely available and approved for public consumption
General: Business data that is not meant for a public audience
Confidential: Business data that could cause harm to Microsoft if over-shared
Highly Confidential: Business data that would cause extensive harm to Microsoft if over-shared

Every cloud provider should offer a mechanism for recording metadata about any asset. Metadata is vital to
managing assets in the cloud. In the case of Azure, resource tags are the suggested approach for metadata storage.
For additional information on resource tagging in Azure, see the article on Using tags to organize your Azure
resources.

Apply data classifications during one of the actionable governance journeys.

Begin an Actionable Governance Journey

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/policy-compliance/what-is-data-classification.md
https://docs.microsoft.com/azure/azure-resource-manager/resource-group-using-tags

�� N O T EN O T E

Policy statements

C A U T IO NC A U T IO N

Developing Cost Management governance policy statements

Cost Management is one of the Five Disciplines of Cloud Governance within the CAF Governance Model. For many customers,
governing cost is a major concern when adopting cloud technologies. Balancing performance demands, adoption pacing, and
cloud services costs can be challenging. This is especially relevant during major business transformations that implement cloud
technologies. This section outlines the approach to developing a Cost Management discipline as part of a cloud governance
strategy.

Cost Management governance does not replace the existing business teams, accounting practices, and procedures that are
involved in your organization's financial management of IT-related costs. The primary purpose of this discipline is to identify
potential cloud-related risks related to IT spending, and provide risk-mitigation guidance to the business and IT teams
responsible deploying and managing cloud deployments. As you develop governance policies and processes make sure to
involve relevant business and IT staff in your planning and review processes.

The primary audience for this guidance is your organization's cloud architects and other members of your Cloud Governance
team. However, the decisions, policies, and processes that emerge from this discipline should involve engagement and
discussions with relevant members of your business and IT teams, especially those leaders responsible for owning, managing,
and paying for cloud-based workloads.

Actionable policy statements and the resulting architecture requirements serve as the foundation of a Cost Management
discipline. To see policy statement samples, see the article on Cost Management Policy Statements. These samples can serve as a
starting point for your organization's governance policies.

The sample policies come from common customer experiences. To better align these policies to specific cloud governance needs,
execute the following steps to create policy statements that meet your unique business needs.

The following six steps will help you define governance policies to control costs in your environment.

Cost Management TemplateCost Management Template

Business RisksBusiness Risks

Indicators and MetricsIndicators and Metrics

Download the template for documenting a Cost Management discipline

Understand the motives and risks commonly associated with the Cost Management discipline.

Indicators to understand if it is the right time to invest in the Cost Management discipline.

Next steps

Policy adherence processesPolicy adherence processes

MaturityMaturity

ToolchainToolchain

Suggested processes for supporting policy compliance in the Cost Management discipline.

Aligning Cloud Management maturity with phases of cloud adoption.

Azure services that can be implemented to support the Cost Management discipline.

Get started by evaluating business risks in a specific environment.

Understand business risks

Cost Management template
3/13/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Next steps

The first step to implementing change is communicating the desired change. The same is true when changing
governance practices. The template below serves as a starting point for documenting and communicating policy
statements that govern Cost Management in the cloud.

Although it contains example content related to the Cost Management discipline, this template can be used as the
basis for capturing the business risks, risk tolerances, compliance processes, and tooling used to define policy
statements for any of the Five Disciplines of Cloud Governance.

This template is a limited sample. Before updating this template to reflect your requirements, you should review the
subsequent steps for defining an effective Cost Management discipline within your cloud governance strategy.

Download governance discipline template

Solid governance practices start with an understanding of business risk. Review the article on business risks and
begin to document the business risks that align with your current cloud adoption plan.

Understand business risks

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/cost-management/template.md
https://archcenter.blob.core.windows.net/cdn/fusion/governance/Governance Discipline Template.docx

Cost Management motivations and business risks
3/13/2019 • 2 minutes to read • Edit Online

Is Cost Management relevant?

Business risk

Next steps

This article discusses the reasons that customers typically adopt a Cost Management discipline within a cloud
governance strategy. It also provides a few examples of business risks that drive policy statements.

In terms of cost governance, cloud adoption creates a paradigm shift. Management of cost in a traditional on-
premises world is based on refresh cycles, datacenter acquisitions, host renewals, and recurring maintenance
issues. You can forecast, plan, and refine each of these costs to align with annual capital expenditure budgets.

For cloud solutions, many businesses tend to take a more reactive approach to Cost Management. In many cases,
businesses will prepurchase, or commit to use, a set amount of cloud services. This model assumes that
maximizing discounts, based on how much the business plans on spending with a specific cloud vendor, creates
the perception of a proactive, planned cost cycle. However, that perception will only become a reality if the
business also implements mature Cost Management disciplines.

The cloud offers self-service capabilities that were previously unheard of in traditional on-premises datacenters.
These new capabilities empower businesses to be more agile, less restrictive, and more open to adopt new
technologies. However, the downside of self-service is that end users can unknowingly exceed allocated budgets.
Conversely, the same users can experience a change in plans and unexpectedly not use the amount of cloud
services forecasted. The potential of shift in either direction justifies investment in a Cost Management discipline
within the governance team.

The Cost Management discipline attempts to address core business risks related to expenses incurred when
hosting cloud-based workloads. Work with your business to identify these risks and monitor each of them for
relevance as you plan for and implement your cloud deployments.

Risks will differ between organization, but the following serve as common cost-related risks that you can use as a
starting point for discussions within your Cloud Governance team:

Budget control. Not controlling budget can lead to excessive spending with a cloud vendor.
Utilization loss. Prepurchases or precommitments that are not used can result in wasted investments.
Spending anomalies: Unexpected spikes in either direction can be indicators of improper usage.
Overprovisioned assets. When assets are deployed in a configuration that exceed the needs of an application
or virtual machine (VM), they can increase costs and create waste.

Using the Cloud Management Template, document business risks that are likely to be introduced by the current
cloud adoption plan.

Once an understanding of realistic business risks is established, the next step is to document the business's
tolerance for risk and the indicators and key metrics to monitor that tolerance.

Understand indicators, metrics, and risk tolerance

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/cost-management/business-risks.md

Cost Management metrics, indicators, and risk
tolerance
3/13/2019 • 3 minutes to read • Edit Online

Metrics

Risk tolerance indicators

This article is intended to help you quantify business risk tolerance as it relates to Cost Management. Defining
metrics and indicators helps you create a business case for making an investment in the maturity of the Cost
Management discipline.

Cost Management generally focuses on metrics related to costs. As part of your risk analysis, you'll want to gather
data related to your current and planned spending on cloud-based workloads to determine how much risk you
face, and how important investment in cost governance is to your cloud adoption strategy.

The following are examples of useful metrics that you should gather to help evaluate risk tolerance within the
Security Baseline discipline:

Annual spending: The total annual cost for services provided by a cloud provider
Monthly spending: The total monthly cost for services provided by a cloud provider
Forecasted versus actual ratio: The ratio comparing forecasted and actual spending (monthly or annual)
Pace of adoption (MOM) ratio: The percentage of the delta in cloud costs from month to month
Accumulated cost: Total accrued daily spending, starting from the beginning of the month
Spending trends: Spending trend against the budget

During early deployments, such as Dev/Test or experimental first workloads, Cost Management is likely to be of
relatively low risk. As more assets are deployed, the risk grows and the business' tolerance for risk is likely to
decline. Additionally, as more cloud adoption teams are given the ability to configure or deploy assets to the cloud,
the risk grows and tolerance decreases. Conversely, growing a Cost Management discipline will take people from
the cloud adoption phase to deploy more innovative new technologies.

In the early stages of cloud adoption, you will work with your business to determine a risk tolerance baseline. Once
you have a baseline, you will need to determine the criteria that would trigger an investment in the Cost
Management discipline. These criteria will likely be different for every organization.

Once you have identified business risks, you will work with your business to identify benchmarks that you can use
to identify triggers that could potentially increase those risks. The following are a few examples of how metrics,
such as those mentioned above, can be compared against your risk baseline tolerance to indicate your business's
need to further invest in Cost Management.

Commitment-driven (most common): A company that is committed to spending $X,000,000 this year on a
cloud vendor. They need a Cost Management discipline to ensure that the business doesn't exceed its spending
targets by more than 20%, and that they will use at least 90% of that commitment.
Percentage trigger: A company with cloud spending that is stable for their production systems. If that changes
by more that X%, then a Cost Management discipline will be a wise investment.
Overprovisioned trigger: A company who believes their deployed solutions are overprovisioned. Cost
Management is a priority investment until they can demonstrate proper alignment of provisioning and asset
utilization.

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/cost-management/metrics-tolerance.md

Next steps

Monthly spending trigger: A company that spends over $x,000 per month is considered a sizable cost. If
spending exceeds that amount in a given month, they will need to invest in Cost Management.
Annual spending trigger: A company with an IT R&D budget that allows for spending $X,000 per year on cloud
experimentation. They may run production workloads in the cloud, but they will still be considered
experimental solutions if the budget doesn't exceed that amount. Once it goes over, they will need to treat the
budget like a production investment and manage spending closely.
OpEx adverse (uncommon): As a company, they are very OpEx adverse and will need Cost Management
controls in place before deploying a dev/test workload.

Using the Cloud Management template, document metrics and tolerance indicators that align to the current cloud
adoption plan.

Building on risks and tolerance, establish a process for governing and communicating Cost Management policy
adherence.

Establish policy compliance processes

Cost Management sample policy statements
3/13/2019 • 3 minutes to read • Edit Online

Future-proofing

Budget overruns

Underutilization

Individual cloud policy statements are guidelines for addressing specific risks identified during your risk
assessment process. These statements should provide a concise summary of risks and plans to deal with them.
Each statement definition should include these pieces of information:

Business risk - A summary of the risk this policy will address.
Policy statement - A clear summary explanation of the policy requirements.
Design options - Actionable recommendations, specifications, or other guidance that IT teams and developers
can use when implementing the policy.

The following sample policy statements address a number of common cost-related business risks, and are
provided as examples for you to reference when drafting actual policy statements addressing your own
organization's needs. These examples are not meant to be proscriptive, and there are potentially several policy
options for dealing with any single identified risk. Work closely with business and IT teams to identify the best
policy solutions for your particular cost-related risks.

Business risk. Current criteria that don't warrant an investment in a Cost Management discipline from the
governance team. However, you anticipate such an investment in the future.

Policy statement. You should associate all assets deployed to the cloud with a billing unit, application/workload,
and meet naming standards. This policy will ensure that future Cost Management efforts will be effective.

Design options. For information on establishing a future-proof foundation, see the discussions related to creating
a governance MVP in the actionable design guides included as part of the CAF guidance.

Business risk: Self-service deployment creates a risk of overspending.

Policy statement: Any cloud deployment must be allocated to a billing unit with approved budget and a
mechanism for budgetary limits.

Design options: In Azure, budget can be controlled with Azure Cost Management

Business risk: The company has prepaid for cloud services or has made an annual commitment to spend a
specific amount. There is a risk that the agreed upon amount won't be used, resulting in a lost investment.

Policy statement: Each billing unit with an allocated cloud budget will meet annually to set budgets, quarterly to
adjust budgets, and monthly to allocate time for reviewing planned versus actual spending. Discuss any deviations
greater than 20% with the billing unit leader monthly. For tracking purposes, assign all assets to a billing unit.

Design options:

In Azure, planned versus actual spending can be managed via Azure Cost Management
There are several options for grouping resources by billing unit. In Azure, a resource consistency model should
be chosen in conjunction with the governance team and applied to all assets.

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/cost-management/policy-statements.md
https://docs.microsoft.com/azure/cost-management/manage-budgets
https://docs.microsoft.com/azure/cost-management/quick-acm-cost-analysis

Overprovisioned assets

Overoptimization

Next steps

Business risk: In traditional on-premises datacenters, it is common practice to deploy assets with extra capacity
planning for growth in the distant future. The cloud can scale more quickly than traditional equipment. Assets in
the cloud are also priced based on the technical capacity. There is a risk of the old on-premises practice artificially
inflating cloud spending.

Policy statement: Any asset deployed to the cloud must be enrolled in a program that can monitor utilization and
report any capacity in excess of 50% of utilization. Any asset deployed to the cloud must be grouped or tagged in a
logical manner, so governance team members can engage the workload owner regarding any optimization of
overprovisioned assets.

Design options:

In Azure, Azure Advisor can provide optimization recommendations.
There are several options for grouping resources by billing unit. In Azure, a resource consistency model should
be chosen in conjunction with the governance team and applied to all assets.

Business risk: Effective cost management can actually create new risks. Optimization of spending is inverse to
system performance. When reducing costs, there is a risk of overtightening spending and producing poor user
experiences.

Policy statement: Any asset that directly affects customer experiences must be identified through grouping or
tagging. Before optimizing any asset that affects customer experience, the Cloud Governance team must adjust
optimization based on no fewer than 90 days of utilization trends. Document any seasonal or event driven bursts
considered when optimizing assets.

Design options:

In Azure, Azure Monitor's insights features can help with analysis of system utilization.
There are several options for grouping and tagging resources based on roles. In Azure, you should choose a
resource consistency model in conjunction with the governance team and apply this to all assets.

Use the samples mentioned in this article as a starting point to develop policies that address specific business risks
that align with your cloud adoption plans.

To begin developing your own custom policy statements related to Cost Management, download the Cost
Management template.

To accelerate adoption of this discipline, choose the actionable governance journey that most closely aligns with
your environment. Then modify the design to incorporate your specific corporate policy decisions.

Actionable Governance Journeys

https://docs.microsoft.com/azure/advisor/advisor-cost-recommendations
https://docs.microsoft.com/azure/azure-monitor/insights/vminsights-performance

Cost Management policy compliance processes
3/13/2019 • 3 minutes to read • Edit Online

Planning, review, and reporting processes

Ongoing monitoring processes

This article discusses an approach to creating processes that support a Cost Management governance discipline.
Effective governance of cloud costs starts with recurring manual processes designed to support policy compliance.
This requires regular involvement of the Cloud Governance team and interested business stakeholders to review
and update policy and ensure policy compliance. In addition, many ongoing monitoring and enforcement
processes can be automated or supplemented with tooling to reduce the overhead of governance and allow for
faster response to policy deviation.

The best Cost Management tools in the cloud are only as good as the processes and policies that they support.
The following is a set of example processes commonly involved in the Cost Management discipline. Use these
examples as a starting point when planning the processes that will allow you to continue to update cost policy
based on business change and feedback from the business teams subject to cost governance guidance.

Initial risk assessment and planning: As part of your initial adoption of the Cost Management discipline,
identify your core business risks and tolerances related to cloud costs. Use this information to discuss budget and
cost-related risks with members of your business teams and develop a baseline set of policies for mitigating these
risks to establish your initial governance strategy.

Deployment planning: Before deploying any asset, establish a forecasted budget based on expected cloud
allocation. Ensure that ownership and accounting information for the deployment is documented.

Annual planning: On an annual basis, perform a roll-up analysis on all deployed and to-be-deployed assets.
Align budgets by business units, departments, teams, and other appropriate divisions to empower self-service
adoption. Ensure that the leader of each billing unit is aware of the budget and how to track spending.

This is the time to make a precommitment or prepurchase to maximize discounting. It is wise to align annual
budgeting with the cloud vendor's fiscal year to further capitalize on year-end discount options.

Quarterly planning: On a quarterly basis, review budgets with each billing unit leader to align forecast and actual
spending. If there are changes to the plan or unexpected spending patterns, align and reallocate the budget.

This quarterly planning process is also a good time to evaluate the current membership of your Cloud Governance
team for knowledge gaps related to current or future business plans. Invite relevant staff and workload owners to
participate in reviews and planning as either temporary advisors or permanent members of your team.

Education and Training: On a bi-monthly basis, offer training sessions to make sure business and IT staff are up-
to-date on the latest Cost Management policy requirements. As part of this process review and update any
documentation, guidance, or other training assets to ensure they are in sync with the latest corporate policy
statements.

Monthly reporting: On a monthly basis, report actual spending against forecast. Notify billing leaders of any
unexpected deviations.

These basic processes will help align spending and establish a foundation for the Cost Management discipline.

A successful Cost Management governance strategy depends on visibility into the past, current, and planned
future cloud-related spending. Without the ability to analyze the relevant metrics and data of your existing costs,

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/cost-management/compliance-processes.md

Compliance violation triggers and enforcement actions

Next steps

you cannot identify changes in your risks or detect violations of your risk tolerances. The ongoing governance
processes discussed above require quality data to ensure policy can be modified to better protect your
infrastructure against changing business requirements and cloud usage.

Ensure that your IT teams have implemented automated systems for monitoring your cloud spending and usage
for unplanned deviations from expected costs. Establish reporting and alerting systems to ensure prompt
detection and mitigation of potential policy violations.

When violations are detected, you should take enforcement actions to realign with policy. You can automate most
violation triggers using the tools outlined in the Cost Management toolchain for Azure.

The following are examples of triggers:

Monthly budget deviations: Discuss any deviations in monthly spending that exceed 20% forecast-versus-
actual ratio with the billing unit leader. Record resolutions and changes in forecast.
Pace of adoption: Any deviation at a subscription level exceeding 20% will trigger a review with billing unit
leader. Record resolutions and changes in forecast.

Using the Cloud Management template, document the processes and triggers that align to the current cloud
adoption plan.

For guidance on executing cloud management policies in alignment with adoption plans, see the article on Cost
Management discipline improvement.

Cost Management discipline improvement

Cost Management discipline improvement
3/13/2019 • 4 minutes to read • Edit Online

C a u t i o nC a u t i o n

Planning and readiness

The Cost Management discipline attempts to address core business risks related to expenses incurred when
hosting cloud-based workloads. Within the five disciplines of Cloud Governance, Cost Management is involved in
controlling cost and usage of cloud resources with the goal of creating and maintaining a planned cost cycle.

This article outlines potential tasks your company perform to develop and mature your Cost Management
discipline. These tasks can be broken down into planning, building, adopting, and operating phases of
implementing a cloud solution, which are then iterated on allowing the development of an incremental approach
to cloud governance.

Figure 1. Adoption phases of the incremental approach to cloud governance.

No single document can account for the requirements of all businesses. As such, this article outlines suggested
minimum and potential example activities for each phase of the governance maturation process. The initial
objective of these activities is to help you build a Policy MVP and establish a framework for incremental policy
evolution. Your Cloud Governance team will need to decide how much to invest in these activities to improve your
Cost Management governance capabilities.

Neither the minimum or potential activities outlined in this article are aligned to specific corporate policies or third
party compliance requirements. This guidance is designed to help facilitate the conversations that will lead to
alignment of both requirements with a cloud governance model.

This phase of governance maturity bridges the divide between business outcomes and actionable strategies.
During this process, the leadership team defines specific metrics, maps those metrics to the digital estate, and
begins planning the overall migration effort.

Minimum suggested activities:

Evaluate your Cost Management toolchain options.
Develop a draft Architecture Guidelines document and distribute to key stakeholders.
Educate and involve the people and teams affected by the development of Architecture Guidelines.

Potential activities:

Ensure budgetary decisions that support the business justification for your cloud strategy.
Validate learning metrics that you use to report on the successful allocation of funding.
Understand the desired cloud accounting model that affects how cloud costs should be accounted for.
Become familiar with the digital estate plan and validate accurate costing expectations.
Evaluate buying options to determine if it's better to "pay as you go" or to make a precommitment by

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/cost-management/discipline-improvement.md

Build and pre-deployment

Adopt and migrate

Operate and post-implementation

purchasing an Enterprise Agreement.
Align business goals with planned budgets and adjust budgetary plans as necessary.
Develop a goals and budget reporting mechanism to notify technical and business stakeholders at the end of
each cost cycle.

A number of technical and nontechnical prerequisites are required to successfully migrate an environment. This
process focuses on the decisions, readiness, and core infrastructure that proceeds a migration.

Minimum suggested activities:

Implement your Cost Management toolchain by rolling out in a pre-deployment phase.
Update the Architecture Guidelines document and distribute to key stakeholders.
Develop educational materials and documentation, awareness communications, incentives, and other programs
to help drive user adoption.
Determine if your purchase requirements align with your budgets and goals.

Potential activities:

Align your budgetary plans with the Subscription Strategy that defines your core ownership model.
Use the Resource Consistency Strategy to enforce architecture and cost guidelines over time.
Determine if there are any cost anomalies that affect your adoption and migration plans.

Migration is an incremental process that focuses on the movement, testing, and adoption of applications or
workloads in an existing digital estate.

Minimum suggested activities:

Migrate your Cost Management toolchain from pre-deployment to production.
Update the Architecture Guidelines document and distribute to key stakeholders.
Develop educational materials and documentation, awareness communications, incentives, and other programs
to help drive user adoption.

Potential activities:

Implement your Cloud Accounting Model.
Ensure that your budgets reflect your actual spending during each release and adjust as necessary.
Monitor changes in budgetary plans and validate with stakeholders if additional sign-offs are needed.
Update changes to the Architecture Guidelines document to reflect actual costs.

Once the transformation is complete, governance and operations must live on for the natural lifecycle of an
application or workload. This phase of governance maturity focuses on the activities that commonly come after the
solution is implemented and the transformation cycle begins to stabilize.

Minimum suggested activities:

Customize your Cost Management toolchain based on changes in your organization’s cost management needs.
Consider automating any notifications and reports to reflect actual spending.
Refine Architecture Guidelines to guide future adoption processes.
Educate affected teams on a periodic basis to ensure ongoing adherence to the Architecture Guidelines.

Next steps

Potential activities:

Execute a quarterly cloud business review to communicate value delivered to the business and associated costs.
Adjust plans quarterly to reflect changes to actual spending.
Determine financial alignment to P&Ls for business unit subscriptions.
Analyze stakeholder value and cost reporting methods on a monthly basis.
Remediate underused assets and determine if they're worth continuing.
Detect misalignments and anomalies between the plan and actual spending.
Assist the cloud adoption teams and the Cloud Strategy team with understanding and resolving these
anomalies.

Now that you understand the concept of cloud identity governance, examine the Cost Management toolchain to
identify Azure tools and features that you'll need when developing the Cost Management governance discipline on
the Azure platform.

Cost Management toolchain for Azure

Cost Management tools in Azure
3/13/2019 • 2 minutes to read • Edit Online

AZURE PORTAL
AZURE COST
MANAGEMENT

AZURE EA CONTENT
PACK AZURE POLICY

Enterprise agreement
required?

No Yes (not required
with Cloudyn)

Yes No

Budget control No Yes No Yes

Monitor spending on
single resource

Yes Yes Yes No

Monitor spending
across multiple
resources

No Yes Yes No

Control spending on
single resource

Yes - manual sizing Yes No Yes

Enforce spending
across multiple
resources

No Yes No Yes

Monitor and detect
trends

Yes - limited Yes Yes No

Detect spending
anomalies

No Yes Yes No

Socialize deviations No Yes Yes No

Cost Management is one of the Five Disciplines of Cloud Governance. This discipline focuses on ways of
establishing cloud spending plans, allocating cloud budgets, monitoring and enforcement of cloud budgets,
detecting costly anomalies, and adjusting the cloud governance plan when actual spending is misaligned.

The following is a list of Azure native tools that can help mature the policies and processes that support this
governance discipline.

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/cost-management/toolchain.md
https://azure.microsoft.com/features/azure-portal/
https://docs.microsoft.com/azure/cost-management/overview-cost-mgt
https://docs.microsoft.com/power-bi/service-connect-to-azure-enterprise
https://docs.microsoft.com/azure/governance/policy/overview
https://docs.microsoft.com/azure/cost-management/overview

�� N O T EN O T E

Policy statements

C A U T IO NC A U T IO N

Developing Security Baseline governance policy statements

Security Baseline is one of the Five Disciplines of Cloud Governance within the CAF Governance Model. Security is a component
of any IT deployment, and the cloud introduces unique security concerns. Many businesses are subject to regulatory
requirements that make protecting sensitive data a major organizational priority when considering a cloud transformation.
Identifying potential security threats to your cloud environment and establishing processes and procedures for addressing these
threats should be a priority for any IT Security or Cybersecurity team. The Security Baseline discipline ensures technical
requirements and security constraints are consistently applied to cloud environments, as those requirements mature.

Security Baseline governance does not replace the existing IT teams, processes, and procedures that your organization uses to
secure cloud-deployed resources. The primary purpose of this discipline is to identify security-related business risks and provide
risk-mitigation guidance to the IT staff responsible for security infrastructure. As you develop governance policies and processes
make sure to involve relevant IT teams in your planning and review processes.

This article outlines the approach to developing a Security Baseline discipline as part of your cloud governance strategy. The
primary audience for this guidance is your organization's cloud architects and other members of your Cloud Governance team.
However, the decisions, policies, and processes that emerge from this discipline should involve engagement and discussions with
relevant members of your IT and security teams, especially those technical leaders responsible for implementing networking,
encryption, and identity services.

Making the correct security decisions is critical to the success of your cloud deployments and wider business success. If your
organization lacks in-house expertise in cybersecurity, consider engaging external security consultants as a component of this
discipline. Also consider engaging Microsoft Consulting Services, the Microsoft FastTrack cloud adoption service, or other
external cloud adoption experts to discuss concerns related to this discipline.

Actionable policy statements and the resulting architecture requirements serve as the foundation of a Security Baseline
discipline. To see policy statement samples, see the article on Security Baseline Policy Statements. These samples can serve as a
starting point for your organization's governance policies.

The sample policies come from common customer experiences. To better align these policies to specific cloud governance needs,
execute the following steps to create policy statements that meet your unique business needs.

The following six steps offer examples and potential options to consider when developing Security Baseline governance. Use
each step as a starting point for discussions within your Cloud Governance team and with affected business, IT, and security
teams across your organization to establish the policies and processes needed to mitigate security-related risks.

Security Baseline TemplateSecurity Baseline Template

Business RisksBusiness Risks

Download the template for documenting a Security Baseline discipline

Understand the motives and risks commonly associated with the Security Baseline discipline.

https://www.microsoft.com/enterprise/services
https://azure.microsoft.com/programs/azure-fasttrack/

Next steps

Indicators and MetricsIndicators and Metrics

Policy adherence processesPolicy adherence processes

MaturityMaturity

ToolchainToolchain

Indicators to understand if it is the right time to invest in the Security Baseline discipline.

Suggested processes for supporting policy compliance in the Security Baseline discipline.

Aligning Cloud Management maturity with phases of cloud adoption.

Azure services that can be implemented to support the Security Baseline discipline.

Get started by evaluating business risks in a specific environment.

Understand business risks

Security Baseline template
3/13/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Next steps

The first step to implementing change is communicating the desired change. The same is true when changing
governance practices. The generic template below provides a starting point for documenting and communicating
policy statements that govern Security Baseline in the cloud.

Although it contains example content related to the Cost Management discipline, this template can be used as the
basis for capturing the business risks, risk tolerances, compliance processes, and tooling used to define policy
statements for the Security Baseline discipline.

This template is a limited sample. Before updating this template to reflect your requirements, you should review the
subsequent steps for defining an effective Security Baseline discipline within your cloud governance strategy.

Download governance discipline template

Solid governance practices start with an understanding of business risk. Review the article on business risks and
begin to document the business risks that align with your current cloud adoption plan.

Understand business risks

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/security-baseline/template.md
https://archcenter.blob.core.windows.net/cdn/fusion/governance/Governance Discipline Template.docx

Security Baseline motivations and business risks
3/13/2019 • 2 minutes to read • Edit Online

Is a Security Baseline relevant?

NOTENOTE

Business risk

Next steps

This article discusses the reasons that customers typically adopt a Security Baseline discipline within a cloud
governance strategy. It also provides a few examples of potential business risks that can drive policy statements.

Security is a key concern for any IT organization. Cloud deployments face many of the same security risks as
workloads hosted in traditional on-premises datacenters. However, the nature of public cloud platforms, with a
lack of direct ownership of the physical hardware storing and running your workloads, means cloud security
requires its own policy and processes.

One of the primary things that set cloud security governance apart from traditional security policy is the ease with
which resources can be created, potentially adding vulnerabilities if security isn't considered before deployment.
The flexibility that technologies like software defined networking (SDN) provide for rapidly changing your cloud-
based network topology can also easily modify your overall network attack surface in unforeseen ways. Cloud
platforms also provide tools and features that can improve your security capabilities in ways not always possible
in on-premises environments.

The amount you invest into security policy and processes will depend a great deal on the nature of your cloud
deployment. Initial test deployments may only need the most basic of security policies in place, while a mission-
critical workload will entail addressing complex and extensive security needs. All deployments will need to engage
with the discipline at some level.

The Security Baseline discipline covers the corporate policies and manual processes that you can put in place to
protect your cloud deployment against security risks.

While it is important to understand Identity Baseline in the context of Security Baseline and how that relates to Access
Control, the Five Disciplines of Cloud Governance calls out Identity Baseline as its own discipline, separate from Security
Baseline.

The Security Baseline discipline attempts to address core security-related business risks. Work with your business
to identify these risks and monitor each of them for relevance as you plan for and implement your cloud
deployments.

Risks will differ between organization, but the following serve as common security-related risks that you can use
as a starting point for discussions within your Cloud Governance team:

Data breach. Inadvertent exposure or loss of sensitive cloud-hosted data can lead to losing customers,
contractual issues, or legal consequences.
Service disruption. Outages and other performance issues due to insecure infrastructure interrupts normal
operations and can result in lost productivity or lost business.

Using the Cloud Management Template, document business risks that are likely to be introduced by the current

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/security-baseline/business-risks.md

cloud adoption plan.

Once an understanding of realistic business risks is established, the next step is to document the business's
tolerance for risk and the indicators and key metrics to monitor that tolerance.

Understand indicators, metrics, and risk tolerance

Security Baseline metrics, indicators, and risk
tolerance
3/13/2019 • 4 minutes to read • Edit Online

Metrics

Risk tolerance indicators

This article is intended to help you quantify business risk tolerance as it relates to Security Baseline. Defining
metrics and indicators helps you create a business case for making an investment in maturing the Security
Baseline discipline.

Security Baseline generally focuses on identifying potential vulnerabilities in your cloud deployments. As part of
your risk analysis you'll want to gather data related to your security environment to determine how much risk you
face, and how important investment in Security Baseline governance is to your planned cloud deployments.

Every organization has different security environments and requirements and different potential sources of
security data. The following are examples of useful metrics that you should gather to help evaluate risk tolerance
within the Security Baseline discipline:

Data classification. Number of cloud-stored data and services that are unclassified according to on your
organization's privacy, compliance, or business impact standards.
Number of sensitive data stores - Number of storage end points or databases that contain sensitive data
and should be protected.
Number of unencrypted data stores - Number of sensitive data stores that are not encrypted.
Attack surface. How many total data sources, services, and applications will be cloud-hosted. What percentage
of these data sources are classified as sensitive? What percentage of these applications and services are
mission-critical?
Covered Standards. Number of security standards defined by the Security team.
Covered Resources. Deployed assets that are covered by security standards.
Overall Standards Compliance. Ratio of compliance adherence to security standards.
Attacks by Severity. How many coordinated attempts to disrupt your cloud-hosted services, such as through
Distributed Denial of Service (DDoS) attacks, does your infrastructure experience? What is the size and severity
of these attacks?
Malware protection. Percentage of deployed virtual machines (VMs) that have all required anti-malware,
firewall, or other security software installed.
Patch latency. How long has it been since VMs have had OS and software patches applied.
Security health recommendations. Number of security software recommendations for resolving health
standards for deployed resources, organized by severity.

Cloud platforms provide a baseline set of features that enable small deployment teams to configure basic security
settings without extensive additional planning. As a result, small Dev/Test or experimental first workloads that do
not include sensitive data represent a relatively low level of risk, and will likely not need much in the way of formal
Security Baseline policy. However, as soon as important data or mission-critical functionality is moved to the
cloud, security risks increase, while tolerance for those risks diminishes rapidly. As more of your data and
functionality is deployed to the cloud, the more likely you need an increased investment in the Security Baseline
discipline.

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/security-baseline/metrics-tolerance.md

Next steps

In the early stages of cloud adoption, work with your IT security team and business stakeholders to identify
business risks related to security, then determine an acceptable baseline for security risk tolerance. This section of
the CAF provides examples, but the detailed risks and baselines for your company or deployments may be
different.

Once you have a baseline, establish minimum benchmarks representing an unacceptable increase in your
identified risks. These benchmarks act as triggers for when you need to take action to mitigate these risks. The
following are a few examples of how security metrics, such as those discussed above, can justify an increased
investment in the Security Baseline discipline.

Mission-critical workloads trigger. A company deploying mission-critical workloads to the cloud should
invest in the Security Baseline discipline to prevent potential disruption of service or sensitive data exposure.
Protected data trigger. A company hosting data on the cloud that can be classified as confidential, private, or
otherwise subject to regulatory concerns. They need a Security Baseline discipline to ensure that this data is not
subject to loss, exposure, or theft.
External attacks trigger. A company that experiences serious attacks against their network infrastructure X
times per month could benefit from the Security Baseline discipline.
Standards compliance trigger. A company with more than X% of resources out of security standards
compliance should invest in the Security Baseline discipline to ensure standards are applied consistently across
your IT infrastructure.
Cloud estate size trigger. A company hosting more than X number of applications, services, or data sources.
Large cloud deployments can benefit from investment in the Security Baseline discipline to ensure that their
overall attack surface is properly protected against unauthorized access or other external threats.
Security software compliance trigger. A company where less than X% of deployed virtual machines have all
required security software installed. A Security Baseline discipline can be used to ensure software is installed
consistently on all software.
Patching trigger. A company where deployed virtual machines or services where OS or software patches
have not been applied in the last X number of days. A Security Baseline discipline can be used to ensure
patching is kept up-to-date within a required schedule.
Security focused. Some companies will have strong security and data confidentiality requirements even for
test and experimental workloads. These companies will need to invest in the Security Baseline discipline before
any deployments can begin.

The exact metrics and triggers you use to gauge risk tolerance and the level of investment in the Security Baseline
discipline will be specific to your organization, but the examples above should serve as a useful base for discussion
within your Cloud Governance team.

Using the Cloud Management template, document metrics and tolerance indicators that align to the current cloud
adoption plan.

Building on risks and tolerance, establish a process for governing and communicating Security Baseline policy
adherence.

Establish policy compliance processes

Security Baseline sample policy statements
3/13/2019 • 4 minutes to read • Edit Online

Asset classification

Data encryption

Network isolation

Secure external access

Individual cloud policy statements are guidelines for addressing specific risks identified during your risk
assessment process. These statements should provide a concise summary of risks and plans to deal with them.
Each statement definition should include these pieces of information:

Technical risk - A summary of the risk this policy will address.
Policy statement - A clear summary explanation of the policy requirements.
Technical options - Actionable recommendations, specifications, or other guidance that IT teams and developers
can use when implementing the policy.

The following sample policy statements address a number of common security-related business risks, and are
provided as examples for you to reference when drafting actual policy statements addressing your own
organization's needs. These examples are not meant to be proscriptive, and there are potentially several policy
options for dealing with any single identified risk. Work closely with business, security, and IT teams to identify the
best policy solutions for your particular security risks.

Technical risk: Assets that are not correctly identified as mission-critical or involving sensitive data may not
receive sufficient protections, leading to potential data leaks or business disruptions.

Policy statement: All deployed assets must be categorized by criticality and data classification. Classifications
must be reviewed by the Cloud Governance team and the application owner before deployment to the cloud.

Potential design option: Establish resource tagging standards and ensure IT staff apply them consistently to any
deployed resources using Azure resource tags.

Technical risk: There is a risk of protected data being exposed during storage.

Policy statement: All protected data must be encrypted when at rest.

Potential design option: See the Azure encryption overview article for a discussion of how data at rest
encryption is performed on the Azure platform.

Technical risk: Connectivity between networks and subnets within networks introduces potential vulnerabilities
that can result in data leaks or disruption of mission-critical services.

Policy statement: Network subnets containing protected data must be isolated from any other subnets. Network
traffic between protected data subnets is to be audited regularly.

Potential design option: In Azure, network and subnet isolation is managed through Azure Virtual Networks.

Technical risk: Allowing access to workloads from the public internet introduces a risk of intrusion resulting in
unauthorized data exposure or business disruption.

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/security-baseline/policy-statements.md
https://docs.microsoft.com/azure/azure-resource-manager/resource-group-using-tags
https://docs.microsoft.com/azure/security/security-azure-encryption-overview
https://docs.microsoft.com/azure/virtual-network/virtual-networks-overview

DDoS protection

Secure on-premises connectivity

Network monitoring and enforcement

Security review

Next steps

Policy statement: No subnet containing protected data can be directly accessed over public internet or across
datacenters. Access to those subnets must be routed through intermediate subnet works. All access into those
subnets must come through a firewall solution capable of performing packet scanning and blocking functions.

Potential design option: In Azure, secure public endpoints by deploying a DMZ between the public internet and
your cloud-based network.

Technical risk: Distributed denial of service (DDoS) attacks can result in a business interruption.

Policy statement: Deploy automated DDoS mitigation mechanisms to all publicly accessible network endpoints.

Potential design option: Use Azure DDoS Protection to minimize disruptions caused by DDoS attacks.

Technical risk: Unencrypted traffic between your cloud network and on-premises over the public internet is
vulnerable to interception, introducing the risk of data exposure.

Policy statement: All connections between the on-premises and cloud networks must take place either through a
secure encrypted VPN connection or a dedicated private WAN link.

Potential design option: In Azure, use ExpressRoute or Azure VPN to establish private connections between
your on-premises and cloud networks.

Technical risk: Changes to network configuration can lead to new vulnerabilities and data exposure risks.

Policy statement: Governance tooling must audit and enforce network configuration requirements defined by the
Security Baseline team.

Potential design option: In Azure, network activity can be monitored using Azure Network Watcher, and Azure
Security Center can help identify security vulnerabilities. Azure Policy allows you to restrict network resources and
resource configuration policy according to limits defined by the security team.

Technical risk: Over time, new security threats and attack types emerge, increasing the risk of exposure or
disruption of your cloud resources.

Policy statement: Trends and potential exploits that could affect cloud deployments should be reviewed regularly
by the security team to provide updates to Security Baseline tooling used in the cloud.

Potential design option: Establish a regular security review meeting that includes relevant IT and governance
team members. Review existing security data and metrics to establish gaps in current policy and Security Baseline
tooling, and update policy to mitigate any new risks.

Use the samples mentioned in this article as a starting point to develop policies that address specific security risks
that align with your cloud adoption plans.

To begin developing your own custom policy statements related to Security Baseline, download the Security
Baseline template.

To accelerate adoption of this discipline, choose the actionable governance journey that most closely aligns with

https://docs.microsoft.com/azure/architecture/reference-architectures/dmz/secure-vnet-dmz
https://docs.microsoft.com/azure/virtual-network/ddos-protection-overview
https://docs.microsoft.com/azure/network-watcher/network-watcher-monitoring-overview
https://docs.microsoft.com/azure/security-center/security-center-network-recommendations

your environment. Then modify the design to incorporate your specific corporate policy decisions.

Actionable Governance Journeys

Security Baseline policy compliance processes
3/13/2019 • 5 minutes to read • Edit Online

Planning, review, and reporting processes

This article discusses an approach to policy adherence processes that govern Security Baseline. Effective
governance of cloud security starts with recurring manual processes designed to detect vulnerabilities and impose
policies to mitigate those security risks. This requires regular involvement of the Cloud Governance team and
interested business and IT stakeholders to review and update policy and ensure policy compliance. In addition,
many ongoing monitoring and enforcement processes can be automated or supplemented with tooling to reduce
the overhead of governance and allow for faster response to policy deviation.

The best Security Baseline tools in the cloud are only as good as the processes and policies that they support. The
following is a set of example processes commonly involved in the Security Baseline discipline. Use these examples
as a starting point when planning the processes that will allow you to continue to update security policy based on
business change and feedback from the security and IT teams tasked with turning governance guidance into
action.

Initial risk assessment and planning: As part of your initial adoption of the Security Baseline discipline, identify
your core business risks and tolerances related to cloud security. Use this information to discuss specific technical
risks with members of your IT and security teams and develop a baseline set of security policies for mitigating
these risks to establish your initial governance strategy.

Deployment planning: Before deploying any workload or asset, perform a security review to identify any new
risks and ensure all access and data security policy requirements are met.

Deployment testing: As part of the deployment process for any workload or asset, the Cloud Governance team,
in cooperation with your corporate security teams, will be responsible for reviewing the deployment to validate
security policy compliance.

Annual planning: On an annual basis, perform a high-level review of Security Baseline strategy. Explore future
corporate priorities and updated cloud adoption strategies to identify potential risk increase and other emerging
security needs. Also use this time to review the latest Security Baseline best practices and integrate these into your
policies and review processes.

Quarterly review and planning: On a quarterly basis perform a review of security audit data and incident
reports to identify any changes required in security policy. As part of this process, review the current cybersecurity
landscape to proactively anticipate emerging threats, and update policy as appropriate. After the review is
complete, align design guidance with updated policy.

This planning process is also a good time to evaluate the current membership of your Cloud Governance team for
knowledge gaps related to new or evolving policy and risks related to security. Invite relevant IT staff to participate
in reviews and planning as either temporary technical advisors or permanent members of your team.

Education and Training: On a bi-monthly basis, offer training sessions to make sure IT staff and developers are
up-to-date on the latest security policy requirements. As part of this process review and update any
documentation, guidance, or other training assets to ensure they are in sync with the latest corporate policy
statements.

Monthly audit and reporting reviews: On a monthly basis, perform an audit on all cloud deployments to assure
their continued alignment with security policy. Review security related activities with IT staff and identify any
compliance issues not already handled as part of the ongoing monitoring and enforcement process. The result of

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/security-baseline/compliance-processes.md

Ongoing monitoring processes

Violation triggers and enforcement actions

Next steps

this review is a report for the Cloud Strategy team and each cloud adoption team to communicate overall
adherence to policy. The report is also stored for auditing and legal purposes.

Determining if your security governance strategy is successful depends on visibility into the current and past state
of your cloud infrastructure. Without the ability to analyze the relevant metrics and data of your cloud resources
security health and activity, you cannot identify changes in your risks or detect violations of your risk tolerances.
The ongoing governance processes discussed above require quality data to ensure policy can be modified to
better protect your infrastructure against changing threats and security requirements.

Ensure that your security and IT teams have implemented automated monitoring systems for your cloud
infrastructure that capture the relevant logs data you need to evaluate risk. Be proactive in monitoring these
systems to ensure prompt detection and mitigation of potential policy violation, and ensure your monitoring
strategy is in line with security needs.

Because security noncompliance can lead to critical and data exposure and service disruption risks, the Cloud
Governance team should have visibility into serious policy violations. Ensure IT staff have clear escalation paths
for reporting security issues to the governance team members best suited to identify and verify that policy issues
are mitigated.

When violations are detected, you should take actions to realign with policy as soon as possible. Your IT team can
automate most violation triggers using the tools outlined in the Security Baseline toolchain for Azure.

The following triggers and enforcement actions provide examples you can reference when planning how to use
monitoring data to resolve policy violations:

Increase in attacks detected: If any resource experiences a 25% increase in brute force or DDoS attacks, discuss
with IT security staff and workload owner to determine remedies. Track issue and update guidance if policy
revision is necessary to prevent future incidents.
Unclassified data detected: Any data source without an appropriate privacy, security, or business impact
classification will have external access denied until the classification is applied by the data owner and the
appropriate level of data protection applied.
Security health issue detected: Disable access to any virtual machines (VMs) that have known access or
malware vulnerabilities identified until appropriate patches or security software can be installed. Update policy
guidance to account for any newly detected threats.
Network vulnerability detected: Access to any resource not explicitly allowed by the network access policies
should trigger an alert to IT security staff and the relevant workload owner. Track issue and update guidance if
policy revision is necessary to mitigate future incidents.

Using the Cloud Management template, document the processes and triggers that align to the current cloud
adoption plan.

For guidance on executing cloud management policies in alignment with adoption plans, see the article on
discipline improvement.

Security Baseline discipline improvement

Security Baseline discipline improvement
3/13/2019 • 5 minutes to read • Edit Online

C a u t i o nC a u t i o n

Planning and readiness

The Security Baseline discipline focuses on ways of establishing policies that protect the network, assets, and most
importantly the data that will reside on a Cloud Provider's solution. Within the five disciplines of Cloud
Governance, Security Baseline includes classification of the digital estate and data. It also includes documentation
of risks, business tolerance, and mitigation strategies associated with the security of the data, assets, and network.
From a technical perspective, this also includes involvement in decisions regarding encryption, network
requirements, hybrid identity strategies, and the processes used to develop cloud Security Baseline policies.

This article outlines some potential tasks your company can engage in to better develop and mature the Security
Baseline discipline. These tasks can be broken down into planning, building, adopting, and operating phases of
implementing a cloud solution, which are then iterated on allowing the development of an incremental approach
to cloud governance.

Figure 1. Adoption phases of the incremental approach to cloud governance.

It's impossible for any one document to account for the requirements of all businesses. As such, this article
outlines suggested minimum and potential example activities for each phase of the governance maturation
process. The initial objective of these activities is to help you build a Policy MVP and establish a framework for
incremental policy evolution. Your Cloud Governance team will need to decide how much to invest in these
activities to improve your Security Baseline governance capabilities.

Neither the minimum or potential activities outlined in this article are aligned to specific corporate policies or third
party compliance requirements. This guidance is designed to help facilitate the conversations that will lead to
alignment of both requirements with a cloud governance model.

This phase of governance maturity bridges the divide between business outcomes and actionable strategies.
During this process, the leadership team defines specific metrics, maps those metrics to the digital estate, and
begins planning the overall migration effort.

Minimum suggested activities:

Evaluate your Security Baseline toolchain options.
Develop a draft Architecture Guidelines document and distribute to key stakeholders.
Educate and involve the people and teams affected by the development of architecture guidelines.
Add prioritized security tasks to your migration backlog.

Potential activities:

Define a data classification schema.

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/security-baseline/discipline-improvement.md

Build and pre-deployment

Adopt and migrate

Conduct a digital estate planning process to inventory the current IT assets powering your business processes
and supporting operations.
Conduct a policy review to begin the process of modernizing existing corporate IT security policies, and define
MVP policies addressing known risks.
Review your cloud platform's security guidelines. For Azure these can be found in the Microsoft Service Trust
Platform.
Determine whether your Security Baseline policy includes a Security Development Lifecycle.
Evaluate network, data, and asset-related business risks based on the next one to three releases, and gauge
your organization's tolerance for those risks.
Review Microsoft's top trends in cybersecurity report to get an overview of the current security landscape.
Consider developing a Security DevOps role in your organization.

A number of technical and nontechnical prerequisites are required to successful migrate an environment. This
process focuses on the decisions, readiness, and core infrastructure that proceeds a migration.

Minimum suggested activities:

Implement your Security Baseline toolchain by rolling out in a pre-deployment phase.
Update the Architecture Guidelines document and distribute to key stakeholders.
Implement security tasks on your prioritized migration backlog.
Develop educational materials and documentation, awareness communications, incentives, and other programs
to help drive user adoption.

Potential activities:

Determine your organization's encryption strategy for cloud-hosted data.
Evaluate your cloud deployment's identity strategy. Determine how your cloud-based identity solution will
coexist or integrate with on-premises identity providers.
Determine network boundary policies for your Software Defined Networking (SDN) design to ensure secure
virtualized networking capabilities.
Evaluate your organization's least privilege access policies, and use task-based roles to provide access to
specific resources.
Apply security and monitoring mechanisms to for all cloud services and virtual machines.
Automate security policies where possible.
Review your Security Baseline policy and determine if you need to modify your plans according to best
practices guidance such as those outlined in the Security Development Lifecycle.

Migration is an incremental process that focuses on the movement, testing, and adoption of applications or
workloads in an existing digital estate.

Minimum suggested activities:

Migrate your Security Baseline toolchain from pre-deployment to production.
Update the Architecture Guidelines document and distribute to key stakeholders.
Develop educational materials and documentation, awareness communications, incentives, and other programs
to help drive user adoption

Potential activities:

Review the latest Security Baseline and threat information to identify any new business risks.

https://www.microsoft.com/trustcenter/stp/default.aspx
https://www.microsoft.com/securityengineering/sdl/
https://www.microsoft.com/security/operations/security-intelligence-report
https://www.microsoft.com/en-us/securityengineering/devsecops
https://docs.microsoft.com/azure/active-directory/users-groups-roles/roles-delegate-by-task
https://www.microsoft.com/securityengineering/sdl/

Operate and post-implementation

Next steps

Gauge your organization's tolerance to handle new security risks that may arise.
Identify deviations from policy, and enforce corrections.
Adjust security and access control automation to ensure maximum policy compliance.
Validate that the best practices defined during the Build / Pre-deployment phases are properly executed.
Review your least privilege access policies and adjust access controls to maximize security.
Test your Security Baseline toolchain against your workloads to identify and resolve any vulnerabilities.

Once the transformation is complete, governance and operations must live on for the natural lifecycle of an
application or workload. This phase of governance maturity focuses on the activities that commonly come after the
solution is implemented and the transformation cycle begins to stabilize.

Minimum suggested activities:

Validate and/or refine your Security Baseline toolchain.
Customize notifications and reports to alert you of potential security issues.
Refine the Architecture Guidelines to guide future adoption processes.
Communicate and educate the affected teams periodically to ensure ongoing adherence to architecture
guidelines.

Potential activities:

Discover patterns and behavior for your workloads and configure your monitoring and reporting tools to
identify and notify you of any abnormal activity, access, or resource usage.
Continuously update your monitoring and reporting policies to detect the latest vulnerabilities, exploits, and
attacks.
Have procedures in place to quickly stop unauthorized access and disable resources that may have been
compromised by an attacker.
Regularly review the latest security best practices and apply recommendations to your security policy,
automation, and monitoring capabilities where possible.

Now that you understand the concept of cloud security governance, move on to learn more about what security
and best practices guidance Microsoft provides for Azure.

Learn about security guidance for Azure Introduction to Azure Security Learn about logging, reporting, and
monitoring

https://docs.microsoft.com/azure/security/azure-security

Cloud-Native Security Baseline policy
3/13/2019 • 6 minutes to read • Edit Online

NOTENOTE

Policy alignment

Cloud security and compliance

Built-in security controlsBuilt-in security controls

Cloud Native identity policiesCloud Native identity policies

Security Baseline is one of the five disciplines of Cloud Governance. This discipline focuses on general security
topics including protection of the network, digital assets, data, etc. As outlined in the policy review guide, the CAF
includes three levels of sample policy: Cloud-Native, Enterprise, and Cloud Design Principle Compliant for each
of the five disciplines. This article discusses the Cloud-Native Sample Policy for the Security Baseline Discipline.

Microsoft is in no position to dictate corporate or IT policy. This article is intended to help you prepare for an internal policy
review. It is assumed that this sample policy will be extended, validated, and tested against your corporate policy before
attempting to use it. Any use of this sample policy, as is, is discouraged.

This sample policy synthesizes a Cloud Native scenario, meaning that the tools and platforms provided by Azure
are sufficient to mitigate business risks regarding a deployment. In this scenario, it is assumed that a simple
configuration of the default Azure services provides sufficient asset protection.

Security is integrated into every aspect of Azure, offering unique security advantages derived from global security
intelligence, sophisticated customer-facing controls, and a secure, hardened infrastructure. This powerful
combination helps protect your applications and data, support your compliance efforts, and provide cost-effective
security for organizations of all sizes. This approach creates a strong starting position for any security policy, but
does not negate the need for equally strong security practices related to the security services being used.

It’s hard to maintain a strong security infrastructure when security controls are not intuitive and need to be
configured separately. Azure includes built-in security controls across a variety of services that help you protect
data and workloads quickly and manage risk across hybrid environments. Integrated partner solutions also let you
easily transition existing protections to the cloud.

Identity is becoming the new boundary control plane for security, taking over that role from the traditional
network-centric perspective. Network perimeters have become increasingly porous and that perimeter defense
cannot be as effective as it was before the evolution of bring your own device (BYOD) and cloud applications. Azure
identity management and access control enable seamless, secure access to all your applications.

A sample cloud native policy for identity across cloud and on-premises directories, could include requirements like
the following:

Authorized access to resources with role-based access control (RBAC), multi-factor authentication (MFA), and
single sign-on (SSO)
Quick mitigation of user identities suspected of compromise
Just-in-time (JIT), just-enough access granted on a task-by-task basis to limit exposure of over-privileged admin
credentials
Extended user identity and access to policies across multiple environments through Azure Active Directory

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/security-baseline/cloud-native-policy.md

Network access policiesNetwork access policies

Data protectionData protection

Security monitoringSecurity monitoring

Extending Cloud Native policiesExtending Cloud Native policies

While it is important to understand Identity Baseline in the context of Security Baseline, the Five Disciplines of
Cloud Governance calls out Identity Baseline as its own discipline, separate from Security Baseline.

Network control includes the configuration, management, and securing of network elements such as virtual
networking, load balancing, DNS, and gateways. The controls provide a means for services to communicate and
interoperate. Azure includes a robust and secure networking infrastructure to support your application and service
connectivity requirements. Network connectivity is possible between resources located in Azure, between on-
premises and Azure hosted resources, and to and from the internet and Azure.

A cloud native policy for network controls may include requirements like the following:

Hybrid connections to on-premises resources (While technically possible in Azure), might not be allowed in a
Cloud Native policy. Should a hybrid connection prove necessary, a more robust Enterprise Security Policy
sample would be a more relevant reference.
Users can establish secure connections to and within Azure using virtual networks and network security groups.
Native Windows Azure Firewall protects hosts from malicious network traffic by limited port access. A good
example of this policy would be the requirement to block (or not enable) traffic directly to a VM over RDP -
TCP/UDP port 3389.
Services like Web Application Firewall and Azure DDoS Protection safeguard applications and ensure
availability for virtual machines running in Azure. These features should not be disabled or misused.

One of the keys to data protection in the cloud is accounting for the possible states in which your data may occur,
and what controls are available for each state. For the purpose of Azure data security and encryption best practices,
recommendations focus on the following data states:

Data encryption controls are built into services from virtual machines to storage and SQL Database.
As data moves between clouds and customers, it can be protected using industry-standard encryption
protocols.
Azure Key Vault enables users to safeguard and control cryptographic keys and other secrets used by cloud
apps and services.
Azure Information Protection will help classify, label, and protect your sensitive data in apps.

While these features are built into Azure, each of the above requires configuration and could increase costs.
Alignment of each Cloud Native feature with a data classification strategy is highly suggested.

Security monitoring is a proactive strategy that audits your resources to identify systems that do not meet
organizational standards or best practices. Azure Security Center provides unified Security Baseline and advanced
threat protection across hybrid cloud workloads. With Security Center, you can apply security policies across your
workloads, limit your exposure to threats, and detect and respond to attacks, including:

Unified view of security across all on-premises and cloud workloads with Azure Security Center
Continuous monitoring and security assessments to ensure compliance and remediate any vulnerabilities
Interactive tools and contextual threat intelligence for streamlined investigation
Extensive logging and integration with existing security information

Using the cloud can reduce some of the security burden. Microsoft provides physical security for Azure datacenters
and helps protect the cloud platform against infrastructure threats such as a DDoS attack. Given that Microsoft has
thousands of cybersecurity specialists working on security every day, the resources to mitigate cyberattacks are
considerable. In fact, while organizations were once worried about whether the cloud was secure, most now
understand that given the level of investment that vendors such as Microsoft make in people and specialized

Next steps

infrastructure, the cloud is actually more secure than most on-premises datacenters.

Even with this investment in Cloud Native Security Baseline, it is suggested that any Security Baseline policy
extend the default Cloud Native policies. The following are examples of extended policies that should be
considered, even in a Cloud Native environment:

Secure VMs. Security should be every organization's top priority, and doing it effectively requires several
things. You must assess your security state, protect against security threats, and then detect and respond rapidly
to threats that occur.
Protect VM contents. Setting up regular automated backups is essential to protect against user errors. This
isn’t enough, though; you must also make sure that your backups are safe from cyberattacks and are available
when you need them.
Monitor VMs and applications. This pattern encompasses several tasks, including getting insight into the
health of your VMs, understanding interactions among them, and establishing ways to monitor the applications
these VMs run. All of these tasks are essential in keeping your applications running around the clock.

Now that you've reviewed the sample Security Baseline policy for Cloud Native solutions, return to the policy
review guide to start building on this sample to create your own policies for cloud adoption.

Build your own policies using the Policy Review Guide

What security guidance does Microsoft provide?
3/13/2019 • 5 minutes to read • Edit Online

Security guidance and tools
Microsoft introduced the Service Trust Platform and Compliance Manager to help with the following:

Overcome compliance management challenges
Fulfill responsibilities of meeting regulatory requirements
Conduct self-service audits and risk assessments of enterprise cloud service utilization

These tools are designed to help organizations meet complex compliance obligations and improve data protection
capabilities when choosing and using Microsoft Cloud services.

Service Trust Platform (STP) provides in-depth information and tools to help meet your needs for using
Microsoft Cloud services, including Azure, Office 365, Dynamics 365, and Windows. STP is a one-stop shop for
security, regulatory, compliance, and privacy information related to the Microsoft Cloud. It is where we publish the
information and resources needed to perform self-service risk assessments of cloud services and tools. STP was
created to help track regulatory compliance activities within Azure, including:

Compliance Manager: Compliance Manager, a workflow-based risk assessment tool in the Microsoft
Service Trust Platform, enables you to track, assign, and verify your organization's regulatory compliance
activities related to Microsoft Cloud services, such as Office 365, Dynamics 365 and Azure. You can find
more details in the next section.

Trust documents: Currently there are three categories of guides that provide you with abundant resources
to assess Microsoft Cloud; learn about Microsoft operations in security, compliance, and privacy; and help
you act on improving your data protection capabilities. These include:

Audit reports: Audit reports allow you to stay current on the latest privacy, security, and compliance-
related information for Microsoft Cloud services. This includes ISO, SOC, FedRAMP and other audit
reports, bridge letters, and materials related to independent third-party audits of Microsoft Cloud services
such as Azure, Office 365, Dynamics 365, and others.

Data protection guides: Data protection guides provide information about how Microsoft Cloud services
protect your data, and how you can manage cloud data security and compliance for your organization. This
includes deep-dive white papers that provide details on how Microsoft designs and operates cloud services,
FAQs, reports of end-of-year security assessments, penetration test results, and guidance to help you
conduct risk assessment and improve your data protection capabilities.

Azure security and compliance blueprint: Blueprints provide resources to assist you in building and
launching cloud-powered applications that help you comply with stringent regulations and standards. With
more certifications than any other cloud provider, you can have confidence deploying your critical
workloads to Azure, with blueprints that include:

Industry-specific overview and guidance

Customer responsibilities matrix

Reference architectures with threat models

Control implementation matrices

Automation to deploy reference architectures

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/security-baseline/azure-security-guidance.md
https://servicetrust.microsoft.com

Unique intelligent insights

Azure threat intelligence

Privacy resources – Documentation for Data Protection Impact Assessments, Data Subject Requests
(DSRs), and Data Breach Notification is provided to incorporate into your own accountability program in
support of the General Data Protection Regulation (GDPR).

Get started with GDPR: Microsoft products and services help organizations meet GDPR requirements
while collecting or processing personal data. STP is designed to give you information about the capabilities
in Microsoft services that you can use to address specific requirements of the GDPR. The documentation
can help your GDPR accountability and your understanding of technical and organizational measures.
Documentation for Data Protection Impact Assessments, Data Subject Requests (DSRs), and Data Breach
Notification is provided to incorporate into your own accountability program in support of the GDPR.

Data subject requests: The GDPR grants individuals (or data subjects) certain rights in connection with
the processing of their personal data. This includes the right to correct inaccurate data, erase data, or
restrict its processing, as well as receive their data and fulfill a request to transmit their data to another
controller.
Data breach: The GDPR mandates notification requirements for data controllers and processors in the
event of a breach of personal data. STP provides you with information about how Microsoft tries to
prevent breaches in the first place, how Microsoft detects a breach, and how Microsoft will respond in
the event of a breach and notify you as a data controller.
Data protection impact assessment: Microsoft helps controllers complete GDPR Data Protection
Impact Assessments. The GDPR provides an in-exhaustive list of cases in which DPIAs must be carried
out, such as automated processing for the purposes of profiling and similar activities; processing on a
large scale of special categories of personal data, and systematic monitoring of a publicly accessible area
on a large scale.
Other resources: In addition to tools guidance discussed in the above sections, STP also provides other
resources including regional compliance, additional resources for the Security and Compliance Center,
and frequently asked questions about the Service Trust Platform, Compliance Manager, and
privacy/GDPR.

Regional compliance: STP provides numerous compliance documents and guidance for Microsoft online
services to meet compliance requirements for different regions including Czech Republic, Poland, and
Romania.

As the volume and complexity of security signals grow, determining if those signals are credible threats, and then
acting, takes far too long. Microsoft offers an unparalleled breadth of security intelligence delivered at cloud scale
to help quickly detect and remediate threats.

By using the threat intelligence option available in Security Center, IT administrators can identify security threats
against the environment. For example, they can identify whether a particular computer is part of a botnet.
Computers can become nodes in a botnet when attackers illicitly install malware that secretly connects the
computer to the command and control. Threat intelligence can also identify potential threats coming from
underground communication channels, such as the dark web.

To build this threat intelligence, Security Center uses data that comes from multiple sources within Microsoft.
Security Center uses this to identify potential threats against your environment. The Threat intelligence pane is
composed of three major options:

Detected threat types
Threat origin
Threat intelligence map

Machine learning in Azure Security Center

Next-generation detection

Simplified Security Baseline

Behavioral analytics

Azure Security Center deeply analyzes a wealth of data from a variety of Microsoft and partner solutions to help
you achieve greater security. To take advantage of this data, the company use data science and machine learning
for threat prevention, detection, and eventually investigation.

Broadly, Azure Machine Learning helps achieve two outcomes:

Attackers are increasingly automated and sophisticated. They use data science too. They reverse-engineer
protections and build systems that support mutations in behavior. They masquerade their activities as noise, and
learn quickly from mistakes. Machine learning helps us respond to these developments.

Making effective security decisions is not easy. It requires security experience and expertise. While some large
organizations have such experts on staff, many companies don’t. Azure Machine Learning enables customers to
benefit from the wisdom of other organizations when making security decisions.

Behavioral analytics is a technique that analyzes and compares data to a collection of known patterns. However,
these patterns are not simple signatures. They are determined through complex machine learning algorithms that
are applied to massive data sets. They are also determined through careful analysis of malicious behaviors by
expert analysts. Azure Security Center can use behavioral analytics to identify compromised resources based on
analysis of virtual machine logs, virtual network device logs, fabric logs, crash dumps, and other sources.

Security Baseline tools in Azure
3/13/2019 • 2 minutes to read • Edit Online

AZURE PORTAL
/ RESOURCE
MANAGER

AZURE KEY
VAULT AZURE AD AZURE POLICY

AZURE
SECURITY
CENTER

AZURE
MONITOR

Apply access
controls to
resources and
resource
creation

Yes No Yes No No No

Secure virtual
networks

Yes No No Yes No No

Encrypt
virtual drives

No Yes No No No No

Encrypt PaaS
storage and
databases

No Yes No No No No

Manage
hybrid
identity
services

No No Yes No No No

Restrict
allowed types
of resource

No No No Yes No No

Enforce geo-
regional
restrictions

No No No Yes No No

Monitor
security
health of
networks and
resources

No No No No Yes Yes

Security Baseline is one of the Five Disciplines of Cloud Governance. This discipline focuses on ways of
establishing policies that protect the network, assets, and most importantly the data that will reside on a Cloud
Provider's solution. Within the five disciplines of Cloud Governance, Security Baseline includes classification of
the digital estate and data. It also includes documentation of risks, business tolerance, and mitigation strategies
associated with the security of the data, assets, and network. From a technical perspective, this also includes
involvement in decisions regarding encryption, network requirements, hybrid identity strategies, and tools to
automate enforcement of security policies across resource groups.

The following is a list of Azure tools that can help mature the policies and processes that support Security
Baseline.

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/security-baseline/toolchain.md
https://azure.microsoft.com/features/azure-portal/
https://docs.microsoft.com/azure/azure-resource-manager/resource-group-overview
https://docs.microsoft.com/azure/key-vault
https://docs.microsoft.com/azure/active-directory/fundamentals/active-directory-whatis
https://docs.microsoft.com/azure/governance/policy/overview
https://docs.microsoft.com/azure/security-center/security-center-intro
https://docs.microsoft.com/azure/azure-monitor/overview

Detect
malicious
activity

No No No No Yes Yes

Preemptively
detect
vulnerabilities

No No No No Yes No

Configure
backup and
disaster
recovery

Yes No No No No No

AZURE PORTAL
/ RESOURCE
MANAGER

AZURE KEY
VAULT AZURE AD AZURE POLICY

AZURE
SECURITY
CENTER

AZURE
MONITOR

For a complete list of Azure security tools and services, see Security services and technologies available on Azure.

It is also extremely common for customers to use third-party tools for facilitating Security Baseline activities. For
more information, see the article Integrate security solutions in Azure Security Center.

In addition to security tools, the Microsoft Trust Center contains extensive guidance, reports, and related
documentation that can help you perform risk assessments as part of your migration planning process.

https://docs.microsoft.com/azure/security/azure-security-services-technologies
https://docs.microsoft.com/azure/security-center/security-center-partner-integration
https://www.microsoft.com/trustcenter/guidance/risk-assessment

�� N O T EN O T E

Policy statements

C A U T IO NC A U T IO N

Developing Identity Baseline governance policy statements

Identity Baseline is one of the Five Disciplines of Cloud Governance within the CAF Governance Model. Identity is increasingly
considered the primary security perimeter in the cloud, which is a shift from the traditional focus on network security. Identity
services provide the core mechanisms supporting access control and organization within IT environments, and the Identity
Baseline discipline complements the Security Baseline discipline by consistently applying authentication and authorization
requirements across cloud adoption efforts.

Identity Baseline governance does not replace the existing IT teams, processes, and procedures that allow your organization to
manage and secure identity services. The primary purpose of this discipline is to identify potential identity-related business risks
and provide risk-mitigation guidance to IT staff that are responsible for implementing, maintaining, and operating your identity
management infrastructure. As you develop governance policies and processes make sure to involve relevant IT teams in your
planning and review processes.

This section of the CAF guidance outlines the approach to developing an Identity Baseline discipline as part of your cloud
governance strategy. The primary audience for this guidance is your organization's cloud architects and other members of your
Cloud Governance team. However, the decisions, policies, and processes that emerge from this discipline should involve
engagement and discussions with relevant members of the IT teams responsible for implementing and managing your
organization's identity management solutions.

If your organization lacks in-house expertise in Identity Baseline and security, consider engaging external consultants as a part of
this discipline. Also consider engaging Microsoft Consulting Services, the Microsoft FastTrack cloud adoption service, or other
external cloud adoption experts to discuss concerns related to this discipline.

Actionable policy statements and the resulting architecture requirements serve as the foundation of an Identity Baseline
discipline. To see policy statement samples, see the article on Identity Baseline Policy Statements. These samples can serve as a
starting point for your organization's governance policies.

The sample policies come from common customer experiences. To better align these policies to specific cloud governance needs,
execute the following steps to create policy statements that meet your unique business needs.

The following six steps offer examples and potential options to consider when developing Identity Baseline governance. Use
each step as a starting point for discussions within your Cloud Governance team and with affected business, and IT teams across
your organization to establish the policies and processes needed to mitigate identity-related risks.

Identity Baseline TemplateIdentity Baseline Template

Business RisksBusiness Risks

Download the template for documenting an Identity Baseline discipline

Understand the motives and risks commonly associated with the Identity Baseline discipline.

https://www.microsoft.com/enterprise/services
https://azure.microsoft.com/programs/azure-fasttrack

Next steps

Indicators and MetricsIndicators and Metrics

Policy adherence processesPolicy adherence processes

MaturityMaturity

ToolchainToolchain

Indicators to understand if it is the right time to invest in the Identity Baseline discipline.

Suggested processes for supporting policy compliance in the Identity Baseline discipline.

Aligning Cloud Management maturity with phases of cloud adoption.

Azure services that can be implemented to support the Identity Baseline discipline.

Get started by evaluating business risks in a specific environment.

Understand business risks

CAF: Identity Baseline template
3/13/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Next steps

The first step to implementing change is communicating the desired change. The same is true when changing
governance practices. The template below serves as a starting point for documenting and communicating policy
statements that govern Identity Baseline in the cloud.

Although it contains example content related to the Cost Management discipline, this template can be used as the
basis for capturing the business risks, risk tolerances, compliance processes, and tooling used to define policy
statements for the Identity Baseline discipline.

This template is a limited sample. Before updating this template to reflect your requirements, you should review the
subsequent steps for defining an effective Identity Baseline discipline within your cloud governance strategy.

Download governance discipline template

Solid governance practices start with an understanding of business risk. Review the article on business risks and
begin to document the business risks that align with your current cloud adoption plan.

Understand business risks

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/identity-baseline/template.md
https://archcenter.blob.core.windows.net/cdn/fusion/governance/Governance Discipline Template.docx

Identity Baseline motivations and business risks
3/13/2019 • 2 minutes to read • Edit Online

Is Identity Baseline relevant?

Business risk

Next steps

This article discusses the reasons that customers typically adopt an Identity Baseline discipline within a cloud
governance strategy. It also provides a few examples of business risks that drive policy statements.

Traditional on-premises directories are designed to allow businesses to strictly control permissions and policies
for users, groups, and roles within their internal networks and datacenters. This is usually intended to support
single tenant implementations, with services applicable only within the on-premises environment.

Cloud identity services are intended to expand an organization's authentication and access control capabilities to
the internet. They support multi-tenancy and can be used to manage users and access policy across cloud
applications and deployments. Public cloud platforms have some form of cloud-native identity services
supporting management and deployment tasks and are capable of varying levels of integration with your existing
on-premises identity solutions. All of these features can result in cloud identity policy being more complicated
than your traditional on-premises solutions require.

The importance of the Identity Baseline discipline to your cloud deployment will depend on the size of your team
and need to integrate your cloud-based identity solution with an existing on-premises identity service. Initial test
deployments may not require much in the way of user organization or management, but as your cloud estate
matures, you will likely need to support more complicated organizational integration and centralized
management.

The Identity Baseline discipline attempts to address core business risks related to identity services and access
control. Work with your business to identify these risks and monitor each of them for relevance as you plan for
and implement your cloud deployments.

Risks will differ between organization, but the following serve as common identity-related risks that you can use
as a starting point for discussions within your Cloud Governance team:

Unauthorized access. Sensitive data and resources that can be accessed by unauthorized users can lead to
data leaks or service disruptions, violating your organization's security perimeter and risking business or legal
liabilities.
Inefficiency due to multiple identity solutions. Organizations with multiple identity services tenants can
require multiple accounts for users. This can lead to inefficiency for users who need to remember multiple sets
of credentials and for IT in managing accounts across multiple systems. If user access assignments are not
updated across identity solutions as staff, teams, and business goals change, your cloud resources may be
vulnerable to unauthorized access or users unable to access required resources.
Inability to share resources with external partners. Difficulty adding external business partners to your
existing identity solutions can prevent efficient resource sharing and business communication.
On-premises identity dependencies. Legacy authentication mechanisms or third-party multi-factor
authentication might not be available in the cloud, requiring either migrating workloads to be retooled, or
additional identity services to be deployed to the cloud. Either requirement could delay or prevent migration,
and increase costs.

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/identity-baseline/business-risks.md

Using the Cloud Management Template, document business risks that are likely to be introduced by the current
cloud adoption plan.

Once an understanding of realistic business risks is established, the next step is to document the business's
tolerance for risk and the indicators and key metrics to monitor that tolerance.

Understand indicators, metrics, and risk tolerance

Identity Baseline metrics, indicators, and risk
tolerance
3/13/2019 • 4 minutes to read • Edit Online

Metrics

Risk tolerance indicators

This article is intended to help you quantify business risk tolerance as it relates to Identity Baseline. Defining
metrics and indicators helps you create a business case for making an investment in maturing the Identity Baseline
discipline.

Identity Baseline focuses on identifying, authenticating, and authorizing individuals, groups of users, or automated
processes, and providing them appropriate access to resources in your cloud deployments. As part of your risk
analysis you'll want to gather data related to your identity services to determine how much risk you face, and how
important investment in Identity Baseline governance is to your planned cloud deployments.

The following are examples of useful metrics that you should gather to help evaluate risk tolerance within the
Identity Baseline discipline:

Identity systems size. Total number of users, groups, or other objects managed through your identity
systems.
Overall size of directory services infrastructure. Number of directory forests, domains, and tenants used by
your organization.
Dependency on legacy or on-premises authentication mechanisms. Number of workloads dependent on
legacy authentication mechanisms or third party multi-factor authentication (MFA) services.
Extent of cloud-deployed directory services. Number of directory forests, domains, and tenants you've
deployed to the cloud.
Cloud deployed Active Directories. Number of Active Directory servers deployed to the cloud.
Cloud deployed organizational units. Number of Active Directory Organizational Units deployed to cloud.
Extent of federation. Number of Identity Baseline systems federated with your organization's systems.
Elevated users. Number of user accounts with elevated access to resources or management tools.
Use of RBAC. Number of subscriptions, resource groups, or individual resources not managed through role-
based access control (RBAC).
Authentication claims. Number of successful and failed user authentication attempts.
Authorization claims. Number of successful and failed attempts by users to access resources.
Compromised accounts. Number of user accounts that have been compromised.

Risks related to Identity Baseline are largely related to the complexity of your organization's identity infrastructure.
If all of your users and groups are managed using a single directory or cloud native identity provider using
minimal integration with other services, your risk level will likely be small. However, as your business needs grow
your Identity Baseline systems may need to support more complicated scenarios, such as multiple directories to
support your internal organization or federation with external identity providers. As these systems become more
complex, risk increases.

In the early stages of cloud adoption, work with your IT security team and business stakeholders to identify
business risks related to identity, then determine an acceptable baseline for identity risk tolerance. This section of
the CAF guidance provides examples, but the detailed risks and baselines for your company or deployments may

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/identity-baseline/metrics-tolerance.md

Next steps

be different.

Once you have a baseline, establish minimum benchmarks representing an unacceptable increase in your
identified risks. These benchmarks act as triggers for when you need to take action to mitigate these risks. The
following are a few examples of how identity related metrics, such as those discussed above, can justify an
increased investment in the Identity Baseline discipline.

User account number trigger. A company with more than X number of users, groups, or other objects
managed in your identity systems could benefit from investment in the Identity Baseline discipline to ensure
efficient governance over a large number of accounts.
On-premises identity dependency trigger. A company planning to migrate workloads to the cloud that
require legacy authentication capabilities or third party MFA should invest in the Identity Baseline discipline to
reduce risks related to refactoring or additional cloud infrastructure deployment.
Directory services complexity trigger. A company maintaining more than X number of individual forests,
domains, or directory tenants should invest in the Identity Baseline discipline to reduce risks related with
account management and the efficiency issues related to multiple user credentials spread across multiple
systems.
Cloud hosted directory services trigger. A company hosting X number of Active Directory server virtual
machines (VMs) hosted in the cloud, or having X number of Organizational Units managed on these cloud-
based servers, can benefit from investment in the Identity Baseline discipline to optimize integration with any
on-premises or other external identity services.
Federation trigger. A company implementing identity federation with X number of external Identity Baseline
systems can benefit from investing in the Identity Baseline discipline to ensure consistent organizational policy
across federation members.
Elevated access trigger. A company with more than X% of users with elevated permissions to management
tools and resources should consider investing in the Identity Baseline discipline to minimize the risk of
inadvertent over-provisioning of access to users.
RBAC trigger. A company with under X% of resources using role-based access control methods should
consider investing in the Identity Baseline discipline to identify optimized ways to assign user access to
resources.
Authentication failure trigger. A company where authentication failures represent more than X% of
attempts should invest in the Identity Baseline discipline to ensure that authentication methods are not under
external attack, and that users are able to use the authentication methods correctly.
Authorization failure trigger. A company where access attempts are rejected more than X% of the time
should invest in the Identity Baseline discipline to improve the application and updating of access controls, and
identify potentially malicious access attempts.
Compromised account trigger. A company with more than X number of compromised accounts should
invest in the Identity Baseline discipline to improve the strength and security of authentication mechanisms and
improve mechanisms to mitigate risks related to compromised accounts.

The exact metrics and triggers you use to gauge risk tolerance and the level of investment in the Identity Baseline
discipline will be specific to your organization, but the examples above should serve as a useful base for discussion
within your Cloud Governance team.

Using the Cloud Management template, document metrics and tolerance indicators that align to the current cloud
adoption plan.

Building on risks and tolerance, establish a process for governing and communicating Identity Baseline policy
adherence.

Establish policy adherence processes

Identity Baseline sample policy statements
3/13/2019 • 3 minutes to read • Edit Online

Lack of access controls

Overprovisioned access

Lack of shared management accounts between on-premises and the
cloud

Individual cloud policy statements are guidelines for addressing specific risks identified during your risk
assessment process. These statements should provide a concise summary of risks and plans to deal with them.
Each statement definition should include these pieces of information:

Technical risk - A summary of the risk this policy will address.
Policy statement - A clear summary explanation of the policy requirements.
Design options - Actionable recommendations, specifications, or other guidance that IT teams and developers
can use when implementing the policy.

The following sample policy statements address a number of common identity-related business risks, and are
provided as examples for you to reference when drafting policy statements to address your own organization's
needs. These examples are not meant to be proscriptive, and there are potentially several policy options for dealing
with any particular risk. Work closely with business and IT teams to identify the best policy solutions for your
unique set of risks.

Technical risk: Insufficient or ad-hoc access control settings can introduce risk of unauthorized access to sensitive
or mission-critical resources.

Policy statement: All assets deployed to the cloud should be controlled using identities and roles approved by
current governance policies.

Potential design options: Azure Active Directory conditional access is the default access control mechanism in
Azure.

Technical risk: Users and groups with control over resources beyond their area of responsibility can result in
unauthorized modifications leading to outages or security vulnerabilities.

Policy statement: The following policies will be implemented:

A least privilege access model will be applied to any resources involved in mission-critical applications or
protected data.
Elevated permissions should be an exception, and any such exceptions must be recorded with the Cloud
Governance team. Exceptions will be audited regularly.

Potential design options: Consult the Azure Identity Management best practices to implement a role-based
access control (RBAC) strategy that restricts access based on the need to know and least privilege security
principles.

Technical risk: IT management or administrative staff with accounts on your on-premises Active Directory may
not have sufficient access to cloud resources may not be able to efficiently resolve operational or security issues.

Policy statement: All groups in the on-premises Active Directory infrastructure that have elevated privileges

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/identity-baseline/policy-statements.md
https://docs.microsoft.com/azure/active-directory/conditional-access/overview
https://docs.microsoft.com/azure/security/azure-security-identity-management-best-practices
https://wikipedia.org/wiki/Need_to_know
https://wikipedia.org/wiki/Principle_of_least_privilege

Weak authentication mechanisms

Isolated identity providers

Identity reviews

Next steps

should be mapped to an approved RBAC role.

Potential design options: Implement a hybrid identity solution between your cloud-based Azure Active
Directory and your on-premises Active Directory, and add the required on-premises groups to the RBAC roles
necessary to do their work.

Technical risk: Identity management systems with insufficiently secure user authentication methods, such as basic
user/password combinations, can lead to compromised or hacked passwords, providing a major risk of
unauthorized access to secure cloud systems.

Policy statement: All accounts are required to login to secured resources using a multi-factor authentication
(MFA) method.

Potential design options: For Azure Active Directory, implement Azure Multi-Factor Authentication as part of
your user authorization process.

Technical risk: Incompatible identity providers can result in the inability to share resources or services with
customers or other business partners.

Policy statement: Deployment of any applications that require customer authentication must use an approved
identity provider that is compatible with the primary identity provider for internal users.

Potential design options: Implement Federation with Azure Active Directory between your internal and
customer identity providers.

Technical risk: Over time business change, the addition of new cloud deployments or other security concerns can
increase the risks of unauthorized access to secure resources.

Policy statement: Cloud Governance processes must include quarterly review with identity management teams
to identify malicious actors or usage patterns that should be prevented by cloud asset configuration.

Potential design options: Establish a quarterly security review meeting that includes both governance team
members and IT staff responsible for managing identity services. Review existing security data and metrics to
establish gaps in current identity management policy and tooling, and update policy to mitigate any new risks.

Use the samples mentioned in this article as a starting point to develop policies that address specific business risks
that align with your cloud adoption plans.

To begin developing your own custom policy statements related to Identity Baseline, download the Identity
Baseline template.

To accelerate adoption of this discipline, choose the actionable governance journey that most closely aligns with
your environment. Then modify the design to incorporate your specific corporate policy decisions.

Actionable Governance Journeys

https://docs.microsoft.com/azure/active-directory/authentication/concept-mfa-howitworks
https://docs.microsoft.com/azure/active-directory/hybrid/whatis-fed

Identity Baseline policy compliance processes
3/13/2019 • 4 minutes to read • Edit Online

Planning, review, and reporting processes

This article discusses an approach to policy adherence processes that govern Identity Baseline. Effective
governance of identity starts with recurring manual processes that guide identity policy adoption and revisions.
This requires regular involvement of the Cloud Governance team and interested business and IT stakeholders to
review and update policy and ensure policy compliance. In addition, many ongoing monitoring and enforcement
processes can be automated or supplemented with tooling to reduce the overhead of governance and allow for
faster response to policy deviation.

Identity management tools offer capabilities and features that greatly assist user management and access control
within a cloud deployment. However, they also require well thought out processes and policies to support your
organization's goals. The following is a set of example processes commonly involved in the Identity Baseline
discipline. Use these examples as a starting point when planning the processes that will allow you to continue to
update identity policy based on business change and feedback from the IT teams tasked with turning governance
guidance into action.

Initial risk assessment and planning: As part of your initial adoption of the Identity Baseline discipline, identify
your core business risks and tolerances related to cloud identity management. Use this information to discuss
specific technical risks with members of your IT teams responsible for managing identity services and develop a
baseline set of security policies for mitigating these risks to establish your initial governance strategy.

Deployment planning: Before any deployment, review the access needs for any workloads and develop an
access control strategy that aligns with established corporate identity policy. Document any gaps between needs
and current policy to determine if policy updates are required, and modify policy as needed.

Deployment testing: As part of the deployment, the Cloud Governance team, in cooperation with IT teams
responsible for identity services, will be responsible for reviewing the deployment to validate identity policy
compliance.

Annual planning: On an annual basis, perform a high-level review of identity management strategy. Explore
planned changes to the identity services environment and updated cloud adoption strategies to identify potential
risk increase or need to modify current identity infrastructure patterns. Also use this time to review the latest
identity management best practices and integrate these into your policies and review processes.

Quarterly planning: On a quarterly basis perform a general review of identity and access control audit data, and
meet with cloud adoption teams to identify any potential new risks or operational requirements that would require
updates to identity policy or changes in access control strategy.

This planning process is also a good time to evaluate the current membership of your Cloud Governance team for
knowledge gaps related to new or evolving policy and risks related to identity. Invite relevant IT staff to participate
in reviews and planning as either temporary technical advisors or permanent members of your team.

Education and Training: On a bi-monthly basis, offer training sessions to make sure IT staff and developers are
up-to-date on the latest identity policy requirements. As part of this process review and update any
documentation, guidance, or other training assets to ensure they are in sync with the latest corporate policy
statements.

Monthly audit and reporting reviews: On a monthly basis, perform an audit on all cloud deployments to assure
their continued alignment with identity policy. Use this review to check user access against business change to

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/identity-baseline/compliance-processes.md

Ongoing monitoring processes

Violation triggers and enforcement actions

Next steps

ensure users have correct access to cloud resources, and ensure access strategies such as RBAC are being followed
consistently. Identify any privileged accounts and document their purpose. This review process produces a report
for the Cloud Strategy team and each cloud adoption team detailing overall adherence to policy. The report is also
stored for auditing and legal purposes.

Determining if your identity governance strategy is successful depends on visibility into the current and past state
of your identity systems. Without the ability to analyze your cloud deployment's relevant metrics and related data,
you cannot identify changes in your risks or detect violations of your risk tolerances. The ongoing governance
processes discussed above require quality data to ensure policy can be modified to support the changing needs of
your business.

Ensure that your IT teams have implemented automated monitoring systems for your identity services that
capture the logs and audit information you need to evaluate risk. Be proactive in monitoring these systems to
ensure prompt detection and mitigation of potential policy violation, and ensure any changes to your identity
infrastructure are reflected in your monitoring strategy.

Violations of identity policy can result in unauthorized access to sensitive data and lead to serious disruption of
mission-critical application and services. When violations are detected, you should take actions to realign with
policy as soon as possible. Your IT team can automate most violation triggers using the tools outlined in the
Identity Baseline toolchain.

The following triggers and enforcement actions provide examples you can reference when planning how to use
monitoring data to resolve policy violations:

Suspicious activity detected: User logins detected from anonymous proxy IP addresses, unfamiliar locations, or
successive logins from impossibly distant geographical locations may indicate a potential account breach or
malicious access attempt. Login will be blocked until user identity can be verified and password reset.
Leaked user credentials: Accounts that have their username and password leaked to the internet will be
disabled until user identity can be verified and password reset.
Insufficient access controls detected: Any protected assets where access restrictions do not meet security
requirements will have access blocked until the resource is brought into compliance.

Using the Cloud Management template, document the processes and triggers that align to the current cloud
adoption plan.

For guidance on executing cloud management policies in alignment with adoption plans, see the article on
discipline improvement.

Identity Baseline discipline improvement

Identity Baseline discipline improvement
3/13/2019 • 5 minutes to read • Edit Online

C a u t i o nC a u t i o n

Planning and readiness

The Identity Baseline discipline focuses on ways of establishing policies that ensure consistency and continuity of
user identities regardless of the cloud provider that hosts the application or workload. Within the Five Disciplines
of Cloud Governance, Identity Baseline includes decisions regarding the Hybrid Identity Strategy, evaluation and
extension of identity repositories, implementation of single sign-on (same sign-on), auditing and monitoring for
unauthorized use or malicious actors. In some cases, it may also involve decisions to modernize, consolidate, or
integrate multiple identity providers.

This article outlines some potential tasks your company can engage in to better develop and mature the Identity
Baseline discipline. These tasks can be broken down into planning, building, adopting, and operating phases of
implementing a cloud solution, which are then iterated on allowing the development of an incremental approach
to cloud governance.

Figure 1. Adoption phases of the incremental approach to cloud governance.

It's impossible for any one document to account for the requirements of all businesses. As such, this article
outlines suggested minimum and potential example activities for each phase of the governance maturation
process. The initial objective of these activities is to help you build a Policy MVP and establish a framework for
incremental policy evolution. Your Cloud Governance team will need to decide how much to invest in these
activities to improve your Identity Baseline governance capabilities.

Neither the minimum or potential activities outlined in this article are aligned to specific corporate policies or third
party compliance requirements. This guidance is designed to help facilitate the conversations that will lead to
alignment of both requirements with a cloud governance model.

This phase of governance maturity bridges the divide between business outcomes and actionable strategies.
During this process, the leadership team defines specific metrics, maps those metrics to the digital estate, and
begins planning the overall migration effort.

Minimum suggested activities:

Evaluate your Identity toolchain options and implement a hybrid strategy that is appropriate to your
organization.
Develop a draft Architecture Guidelines document and distribute to key stakeholders.
Educate and involve the people and teams affected by the development of architecture guidelines.

Potential activities:

Define roles and assignments that will govern identity and access management in the cloud.

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/identity-baseline/discipline-improvement.md

Build and pre-deployment

Adopt and migrate

Define your on-premises groups and map to corresponding cloud-based roles.
Inventory identity providers (including database-driven identities used by custom applications).
Consider options for consolidation or integration of identity providers where duplication exists, to simplify the
overall identity solution.
Evaluate hybrid compatibility of existing identity providers.
For identity providers that are not hybrid compatible, evaluate consolidation or replacement options.

A number of technical and nontechnical prerequisites are required to successfully migrate an environment. This
process focuses on the decisions, readiness, and core infrastructure that proceeds a migration.

Minimum suggested activities:

Consider a pilot test before implementing your Identity toolchain, making sure it simplifies the user experience
as much as possible.
Apply feedback from pilot tests into the pre-deployment. Repeat until results are acceptable.
Update the Architecture Guidelines document to include deployment and user adoption plans, and distribute to
key stakeholders.
Consider establishing an early adopter program and rolling out to a limited number of users.
Continue to educate the people and teams most affected by the architecture guidelines.

Potential activities:

Evaluate your logical and physical architecture and determine a Hybrid Identity Strategy.
Map identity access management policies, such as login ID assignments, and choose the appropriate
authentication method for Azure AD.

Integrate your on-premises and cloud directories.
Consider using the following access models:

Finalize all pre-integration details and review Identity Best Practices.

If federated, enable tenant restrictions for administrative accounts.

Least Privilege Access model
Privileged Identity Baseline access model

Enable single identity, single sign-on (SSO), or seamless SSO
Configure multi-factor authentication (MFA) for administrators
Consolidate or integrate identity providers, where necessary
Implement tooling necessary to centralize management of identities
Enable just-in-time (JIT) access and role change alerting
Conduct a risk analysis of key admin activities for assigning to built-in roles
Consider an updated rollout of stronger authentication for all users
Enable Privileged Identity Baseline (PIM) for JIT (using time-limited activation) for additional
administrative roles
Separate user accounts from Global admin accounts (to make sure that administrators do not
inadvertently open emails or run programs associated with their Global admin accounts)

Migration is an incremental process that focuses on the movement, testing, and adoption of applications or
workloads in an existing digital estate.

Minimum suggested activities:

https://docs.microsoft.com/windows-server/identity/ad-ds/plan/security-best-practices/implementing-least-privilege-administrative-models
https://docs.microsoft.com/azure/active-directory/privileged-identity-management/pim-configure
https://docs.microsoft.com/azure/security/azure-security-identity-management-best-practices

Operate and post-implementation

Migrate your Identity toolchain from development to production.
Update the Architecture Guidelines document and distribute to key stakeholders.
Develop educational materials and documentation, awareness communications, incentives, and other programs
to help drive user adoption.

Potential activities:

Validate that the best practices defined during the Build / Pre-deployment phases are properly executed.
Validate and/or refine your Hybrid Identity Strategy.
Ensure that each application or workload continues to align with the identity strategy before release.
Validate that single sign-on (SSO) and seamless SSO is working as expected for your applications.
Reduce or eliminate the number of alternative identity stores, when possible.
Scrutinize the need for any in-app or in-database identity stores. Identities that fall outside of a proper identity
provider (first-party or third-party) can represent risk to the application and the users.
Enable conditional access for on-premises federated applications.
Distribute identity across global regions in multiple hubs with synchronization between regions.
Establish central role-based access control (RBAC) federation.

Once the transformation is complete, governance and operations must live on for the natural lifecycle of an
application or workload. This phase of governance maturity focuses on the activities that commonly come after the
solution is implemented and the transformation cycle begins to stabilize.

Minimum suggested activities:

Customize your Identity Baseline toolchain based on changes to your organization’s changing identity needs.
Automate notifications and reports to alert you of potential malicious threats.
Monitor and report on system usage and user adoption progress.
Report on post-deployment metrics and distribute to stakeholders.
Refine the Architecture Guidelines to guide future adoption processes.
Communicate and continually educate the affected teams on a periodic basis to ensure ongoing adherence to
architecture guidelines.

Potential activities:

Conduct periodic audits of identity policies and adherence practices.
Scan for malicious actors and data breaches regularly, particularly those related to identity fraud, such as
potential admin account takeovers.
Configure a monitoring and reporting tool.
Consider integrating more closely with security and fraud-prevention systems.
Regularly review access rights for elevated users or roles.

Review on-boarding, off-boarding, and credential update processes.
Investigate increasing levels of automation and communication between identity access management (IAM)
modules.
Consider implementing a development security operations (DevSecOps) approach.
Carry out an impact analysis to gauge results on costs, security, and user adoption.
Periodically produce an impact report that shows the changes in metrics created by the system and estimate
the business impacts of the Hybrid Identity Strategy.
Establish integrated monitoring recommended by the Azure Security Center.

Identify every user who is eligible to activate admin privilege.

https://docs.microsoft.com/azure/active-directory/active-directory-device-registration-on-premises-setup
https://docs.microsoft.com/azure/security-center/security-center-intro

Next steps
Now that you understand the concept of cloud identity governance, examine the Identity Baseline toolchain to
identify Azure tools and features that you'll need when developing the Identity Baseline governance discipline on
the Azure platform.

Identity Baseline toolchain for Azure

Identity Baseline tools in Azure
3/13/2019 • 4 minutes to read • Edit Online

Cloud authentication

NOTENOTE

Identity Baseline is one of the Five Disciplines of Cloud Governance. This discipline focuses on ways of
establishing policies that ensure consistency and continuity of user identities regardless of the cloud provider
that hosts the application or workload.

The following tools are included in the discovery guide on Hybrid Identity.

Active Directory (on-premises): Active Directory is the identity provider most frequently used in the
enterprise to store and validate user credentials.

Azure Active Directory: A software as a service (SaaS) equivalent to Active Directory, capable of federating
with an on-premises Active Directory.

Active Directory (IaaS): An instance of the Active Directory application running in a virtual machine in Azure.

Identity is the control plane for IT security. So authentication is an organization’s access guard to the cloud.
Organizations need an identity control plane that strengthens their security and keeps their cloud apps safe from
intruders.

Choosing the correct authentication method is the first concern for organizations wanting to move their apps to
the cloud.

When you choose this method, Azure AD handles users' sign-in process. Coupled with seamless single sign-on
(SSO), users can sign in to cloud apps without having to reenter their credentials. With cloud authentication, you
can choose from two options:

Azure AD password hash synchronization: The simplest way to enable authentication for on-premises
directory objects in Azure AD. This method can also be used with any method as a back-up failover
authentication method in case your on-premises server goes down.

Azure AD Pass-through Authentication: Provides a persistent password validation for Azure AD
authentication services by using a software agent that runs on one or more on-premises servers.

Companies with a security requirement to immediately enforce on-premises user account states, password policies, and
sign-in hours should consider the pass-through Authentication method.

Federated authentication:

When you choose this method, Azure AD passes the authentication process to a separate trusted authentication
system, such as on-premises Active Directory Federation Services (AD FS) or a trusted third-party federation
provider, to validate the user ’s password.

The article choosing the right authentication method for Azure Active Directory contains a decision tree to help
you choose the best solution for your organization.

The following table lists the native tools that can help mature the policies and processes that support this
governance discipline.

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/identity-baseline/toolchain.md
https://docs.microsoft.com/azure/security/azure-ad-choose-authn

CONSIDERATION

PASSWORD HASH
SYNCHRONIZATION +
SEAMLESS SSO

PASS-THROUGH
AUTHENTICATION +
SEAMLESS SSO FEDERATION WITH AD FS

Where does authentication
happen?

In the cloud In the cloud after a secure
password verification
exchange with the on-
premises authentication
agent

On-premises

What are the on-premises
server requirements beyond
the provisioning system:
Azure AD Connect?

None One server for each
additional authentication
agent

Two or more AD FS servers

Two or more WAP servers
in the perimeter/DMZ
network

What are the requirements
for on-premises Internet
and networking beyond the
provisioning system?

None Outbound Internet access
from the servers running
authentication agents

Inbound Internet access to
WAP servers in the
perimeter

Inbound network access to
AD FS servers from WAP
servers in the perimeter

Network load balancing

Is there an SSL certificate
requirement?

No No Yes

Is there a health monitoring
solution?

Not required Agent status provided by
Azure Active Directory
admin center

Azure AD Connect Health

Do users get single sign-on
to cloud resources from
domain-joined devices
within the company
network?

Yes with Seamless SSO Yes with Seamless SSO Yes

What sign-in types are
supported?

UserPrincipalName +
password

Windows Integrated
Authentication by using
Seamless SSO

Alternate login ID

UserPrincipalName +
password

Windows Integrated
Authentication by using
Seamless SSO

Alternate login ID

UserPrincipalName +
password

sAMAccountName +
password

Windows Integrated
Authentication

Certificate and smart card
authentication

Alternate login ID

Is Windows Hello for
Business supported?

Key trust model

Certificate trust model with
Intune

Key trust model

Certificate trust model with
Intune

Key trust model

Certificate trust model

https://docs.microsoft.com/azure/active-directory/hybrid/how-to-connect-pta-quick-start
https://docs.microsoft.com/windows-server/identity/ad-fs/overview/ad-fs-requirements
https://docs.microsoft.com/azure/active-directory/hybrid/tshoot-connect-pass-through-authentication
https://docs.microsoft.com/azure/active-directory/hybrid/how-to-connect-health-adfs
https://docs.microsoft.com/azure/active-directory/hybrid/how-to-connect-sso
https://docs.microsoft.com/azure/active-directory/hybrid/how-to-connect-sso
https://docs.microsoft.com/azure/active-directory/hybrid/how-to-connect-sso
https://docs.microsoft.com/azure/active-directory/hybrid/how-to-connect-install-custom
https://docs.microsoft.com/azure/active-directory/hybrid/how-to-connect-sso
https://docs.microsoft.com/azure/active-directory/hybrid/how-to-connect-pta-faq
https://docs.microsoft.com/windows-server/identity/ad-fs/operations/configure-user-certificate-authentication
https://docs.microsoft.com/windows-server/identity/ad-fs/operations/configuring-alternate-login-id
https://docs.microsoft.com/windows/security/identity-protection/hello-for-business/hello-identity-verification
https://blogs.technet.microsoft.com/microscott/setting-up-windows-hello-for-business-with-intune/
https://docs.microsoft.com/windows/security/identity-protection/hello-for-business/hello-identity-verification
https://blogs.technet.microsoft.com/microscott/setting-up-windows-hello-for-business-with-intune/
https://docs.microsoft.com/windows/security/identity-protection/hello-for-business/hello-identity-verification
https://docs.microsoft.com/windows/security/identity-protection/hello-for-business/hello-key-trust-adfs

What are the multifactor
authentication options?

Azure MFA

Custom Controls with
conditional access*

Azure MFA

Custom Controls with
conditional access*

Azure MFA

Azure MFA server

Third-party MFA

Custom Controls with
conditional access*

What user account states
are supported?

Disabled accounts
(up to 30-minute delay)

Disabled accounts

Account locked out

Account expired

Password expired

Sign-in hours

Disabled accounts

Account locked out

Account expired

Password expired

Sign-in hours

What are the conditional
access options?

Azure AD conditional access Azure AD conditional access Azure AD conditional access

AD FS claim rules

Is blocking legacy protocols
supported?

Yes Yes Yes

Can you customize the
logo, image, and description
on the sign-in pages?

Yes, with Azure AD Premium Yes, with Azure AD Premium Yes

What advanced scenarios
are supported?

Smart password lockout

Leaked credentials reports

Smart password lockout Multisite low-latency
authentication system

AD FS extranet lockout

Integration with third-party
identity systems

CONSIDERATION

PASSWORD HASH
SYNCHRONIZATION +
SEAMLESS SSO

PASS-THROUGH
AUTHENTICATION +
SEAMLESS SSO FEDERATION WITH AD FS

NOTENOTE

Next steps

Custom controls in Azure AD conditional access does not currently support device registration.

The Hybrid Identity Digital Transformation Framework outlines a number of combinations and solutions for
choosing and integrating each of these components.

The Azure AD Connect tool helps you to integrate your on-premises directories with Azure AD.

https://docs.microsoft.com/azure/multi-factor-authentication/
https://docs.microsoft.com/azure/active-directory/conditional-access/controls#custom-controls-1
https://docs.microsoft.com/azure/multi-factor-authentication/
https://docs.microsoft.com/azure/active-directory/conditional-access/controls#custom-controls-1
https://docs.microsoft.com/azure/multi-factor-authentication/
https://docs.microsoft.com/azure/active-directory/authentication/howto-mfaserver-deploy
https://docs.microsoft.com/windows-server/identity/ad-fs/operations/configure-additional-authentication-methods-for-ad-fs
https://docs.microsoft.com/azure/active-directory/conditional-access/controls#custom-controls-1
https://docs.microsoft.com/azure/active-directory/active-directory-conditional-access-azure-portal
https://docs.microsoft.com/azure/active-directory/active-directory-conditional-access-azure-portal
https://docs.microsoft.com/azure/active-directory/active-directory-conditional-access-azure-portal
https://adfshelp.microsoft.com/AadTrustClaims/ClaimsGenerator
https://docs.microsoft.com/azure/active-directory/active-directory-conditional-access-conditions#legacy-authentication
https://docs.microsoft.com/azure/active-directory/active-directory-conditional-access-conditions#legacy-authentication
https://docs.microsoft.com/windows-server/identity/ad-fs/operations/access-control-policies-w2k12
https://docs.microsoft.com/azure/active-directory/customize-branding
https://docs.microsoft.com/azure/active-directory/customize-branding
https://docs.microsoft.com/azure/active-directory/connect/active-directory-aadconnect-federation-management#customlogo
https://docs.microsoft.com/azure/active-directory/active-directory-secure-passwords
https://docs.microsoft.com/azure/active-directory/active-directory-reporting-risk-events
https://docs.microsoft.com/azure/active-directory/connect/active-directory-aadconnect-pass-through-authentication-smart-lockout
https://docs.microsoft.com/windows-server/identity/ad-fs/operations/configure-ad-fs-extranet-soft-lockout-protection
https://docs.microsoft.com/azure/active-directory/connect/active-directory-aadconnect-federation-compatibility
https://resources.office.com/ww-landing-M365E-EMS-IDAM-Hybrid-Identity-WhitePaper.html?LCID=EN-US
https://aka.ms/aadconnectwiz

�� N O T EN O T E

Policy statements

C A U T IO NC A U T IO N

Developing Resource Consistency governance policy statements

Resource Consistency is one of the Five Disciplines of Cloud Governance within the CAF governance model. This discipline
focuses on ways of establishing policies related to the operational management of an environment, application, or workload. IT
Operations teams often provide monitoring of applications, workload, and asset performance. They also commonly execute the
tasks required to meet scale demands, remediate performance Service Level Agreement (SLA) violations, and proactively avoid
performance SLA violations through automated remediation. Within the five disciplines of Cloud Governance, Resource
Consistency is a discipline that ensure resources are consistently configured in such a way that they can be discoverable by IT
operations, are included in recovery solutions, and can be on-boarded into repeatable operations processes.

Resource Consistency governance does not replace the existing IT teams, processes, and procedures that allow your organization
to effectively manage cloud-based resources. The primary purpose of this discipline is to identify potential business risks and
provide risk-mitigation guidance to the IT staff that are responsible for managing your resources in the cloud. As you develop
governance policies and processes make sure to involve relevant IT teams in your planning and review processes.

This section of the CAF outlines how to develop a Resource Consistency discipline as part of your cloud governance strategy. The
primary audience for this guidance is your organization's cloud architects and other members of your Cloud Governance team.
However, the decisions, policies, and processes that emerge from this discipline should involve engagement and discussions with
relevant members of the IT teams responsible for implementing and managing your organization's Resource Consistency
solutions.

If your organization lacks in-house expertise in Resource Consistency strategies, consider engaging external consultants as a part
of this discipline. Also consider engaging Microsoft Consulting Services, the Microsoft FastTrack cloud adoption service, or other
external cloud adoption experts for discussing how best to organize, track, and optimize your cloud-based assets.

Actionable policy statements and the resulting architecture requirements serve as the foundation of a Resource Consistency
discipline. To see policy statement samples, see the article on Resource Consistency Policy Statements. These samples can serve
as a starting point for your organization's governance policies.

The sample policies come from common customer experiences. To better align these policies to specific cloud governance needs,
execute the following steps to create policy statements that meet your unique business needs.

The following six steps offer examples and potential options to consider when developing Resource Consistency governance. Use
each step as a starting point for discussions within your Cloud Governance team and with affected business, and IT teams across
your organization to establish the policies and processes needed to mitigate Resource Consistency risks.

Resource Consistency TemplateResource Consistency Template

Business RisksBusiness Risks

Download the template for documenting a Resource Consistency discipline

Understand the motives and risks commonly associated with the Resource Consistency discipline.

https://www.microsoft.com/enterprise/services
https://azure.microsoft.com/programs/azure-fasttrack

Next steps

Indicators and MetricsIndicators and Metrics

Policy adherence processesPolicy adherence processes

MaturityMaturity

ToolchainToolchain

Indicators to understand if it is the right time to invest in the Resource Consistency discipline.

Suggested processes for supporting policy compliance in the Resource Consistency discipline.

Aligning Cloud Management maturity with phases of cloud adoption.

Azure services that can be implemented to support the Resource Consistency discipline.

Get started by evaluating business risks in a specific environment.

Understand business risks

CAF: Resource Consistency template
3/13/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Next steps

The first step to implementing change is communicating the desired change. The same is true when changing
governance practices. The template below serves as a starting point for documenting and communicating policy
statements that govern Resource Consistency in the cloud.

Although it contains example content related to the Cost Management discipline, this template can be used as the
basis for capturing the business risks, risk tolerances, compliance processes, and tooling used to define policy
statements for the Resource Consistency discipline.

This template is a limited sample. Before updating this template to reflect your requirements, you should review the
subsequent steps for defining an effective Resource Consistency discipline within your cloud governance strategy.

Download governance discipline template

Solid governance practices start with an understanding of business risk. Review the article on business risks and
begin to document the business risks that align with your current cloud adoption plan.

Understand business risks

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/resource-consistency/template.md
https://archcenter.blob.core.windows.net/cdn/fusion/governance/Governance Discipline Template.docx

Resource Consistency motivations and business risks
3/13/2019 • 2 minutes to read • Edit Online

Is Resource Consistency relevant?

Business risk

Next steps

This article discusses the reasons that customers typically adopt a Resource Consistency discipline within a cloud
governance strategy. It also provides a few examples of potential business risks that can drive policy statements.

When it comes to deploying resources and workloads, the cloud offers increased agility and flexibility over most
traditional on-premises datacenters. However, these potential cloud-based advantages also come paired with
potential management drawbacks that can seriously jeopardize the success of your cloud adoption. What assets
have you deployed? What teams own what assets? Do you have enough resources supporting a workload? How
do you know if workloads are healthy?

Resource Consistency is crucial to ensure that resources are deployed, updated, and configured consistently and
repeatably, and that service disruptions are minimized and remedied in as little time as possible.

The Resource Consistency discipline is concerned with identifying and mitigating business risks related to the
operational aspects of your cloud deployment. Resource Consistency includes monitoring of applications,
workloads, and asset performance. It also includes the tasks required to meet scale demands, remediate
performance Service Level Agreement (SLA) violations, and proactively avoid performance SLA violations
through automated remediation.

Initial test deployments may not require much beyond adopting some cursory naming and tagging standards to
support your Resource Consistency needs. As your cloud adoption matures and you deploy more complicated
and mission-critical assets, the need to invest in the Resource Consistency discipline increases rapidly.

The Resource Consistency discipline attempts to address core operational business risks. Work with your business
and IT teams to identify these risks and monitor each of them for relevance as you plan for and implement your
cloud deployments.

Risks will differ between organization, but the following serve as common risks that you can use as a starting
point for discussions within your Cloud Governance team:

Unnecessary operational cost. Obsolete or unused resources, or resources that are overprovisioned during
times of low demand, add unnecessary operational costs.
Underprovisioned resources. Resources that experience higher than anticipated demand can result in
business disruption as cloud resources are overwhelmed by demand.
Management inefficiencies. Lack of consistent naming and tagging metadata associated with resources can
lead to IT staff having difficulty finding resources for management tasks or identifying ownership and
accounting information related to assets. This results in management inefficiencies that can increase cost and
slow IT responsiveness to service disruption or other operational issues.
Business Interruption. Service disruptions that result in violations of your organization's established Service
Level Agreements (SLAs) can result in loss of business or other financial impacts to your company.

Using the Cloud Management Template, document business risks that are likely to be introduced by the current
cloud adoption plan.

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/resource-consistency/business-risks.md

Once an understanding of realistic business risks is established, the next step is to document the business's
tolerance for risk and the indicators and key metrics to monitor that tolerance.

Understand indicators, metrics, and risk tolerance

Resource Consistency metrics, indicators, and risk
tolerance
3/13/2019 • 4 minutes to read • Edit Online

Metrics

Risk tolerance indicators

This article is intended to help you quantify business risk tolerance as it relates to Resource Consistency. Defining
metrics and indicators helps you create a business case for making an investment in maturing the Resource
Consistency discipline.

The Resource Consistency discipline focuses on addressing risks related to the operational management of your
cloud deployments. As part of your risk analysis you'll want to gather data related to your IT operations to
determine how much risk you face, and how important investment in Resource Consistency governance is to your
planned cloud deployments.

Every organization has different operational scenarios, but the following items represent useful examples of the
metrics you should gather when evaluating risk tolerance within the Resource Consistency discipline:

Cloud assets. Total number of cloud-deployed resources.
Untagged resources. Number of resources without required accounting, business impact, or organizational
tags.
Underused assets. Number of resources where memory, CPU, or network capabilities are all consistently
under-used.
Resource depletion. Number of resources where memory, CPU, or network capabilities are exhausted by
load.
Resource age. Time since resource was last deployed or modified.
Service availability. Percentage of actual uptime cloud-hosted workloads compared to the expected uptime.
VMs in critical condition. Number of deployed VMs where one or more critical issues are detected which
need to be addressed in order to restore normal functionality.
Alerts by Severity. Total number of alerts on a deployed asset, broken down by severity.
Unhealthy subnet links. Number of resources with network connectivity issues.
Unhealthy Service Endpoints. Number of issues with external network endpoints.
Cloud Provider Service Health incidents. Number of disruptions or performance incidents caused by the
cloud provider.
Backup Health. Number of backups actively being synchronized.
Recovery Health. Number of recovery operations successfully performed.

Cloud platforms offer a baseline set of features that allow deployment teams to effectively manage small
deployments without extensive additional planning or processes. As a result, small Dev/Test or experimental first
workloads that include a relatively small amount of cloud-based assets represent low level of risk, and will likely
not need much in the way of a formal Resource Consistency policy.

However, as the size of your cloud estate grows the complexity of managing your assets becomes significantly
more difficult. With more assets on the cloud, the ability identify ownership of resources and control resource
useful becomes critical to minimizing risks. As more mission-critical workloads are deployed to the cloud, service
uptime becomes more critical, and tolerance for service disruption potential cost overruns diminishes rapidly.

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/resource-consistency/metrics-tolerance.md

Next steps

In the early stages of cloud adoption, work with your IT operations team and business stakeholders to identify
business risks related to Resource Consistency, then determine an acceptable baseline for risk tolerance. This
section of the CAF provides examples, but the detailed risks and baselines for your company or deployments may
be different.

Once you have a baseline, establish minimum benchmarks representing an unacceptable increase in your
identified risks. These benchmarks act as triggers for when you need to take action to mitigate these risks. The
following are a few examples of how operational metrics, such as those discussed above, can justify an increased
investment in the Resource Consistency discipline.

Tagging and naming trigger. A company with more than X resources lacking required tagging information
or not obeying naming standards should consider investing in the Resource Consistency discipline to help
refine these standards and ensure consistent application of them to cloud-deployed assets.
Overprovisioned resources trigger. If a company has more than X% of assets regularly using very small
amounts of their available memory, CPU, or network capabilities, investment in the Resource Consistency
discipline is suggested to help optimize resources usage for these items.
Underprovisioned resources trigger. If a company has more than X% of assets regularly exhausting most of
their available memory, CPU, or network capabilities, investment in the Resource Consistency discipline is
suggested to help ensure these assets have the resources necessary to prevent service interruptions.
Resource age trigger. A company with more than X resources that have not been updated in over X months
could benefit from investment in the Resource Consistency discipline aimed at ensuring active resources are
patched and healthy, while retiring obsolete or otherwise unused assets.
Service availability trigger. A company that has experienced under X% uptime for mission-critical services
should invest in the Resource Consistency discipline to improve their service reliability.
VM health trigger. A company that has more than X% of VMs experiencing a critical health issue should
invest in the Resource Consistency discipline to identify issues and improve VM stability.
Network health trigger. A company that has more than X% of network subnets or endpoints experiencing
connectivity issues should invest in the Resource Consistency discipline to identify and resolve network issues.
Backup coverage trigger. A company with X% of mission-critical assets without up-to-date backups in place
would benefit from an increased investment in the Resource Consistency discipline to ensure a consistent
backup strategy.
Backup health trigger. A company experiencing more than X% failure of restore operations should invest in
the Resource Consistency discipline to identify problems with backup and ensure important resources are
protected.

The exact metrics and triggers you use to gauge risk tolerance and the level of investment in the Resource
Consistency discipline will be specific to your organization, but the examples above should serve as a useful base
for discussion within your Cloud Governance team.

Using the Cloud Management template, document metrics and tolerance indicators that align to the current cloud
adoption plan.

Building on risks and tolerance, establish a process for governing and communicating Resource Consistency policy
adherence.

Establish policy compliance processes

Resource Consistency sample policy statements
3/13/2019 • 4 minutes to read • Edit Online

Tagging

Ungoverned subscriptions

Manage updates to virtual machines

Individual cloud policy statements are guidelines for addressing specific risks identified during your risk
assessment process. These statements should provide a concise summary of risks and plans to deal with them.
Each statement definition should include these pieces of information:

Technical risk - A summary of the risk this policy will address.
Policy statement - A clear summary explanation of the policy requirements.
Design options - Actionable recommendations, specifications, or other guidance that IT teams and developers
can use when implementing the policy.

The following sample policy statements address a number of common Resource Consistency-related business
risks, and are provided as examples for you to reference when drafting policy statements to address your own
organization's needs. Note that these examples are not meant to be proscriptive, and there are potentially several
policy options for dealing with any particular risk. Work closely with business and IT teams to identify the best
policy solutions for your unique set of risks.

Technical risk: Without proper metadata tagging associated with deployed resources, IT Operations cannot
prioritize support or optimization of resources based on required SLA, importance to business operations, or
operational cost. This can result in mis-allocation of IT resources and potential delays in incident resolution.

Policy statement: The following policies will be implemented:

Deployed assets should be tagged with the following values: cost, criticality, SLA, and environment.
Governance tooling must validate tagging related to cost, criticality, SLA, application, and environment. All
values must align to predefined values managed by the governance team.

Potential design options: In Azure, standard name-value metadata tags are supported on most resource types.
Azure Policy is used to enforce specific tags as part of resource creation.

Technical risk: Arbitrary creation of subscriptions and management groups can lead to isolated sections of your
cloud estate that are not properly subject to your governance policies.

Policy statement: Creation of new subscriptions or management groups for any mission-critical applications or
protected data will require a review from the Cloud Governance team. Approved changes will be integrated into a
proper blueprint assignment.

Potential design options: Lock down administrative access to your organizations Azure management groups to
only approved governance team members who will control the subscription creation and access control process.

Technical risk: Virtual machines (VMs) that are not up-to-date with the latest updates and software patches are
vulnerable to security or performance issues, which can result in service disruptions.

Policy statement: Governance tooling must enforce that automatic updates are enabled on all deployed VMs.
Violations must be reviewed with operational management teams and remediated in accordance with operations

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/resource-consistency/policy-statements.md
https://docs.microsoft.com/azure/azure-resource-manager/resource-group-using-tags
https://docs.microsoft.com/azure/governance/policy/overview
https://docs.microsoft.com/azure/governance/management-groups/

Deployment compliance

Monitoring

Disaster recovery

Next steps

policies. Assets that are not automatically updated must be included in processes owned by IT Operations.

Potential design options: For Azure hosted VMs, you can provide consistent update management using the
Update Management solution in Azure Automation.

Technical risk: Deployment scripts and automation tooling that is not fully vetted by the Cloud Governance team
can result in resource deployments that violate policy.

Policy statement: The following policies will be implemented:

Deployment tooling must be approved by the Cloud Governance team to ensure ongoing governance of
deployed assets.
Deployment scripts must be maintained in central repository accessible by the Cloud Governance team for
periodic review and auditing.

Potential design options: Consistent use of Azure Blueprints to manage automated deployments allows
consistent deployments of Azure resources that adhere to your organization's governance standards and policies.

Technical risk: Improperly implemented or inconsistently instrumented monitoring can prevent the detection of
workload health issues or other policy compliance violations.

Policy statement: The following policies will be implemented:

Governance tooling must validate that all assets related to mission-critical applications or protected data are
included in monitoring for resource depletion and optimization.
Governance tooling must validate that the appropriate level of logging data is being collected for all mission-
critical applications or protected data.

Potential design options: Azure Monitor is the default monitoring service in the Azure platform, and consistent
monitoring can be enforced through the use of Azure Blueprints when deploying resources.

Technical risk: Resource failure, deletions, or corruption can result in disruption of mission-critical applications or
services and the loss of sensitive data.

Policy statement: All mission-critical applications and protected data must have backup and recovery solutions
implemented to minimize business impact of outages or system failures.

Potential design options: The [Azure Site Recovery] service provides backup, recovery, and replication
capabilities intended to minimize outage duration in business continuity and disaster recovery (BCDR) scenarios.

Use the samples mentioned in this article as a starting point to develop policies that address specific business risks
that align with your cloud adoption plans.

To begin developing your own custom policy statements related to Resource Consistency, download the Resource
Consistency template.

To accelerate adoption of this discipline, choose the actionable governance journey that most closely aligns with
your environment. Then modify the design to incorporate your specific corporate policy decisions.

Actionable Governance Journeys

https://docs.microsoft.com/azure/automation/automation-update-management
https://docs.microsoft.com/azure/governance/blueprints/
https://docs.microsoft.com/azure/azure-monitor/overview
https://docs.microsoft.com/azure/governance/blueprints/

Resource Consistency policy compliance processes
3/13/2019 • 5 minutes to read • Edit Online

Planning, review, and reporting processes

This article discusses an approach to policy adherence processes that govern Resource Consistency. Effective
cloud Resource Consistency governance starts with recurring manual processes designed to identify operational
inefficiency, improve management of deployed resources, and ensure mission-critical workloads have minimal
disruptions. These manual processes are supplemented with monitoring, automation, and tooling to help reduce
the overhead of governance and allow for faster response to policy deviation.

Cloud platforms provide an array of management tools and features that you can use to organize, provision, scale,
and minimize downtime. Using these tools to effectively structure and operate your cloud deployments in ways
that mitigate potential risks requires well thought out processes and policies in addition to close cooperation with
IT Operations teams and business stakeholders.

The following is a set of example processes commonly involved in the Resource Consistency discipline. Use these
examples as a starting point when planning the processes that will allow you to continue to update Resource
Consistency policy based on business change and feedback from the development and IT teams tasked with
turning guidance into action.

Initial risk assessment and planning: As part of your initial adoption of the Resource Consistency discipline,
identify your core business risks and tolerances related to operations and IT management. Use this information to
discuss specific technical risks with members of your IT teams and workload owners to develop a baseline set of
Resource Consistency policies designed to mitigate these risks, establishing your initial governance strategy.

Deployment planning: Before deploying any asset, perform a review to identify any new operational risks.
Establish resource requirements and expected demand patterns, and identify scalability needs and potential usage
optimization opportunities. Also ensure backup and recovery plans are in place.

Deployment testing: As part of deployment, the Cloud Governance team, in cooperation with your cloud
operations teams, will be responsible for reviewing the deployment to validate Resource Consistency policy
compliance.

Annual planning: On an annual basis, perform a high-level review of Resource Consistency strategy. Explore
future corporate expansion plans or priorities and update cloud adoption strategies to identify potential risk
increase or other emerging Resource Consistency needs. Also use this time to review the latest best practices for
cloud Resource Consistency and integrate these into your policies and review processes.

Quarterly review and planning: On a quarterly basis perform a review of operational data and incident reports
to identify any changes required in Resource Consistency policy. As part of this process, review changes in
resource usage and performance to identify assets that require increases or decreases in resource allocation, and
identify any workloads or assets that are candidates for retirement.

This planning process is also a good time to evaluate the current membership of your Cloud Governance team for
knowledge gaps related to new or evolving policy and risks related to Resource Consistency as a discipline. Invite
relevant IT staff to participate in reviews and planning as either temporary technical advisors or permanent
members of your team.

Education and Training: On a bi-monthly basis, offer training sessions to make sure IT staff and developers are
up-to-date on the latest Resource Consistency policy requirements and guidance. As part of this process review
and update any documentation or other training assets to ensure they are in sync with the latest corporate policy

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/resource-consistency/compliance-processes.md

Ongoing monitoring processes

Violation triggers and enforcement actions

Next steps

statements.

Monthly audit and reporting reviews: On a monthly basis, perform an audit on all cloud deployments to assure
their continued alignment with Resource Consistency policy. Review related activities with IT staff and identify any
compliance issues not already handled as part of the ongoing monitoring and enforcement process. The result of
this review is a report for the Cloud Strategy team and each cloud adoption team to communicate overall
performance and adherence to policy. The report is also stored for auditing and legal purposes.

Determining if your Resource Consistency governance strategy is successful depends on visibility into the current
and past state of your cloud infrastructure. Without the ability to analyze the relevant metrics and data of your
cloud environment's health and activity, you cannot identify changes in your risks or detect violations of your risk
tolerances. The ongoing governance processes discussed above require quality data to ensure policy can be
modified to optimize your cloud resource usage and improve overall performance of cloud-hosted workloads.

Ensure that your IT teams have implemented automated monitoring systems for your cloud infrastructure that
capture the relevant logs data you need to evaluate risks. Be proactive in monitoring these systems to ensure
prompt detection and mitigation of potential policy violation, and ensure your monitoring strategy is in line with
your operational needs.

Because Resource Consistency policy compliance can lead to critical service disruption or significant cost overruns
risks, the Cloud Governance team should have visibility into noncompliance incidents. Ensure IT staff have clear
escalation paths for reporting these issues to the governance team members best suited to identify and verify that
policy issues are mitigated.

When violations are detected, you should take actions to realign with policy as soon as possible. Your IT team can
automate most violation triggers using the tools outlined in the Resource Consistency toolchain for Azure.

The following triggers and enforcement actions provide examples you can reference when planning how to use
monitoring data to resolve policy violations:

Overprovisioned resource detected: Resources detected using less than 60% of CPU or memory capacity
should automatically scale down or deprovisioning resources to reduce costs.
Underprovisioned resource detected: Resources detected using more than 80% of CPU or memory capacity
should automatically scale up or provisioning additional resources to provide additional capacity.
Untagged resource creation: Any request to create a resource without required meta tags will be rejected
automatically.
Critical resource outage detected: IT staff are notified on all detected outages of mission-critical outages. If
outage is not immediately resolvable, staff will escalate the issue and notify workload owners and the Cloud
Governance team. The Cloud Governance team will track the issue until resolution and update guidance if
policy revision is necessary to prevent future incidents.

Using the Cloud Management template, document the processes and triggers that align to the current cloud
adoption plan.

For guidance on executing cloud management policies in alignment with adoption plans, see the article on
discipline improvement.

Resource Consistency discipline improvement

Resource Consistency discipline improvement
3/13/2019 • 6 minutes to read • Edit Online

C a u t i o nC a u t i o n

Planning and readiness

The Resource Consistency discipline focuses on ways of establishing policies related to the operational
management of an environment, application, or workload. Within the five disciplines of Cloud Governance,
Resource Consistency includes monitoring of applications, workload, and asset performance. It also includes the
tasks required to meet scale demands, remediate performance Service Level Agreement (SLA) violations, and
proactively avoid SLA violations through automated remediation.

This article outlines some potential tasks your company can engage in to better develop and mature the Resource
Consistency discipline. These tasks can be broken down into planning, building, adopting, and operating phases of
implementing a cloud solution, which are then iterated on allowing the development of an incremental approach
to cloud governance.

Figure 1. Adoption phases of the incremental approach to cloud governance.

It's impossible for any one document to account for the requirements of all businesses. As such, this article
outlines suggested minimum and potential example activities for each phase of the governance maturation
process. The initial objective of these activities is to help you build a Policy MVP and establish a framework for
incremental policy evolution. Your Cloud Governance team will need to decide how much to invest in these
activities to improve your Resource Consistency governance capabilities.

Neither the minimum or potential activities outlined in this article are aligned to specific corporate policies or third
party compliance requirements. This guidance is designed to help facilitate the conversations that will lead to
alignment of both requirements with a cloud governance model.

This phase of governance maturity bridges the divide between business outcomes and actionable strategies.
During this process, the leadership team defines specific metrics, maps those metrics to the digital estate, and
begins planning the overall migration effort.

Minimum suggested activities:

Evaluate your Resource Consistency toolchain options.
Understand the licensing requirements for your cloud strategy.
Develop a draft Architecture Guidelines document and distribute to key stakeholders.
Become familiar with the resource manager you use to deploy, manage, and monitor all the resources for your
solution as a group.
Educate and involve the people and teams affected by the development of architecture guidelines.
Add prioritized resource deployment tasks to your migration backlog.

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/resource-consistency/discipline-improvement.md

Build and pre-deployment

Adopt and migrate

Potential activities:

Work with the business stakeholders and/or your cloud strategy team to understand the desired cloud
accounting approach and cost accounting practices within your business units and organization as a whole.
Define your monitoring and policy enforcement requirements.
Examine the business value and cost of outage to define remediation policy and SLA requirements.
Determine whether you'll deploy a simple workload or multi-team governance strategy for your resources.
Determine scalability requirements for your planned workloads.

A number of technical and nontechnical prerequisites are required to successful migrate an environment. This
process focuses on the decisions, readiness, and core infrastructure that proceeds a migration.

Minimum suggested activities:

Implement your Resource Consistency toolchain by rolling out in a pre-deployment phase.
Update the Architecture Guidelines document and distribute to key stakeholders.
Implement resource deployment tasks on your prioritized migration backlog.
Develop educational materials and documentation, awareness communications, incentives, and other programs
to help drive user adoption.

Potential activities:

Decide on a subscription design strategy, choosing the subscription patterns that best fit your organization and
workload needs.
Use a resource consistency strategy to enforce architecture guidelines over time.
Implement resource naming, and tagging standards for your resources to match your organizational and
accounting requirements.
To create proactive point-in-time governance, use deployment templates and automation to enforce common
configurations and a consistent grouping structure when deploying resources and resource groups.
Establish a least privilege permissions model, where users have no permissions by default.
Determine who in your organization owns each workload and account, and who will need to access to maintain
or modify these resources. Define cloud roles and responsibilities that match these needs and use these roles as
the basis for access control.
Define dependencies between resources.
Implement automated resource scaling to match requirements defined in the Plan stage.
Conduct access performance to measure the quality of services received.
Consider deploying policy to manage SLA enforcement using configuration settings and resource creation
rules.

Migration is an incremental process that focuses on the movement, testing, and adoption of applications or
workloads in an existing digital estate.

Minimum suggested activities:

Migrate your Resource Consistency toolchain from pre-deployment to production.
Update the Architecture Guidelines document and distribute to key stakeholders.
Develop educational materials and documentation, awareness communications, incentives, and other programs
to help drive user adoption.
Migrate any existing automated remediation scripts or tools to support defined SLA requirements.

https://docs.microsoft.com/azure/governance/policy/overview

Operate and post-implementation

Next steps

Potential activities:

Complete and test monitoring and reporting data. with your chosen on-premises, cloud gateway, or hybrid
solution.
Determine if changes need to be made to SLA or management policy for resources.
Improve operations tasks by implementing query capabilities to efficiently find resource across your cloud
estate.
Align resources to changing business needs and governance requirements.
Ensure that your virtual machines, virtual networks, and storage accounts reflect actual resource access needs
during each release, and adjust as necessary.
Verify automated scaling of resources meets access requirements.
Review user access to resources, resource groups, and Azure subscriptions, and adjust access controls as
necessary.
Monitor changes in resource access plans and validate with stakeholders if additional sign-offs are needed.
Update changes to the Architecture Guidelines document to reflect actual costs.
Determine whether your organization requires clearer financial alignment to P&Ls for business units.
For global organizations, implement your SLA compliance or sovereignty requirements.
For cloud aggregation, deploy a gateway solution to a cloud provider.
For tools that don't allow for hybrid or gateway options, tightly couple monitoring with an operational
monitoring tool.

Once the transformation is complete, governance and operations must live on for the natural lifecycle of an
application or workload. This phase of governance maturity focuses on the activities that commonly come after the
solution is implemented and the transformation cycle begins to stabilize.

Minimum suggested activities:

Customize your Resource Consistency toolchain based on updates to your organization’s changing Cost
Management needs.
Consider automating any notifications and reports to reflect actual resource usage.
Refine Architecture Guidelines to guide future adoption processes.
Educate affected teams periodically to ensure ongoing adherence to the architecture guidelines.

Potential activities:

Adjust plans quarterly to reflect changes to actual resources.
Automatically apply and enforce governance requirements during future deployments.
Evaluate underused resources and determine if they're worth continuing.
Detect misalignments and anomalies between planned and actual resource usage.
Assist the cloud adoption teams and the Cloud Strategy team in understanding and resolving these anomalies.
Determine if changes need to be made to Resource Consistency for billing and SLAs.
Evaluate logging and monitoring tools to determine whether your on-premises, cloud gateway, or hybrid
solution needs adjusting.
For business units and geographically distributed groups, determine if your organization should consider using
additional cloud management features (for example Azure management groups) to better apply centralized
policy and meet SLA requirements.

Now that you understand the concept of cloud resource governance, move on to learn more about how resource

https://docs.microsoft.com/azure/governance/management-groups/

access is managed in Azure in preparation for learning how to design a governance model for a simple workload
or for multiple teams.

Learn about resource access in Azure Learn about SLAs for Azure Learn about logging, reporting, and monitoring

https://azure.microsoft.com/support/legal/sla/

Resource access management in Azure
3/13/2019 • 4 minutes to read • Edit Online

What is an Azure resource?

What is an Azure resource group?

Cloud Governance outlines the five disciplines of Cloud Governance, which includes Resource Management. What
is resource access governance furthers explains how resource access management fits into the resource
management discipline. Before you move on to learn how to design a governance model, it's important to
understand the resource access management controls in Azure. The configuration of these resource access
management controls forms the basis of your governance model.

Begin by taking a closer look at how resources are deployed in Azure.

In Azure, the term resource refers to an entity managed by Azure. For example, virtual machines, virtual networks,
and storage accounts are all referred to as Azure resources.

 Figure 1. A resource.

Each resource in Azure must belong to a resource group. A resource group is simply a logical construct that
groups multiple resources together so they can be managed as a single entity. For example, resources that share a
similar lifecycle, such as the resources for an n-tier application may be created or deleted as a group.

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/resource-consistency/azure-resource-access.md
https://docs.microsoft.com/azure/azure-resource-manager/resource-group-overview#resource-groups
https://docs.microsoft.com/azure/architecture/guide/architecture-styles/n-tier

What is an Azure subscription?

 Figure
2. A resource group contains a resource.

Resource groups and the resources they contain are associated with an Azure subscription.

An Azure subscription is similar to a resource group in that it's a logical construct that groups together resource
groups and their resources. However, an Azure subscription is also associated with the controls used by Azure
Resource Manager. What does this mean? Take a closer look at Azure Resource Manager to learn about the
relationship between it and an Azure subscription.

What is Azure Resource Manager?

Figure 3. An Azure subscription.

In how does Azure work? you learned that Azure includes a "front end" with many services that orchestrate all the
functions of Azure. One of these services is Azure Resource Manager, and this service hosts the RESTful API used
by clients to manage resources.

https://docs.microsoft.com/azure/azure-resource-manager/

Figure 4. Azure Resource Manager.

The following figure shows three clients: PowerShell, the Azure portal, and the Azure command-line interface
(CLI):

https://docs.microsoft.com/powershell/azure/overview
https://portal.azure.com
https://docs.microsoft.com/cli/azure

Figure 5. Azure clients connect to the Azure Resource Manager RESTful API.

While these clients connect to Azure Resource Manager using the RESTful API, Azure Resource Manager does not
include functionality to manage resources directly. Rather, most resource types in Azure have their own resource
provider.

https://docs.microsoft.com/azure/azure-resource-manager/resource-group-overview#terminology

Figure 6. Azure resource providers.

When a client makes a request to manage a specific resource, Azure Resource Manager connects to the resource
provider for that resource type to complete the request. For example, if a client makes a request to manage a
virtual machine resource, Azure Resource Manager connects to the Microsoft.Compute resource provider.

Figure 7. Azure Resource Manager connects to the Microsoft.Compute resource provider to manage the resource
specified in the client request.

Azure Resource Manager requires the client to specify an identifier for both the subscription and the resource
group in order to manage the virtual machine resource.

Now that you have an understanding of how Azure Resource Manager works, return to the discussion of how an
Azure subscription is associated with the controls used by Azure Resource Manager. Before any resource
management request can be executed by Azure Resource Manager, a set of controls are checked.

The first control is that a request must be made by a validated user, and Azure Resource Manager has a trusted
relationship with Azure Active Directory (Azure AD) to provide user identity functionality.

Figure 8. Azure Active Directory.

In Azure AD, users are segmented into tenants. A tenant is a logical construct that represents a secure, dedicated
instance of Azure AD typically associated with an organization. Each subscription is associated with an Azure AD
tenant.

https://docs.microsoft.com/azure/active-directory/

Figure 9. An Azure AD tenant associated with a subscription.

Each client request to manage a resource in a particular subscription requires that the user has an account in the
associated Azure AD tenant.

The next control is a check that the user has sufficient permission to make the request. Permissions are assigned to
users using role-based access control (RBAC).

https://docs.microsoft.com/azure/role-based-access-control/

Figure 10. Each user in the tenant is assigned one or more RBAC roles.

An RBAC role specifies a set of permissions a user may take on a specific resource. When the role is assigned to
the user, those permissions are applied. For example, the built-in owner role allows a user to perform any action
on a resource.

The next control is a check that the request is allowed under the settings specified for Azure resource policy. Azure
resource policies specify the operations allowed for a specific resource. For example, an Azure resource policy can
specify that users are only allowed to deploy a specific type of virtual machine.

https://docs.microsoft.com/azure/role-based-access-control/built-in-roles#owner
https://docs.microsoft.com/azure/governance/policy/

Figure 11. Azure resource policy.

The next control is a check that the request does not exceed an Azure subscription limit. For example, each
subscription has a limit of 980 resource groups per subscription. If a request is received to deploy an additional
resource group once the limit has been reached, it is denied.

https://docs.microsoft.com/azure/azure-subscription-service-limits

Figure 12. Azure resource limits.

The final control is a check that the request is within the financial commitment associated with the subscription.
For example, if the request is to deploy a virtual machine, Azure Resource Manager verifies that the subscription
has sufficient payment information.

Summary

Next steps

Figure 13. A financial commitment is associated with a subscription.

In this article, you learned about how resource access is managed in Azure using Azure Resource Manager.

Now that you understand how to manage resource access in Azure, move on to learn how to design a governance
model for a simple workload or for multiple teams using these services.

An overview of governance

Governance design for a simple workload
3/13/2019 • 6 minutes to read • Edit Online

Licensing Azure

NOTENOTE

Identity management

The goal of this guidance is to help you learn the process for designing a resource governance model in Azure to
support a single team and a simple workload. You'll look at a set of hypothetical governance requirements, then
go through several example implementations that satisfy those requirements.

In the foundational adoption stage, our goal is to deploy a simple workload to Azure. This results in the following
requirements:

Identity management for a single workload owner who is responsible for deploying and maintaining the
simple workload. The workload owner requires permission to create, read, update, and delete resources as well
as permission to delegate these rights to other users in the identity management system.
Manage all resources for the simple workload as a single management unit.

Before you begin designing our governance model, it's important to understand how Azure is licensed. This is
because the administrative accounts associated with your Azure license have the highest level of access to all of
your Azure resources. These administrative accounts form the basis of your governance model.

If your organization has an existing Microsoft Enterprise Agreement that does not include Azure, Azure can be added by
making an upfront monetary commitment. See licensing Azure for the enterprise for more information.

When Azure was added to your organization's Enterprise Agreement, your organization was prompted to create
an Azure account. During the account creation process, an Azure account owner was created, as well as an
Azure Active Directory (Azure AD) tenant with a global administrator account. An Azure AD tenant is a logical
construct that represents a secure, dedicated instance of Azure AD.

Figure 1. An Azure account with an Account Manager and Azure AD Global Administrator.

Azure only trusts Azure AD to authenticate users and authorize user access to resources, so Azure AD is our

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/resource-consistency/governance-simple-workload.md
https://www.microsoft.com/licensing/licensing-programs/enterprise.aspx
https://azure.microsoft.com/pricing/enterprise-agreement/
https://docs.microsoft.com/azure/active-directory

Resource management scope

identity management system. The Azure AD global administrator has the highest level of permissions and can
perform all actions related to identity, including creating users and assigning permissions.

Our requirement is identity management for a single workload owner who is responsible for deploying and
maintaining the simple workload. The workload owner requires permission to create, read, update, and delete
resources as well as permission to delegate these rights to other users in the identity management system.

Our Azure AD global administrator will create the workload owner account for the workload owner:

Figure 2. The Azure AD global administrator creates the workload owner user account.

You aren't able to assign resource access permission until this user is added to a subscription, so you'll do that in
the next two sections.

As the number of resources deployed by your organization grows, the complexity of governing those resources
grows as well. Azure implements a logical container hierarchy to enable your organization to manage your
resources in groups at various levels of granularity, also known as scope.

The top level of resource management scope is the subscription level. A subscription is created by the Azure
account owner, who establishes the financial commitment and is responsible for paying for all Azure resources
associated with the subscription:

Figure 3. The Azure account owner creates a subscription.

When the subscription is created, the Azure account owner associates an Azure AD tenant with the subscription,
and this Azure AD tenant is used for authenticating and authorizing users:

Figure 4. The Azure account owner associates the Azure AD tenant with the subscription.

You may have noticed that there is currently no user associated with the subscription, which means that no one
has permission to manage resources. In reality, the account owner is the owner of the subscription and has
permission to take any action on a resource in the subscription. However, in practical terms the account owner is
more than likely a finance person in your organization and is not responsible for creating, reading, updating, and
deleting resources - those tasks will be performed by the workload owner. Therefore, you need to add the

workload owner to the subscription and assign permissions.

Since the account owner is currently the only user with permission to add the workload owner to the
subscription, they add the workload owner to the subscription:

Figure 5. The Azure account owner adds the workload owner to the subscription.

The Azure account owner grants permissions to the workload owner by assigning a role-based access control
(RBAC) role. The RBAC role specifies a set of permissions that the workload owner has for an individual
resource type or a set of resource types.

Notice that in this example, the account owner has assigned the built-in owner role:

Figure 6. The workload owner was assigned the built-in owner role.

https://docs.microsoft.com/azure/role-based-access-control/
https://docs.microsoft.com/azure/role-based-access-control/built-in-roles#owner

IMPORTANTIMPORTANT

The built-in owner role grants all permissions to the workload owner at the subscription scope.

The Azure acount owner is responsible for the financial committment associated with the subscription, but the workload
owner has the same permissions. The account owner must trust the workload owner to deploy resources that are within
the subscription budget.

The next level of management scope is the resource group level. A resource group is a logical container for
resources. Operations applied at the resource group level apply to all resources in a group. Also, it's important to
note that permissions for each user are inherited from the next level up unless they are explicitly changed at that
scope.

To illustrate this, let's look at what happens when the workload owner creates a resource group:

Figure 7. The workload owner creates a resource group and inherits the built-in owner role at the resource group
scope.

Again, the built-in owner role grants all permissions to the workload owner at the resource group scope. As
discussed earlier, this role is inherited from the subscription level. If a different role is assigned to this user at this
scope, it applies to this scope only.

The lowest level of management scope is at the resource level. Operations applied at the resource level apply only
to the resource itself. And once again, permissions at the resource level are inherited from resource group scope.
For example, let's look at what happens if the workload owner deploys a virtual network into the resource group:

https://docs.microsoft.com/azure/virtual-network/virtual-networks-overview

Implementing the basic resource access management model

Next steps

Figure 8. The workload owner creates a resource and inherits the built-in owner role at the resource scope.

The workload owner inherits the owner role at the resource scope, which means the workload owner has all
permissions for the virtual network.

Let's move on to learn how to implement the governance model designed earlier.

To begin, your organization requires an Azure account. If your organization has an existing Microsoft Enterprise
Agreement that does not include Azure, Azure can be added by making an upfront monetary commitment. See
licensing Azure for the enterprise for more information.

When your Azure account is created, you specify a person in your organization to be the Azure account owner.
An Azure Active Directory (Azure AD) tenant is then created by default. Your Azure account owner must create
the user account for the person in your organization who is the workload owner.

Next, your Azure account owner must create a subscription and associate the Azure AD tenant with it.

Finally, now that the subscription is created and your Azure AD tenant is associated with it, you can add the
workload owner to the subscription with the built-in owner role.

Deploy a basic workload to Azure

https://www.microsoft.com/licensing/licensing-programs/enterprise.aspx
https://azure.microsoft.com/pricing/enterprise-agreement/
https://docs.microsoft.com/azure/active-directory/add-users-azure-active-directory
https://docs.microsoft.com/partner-center/create-a-new-subscription
https://docs.microsoft.com/azure/active-directory/fundamentals/active-directory-how-subscriptions-associated-directory
https://docs.microsoft.com/azure/billing/billing-add-change-azure-subscription-administrator#add-an-rbac-owner-for-a-subscription-in-azure-portal
https://docs.microsoft.com/en-us/azure/architecture/cloud-adoption/infrastructure/basic-workload

Learn about resource access for multiple teams

Governance design for multiple teams
3/13/2019 • 23 minutes to read • Edit Online

Identity management

The goal of this guidance is to help you learn the process for designing a resource governance model in Azure to
support multiple teams, multiple workloads, and multiple environments. First you'll look at a set of hypothetical
governance requirements, then go through several example implementations that satisfy those requirements.

The requirements are:

The enterprise plans to transition new cloud roles and responsibilities to a set of users and therefore requires
identity management for multiple teams with different resource access needs in Azure. This identity
management system is required to store the identity of the following users:

Support for multiple environments. An environment is a logical grouping of resources, such as virtual
machines, virtual networking, and network traffic routing services. These groups of resources have similar
management and security requirements and are typically used for a specific purpose such as testing or
production. In this example, the requirement is for three environments:

A permissions model of least privilege in which users have no permissions by default. The model must
support the following:

Cost tracking by workload owner name, environment, or both.

1. The individual in your organization responsible for ownership of subscriptions.
2. The individual in your organization responsible for the shared infrastructure resources used to

connect your on-premises network to an Azure virtual network.
3. Two individuals in your organization responsible for managing a workload.

1. A shared infrastructure environment that includes resources shared by workloads in other
environments. For example, a virtual network with a gateway subnet that provides connectivity to on-
premises.

2. A production environment with the most restrictive security policies. May include internal or external
facing workloads.

3. A development environment for proof-of-concept and testing work. This environment has security,
compliance, and cost policies that differ from those in the production environment.

A single trusted user at the subscription scope with permission to assign resource access rights.
Each workload owner is denied access to resources by default. Resource access rights are granted
explicitly by the single trusted user at the subscription scope.
Management access for the shared infrastructure resources limited to the shared infrastructure owner.
Management access for each workload restricted to the workload owner.
The enterprise does not want to have to manage roles independently in each of the three environments,
therefore requires the use of built-in RBAC roles only. If the enterprise were to use custom RBAC roles,
an additional process is required to synchronize custom roles across the three environments.

Before you can design identity management for your governance model, it's important to understand the four
major areas it encompasses:

Administration: the processes and tools for creating, editing, and deleting user identity.
Authentication: verifying user identity by validating credentials, such as a user name and password.
Authorization: determining which resources an authenticated user is allowed to access or what operations they
have permission to perform.

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/resource-consistency/governance-multiple-teams.md
https://docs.microsoft.com/azure/role-based-access-control/built-in-roles

NOTENOTE

Auditing: periodically reviewing logs and other information to discover security issues related to user identity.
This includes reviewing suspicious usage patterns, periodically reviewing user permissions to verify they are
accurate, and other functions.

There is only one service trusted by Azure for identity, and that is Azure Active Directory (Azure AD). You'll be
adding users to Azure AD and using it for all of the functions listed above. But before looking at how to configure
Azure AD, it's important to understand the privileged accounts that are used to manage access to these services.

When your organization signed up for an Azure account, at least one Azure account owner was assigned. Also,
an Azure AD tenant was created, unless an existing tenant was already associated with your organization's use of
other Microsoft services such as Office 365. A global administrator with full permissions on the Azure AD
tenant was associated when it was created.

The user identities for both the Azure Account Owner and the Azure AD global administrator are stored in a
highly secure identity system that is managed by Microsoft. The Azure Account Owner is authorized to create,
update, and delete subscriptions. The Azure AD global administrator is authorized to perform many actions in
Azure AD, but for this design guide you'll focus on the creation and deletion of user identity.

Your organization may already have an existing Azure AD tenant if there's an existing Office 365 or Intune license associated
with your account.

The Azure Account Owner has permission to create, update, and delete subscriptions:

Figure 1. An Azure account with an Account Manager and Azure AD Global Administrator.

The Azure AD global administrator has permission to create user accounts:

Resource access permissions model of least privilege

Figure 2. The Azure AD Global Administrator creates the required user accounts in the tenant.

The first two accounts, App1 Workload Owner and App2 Workload Owner are each associated with an
individual in your organization responsible for managing a workload. The network operations account is owned
by the individual that is responsible for the shared infrastructure resources. Finally, the subscription owner
account is associated with the individual responsible for ownership of subscriptions.

Now that your identity management system and user accounts have been created, you have to decide how to
apply role-based access control (RBAC) roles to each account to support a permissions model of least privilege.

There's another requirement stating the resources associated with each workload be isolated from one another
such that no one workload owner has management access to any other workload they do not own. There's also a
requirement to implement this model using only built-in roles for Azure RBAC.

Each RBAC role is applied at one of three scopes in Azure: subscription, resource group, then an individual
resource. Roles are inherited at lower scopes. For example, if a user is assigned the built-in owner role at the
subscription level, that role is also assigned to that user at the resource group and individual resource level unless
it's overridden.

Therefore, to create a model of least privilege access you have to decide the actions a particular type of user is
allowed to take at each of these three scopes. For example, the requirement is for a workload owner to have
permission to manage access to only the resources associated with their workload and no others. If you were to
assign the built-in owner role at the subscription scope, each workload owner would have management access to
all workloads.

Let's take a look at two example permission models to understand this concept a little better. In the first example,
the model trusts only the service administrator to create resource groups. In the second example, the model
assigns the built-in owner role to each workload owner at the subscription scope.

In both examples, there is a subscription service administrator that is assigned the built-in owner role at the
subscription scope. Recall that the built-in owner role grants all permissions including the management of access
to resources.

https://docs.microsoft.com/azure/role-based-access-control/built-in-roles
https://docs.microsoft.com/azure/role-based-access-control/built-in-roles#owner
https://docs.microsoft.com/azure/role-based-access-control/built-in-roles#owner
https://docs.microsoft.com/azure/role-based-access-control/built-in-roles#owner
https://docs.microsoft.com/azure/role-based-access-control/built-in-roles#owner

Figure 3. A subscription with a service administrator assigned the built-in owner role.

1. In the first example, there is workload owner A with no permissions at the subscription scope - they have no
resource access management rights by default. This user wants to deploy and manage the resources for their
workload. They must contact the service administrator to request creation of a resource group.

2. The service administrator reviews their request and creates resource group A. At this point, workload
owner A still doesn't have permission to do anything.

3. The service administrator adds workload owner A to resource group A and assigns the built-in
contributor role. The contributor role grants all permissions on resource group A except managing access
permission.

https://docs.microsoft.com/azure/role-based-access-control/built-in-roles#contributor

4. Let's assume that workload owner A has a requirement for a pair of team members to view the CPU and
network traffic monitoring data as part of capacity planning for the workload. Because workload owner A is
assigned the contributor role, they do not have permission to add a user to resource group A. They must send
this request to the service administrator.

5. The service administrator reviews the request, and adds the two workload contributor users to resource
group A. Neither of these two users require permission to manage resources, so they are assigned the built-in
reader role.

https://docs.microsoft.com/azure/role-based-access-control/built-in-roles#contributor

6. Next, workload owner B also requires a resource group to contain the resources for their workload. As with
workload owner A, workload owner B initially does not have permission to take any action at the
subscription scope so they must send a request to the service administrator.

7. The service administrator reviews the request and creates resource group B.

8. The service administrator then adds workload owner B to resource group B and assigns the built-in
contributor role.

At this point, each of the workload owners is isolated in their own resource group. None of the workload owners
or their team members have management access to the resources in any other resource group.

https://docs.microsoft.com/azure/role-based-access-control/built-in-roles#contributor

Figure 4. A subscription with two workload owners isolated with their own resource group.

This model is a least privilege model - each user is assigned the correct permission at the correct resource
management scope.

However, consider that every task in this example was performed by the service administrator. While this is a
simple example and may not appear to be an issue because there were only two workload owners, it's easy to
imagine the types of issues that would result for a large organization. For example, the service administrator can
become a bottleneck with a large backlog of requests that result in delays.

Let's take a look at second example that reduces the number of tasks performed by the service administrator.

1. In this model, workload owner A is assigned the built-in owner role at the subscription scope, enabling them
to create their own resource group: resource group A.

2. When resource group A is created, workload owner A is added by default and inherits the built-in owner
role from the subscription scope.

3. The built-in owner role grants workload owner A permission to manage access to the resource group.
Workload owner A adds two workload contributors and assigns the built-in reader role to each of them.

4. Service administrator now adds workload owner B to the subscription with the built-in owner role.

https://docs.microsoft.com/azure/role-based-access-control/built-in-roles#owner
https://docs.microsoft.com/azure/role-based-access-control/built-in-roles#owner
https://docs.microsoft.com/azure/role-based-access-control/built-in-roles#owner
https://docs.microsoft.com/azure/role-based-access-control/built-in-roles#owner

5. Workload owner B creates resource group B and is added by default. Again, workload owner B inherits
the built-in owner role from the subscription scope.

Note that in this model, the service administrator performed fewer actions than they did in the first example due
to the delegation of management access to each of the individual workload owners.

Resource management model

Figure 5. A subscription with a service administrator and two workload owners, all assigned the built-in owner
role.

However, because both workload owner A and workload owner B are assigned the built-in owner role at the
subscription scope, they have each inherited the built-in owner role for each other's resource group. This means
that not only do they have full access to one another's resources, they are also able to delegate management
access to each other's resource groups. For example, workload owner B has rights to add any other user to
resource group A and can assign any role to them, including the built-in owner role.

If you compare each example to the requirements, you'll see that both examples support a single trusted user at
the subscription scope with permission to grant resource access rights to the two workload owners. Each of the
two workload owners did not have access to resource management by default and required the service
administrator to explicitly assign permissions to them. However, only the first example supports the requirement
that the resources associated with each workload are isolated from one another such that no workload owner has
access to the resources of any other workload.

Now that you've designed a permissions model of least privilege, let's move on to take a look at some practical
applications of these governance models. Recall from the requirements that you must support the following three
environments:

1. Shared infrastructure: a single group of resources shared by all workloads. These are resources such as
network gateways, firewalls, and security services.

2. Development: multiple groups of resources representing multiple non-production ready workloads. These
resources are used for proof-of-concept, testing, and other developer activities. These resources may have a
more relaxed governance model to enable increased developer agility.

3. Production: multiple groups of resources representing multiple production workloads. These resources are
used to host the private and public facing application artifacts. These resources typically have the tightest
governance and security models to protect the resources, application code, and data from unauthorized access.

For each of these three environments, there is a requirement to track cost data by workload owner,
environment, or both. That is, you'll want to know the ongoing cost of the shared infrastructure, the costs
incurred by individuals in both the development and production environments, and finally the overall cost of

development and production.

You have already learned that resources are scoped to two levels: subscription and resource group. Therefore,
the first decision is how to organize environments by subscription. There are only two possibilities: a single
subscription, or, multiple subscriptions.

Before you look at examples of each of these models, let's review the management structure for subscriptions in
Azure.

Recall from the requirements that you have an individual in the organization who is responsible for subscriptions,
and this user owns the subscription owner account in the Azure AD tenant. However, this account does not have
permission to create subscriptions. Only the Azure Account Owner has permission to do this:

Figure 6. An Azure Account Owner creates a subscription.

Once the subscription has been created, the Azure Account Owner can add the subscription owner account to
the subscription with the owner role:

Figure 7. The Azure Account Owner adds the subscription owner user account to the subscription with the owner
role.

The subscription owner can now create resource groups and delegate resource access management.

First let's look at an example resource management model using a single subscription. The first decision is how to
align resource groups to the three environments. You have two options:

1. Align each environment to a single resource group. All shared infrastructure resources are deployed to a single
shared infrastructure resource group. All resources associated with development workloads are deployed to
a single development resource group. All resources associated with production workloads are deployed into
a single production resource group for the production environment.

2. Create separate resource groups for each workload, using a naming convention and tags to align resource
groups with each of the three environments.

Let's begin by evaluating the first option. You'll be using the permissions model that was discussed in the previous
section, with a single subscription service administrator who creates resource groups and adds users to them with
either the built-in contributor or reader role.

1. The first resource group deployed represents the shared infrastructure environment. The subscription
owner creates a resource group for the shared infrastructure resources named netops-shared-rg .

2. The subscription owner adds the network operations user account to the resource group and assigns the
contributor role.

3. The network operations user creates a VPN gateway and configures it to connect to the on-premises VPN
appliance. The network operations user also applies a pair of tags to each of the resources:
environment:shared and managedBy:netOps. When the subscription service administrator exports a cost
report, costs will be aligned with each of these tags. This allows the subscription service administrator to
pivot costs using the environment tag and the managedBy tag. Notice the resource limits counter at the top
right-hand side of the figure. Each Azure subscription has service limits, and to help you understand the effect
of these limits you'll follow the virtual network limit for each subscription. There is a limit of 1000 virtual
networks per subscription, and after the first virtual network is deployed there are now 999 available.

https://docs.microsoft.com/azure/vpn-gateway/vpn-gateway-about-vpngateways
https://docs.microsoft.com/azure/azure-resource-manager/resource-group-using-tags
https://docs.microsoft.com/azure/azure-subscription-service-limits

4. Two more resource groups are deployed. The first is named prod-rg . This resource group is aligned with the
production environment. The second is named dev-rg and is aligned with the development environment. All
resources associated with production workloads are deployed to the production environment and all resources
associated with development workloads are deployed to the development environment. In this example, you'll
only deploy two workloads to each of these two environments, so you won't encounter any Azure subscription
service limits. However, consider that each resource group has a limit of 800 resources per resource group. If
you continue to add workloads to each resource group, eventually this limit will be reached.

5. The first workload owner sends a request to the subscription service administrator and is added to each
of the development and production environment resource groups with the contributor role. As you learned
earlier, the contributor role allows the user to perform any operation other than assigning a role to another
user. The first workload owner can now create the resources associated with their workload.

6. The first workload owner creates a virtual network in each of the two resource groups with a pair of virtual
machines in each. The first workload owner applies the environment and managedBy tags to all resources.
Note that the Azure service limit counter is now at 997 virtual networks remaining.

7. Each of the virtual networks does not have connectivity to on-premises when they are created. In this type of
architecture, each virtual network must be peered to the hub-vnet in the shared infrastructure environment.
Virtual network peering creates a connection between two separate virtual networks and allows network traffic
to travel between them. Note that virtual network peering is not inherently transitive. A peering must be
specified in each of the two virtual networks that are connected, and if only one of the virtual networks
specifies a peering the connection is incomplete. To illustrate the effect of this, the first workload owner
specifies a peering between prod-vnet and hub-vnet. The first peering is created, but no traffic flows because
the complementary peering from hub-vnet to prod-vnet has not yet been specified. The first workload
owner contacts the network operations user and requests this complementary peering connection.

8. The network operations user reviews the request, approves it, then specifies the peering in the settings for
the hub-vnet. The peering connection is now complete and network traffic flows between the two virtual
networks.

9. Now, a second workload owner sends a request to the subscription service administrator and is added to
the existing production and development environment resource groups with the contributor role. The
second workload owner has the same permissions on all resources as the first workload owner in each
resource group.

10. The second workload owner creates a subnet in the prod-vnet virtual network, then adds two virtual
machines. The second workload owner applies the environment and managedBy tags to each resource.

This example resource management model enables us to manage resources in the three required environments.
The shared infrastructure resources are protected because there's only a single user in the subscription with
permission to access those resources. Each of the workload owners is able to use the shared infrastructure
resources without having any permissions on the actual shared resources themselves. However, This
management model fails the requirement for workload isolation - each of the two workload owners are able to
access the resources of the other's workload.

There's another important consideration with this model that may not be immediately obvious. In the example, it
was app1 workload owner that requested the network peering connection with the hub-vnet to provide
connectivity to on-premises. The network operations user evaluated that request based on the resources
deployed with that workload. When the subscription owner added app2 workload owner with the
contributor role, that user had management access rights to all resources in the prod-rg resource group.

This means app2 workload owner had permission to deploy their own subnet with virtual machines in the
prod-vnet virtual network. By default, those virtual machines now have access to the on-premises network. The
network operations user is not aware of those machines and did not approve their connectivity to on-premises.

Next, let's look at a single subscription with multiple resources groups for different environments and workloads.
Note that in the previous example, the resources for each environment were easily identifiable because they were
in the same resource group. Now that you no longer have that grouping, you will have to rely on a resource group
naming convention to provide that functionality.

1. The shared infrastructure resources will still have a separate resource group in this model, so that remains
the same. Each workload requires two resource groups - one for each of the development and production
environments. For the first workload, the subscription owner creates two resource groups. The first is named
app1-prod-rg and the second is named app1-dev-rg . As discussed earlier, this naming convention identifies

the resources as being associated with the first workload, app1, and either the dev or prod environment.
Again, the subscription owner adds app1 workload owner to the resource group with the contributor role.

2. Similar to the first example, app1 workload owner deploys a virtual network named app1-prod-vnet to the
production environment, and another named app1-dev-vnet to the development environment. Again,
app1 workload owner sends a request to the network operations user to create a peering connection. Note
that app1 workload owner adds the same tags as in the first example, and the limit counter has been
decremented to 997 virtual networks remaining in the subscription.

3. The subscription owner now creates two resource groups for app2 workload owner. Following the same
conventions as for app1 workload owner, the resource groups are named app2-prod-rg and app2-dev-rg.
The subscription owner adds app2 workload owner to each of the resource groups with the contributor
role.

4. App2 workload owner deploys virtual networks and virtual machines to the resource groups with the same
naming conventions. Tags are added and the limit counter has been decremented to 995 virtual networks
remaining in the subscription.

5. App2 workload owner sends a request to the network operations user to peer the app2-prod-vnet with the
hub-vnet. The network operations user creates the peering connection.

The resulting management model is similar to the first example, with several key differences:

Each of the two workloads is isolated by workload and by environment.
This model required two more virtual networks than the first example model. While this is not an important
distinction with only two workloads, the theoretical limit on the number of workloads for this model is 24.
Resources are no longer grouped in a single resource group for each environment. Grouping resources
requires an understanding of the naming conventions used for each environment.
Each of the peered virtual network connections was reviewed and approved by the network operations user.

Now let's look at a resource management model using multiple subscriptions. In this model, you'll align each of
the three environments to a separate subscription: a shared services subscription, production subscription, and
finally a development subscription. The considerations for this model are similar to a model using a single
subscription in that you have to decide how to align resource groups to workloads. Already determined is that

creating a resource group for each workload satisfies the workload isolation requirement, so you'll stick with that
model in this example.

1. In this model, there are three subscriptions: shared infrastructure, production, and development. Each of these
three subscriptions requires a subscription owner, and in the simple example you'll use the same user account
for all three. The shared infrastructure resources are managed similarly to the first two examples above, and
the first workload is associated with the app1-rg in the production environment and the same-named resource
group in the development environment. The app1 workload owner is added to each of the resource group with
the contributor role.

2. As with the earlier examples, app1 workload owner creates the resources and requests the peering connection
with the shared infrastructure virtual network. App1 workload owner adds only the managedBy tag because
there is no longer a need for the environment tag. That is, resources are for each environment are now
grouped in the same subscription and the environment tag is redundant. The limit counter is decremented to
999 virtual networks remaining.

Implementing the resource management model

3. Finally, the subscription owner repeats the process for the second workload, adding the resource groups with
the app2 workload owner in the *contributor role. The limit counter for each of the environment subscriptions
is decremented to 998 virtual networks remaining.

This management model has the benefits of the second example above. However, the key difference is that limits
are less of an issue due to the fact that they are spread over two subscriptions. The drawback is that the cost data
tracked by tags must be aggregated across all three subscriptions.

Therefore, you can select any of these two examples resource management models depending on the priority of
your requirements. If you anticipate that your organization will not reach the service limits for a single
subscription, you can use a single subscription with multiple resource groups. Conversely, if your organization
anticipates many workloads, multiple subscriptions for each environment may be better.

You've learned about several different models for governing access to Azure resources. Now you'll walk through
the steps necessary to implement the resource management model with one subscription for each of the shared
infrastructure, production, and development environments from the design guide. You'll have one
subscription owner for all three environments. Each workload will be isolated in a resource group with a
workload owner added with the contributor role.

NOTENOTE
Read understanding resource access in Azure to learn more about the relationship between Azure Accounts and
subscriptions.

Follow these steps:

1. Create an Azure account if your organization doesn't already have one. The person who signs up for the Azure
account becomes the Azure account administrator, and your organization's leadership must select an individual
to assume this role. This individual will be responsible for:

2. Your organization's leadership team decides which people are responsible for:

3. The Azure AD global administrator creates the new user accounts for :

4. The Azure account administrator creates the following three subscriptions using the Azure account portal:

5. The Azure account administrator adds the subscription service owner to each subscription.
6. Create an approval process for workload owners to request the creation of resource groups. The approval

process can be implemented in many ways, such as over email, or you can using a process management tool
such as SharePoint workflows. The approval process can follow these steps:

Creating subscriptions, and
Creating and administering Azure Active Directory (AD) tenants that store user identity for those
subscriptions.

Management of user identity; an Azure AD tenant is created by default when your organization's Azure
Account is created, and the account administrator is added as the Azure AD global administrator by
default. Your organization can choose another user to manage user identity by assigning the Azure AD
global administrator role to that user.
Subscriptions, which means these users:

Shared infrastructure services (if your organization decides to use this model), which means this user is
responsible for :

Workload owners.

Manage costs associated with resource usage in that subscription,
Implement and maintain least permission model for resource access, and
Keep track of service limits.

On-premises to Azure network connectivity, and
Ownership of network connectivity within Azure through virtual network peering.

The person who will be the subscription owner for each subscription associated with each
environment. Note that this is necessary only if the subscription service administrator will not be
tasked with managing resource access for each subscription/environment.
The person who will be the network operations user, and
The people who are workload owners.

A subscription for the shared infrastructure environment,
A subscription for the production environment, and
A subscription for the development environment.

The workload owner prepares a bill of materials for required Azure resources in either the
development environment, production environment, or both, and submits it to the subscription
owner.
The subscription owner reviews the bill of materials and validates the requested resources to ensure
that the requested resources are appropriate for their planned use - for example, checking that the
requested virtual machine sizes are correct.
If the request is not approved, the workload owner is notified. If the request is approved, the
subscription owner creates the requested resource group following your organization's naming

https://docs.microsoft.com/azure/role-based-access-control/rbac-and-directory-admin-roles
https://docs.microsoft.com/azure/active-directory/sign-up-organization
https://docs.microsoft.com/azure/active-directory/active-directory-whatis
https://docs.microsoft.com/azure/active-directory/develop/active-directory-howto-tenant
https://docs.microsoft.com/azure/active-directory/active-directory-assign-admin-roles-azure-portal#details-about-the-global-administrator-role
https://docs.microsoft.com/azure/active-directory/active-directory-users-assign-role-azure-portal
https://docs.microsoft.com/azure/active-directory/add-users-azure-active-directory
https://account.azure.com
https://docs.microsoft.com/azure/billing/billing-add-change-azure-subscription-administrator#add-an-rbac-owner-admin-for-a-subscription-in-azure-portal
https://support.office.com/article/introduction-to-sharepoint-workflow-07982276-54e8-4e17-8699-5056eff4d9e3
https://docs.microsoft.com/azure/virtual-machines/windows/sizes
https://docs.microsoft.com/azure/azure-resource-manager/resource-group-portal#manage-resource-groups
https://docs.microsoft.com/azure/architecture/best-practices/naming-conventions

Next steps

7. Create an approval process for workload owners to request a virtual network peering connection from the
shared infrastructure owner. As with the previous step, this approval process can be implemented using email
or a process management tool.

conventions, adds the workload owner with the contributor role and sends notification to the
workload owner that the resource group has been created.

Now that you've implemented your governance model, you can deploy your shared infrastructure services.

Learn about deploying a basic infrastructure

https://docs.microsoft.com/azure/role-based-access-control/role-assignments-portal#add-access
https://docs.microsoft.com/azure/role-based-access-control/built-in-roles#contributor
https://docs.microsoft.com/en-us/azure/architecture/cloud-adoption/infrastructure/basic-workload

Resource Consistency tools in Azure
3/13/2019 • 2 minutes to read • Edit Online

AZURE PORTAL
AZURE RESOURCE
MANAGER

AZURE
BLUEPRINTS

AZURE
AUTOMATION AZURE AD

Deploy resources Yes Yes Yes Yes No

Manage
resources

Yes Yes Yes Yes No

Deploy resources
using templates

No Yes No Yes No

Orchestrated
environment
deployment

No No Yes No No

Define resource
groups

Yes Yes Yes No No

Manage
workload and
account owners

Yes Yes Yes No No

Manage
conditional
access to
resources

Yes Yes Yes No No

Configure RBAC
users

Yes No No No Yes

Assign roles and
permissions to
resources

Yes Yes Yes No Yes

Define
dependencies
between
resources

No Yes Yes No No

Apply access
control

Yes Yes Yes No Yes

Resource Consistency is one of the Five Disciplines of Cloud Governance. This discipline focuses on ways of
establishing policies related to the operational management of an environment, application, or workload. Within
the five disciplines of Cloud Governance, Resource Consistency includes monitoring of application, workload, and
asset performance. It also includes the tasks required to meet scale demands, remediate performance SLA
violations, and proactively avoid performance SLA violations through automated remediation.

The following is a list of Azure tools that can help mature the policies and processes that support this governance
discipline.

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/resource-consistency/toolchain.md
https://azure.microsoft.com/features/azure-portal/
https://docs.microsoft.com/azure/azure-resource-manager/resource-group-overview
https://docs.microsoft.com/azure/governance/blueprints/overview
https://docs.microsoft.com/azure/automation/automation-intro
https://docs.microsoft.com/azure/active-directory/fundamentals/active-directory-whatis

Assess availability
and scalability

No No No Yes No

Apply tags to
resources

Yes Yes Yes No No

Assign Azure
Policy rules

Yes Yes Yes No No

Plan resources
for disaster
recovery

Yes Yes Yes No No

Apply automated
remediation

No No No Yes No

Manage billing Yes No No No No

AZURE PORTAL
AZURE RESOURCE
MANAGER

AZURE
BLUEPRINTS

AZURE
AUTOMATION AZURE AD

AZURE PORTAL
APPLICATION
INSIGHTS LOG ANALYTICS

AZURE MONITOR REST
API

Log virtual machine
telemetry data

No No Yes No

Log virtual
networking telemetry
data

No No Yes No

Log PaaS services
telemetry data

No No Yes No

Log application
telemetry data

No Yes No No

Configure reports
and alerts

Yes No No Yes

Schedule regular
reports or custom
analysis

No No No No

Visualize and analyze
log and performance
data

Yes No No No

Along with these Resource Consistency tools and features, you will need to monitor your deployed resources for
performance and health issues. Azure Monitor is the default monitoring and reporting solution in Azure. Azure
Monitor provides a number of individual features that you can use to monitor your cloud resources, and the
following list shows which feature allows you to address common monitoring requirements.

https://docs.microsoft.com/azure/azure-monitor/overview
https://azure.microsoft.com/features/azure-portal/
https://docs.microsoft.com/azure/application-insights/app-insights-overview
https://docs.microsoft.com/azure/azure-monitor/log-query/log-query-overview
https://docs.microsoft.com/rest/api/monitor/

Integrate with on-
premises or third-
party monitoring
solution

No No No Yes

AZURE PORTAL
APPLICATION
INSIGHTS LOG ANALYTICS

AZURE MONITOR REST
API

NOTENOTE

Next steps

When planning your deployment, you will need to consider where logging data is stored and how you integrate
cloud-based reporting and monitoring services with your existing processes and tools.

Organizations also use third-party DevOps tools to monitor workloads and resources. For more information, see DevOps
Tool Integrations.

Learn how to create, assign, and manage policy definitions in Azure.

https://azure.microsoft.com/products/devops-tool-integrations/
https://docs.microsoft.com/azure/governance/policy/

�� N O T EN O T E

Policy statements

C A U T IO NC A U T IO N

Developing Deployment Acceleration governance policy statements

Deployment Acceleration is one of the Five Disciplines of Cloud Governance within the CAF Governance Model. This discipline
focuses on ways of establishing policies to govern asset configuration or deployment. Within the five disciplines of Cloud
Governance, Deployment Acceleration includes deployment, configuration alignment, and script reusability. This could be
through manual activities or fully automated DevOps activities. In either case, the policies would remain largely the same. As this
discipline matures, the Cloud Governance Team can serve as a partner in DevOps and deployment strategies by accelerating
deployments and removing barriers to cloud adoption, through the application of reusable assets.

This article outlines the Deployment Acceleration process that a company experiences during the planning, building, adopting,
and operating phases of implementing a cloud solution. It's impossible for any one document to account for all of the
requirements of any business. As such, each section of this article outlines suggested minimum and potential activities. The
objective of these activities is to help you build a policy MVP, but establish a framework for Incremental Policy evolution. The
Cloud Governance team should decide how much to invest in these activities to improve the Deployment Acceleration position.

The Deployment Acceleration discipline does not replace the existing IT teams, processes, and procedures that allow your
organization to effectively deploy and configure cloud-based resources. The primary purpose of this discipline is to identify
potential business risks and provide risk-mitigation guidance to the IT staff that are responsible for managing your resources in
the cloud. As you develop governance policies and processes make sure to involve relevant IT teams in your planning and
review processes.

The primary audience for this guidance is your organization's cloud architects and other members of your Cloud Governance
team. However, the decisions, policies, and processes that emerge from this discipline should involve engagement and
discussions with relevant members of your business and IT teams, especially those leaders responsible for deploying and
configuring cloud-based workloads.

Actionable policy statements and the resulting architecture requirements serve as the foundation of a Deployment Acceleration
discipline. To see policy statement samples, see the article on Deployment Acceleration Policy Statements. These samples can
serve as a starting point for your organization's governance policies.

The sample policies come from common customer experiences. To better align these policies to specific cloud governance needs,
execute the following steps to create policy statements that meet your unique business needs.

The following six steps will help you define governance policies to control deployment and configuration of resources in your
cloud environment.

Deployment Acceleration TemplateDeployment Acceleration Template

Business RisksBusiness Risks

Download the template for documenting a Deployment Acceleration discipline

Understand the motives and risks commonly associated with the Deployment Acceleration discipline.

Next steps

Indicators and MetricsIndicators and Metrics

Policy adherence processesPolicy adherence processes

MaturityMaturity

ToolchainToolchain

Indicators to understand if it is the right time to invest in the Deployment Acceleration discipline.

Suggested processes for supporting policy compliance in the Deployment Acceleration discipline.

Aligning Cloud Management maturity with phases of cloud adoption.

Azure services that can be implemented to support the Deployment Acceleration discipline.

Get started by evaluating business risks in a specific environment.

Understand business risks

CAF: Deployment Acceleration template
3/13/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Next steps

The first step to implementing change is communicating the desired change. The same is true when changing
governance practices. The template below serves as a starting point for documenting and communicating policy
statements that govern Deployment Acceleration in the cloud. The template also outlines the business criteria that
may have led you to create the documented policy statements.

Although it contains example content related to the Cost Management discipline, this template can be used as the
basis for capturing the business risks, risk tolerances, compliance processes, and tooling used to define policy
statements for the Deployment Acceleration discipline.

This template is a limited sample. Before updating this template to reflect your requirements, you should review the
subsequent steps for defining an effective Deployment Acceleration discipline within your cloud governance strategy.

Download governance discipline template

Solid governance practices start with an understanding of business risk. Review the article on business risks and
begin to document the business risks that align with your current cloud adoption plan.

Understand business risks

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/deployment-acceleration/template.md
https://archcenter.blob.core.windows.net/cdn/fusion/governance/Governance Discipline Template.docx

Deployment Acceleration motivations and business
risks
3/13/2019 • 2 minutes to read • Edit Online

Is Deployment Acceleration relevant?

Business risk

Next steps

This article discusses the reasons that customers typically adopt a Deployment Acceleration discipline within a
cloud governance strategy. It also provides a few examples of business risks that drive policy statements.

On-premises systems are often deployed using baseline images or installation scripts. Additional configuration is
usually necessary, which may involve multiple steps or human intervention. These manual processes are error-
prone and often result in "configuration drift", requiring time-consuming troubleshooting and remediation tasks.

Most Azure resources can be deployed and configured manually via the Azure portal. This approach may be
sufficient for your needs when only have a few resources to manage. However, as your cloud estate grows, your
organization should automate the deployment of your cloud resources to take advantage of the scaling, failover,
and disaster recovery capabilities that Azure provides. Adopting a DevOps or DevSecOps approach is often the
best way to manage your deployments.

A robust Deployment Acceleration plan ensures that your cloud resources are deployed, updated, and configured
correctly and consistently, and remain that way. The maturity of your Deployment Acceleration strategy can also
be a significant factor in your Cost Management strategy. Automated provisioning and configuration of your
cloud resources allows you to scale down or deallocate resources when demand is low or time-bound, so you only
pay for resources as you need them.

The Deployment Acceleration discipline attempts to address the following business risks. During cloud adoption,
monitor each of the following for relevance:

Service disruption. Lack of predictable repeatable deployment processes or unmanaged changes to system
configurations can disrupt normal operations and can result in lost productivity or lost business.
Cost overruns. Unexpected changes in configuration of system resources can make identifying root cause of
issues more difficult, raising the costs of development, operations, and maintenance.
Organizational inefficiencies. Barriers between development, operations, and security teams can cause
numerous challenges to effective adoption of cloud technologies and the development of a unified cloud
governance model.

Using the Cloud Management Template, document business risks that are likely to be introduced by the current
cloud adoption plan.

Once an understanding of realistic business risks is established, the next step is to document the business's
tolerance for risk and the indicators and key metrics to monitor that tolerance.

Metrics, indicators, and risk tolerance

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/deployment-acceleration/business-risks.md

Deployment Acceleration metrics, indicators, and risk
tolerance
3/13/2019 • 3 minutes to read • Edit Online

Metrics

Risk tolerance indicators

This article is intended to help you quantify business risk tolerance as it relates to Deployment Acceleration.
Defining metrics and indicators helps you create a business case for making an investment in the maturity of the
Deployment Acceleration discipline.

Deployment Acceleration focuses on deploying, updating, and maintaining cloud resources configured for proper
systems operation. The following information is useful when adopting this discipline of cloud governance:

Recovery time objective (RTO). The maximum acceptable time that an application can be unavailable after
an incident.
Recovery point objective (RPO). The maximum duration of data loss that is acceptable during a disaster. For
example, if you store data in a single database, with no replication to other databases, and perform hourly
backups, you could lose up to an hour of data.
Mean time to recover (MTTR). The average time required to restore a component after a failure.
Mean time between failures (MTBF). The duration that a component can reasonably expect to run between
outages. This metric can help you calculate how often a service will become unavailable.
Service level agreements (SLA). This can include both Microsoft’s commitments for uptime and connectivity
of Azure services, as well as commitments made by the business to its external and internal customers.
Time to deployment. The amount of time needed to deploy updates to an existing system.
Assets out-of-compliance. The number or percentage of resources that are out of compliance with defined
policies.

Risks related to Deployment Acceleration are largely related to the number and complexity of cloud-based
systems deployed for your enterprise. As your cloud estate grows, the number of systems deployed and the
frequency of updating your cloud resources will increase. Dependencies between resources magnify the
importance of ensuring proper configuration of resources and designing systems for resiliency if one or more
resources experiences unexpected downtime.

Consider adopting a DevOps or DevSecOps organizational culture early in your cloud adoption journey.
Traditional corporate IT organizations often have siloed operations, security, and development teams that often do
not collaborate well or are even adversarial or hostile towards one another. Recognizing these challenges early and
integrating key stakeholders from each of the teams can help ensure agility in your cloud adoption while
remaining secure and well-governed.

Work with your DevSecOps team and business stakeholders to identify business risks related to configuration,
then determine an acceptable baseline for configuration risk tolerance. This section of the CAF guidance provides
examples, but the detailed risks and baselines for your company or deployments will likely differ.

Once you have a baseline, establish minimum benchmarks representing an unacceptable increase in your
identified risks. These benchmarks act as triggers for when you need to take action to mitigate these risks. The
following are a few examples of how configuration-related metrics, such as those discussed above, can justify an
increased investment in the Deployment Acceleration discipline.

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/deployment-acceleration/metrics-tolerance.md
https://www.microsoft.com/en-us/securityengineering/devsecops

Next steps

Service-level agreement (SLA) trigger. A company that cannot meet its SLAs to its external customers or
internal partners should invest in the Deployment Acceleration discipline to reduce system downtime.
Recovery time triggers. If a company exceeds the required thresholds for recovery time following a system
failure, it should invest in improving its Deployment Acceleration discipline and systems design to reduce or
eliminate failures or the effect of individual component downtime.
Configuration drift triggers. A company that is experiencing unexpected changes in the configuration of key
system components, or failures in the deployment of or updates to its systems, should invest in the
Deployment Acceleration discipline to identify root causes and steps for remediation.
Out of compliance triggers. If the number of out-of-compliance resources exceeds a defined threshold
(either as a total number of resources or a percentage of total resources), a company should invest in
Deployment Acceleration discipline improvements to ensure each resource's configuration remains in
compliance throughout that resource's lifecycle.
Project schedule triggers. If the time to deploy a company's resources and applications often exceed a define
threshold, a company should invest in its Deployment Acceleration processes to introduce or improve
automated deployments for consistency and predictability. Deployment times measured in days or even weeks
usually indicate a suboptimal Deployment Acceleration strategy.

Using the Cloud Management template, document metrics and tolerance indicators that align to the current cloud
adoption plan.

Building on risks and tolerance, establish a process for governing and communicating Deployment Acceleration
policy adherence.

Establish policy adherence processes

Deployment Acceleration sample policy statements
3/13/2019 • 2 minutes to read • Edit Online

Reliance on manual deployment or configuration of systems

Lack of visibility into system issues

Configuration security reviews

Individual cloud policy statements are guidelines for addressing specific risks identified during your risk
assessment process. These statements should provide a concise summary of risks and plans to deal with them.
Each statement definition should include these pieces of information:

Technical risk. A summary of the risk this policy will address.
Policy statement. A clear summary explanation of the policy requirements.
Design options. Actionable recommendations, specifications, or other guidance that IT teams and developers
can use when implementing the policy.

The following sample policy statements address a number of common configuration-related business risks, and
are provided as examples for you to reference when drafting policy statements to address your own organization's
needs. Note that these examples are not meant to be proscriptive, and there are potentially several policy options
for dealing with any particular risk. Work closely with business and IT teams to identify the best policy solutions
for your unique set of risks.

Technical risk: Relying on human intervention during deployment or configuration increases the likelihood of
human error and reduces the repeatability and predictability of system deployments and configuration. It also
typically leads to slower deployment of system resources.

Policy statement: All assets deployed to the cloud should be deployed using templates or automation scripts
whenever possible.

Potential design options: Azure Resource Manager templates provides an infrastructure-as-code approach to
deploying your resources to Azure. The Azure Building Blocks provide a command-line tool and set of Resource
Manager templates designed to simplify deployment of Azure resources.

Technical risk: Insufficient monitoring and diagnostics for business systems prevent operations personnel from
identifying and remediating issues before a system outage occurs, and can significantly increase the time needed
to properly resolve an outage.

Policy statement: The following policies will be implemented:

Key metrics and diagnostics measures will be identified for all production systems and components, and
monitoring and diagnostic tools will be applied to these systems and monitored regularly by operations
personnel.
Operations will consider using monitoring and diagnostic tools in non-production environments such as
Staging and QA to identify system issues before they occur in the production environment.

Potential design options: Azure Monitor, which also includes Log Analytics and Application Insights, provides
tools for collecting and analyzing telemetry to help you understand how your applications are performing and
proactively identify issues affecting them and the resources they depend on.

Technical risk: Over time, new security threats or concerns can increase the risks of unauthorized access to secure

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/deployment-acceleration/policy-statements.md
https://docs.microsoft.com/azure/azure-resource-manager/resource-group-overview#template-deployment
https://github.com/mspnp/template-building-blocks/wiki
https://docs.microsoft.com/azure/azure-monitor/

Next steps

resources.

Policy statement: Cloud Governance processes must include quarterly review with configuration management
teams to identify malicious actors or usage patterns that should be prevented by cloud asset configuration.

Potential design options: Establish a quarterly security review meeting that includes both governance team
members and IT staff responsible for configuration cloud applications and resources. Review existing security data
and metrics to establish gaps in current Deployment Acceleration policy and tooling, and update policy to mitigate
any new risks.

Use the samples mentioned in this article as a starting point to develop policies that address specific business risks
that align with your cloud adoption plans.

To begin developing your own custom policy statements related to identity management, download the Identity
Baseline template.

To accelerate adoption of this discipline, choose the actionable governance journey that most closely aligns with
your environment. Then modify the design to incorporate your specific corporate policy decisions.

Actionable Governance Journeys

Deployment Acceleration policy compliance
processes
3/13/2019 • 4 minutes to read • Edit Online

Planning, review, and reporting processes

This article discusses an approach to policy adherence processes that govern Deployment Acceleration. Effective
governance of cloud configuration starts with recurring manual processes designed to detect issues and impose
policies to mitigate those risks. However, you can automate these processes and supplement with tooling to
reduce the overhead of governance and allow for faster response to deviation.

The best Deployment Acceleration tools in the cloud are only as good as the processes and policies that they
support. The following is a set of example processes commonly used as part of a Security Baseline discipline. Use
these examples as a starting point when planning the processes that will allow you to continue to update security
policy based on business change and feedback from the security and IT teams responsible for turning governance
guidance into action.

Initial risk assessment and planning: As part of your initial adoption of the Deployment Acceleration discipline,
identify your core business risks and tolerances related to deployment of your business applications. Use this
information to discuss specific technical risks with members of the IT Operations team and the Security team, and
develop a baseline set of deployment and configuration policies for mitigating these risks to establish your initial
governance strategy.

Deployment planning: Before deploying any asset, perform a security review to identify any new risks and
ensure all access and data security policy requirements are met.

Deployment testing: As part of the deployment process for any asset, the Cloud Governance team in
cooperation with your corporate security teams is responsible for reviewing the deployment to validate security
policy compliance.

Annual planning: Conduct an annual high-level review of Deployment Acceleration strategy. Explore future
corporate priorities and updated cloud adoption strategies to identify potential risk increase and other emerging
configuration needs and opportunities. Also use this time to review the latest Deployment Acceleration best
practices and integrate these into your policies and review processes.

Quarterly review and planning: Conduct a quarterly review of security audit data and incident reports to
identify any changes required in Deployment Acceleration policy. As part of this process, review the current
cybersecurity landscape to proactively anticipate emerging threats, and update policy as appropriate. After the
review is complete, align application and systems design guidance with updated policy.

This planning process is also a good time to evaluate the current membership of your Cloud Governance team for
knowledge gaps related to new or evolving policy and risks related to DevOps and Deployment Acceleration.
Invite relevant IT staff to participate in reviews and planning as either temporary technical advisors or permanent
members of your team.

Education and training: On a bi-monthly basis, offer training sessions to make sure IT staff and developers are
up-to-date on the latest Deployment Acceleration strategy and requirements. As part of this process review and
update any documentation, guidance, or other training assets to ensure they are in sync with the latest corporate
policy statements.

Monthly audit and reporting reviews: Perform a monthly audit on all cloud deployments to assure their

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/deployment-acceleration/compliance-processes.md

Ongoing monitoring processes

Violation triggers and enforcement actions

Next steps

continued alignment with configuration policy. Review security-related activities with IT staff and identify any
compliance issues not already handled as part of the ongoing monitoring and enforcement process. The result of
this review is a report for the Cloud Strategy team and each cloud adoption team to communicate overall
adherence to policy. The report is also stored for auditing and legal purposes.

Determining if your Deployment Acceleration governance strategy is successful depends on visibility into the
current and past state of your cloud infrastructure. Without the ability to analyze the relevant metrics and data of
your cloud resources security health and activity, you cannot identify changes in your risks or detect violations of
your risk tolerances. The ongoing governance processes discussed above requires quality data to ensure policy can
be modified to protect your infrastructure against changing threats and risks from misconfigured resources.

Ensure that your security and IT teams have implemented automated monitoring systems for your cloud
infrastructure that capture the relevant logs data you need to evaluate risk. Be proactive in monitoring these
systems to ensure prompt detection and mitigation of potential policy violation, and ensure your monitoring
strategy is in line with deployment and configuration needs.

Because noncompliance with configuration policies can lead to critical service disruption risks, the Cloud
Governance team should have visibility into serious policy violations. Ensure IT staff have clear escalation paths for
reporting configuration compliance issues to the governance team members best suited to identify and verify that
policy issues are mitigated.

When violations are detected, you should take actions to realign with policy as soon as possible. Your IT team can
automate most violation triggers using the tools outlined in the Deployment Acceleration toolchain for Azure.

The following triggers and enforcement actions provide examples you can use when discussing how to use
monitoring data to resolve policy violations:

Unexpected changes in configuration detected. If the configuration of a resource changes unexpectedly,
work with IT staff and workload owners to identify root cause and develop a remediation plan.
Configuration of new resources does not adhere to policy. Work with DevOps teams and workload
owners to review Deployment Acceleration policies during project startup so everyone involved understands
the relevant policy requirements.
Deployment failures or configuration issues cause delays in project schedules. Work with development
teams and workload owners to ensure the team understands how to automate the deployment of cloud-based
resources for consistency and repeatability. Fully automated deployments should be required early in the
development cycle — trying to accomplish this late in the development cycle usually leads to unexpected issues
and delays.

Using the Cloud Management template, document the processes and triggers that align to the current cloud
adoption plan.

For guidance on executing cloud management policies in alignment with adoption plans, see the article on
discipline improvement.

Deployment Acceleration discipline improvement

Deployment Acceleration discipline improvement
3/13/2019 • 4 minutes to read • Edit Online

C a u t i o nC a u t i o n

Planning and readiness

The Deployment Acceleration discipline focuses on establishing policies that ensure that resources are deployed
and configured consistently and repeatably, and remain in compliance throughout their lifecycle. Within the Five
Disciplines of Cloud Governance, Deployment Acceleration includes decisions regarding automating deployments,
source-controlling deployment artifacts, monitoring deployed resources to maintain desired state, and auditing
any compliance issues.

This article outlines some potential tasks your company can engage in to better develop and mature the
Deployment Acceleration discipline. These tasks can be broken down into planning, building, adopting, and
operating phases of implementing a cloud solution, which are then iterated on allowing the development of an
incremental approach to cloud governance.

Figure 1. Adoption phases of the incremental approach to cloud governance.

It's impossible for any one document to account for the requirements of all businesses. As such, this article
outlines suggested minimum and potential example activities for each phase of the governance maturation
process. The initial objective of these activities is to help you build a Policy MVP and establish a framework for
incremental policy evolution. Your Cloud Governance team will need to decide how much to invest in these
activities to improve your Identity Baseline governance capabilities.

Neither the minimum or potential activities outlined in this article are aligned to specific corporate policies or third
party compliance requirements. This guidance is designed to help facilitate the conversations that will lead to
alignment of both requirements with a cloud governance model.

This phase of governance maturity bridges the divide between business outcomes and actionable strategies.
During this process, the leadership team defines specific metrics, maps those metrics to the digital estate, and
begins planning the overall migration effort.

Minimum suggested activities:

Evaluate your Deployment Acceleration toolchain options and implement a hybrid strategy that is appropriate
to your organization.
Develop a draft Architecture Guidelines document and distribute to key stakeholders.
Educate and involve the people and teams affected by the development of Architecture Guidelines.
Train development teams and IT staff to understand DevSecOps principles and strategies and the importance
of fully automated deployments in the Deployment Acceleration Discipline.

Potential activities:

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/deployment-acceleration/discipline-improvement.md

Build and pre-deployment

Adopt and migrate

Operate and post-implementation

Define roles and assignments that will govern Deployment Acceleration in the cloud.

Minimum suggested activities:

For new cloud-based applications, introduce fully automated deployments early in the development process.
This investment will improve the reliability of your testing processes and ensure consistency across your
development, QA, and production environments.
Store all deployment artifacts such as deployment templates or configuration scripts using a source-control
platform such as GitHub or Azure DevOps.
Consider a pilot test before implementing your Deployment Acceleration toolchain, making sure it streamlines
your deployments as much as possible. Apply feedback from pilot tests during the pre-deployment phase,
repeating as needed.
Evaluate the logical and physical architecture of your applications, and identify opportunities to automate the
deployment of application resources or improve portions of the architecture using other cloud-based
resources.
Update the Architecture Guidelines document to include deployment and user adoption plans, and distribute to
key stakeholders.
Continue to educate the people and teams most affected by the architecture guidelines.

Potential activities:

Define a continuous integration and continuous deployment (CI/CD) pipeline to fully manage releasing
updates to your application through your development, QA, and production environments.

Migration is an incremental process that focuses on the movement, testing, and adoption of applications or
workloads in an existing digital estate.

Minimum suggested activities:

Migrate your Deployment Acceleration toolchain from development to production.
Update the Architecture Guidelines document and distribute to key stakeholders.
Develop educational materials and documentation, awareness communications, incentives, and other programs
to help drive developer and IT adoption.

Potential activities:

Validate that the best practices defined during the build and pre-deployment phases are properly executed.
Ensure that each application or workload aligns with the Deployment Acceleration strategy before release.

Once the transformation is complete, governance and operations must live on for the natural lifecycle of an
application or workload. This phase of governance maturity focuses on the activities that commonly come after the
solution is implemented and the transformation cycle begins to stabilize.

Minimum suggested activities:

Customize your Deployment Acceleration toolchain based on changes to your organization’s changing identity
needs.
Automate notifications and reports to alert you of potential configuration issues or malicious threats.
Monitor and report on application and resource usage.

Next steps

Report on post-deployment metrics and distribute to stakeholders.
Revise the Architecture Guidelines to guide future adoption processes.
Continue to communicate with and train the affected people and teams on a regular basis to ensure ongoing
adherence to Architecture Guidelines.

Potential activities:

Configure a desired state configuration monitoring and reporting tool.
Regularly review configuration tools and scripts to improve processes and identify common issues.
Work with development, operations, and security teams to help mature DevSecOps practices and break down
organizational silos that lead to inefficiencies.

Now that you understand the concept of cloud identity governance, examine the Identity Baseline toolchain to
identify Azure tools and features that you'll need when developing the Identity Baseline governance discipline on
the Azure platform.

Identity Baseline toolchain for Azure

Deployment Acceleration tools in Azure
3/13/2019 • 2 minutes to read • Edit Online

AZURE POLICY

AZURE
MANAGEMENT
GROUPS

AZURE
RESOURCE
MANAGER
TEMPLATES

AZURE
BLUEPRINTS

AZURE
RESOURCE
GRAPH

AZURE COST
MANAGEMENT

Implement
Corporate
Policies

Yes No No No No No

Apply Policies
across
subscriptions

Required Yes No No No No

Deploy
defined
resources

No No Yes No No No

Create fully
compliant
environments

Required Required Required Yes No No

Audit Policies Yes No No No No No

Query Azure
resources

No No No No Yes No

Report on
cost of
resources

No No No No No Yes

Deployment Acceleration is one of the Five Disciplines of Cloud Governance. This discipline focuses on ways of
establishing policies to govern asset configuration or deployment. Within the five disciplines of Cloud
Governance, configuration governance includes deployment, configuration alignment, and HA/DR strategies.
This could be through manual activities or fully automated DevOps activities. In either case, the policies would
remain largely the same.

Cloud custodians, cloud guardians, and cloud architects with an interest in governance are each likely to invest a
lot of time in the Deployment Acceleration discipline, which codifies policies and requirements across multiple
cloud adoption efforts. The tools in this toolchain are important to the Cloud Governance team and should be a
high priority on the learning path for the team.

The following is a list of Azure tools that can help mature the policies and processes that support this governance
discipline.

The following are additional tools that may be required to accomplish specific Deployment Acceleration
objectives. Often these tools are used outside of the governance team, but are still considered an aspect of
Deployment Acceleration as a discipline.

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/governance/deployment-acceleration/toolchain.md

AZURE PORTAL

AZURE
RESOURCE
MANAGER
TEMPLATES AZURE POLICY

AZURE
DEVOPS

AZURE
BACKUP

AZURE SITE
RECOVERY

Manual
deployment
(single asset)

Yes Yes No Not efficiently No Yes

Manual
deployment
(full
environment)

Not efficiently Yes No Not efficiently No Yes

Automated
deployment
(full
environment)

No Yes No Yes No Yes

Update
configuration
of a single
asset

Yes Yes Not efficiently Not efficiently No Yes - during
replication

Update
configuration
of a full
environment

Not efficiently Yes Yes Yes No Yes - during
replication

Manage
configuration
drift

Not efficiently Not efficiently Yes Yes No Yes - during
replication

Create an
automated
pipeline to
deploy code
and configure
assets
(DevOps)

No No No Yes No No

Recover data
during an
outage or
SLA violation

No No No Yes Yes Yes

Recover
applications
and data
during an
outage or
SLA violation

No No No Yes No Yes

Aside from the Azure native tools mentioned above, it is common for customers to use third-party tools to
facilitate Deployment Acceleration and DevOps deployments.

Deploy a basic workload in Azure
3/13/2019 • 3 minutes to read • Edit Online

Basic workload

NOTENOTE

Basic web application (PaaS)

The term workload is typically defined as an arbitrary unit of functionality, such as an application or service. It helps
to think about a workload in terms of the code artifacts that are deployed to a server, and also other services
specific to an application. This may be a useful definition for an on-premises application or service, but for cloud
applications it needs to be expanded.

In the cloud a workload not only encompasses all the artifacts, but it also includes the cloud resources as well.
Included is cloud resources as part of the definition because of the concept known as "infrastructure as code". As
you learned in how does Azure work?, resources in Azure are deployed by an orchestrator service. This
orchestrator service exposes functionality through a web API, and you can call the web API using several tools
such as PowerShell, the Azure command line interface (CLI), and the Azure portal. This means that you can specify
Azure resources in a machine-readable file that can be stored along with the code artifacts associated with the
application.

This enables you to define a workload in terms of code artifacts and the necessary cloud resources, thus further
enabling you to isolate workloads. You can isolate workloads by the way resources are organized, by network
topology, or by other attributes. The goal of workload isolation is to associate a workload's specific resources to a
team, so that the team can independently manage all aspects of those resources. This enables multiple teams to
share resource management services in Azure while preventing the unintentional deletion or modification of each
other's resources.

This isolation also enables another concept, known as DevOps. DevOps includes the software development
practices that include both software development and IT operations above, and adds the use of automation as
much as possible. One of the principles of DevOps is known as continuous integration and continuous delivery
(CI/CD). Continuous integration refers to the automated build processes that are run every time a developer
commits a code change. Continuous delivery refers to the automated processes that deploy this code to various
environments such as a development environment for testing or a production environment for final deployment.

A basic workload is typically defined as a single web application or a virtual network (VNet) with virtual machine
(VM).

This guide does not cover application development. For more information about developing applications on Azure, see the
Azure Application Architecture Guide.

Regardless of whether the workload is a web application or a VM, each of these deployments requires a resource
group. A user with permission to create a resource group must do this before following the steps below.

For a basic web application, select one of the five-minute quickstarts from the web apps documentation and follow
the steps.

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/infrastructure/virtual-machines/basic-workload.md
https://docs.microsoft.com/azure/architecture/guide/
https://docs.microsoft.com/azure/app-service?toc=/azure/architecture/cloud-adoption-guide/toc.json

NOTENOTE

Single Windows or Linux VM (IaaS)

Next steps

Some of the Quickstart guides will deploy a resource group by default. In this case, it's not necessary to create a resource
group explicitly. Otherwise, deploy the web application to the resource group created above.

Once you deploy a simple workload, you can learn more about the proven practices for deploying a basic web
application to Azure.

For a simple workload that runs on a VM, the first step is to deploy a virtual network. All infrastructure as a service
(IaaS) resources in Azure such as virtual machines, load balancers, and gateways, require a virtual network. Learn
about Azure virtual networks, and then follow the steps to deploy a Virtual Network to Azure using the portal.
When you specify the settings for the virtual network in the Azure portal, be sure to specify the name of the
resource group created above.

The next step is to decide whether to deploy a single Windows or Linux VM. For Windows VM, follow the steps to
deploy a Windows VM to Azure with the portal. Again, when you specify the settings for the virtual machine in the
Azure portal, specify the name of the resource group created above.

Once you've followed the steps and deployed the VM, you can learn about proven practices for running a Windows
VM on Azure. For a Linux VM, follow the steps to deploy a Linux VM to Azure with the portal. You can also learn
more about proven practices for running a Linux VM on Azure.

See Architectural decision guides for how to use core infrastructure components in the Azure cloud.

https://docs.microsoft.com/azure/architecture/reference-architectures/app-service-web-app/basic-web-app?toc=/azure/architecture/cloud-adoption-guide/toc.json
https://docs.microsoft.com/azure/virtual-network/virtual-networks-overview?toc=/azure/architecture/cloud-adoption-guide/toc.json
https://docs.microsoft.com/azure/virtual-network/quick-create-portal?toc=/azure/architecture/cloud-adoption-guide/toc.json
https://docs.microsoft.com/azure/virtual-machines/windows/quick-create-portal?toc=/azure/architecture/cloud-adoption-guide/toc.json
https://docs.microsoft.com/azure/architecture/reference-architectures/virtual-machines-windows/single-vm?toc=/azure/architecture/cloud-adoption-guide/toc.json
https://docs.microsoft.com/azure/virtual-machines/linux/quick-create-portal?toc=/azure/architecture/cloud-adoption-guide/toc.json
https://docs.microsoft.com/azure/architecture/reference-architectures/virtual-machines-linux/single-vm?toc=/azure/architecture/cloud-adoption-guide/toc.json

Mainframe migration overview
3/13/2019 • 4 minutes to read • Edit Online

Intended audience

Mainframe architecture

Many companies and organizations benefit from moving some or all their mainframe workloads, applications, and
databases to the cloud. Azure provides mainframe-like features at cloud scale without many of the drawbacks
associated with mainframes.

The term mainframe generally refers to a large computer system, but the vast majority currently of mainframes
deployed are IBM System Z servers or IBM plug-compatible systems running MVS, DOS, VSE, OS/390, or z/OS.
Mainframe systems continue to be used in many industries to run vital information systems, and they have a place
in highly-specific scenarios, such as large, high-volume, transaction intensive IT environments.

Migrating to the cloud enables companies to modernize their infrastructure. With cloud services you can make
mainframe applications, and the value that they provide, available as a workload whenever your organization needs
it. Many workloads can be transferred to Azure with only minor code changes, such as updating the names of
databases. You can migrate more complex workloads using a phased approach.

Most Fortune 500 companies are already running Azure for their critical workloads. Azure's significant bottom-line
incentives motivate many migration projects. Companies typically move development and test workloads to Azure
first, followed by DevOps, email, and disaster recovery as a service.

If you’re considering a migration or the addition of cloud services as an option for your IT environment, this guide
is for you.

This guidance helps IT organizations start the migration conversation. You may be more familiar with Azure and
cloud-based infrastructures than you are with mainframes, so this guide starts with an overview of how
mainframes work, and continues with various strategies for determining what and how to migrate.

In the late 1950s, mainframes were designed as scale-up servers to run high-volume online transactions and batch
processing. Because of this, mainframes have software for online transaction forms (sometimes called green
screens) and high-performance I/O systems for processing batch runs.

Mainframes have a reputation for high reliability and availability, and are known for their ability to run huge online
transactions and batch jobs. A transaction results from a piece of processing initiated by a single request, typically
from a user at a terminal. Transactions can also come from multiple other sources, including web pages, remote
workstations, and applications from other information systems. A transaction can also be triggered automatically at
a predefined time as the following figure shows.

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/infrastructure/mainframe-migration/overview.md

A typical IBM mainframe architecture includes these common components:

Front-end systems: Users can initiate transactions from terminals, web pages, or remote workstations.
Mainframe applications often have custom user interfaces that can be preserved after migration to Azure.
Terminal emulators are still used to access mainframe applications, and are also called green-screen
terminals.

Application tier: Mainframes typically include a customer information control system (CICS), a leading
transaction management suite for the IBM z/OS mainframe that is often used with IBM Information
Management System (IMS), a message-based transaction manager. Batch systems handle high-throughput
data updates for large volumes of account records.

Code: Programming languages used by mainframes include COBOL, Fortran, PL/I, and Natural. Job control
language (JCL) is used to work with z/OS.

Database tier: A common relational database management system (DBMS) for z/OS is IBM DD2. It
manages data structures called dbspaces that contain one or more tables and are assigned to storage pools
of physical data sets called dbextents. Two important database components are the directory that identifies
data locations in the storage pools, and the log that contains a record of operations performed on the
database. Various flat-file data formats are supported. DB2 for z/OS typically uses virtual storage access
method (VSAM) datasets to store the data.

Management tier: IBM mainframes include scheduling software such as TWS-OPC, tools for print and
output management such as CA-SAR and SPOOL, and a source control system for code. Secure access
control for z/OS is handled by resource access control facility (RACF). A database manager provides access
to data in the database and runs in its own partition in a z/OS environment.

LPAR: Logical partitions, or LPARs, are used to divide compute resources. A physical mainframe is
partitioned into multiple LPARs.

z/OS: A 64-bit operating system that is most commonly used for IBM mainframes.

IBM systems use a transaction monitor such as CICS to track and manage all aspects of a business transaction.
CICS manages the sharing of resources, the integrity of data, and prioritization of execution. CICS authorizes users,
allocates resources, and passes database requests by the application to a database manager, such as IBM DB2.

Mainframe operations

Next steps

For more precise tuning, CICS is commonly used with IMS/TM (formerly IMS/Data Communications or IMS/DC).
IMS was designed to reduce data redundancy by maintaining a single copy of the data. It complements CICS as a
transaction monitor by maintaining state throughout the process and recording business functions in a data store.

The following are typical mainframe operations:

Online: Workloads include transaction processing, database management, and connections. They are often
implemented using IBM DB2, CICS, and z/OS connectors.

Batch: Jobs run without user interaction, typically on a regular schedule such as every weekday morning.
Batch jobs can be run on systems based on Windows or Linux by using a JCL emulator such as Micro Focus
Enterprise Server or BMC Control-M software.

Job control language (JCL): Specify resources needed to process batch jobs. JCL conveys this
information to z/OS through a set of job control statements. Basic JCL contains six types of statements: JOB,
ASSGN, DLBL, EXTENT, L IBDEF, and EXEC. A job can contain several EXEC statements (steps), and each
step could have several L IBDEF, ASSGN, DLBL, and EXTENT statements.

Initial program load (IPL): Refers to loading a copy of the operating system from disk into a processor’s
real storage and running it. IPLs are used to recover from downtime. An IPL is like booting the operating
system on Windows or Linux VMs.

Myths and facts

Mainframe myths and facts
3/13/2019 • 2 minutes to read • Edit Online

Myth: Mainframes never go down and have a minimum of five 9s of
availability

Myth: Mainframes have limitless scalability

Myth: Intel-based servers are not as powerful as mainframes

Myth: The cloud cannot accommodate mission-critical applications for
large companies, such as financial institutions

Summary

Next steps

Mainframes figure prominently in the history of computing and remain viable for highly specific workloads. Most
agree that mainframes are a proven platform with long-established operating procedures that make them reliable,
robust environments. Software runs based on usage, measured in million instructions per second (MIPS), and
extensive usage reports are available for charge backs.

The reliability, availability, and processing power of mainframes have taken on almost mythical proportions. To
evaluate the mainframe workloads that are most suitable for Azure, you first want to distinguish the myths from
the reality.

Mainframe hardware and operating systems are viewed as reliable and stable. But the reality is that downtime
must be scheduled for maintenance and reboots (referred to as initial program loads or IPLs). When these tasks
are considered, a mainframe solution often has closer to two or three 9s of availability, which is equivalent to that
of high-end, Intel-based servers.

Mainframes also remain as vulnerable to disasters as any other servers do, and require uninterruptible power
supply (UPS) systems to handle these types of failures.

A mainframe’s scalability depends on the capacity of its system software, such as the customer information control
system (CICS), and the capacity of new instances of mainframe engines and storage. Some large companies that
use mainframes have customized their CICS for performance, and have otherwise outgrown the capability of the
largest available mainframes.

The new core-dense, Intel-based systems have as much compute capacity as mainframes.

Although there may be some isolated instances where cloud solutions fall short, it is usually becuase the
application algorithms cannot be distributed. These few examples are the exceptions, not the rule.

By comparison, Azure offers an alternative platform that is capable of delivering equivalent mainframe
functionality and features, and at a much lower cost. In addition, the total cost of ownership (TCO) of the cloud’s
subscription-based, usage-driven cost model is far less expensive than mainframe computers.

Make the Switch from Mainframes to Azure

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/infrastructure/mainframe-migration/myths-and-facts.md

Make the switch from mainframes to Azure
3/13/2019 • 4 minutes to read • Edit Online

MIPS vs. vCPUs

NOTENOTE

High availability and failover

As an alternative platform for running traditional mainframe applications, Azure offers hyperscale compute and
storage in a high availability environment. You get the value and agility of a modern, cloud-based platform without
the costs associated with a mainframe environment.

This section provides technical guidance for making the switch from a mainframe platform to Azure.

There is no universal mapping formula that exists for determining the amount of virtual central processing units
(vCPUs) needed to run mainframe workloads. However, the metric of a million instructions per second (MIPS) is
often mapped to vCPUs on Azure. MIPS measures the overall compute power of a mainframe by providing a
constant value of the number of cycles per second for a given machine.

A small organization might require less than 500 MIPS, while a large organization typically uses more than 5,000
MIPS. At $1,000 per single MIPS, a large organization spends approximately $5 million annually to deploy a
5,000-MIPS infrastructure. The annual cost estimate for a typical Azure deployment of this scale is approximately
one-tenth the cost of a MIPS infrastructure. For details, see Table 4 in the Demystifying Mainframe-to-Azure
Migration white paper.

An accurate calculation of MIPS to vCPUs with Azure depends on the type of vCPU and the exact workload you
are running. However, benchmark studies provide a good basis for estimating the number and type of vCPUs you
will need. A recent HPE zREF benchmark provides the following estimates:

288 MIPS per Intel-based core running on HP Proliant servers for online (CICS) jobs.

170 MIPS per Intel core for COBOL batch jobs.

This guide estimates 200 MIPS per vCPU for online processing and 100 MIPS per vCPU for batch processing.

These estimates are subject to change as new virtual machine (VM) series become available in Azure.

Mainframe systems often offer five 9s availability (99.999 percent) when mainframe coupling and Parallel Sysplex
are used. Yet system operators still need to schedule downtime for maintenance and initial program loads (IPLs).
The actual availability approaches two or three 9s, on par with high end, Intel-based servers.

By comparison, Azure offers commitment-based service level agreements (SLAs), where multiple 9s availability is

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/infrastructure/mainframe-migration/migration-strategies.md
https://azure.microsoft.com/resources/demystifying-mainframe-to-azure-migration
https://h20195.www2.hpe.com/v2/getpdf.aspx/4aa4-2452enw.pdf

Scalability

Backup and recovery

Storage

Mainframe development and testing

the default, optimized with local or geo-based replication of services.

Azure provides additional availability by replicating data from multiple storage devices, either locally or in other
geographic regions. In the event of an Azure-based failure, compute resources can access the replicated data on
either the local or regional level.

When you use Azure platform as a service (PaaS) resources, such as Azure SQL Database and Azure Cosmos
Database, Azure can automatically handle failovers. When you use Azure infrastructure as a service (IaaS), failover
relies on specific system functionality, such as SQL Server AlwaysOn features, failover clustering instances, and
availability groups.

Mainframes typically scale up, while cloud environments scale out. Mainframes can scale out with the use of a
coupling facility (CF), but the high costs of hardware and storage makes mainframes very expensive to scale out.

In addition, a CF offers tightly coupled compute, whereas the scale-out features of Azure are loosely coupled. The
cloud can scale up or down to match exact user specifications, with compute power, storage, and services scaling
on demand under a usage-based billing model.

Mainframe customers typically maintain disaster recovery sites or make use or an independent mainframe
provider for disaster contingencies. Synchronization with a disaster recovery site is usually done through offline
copies of data. Both options incur high costs.

Automated geo-redundancy is also available through the mainframe coupling facility, albeit at great expense, and
is usually reserved for mission-critical systems. In contrast, Azure has easy-to-implement and cost-effective
options for backup, recovery, and redundancy at local or regional levels, or via geo-redundancy.

Part of understanding how mainframes work involves decoding various overlapping terms. For example, central
storage, real memory, real storage, and main storage all generally refer to storage attached directly to the
mainframe processor.

Mainframe hardware includes processors and many other devices, such as direct access storage devices (DASDs),
magnetic tape drives, and several types of user consoles. Tapes and DASDs are used for system functions and by
user programs.

Types of physical storage for mainframes include:

Central storage: Located directly on the mainframe processor, this is also known as processor or real
storage.

Auxiliary storage: Located separately from the mainframe, this type includes storage on DASDs and is also
known as paging storage.

The cloud offers a range of flexible, scalable options, and you will pay only for those options that you need. Azure
Storage offers a massively scalable object store for data objects, a file system service for the cloud, a reliable
messaging store, and a NoSQL store. For VMs, managed and unmanaged disks provide persistent, secure disk
storage.

A major driver in mainframe migration projects is the changing face of application development. Organizations
want their development environment to be more agile and responsive to business needs.

https://docs.microsoft.com/azure/sql-database/sql-database-technical-overview
https://docs.microsoft.com/azure/cosmos-db/introduction
https://docs.microsoft.com/azure/backup/backup-introduction-to-azure-backup
https://docs.microsoft.com/azure/site-recovery/site-recovery-overview
https://docs.microsoft.com/azure/storage/common/storage-redundancy
https://docs.microsoft.com/azure/storage/common/storage-introduction

Next steps

Mainframes typically have separate logical partitions (LPARs) for development and testing, such as QA and staging
LPARs. Mainframe development solutions include compilers (COBOL, PL/I, Assembler) and editors. The most
common is the Interactive System Productivity Facility (ISPF) for the z/OS operating system that runs on IBM
mainframes. Others include ROSCOE Programming Facility (RPF) and Computer Associates tools, such as CA
Librarian and CA-Panvalet.

Emulation environments and compilers are available on x86 platforms, so development and testing can typically be
among the first workloads to migrate from a mainframe to Azure. The availability and widespread use of DevOps
tools in Azure is accelerating the migration of development and testing environments.

When solutions are developed and tested on Azure and are ready for deployment to the mainframe, you will need
to copy the code to the mainframe and compile it there.

Mainframe application migration

https://azure.microsoft.com/solutions/devops/

Mainframe application migration
3/13/2019 • 10 minutes to read • Edit Online

Mainframe emulation in Azure

OLTP systemsOLTP systems

Time-constrained batch updatesTime-constrained batch updates

When migrating applications from mainframe environments to Azure, most teams follow a pragmatic approach:
reuse wherever and whenever possible, and then start a phased deployment where applications are rewritten or
replaced.

Application migration typically involves one or more of the following strategies:

Rehost: You can move existing code, programs, and applications from the mainframe, and then recompile
the code to run in a mainframe emulator hosted in a cloud instance. This approach typically starts with
moving applications to a cloud-based emulator, and then migrating the database to a cloud-based database.
Some engineering and refactoring are required along with data and file conversions.

Alternatively, you can rehost using a traditional hosting provider. One of the principal benefits of the cloud is
outsourcing infrastructure management. You can find a datacenter provider that will host your mainframe
workloads for you. This model may buy time, reduce vendor lock in, and produce interim cost savings.

Retire: All applications that are no longer needed should be retired before migration.

Rebuild: Some organizations choose to completely rewrite programs using modern techniques. Given the
added cost and complexity of this approach, it’s not as common as a lift-and-shift approach. Often after this
type of migration, it makes sense to begin replacing modules and code using code transformation engines.

Replace: This approach replaces mainframe functionality with equivalent features in the cloud. Software as a
service (SaaS) is one option, which is using a solution created specifically for an enterprise concern, such as
finance, human resources, manufacturing, or enterprise resource planning. In addition, many industry-
specific apps are now available to solve problems that custom mainframe solutions used to previously solve.

You should consider starting by planning those workloads that you want to initially migrate, and then determine
those requirements for moving associated applications, legacy codebases, and databases.

Azure cloud services can emulate traditional mainframe environments, enabling you to reuse existing mainframe
code and applications. Common server components that you can emulate include online transaction processing
(OLTP), batch, and data ingestion systems.

Many mainframes have OLTP systems that process thousands or millions of updates for huge numbers of users.
These applications often use transaction processing and screen-form handling software, such as customer
information control system (CICS), information management systes (IMS), and terminal interface processor (TIP).

When moving OLTP applications to Azure, emulators for mainframe transaction processing (TP) monitors are
available to run as infrastructure as a service (IaaS) using virtual machines (VMs) on Azure. The screen handling
and form functionality can also be implemented by web servers. This approach can be combined with database
APIs, such as ActiveX data object (ADO), open database connectivity (ODBC), and Java database connectivity
(JDBC) for data access and transactions.

Many mainframe systems perform monthly or annual updates of millions of account records, such as those used in
banking, insurance, and government. Mainframes handle these types of workloads by offering high-throughput
data handling systems. Mainframes batch jobs are typically serial in nature and depend on the input/output

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/infrastructure/mainframe-migration/application-strategies.md

Data ingestion systemsData ingestion systems

Migrate OLTP workloads to Azure

operations per second (IOPS) provided by the mainframe backbone for performance.

Cloud-based batch environments use parallel compute and high-speed networks for performance. If you need to
optimize batch performance, Azure provides various compute, storage, and networking options.

Mainframes ingest large batches of data from retail, financial services, manufacturing, and other solutions for
processing. With Azure, you can use simple command-line utilities such as AzCopy for copying data to and from
storage location. You can also use the Azure Data Factory service, enabling you to ingest data from disparate data
stores to create and schedule data-driven workflows.

In addition to emulation environments, Azure provides platform as a service (PaaS) and analytics services that can
enhance existing mainframe environments.

The lift-and-shift approach is the no code option for quickly migrating existing applications to Azure. Each
application is migrated as is, which provides the benefits of the cloud without the risks or costs of making code
changes. Using an emulator for mainframe transaction processing (TP) monitors on Azure supports this approach.

TP monitors are available from various vendors and run on virtual machines, an infrastructure as a service (IaaS)
option on Azure. The following before and after diagrams show a migration of an online application backed by
IBM DB2, a relational database management system (DBMS), on an IBM z/OS mainframe. DB2 for z/OS uses
virtual storage access method (VSAM) files to store the data and Indexed Sequential Access Method (ISAM) for
flat files. This architecture also uses CICS for transaction monitoring.

On Azure, emulation environments are used to run the TP manager and the batch jobs that use JCL. In the data
tier, DB2 is replaced by Azure SQL Database, although Microsoft SQL Server, DB2 LUW, or Oracle Database can
also be used. An emulator supports IMS, VSAM, and SEQ. The mainframe’s system management tools are
replaced by Azure services, and software from other vendors, that run in VMs.

The screen handling and form entry functionality is commonly implemented using web servers, which can be
combined with database APIs, such as ADO, ODBC, and JDBC for data access and transactions. The exact line-up
of Azure IaaS components to use depends on the operating system you prefer. For example:

Windows–based VMs: Internet Information Server (IIS) along with ASP.NET for the screen handling and
business logic. Use ADO.NET for data access and transactions.

Linux–based VMs: The Java-based application servers that are available, such as Apache Tomcat for screen
handling and Java-based business functionality. Use JDBC for data access and transactions.

https://docs.microsoft.com/azure/storage/common/storage-use-azcopy
https://docs.microsoft.com/azure/data-factory/introduction
https://docs.microsoft.com/azure/sql-database/sql-database-technical-overview

Migrate batch workloads to Azure

ComputeCompute

StorageStorage

NetworkingNetworking

MonitoringMonitoring

Migrate development environments

COMPONENT AZURE OPTIONS

z/OS Windows, Linux, or UNIX

CICS Azure services offered by Micro Focus, Oracle, GT Software
(Fujitsu), TmaxSoft, Raincode, and NTT Data, or rewrite using
Kubernetes

IMS Azure services offered by Micro Focus and Oracle

Batch operations in Azure differ from the typical batch environment on mainframes. Mainframe batch jobs are
typically serial in nature and depend on the IOPS provided by the mainframe backbone for performance. Cloud-
based batch environments use parallel computing and high-speed networks for performance.

To optimize batch performance using Azure, consider the compute, storage, networking, and monitoring options as
follows.

Use:

VMs with the highest clock speed. Mainframe applications are often single-threaded and mainframe CPUs
have a very high clock speed.

VMs with large memory capacity to allow caching of data and application work areas.

VMs with higher density vCPUs to take advantage of multi-threaded processing if the application supports
multiple threads.

Parallel processing, as Azure easily scales out for parallel processing, delivering more compute power for a
batch run.

Use:

Azure Premium SSD or Azure Ultra SSD for maximum available IOPS.

Striping with multiple disks for more IOPS per storage size.

Partitioning for storage to spread IO over multiple Azure storage devices.

Use Azure Accelerated Networking to minimize latency.

Use monitoring tools, Azure Monitor, Azure Application Insights, and even the Azure logs enable
administrators to monitor any over performance of batch runs and help eliminate bottlenecks.

The cloud’s distributed architectures rely on a different set of development tools that provide the advantage of
modern practices and programming languages. To ease this transition, you can use a development environment
with other tools that are designed to emulate IBM z/OS environments. The following list shows options from
Microsoft and other vendors:

https://docs.microsoft.com/azure/virtual-machines/windows/overview
https://docs.microsoft.com/azure/storage/blobs/storage-blobs-introduction
https://azure.microsoft.com/blog/maximize-your-vm-s-performance-with-accelerated-networking-now-generally-available-for-both-windows-and-linux/
https://docs.microsoft.com/azure/azure-monitor/overview
https://docs.microsoft.com/azure/virtual-machines/windows/premium-storage
https://docs.microsoft.com/azure/virtual-machines/windows/disks-ultra-ssd
https://docs.microsoft.com/azure/virtual-network/create-vm-accelerated-networking-powershell
https://docs.microsoft.com/azure/azure-monitor/overview
https://docs.microsoft.com/azure/application-insights/app-insights-overview

Assembler Azure services from Raincode and TmaxSoft; or COBOL, C, or
Java, or map to operating system functions

JCL JCL, PowerShell, or other scripting tools

COBOL COBOL, C, or Java

Natural Natural, COBOL, C, or Java

FORTRAN and PL/I FORTRAN, PL/I, COBOL, C, or Java

REXX and PL/I REXX, PowerShell, or other scripting tools

COMPONENT AZURE OPTIONS

Migrate databases and data
Application migration usually involves rehosting the data tier. You can migrate SQL Server, open-source, and other
relational databases to fully-managed solutions on Azure, such as Azure SQL Database Managed Instance, Azure
Database Service for PostgreSQL, and Azure Database for MySQL with Azure Database Migration Service.

For example, you can migrate if the mainframe data tier uses:

IBM DB2 or an IMS database, use Azure SQL database, SQL Server, DB2 LUW, or Oracle Database on
Azure.

VSAM and other flat files, use Indexed Sequential Access Method (ISAM) flat files for Azure SQL, SQL
Server, DB2 LUW, or Oracle.

Generation Date Groups (GDGs), migrate to files on Azure that use a naming convention and filename
extensions that provide similar functionality to GDGs.

The IBM data tier includes several key components that you must also migrate. For example, when you migrate a
database, you also migrate a collection of data contained in pools, each containing dbextents, which are z/OS
VSAM data sets. Your migration must include the directory that identifies data locations in the storage pools. Also,
your migration plan must consider the database log, which contains a record of operations performed on the
database. A database can have one, two (dual or alternate), or four (dual and alternate) logs.

Database migration also includes these components:

Database manager: Provides access to data in the database. The database manager runs in its own partition
in a z/OS environment.

Application requester: Accepts requests from applications before passing them to an application server.

Online resource adapter: Includes application requester components for use in CICS transactions.

Batch resource adapter: Implements application requester components for z/OS batch applications.

Interactive SQL (ISQL): Runs as a CICS application and interface enabling users to enter SQL statements or
operator commands.

CICS application: Runs under the control of CICS, using available resources and data sources in CICS.

Batch application: Runs process logic without interactive communication with users to, for example, produce
bulk data updates or generate reports from a database.

https://docs.microsoft.com/azure/sql-database/sql-database-managed-instance
https://docs.microsoft.com/azure/postgresql/overview
https://docs.microsoft.com/azure/mysql/overview
https://docs.microsoft.com/azure/dms/dms-overview

Optimize scale and throughput for Azure

Perform a staged mainframe to Azure

Generally speaking, mainframes scale up, while the cloud scales out. To optimize scale and throughput of
mainframe-style applications running on Azure, it is important that you understand at how mainframes can
separate and isolate applications. A z/OS mainframe uses a feature called Logical Partitions (LPARS) to isolate and
manage the resources for a specific application on a single instance.

For example, a mainframe might use one logical partition (LPAR) for a CICS region with associated COBOL
programs, and a separate LPAR for DB2. Additional LPARs are often used for the development, testing, and
staging environments.

On Azure, it’s more common to use separate VMs to serve this purpose. Azure architectures typically deploy VMs
for the application tier, a separate set of VMs for the data tier, another set for development, and so on. Each tier of
processing can be optimized using the most suitable type of VMs and features for that environment.

In addition, each tier can also provide appropriate disaster recovery services. For example, production and
database VMs might require a hot or warm recovery, while the development and testing VMs support a cold
recovery.

The following figure shows a possible Azure deployment using a primary and a secondary site. In the primary site,
the production, preproduction, and testing VMs are deployed with high availability. The secondary site is for
backup and disaster recovery.

Moving solutions from a mainframe to Azure may involve a staged migration, whereby some applications are
moved first, and others remain on the mainframe temporarily or permanently. This approach typically requires

Partner solutions

Learn more

systems that allow applications and databases to interoperate between the mainframe and Azure.

A common scenario is to move an application to Azure while keeping the data used by the application on the
mainframe. Specific software is used to enable the applications on Azure to access data from the mainframe.
Fortunately, a wide range of solutions provide integration between Azure and existing mainframe environments,
support for hybrid scenarios, and migration over time. Microsoft partners, independent software vendors, and
system integrators can help you on your journey.

One option is Microsoft Host Integration Server (HIS), a solution that provides the distributed relational database
architecture (DRDA) required for applications in Azure to access data in DB2 that remains on the mainframe.
Other options for mainframe-to-Azure integration include solutions from IBM, Attunity, Codit, other vendors, and
open source options.

If you are considering a mainframe migration, the partner ecosystem is available to assist you.

Azure provides a proven, highly available, and scalable infrastructure for systems that currently run on
mainframes. Some workloads can be migrated with relative ease. Other workloads that depend on legacy system
software, such as CICS and IMS, can be rehosted using partner solutions and migrated to Azure over time.
Regardless of the choice you make, Microsoft and our partners are available to assist you in optimizing for Azure
while maintaining mainframe system software functionality.

For detailed guidance about choosing a partner solution, refer to the Platform Modernization Alliance.

For more information, see the following resources:

Get started with Azure

Platform Modernization Alliance: Mainframe migration

Deploy IBM DB2 pureScale on Azure

Host Integration Server (HIS) documentation

https://docs.microsoft.com/host-integration-server
https://www.platformmodernization.org/pages/mainframe.aspx
https://docs.microsoft.com/azure
https://www.platformmodernization.org/pages/mainframe.aspx
https://azure.microsoft.com/resources/deploy-ibm-db2-purescale-on-azure
https://docs.microsoft.com/host-integration-server

Create hybrid cloud consistency
3/13/2019 • 6 minutes to read • Edit Online

Integrate hybrid cloud consistency

This article guides you through the high level approaches for creating hybrid cloud consistency.

Hybrid deployment models during migration can reduce risk and contribute to a smooth infrastructure transition.
Cloud platforms offer the greatest level of flexibility when it comes to business processes. Many organizations are
hesitant to make the move to the cloud, preferring instead to keep full control over the most sensitive data.
Unfortunately, on-premises servers don’t allow for the same rate of innovation as the cloud. A hybrid cloud
solution allows you the best of both worlds: The speed of cloud innovation AND the comfort of on-premises
management.

Using a hybrid cloud solution allows organizations to scale computing resources. It also eliminates the need to
make massive capital expenditures to handle short-term spikes in demand. When changes to your business drive
the need to free up local resources for more sensitive data or applications, it is easier, faster, and less expensive to
deprovision cloud resources. You pay only for those resources your organization temporarily uses, instead of
having to purchase and maintain additional resources. This reduces the amount of equipment that might remain
idle over long periods of time. Hybrid cloud computing is a "best of all possible worlds" platform, delivering all the
benefits of cloud computing flexibility, scalability, and cost efficiencies; all with the lowest possible risk of data
exposure.

Figure 1. Creating hybrid cloud consistency across identity, management, security, data, development, and DevOps

A true hybrid cloud solution must provide four components, each of which brings significant benefits, including:

Common identity for on-premises and cloud applications: This improves user productivity by giving users
single sign-on (SSO) to all their applications. It also ensures consistency as applications and users cross
network/cloud boundaries.
Integrated management and security across your hybrid cloud: This provides you with a cohesive way to
monitor, manage, and secure the environment, enabling increased visibility and control.
A consistent data platform for the datacenter and the cloud: This creates data portability, combined with
seamless access to on-premises and cloud data services for deep insight into all data sources.
Unified development and DevOps across the cloud and on-premises datacenters: This allows you to move
applications between the two environments as needed, improving developer productivity, as both places now

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/infrastructure/misc/hybrid-consistency.md

Azure Stack in a hybrid cloud environment

have the same development environment.

Examples of these components from an Azure perspective include:

Azure Active Directory (Azure AD), which works with on-premises Azure AD to provide common identity for all
users. SSO across on-premises and via the cloud makes it simple for users to safely access the applications and
assets they need. Adminis can manage security and governance controls so that users can access what they
need, with flexibility to adjust those permissions without affecting the user experience.
Azure provides integrated management and security services for both cloud and on-premises infrastructure
that include an integrated set of tools for monitoring, configuring, and protecting hybrid clouds. This end-to-end
approach to management specifically addresses real-world challenges facing organizations considering a hybrid
cloud solution.
Azure hybrid cloud provides common tools that ensure secure access to all data, seamlessly and efficiently.
Azure data services combine with Microsoft SQL Server to create a consistent data platform. A consistent
hybrid cloud model allows users to work with both operational and analytical data, providing the same services
on-premises and in the cloud for data warehousing, data analysis, and data visualization.
Microsoft Azure cloud services, combined with Microsoft Azure Stack on-premises, provide unified
development and DevOps. Consistency across the cloud and on-premises means that your DevOps team can
build applications that run in either environment, and can easily deploy to the right location. You can reuse
templates across the hybrid solution as well, which can further simplify DevOps processes.

Microsoft Azure Stack is a hybrid cloud solution that allows organizations to run Azure-consistent services in their
datacenter, providing a simplified development, management, and security experience that is consistent with Azure
public cloud services. Azure Stack is an extension of Azure, enabling you to run Azure services from your on-
premises environments and then move to the Azure cloud if and when required.

Azure Stack allows you to deploy and operate both IaaS and PaaS using the same tools and offering the same
experience as the Azure public cloud. Management of Azure Stack, whether through the web UI portal or through
PowerShell, has a consistent look and feel for IT administrators and end users with Azure.

Azure and Azure Stack unlock new hybrid use cases for both customer-facing and internal line-of-business
applications, including:

Edge and disconnected solutions. Customers can address latency and connectivity requirements by
processing data locally in Azure Stack and then aggregating in Azure for further analytics, with common
application logic across both. Many customers are interested in this edge scenario across different contexts,
including factory floors, cruise ships, and mine shafts.
Cloud applications that meet various regulations. Customers can develop and deploy applications in
Azure, with full flexibility to deploy on-premises on Azure Stack to meet regulatory or policy requirements, with
no code changes needed. Illustrative application examples include global audit, financial reporting, foreign
exchange trading, online gaming, and expense reporting. Customers are sometimes looking to deploy different
instances of the same application to Azure or Azure Stack, based on business and technical requirements. While
Azure meets most requirements, Azure Stack complements the deployment approach where needed.
Cloud application model on-premises. Customers can use Azure web services, containers, serverless, and
microservice architectures to update and extend existing applications or build new ones. You can use consistent
DevOps processes across Azure in the cloud and Azure Stack on-premises. There is a growing interest in
application modernization, including for core mission-critical applications.

Azure Stack is offered via two deployment options:

Azure Stack integrated systems. Azure Stack integrated systems are offered through a partnership of
Microsoft and hardware partners, creating a solution that provides cloud-paced innovation balanced with
simplicity in management. Because Azure Stack is offered as an integrated system of hardware and software,

Azure Stack One Cloud Ecosystem

you get the right amount of flexibility and control, while still adopting innovation from the cloud. Azure Stack
integrated systems range in size from 4–12 nodes and are jointly supported by the hardware partner and
Microsoft. Use Azure Stack integrated systems to enable new scenarios for your production workloads.
Azure Stack Development Kit. Microsoft Azure Stack Development Kit is a single-node deployment of Azure
Stack, which you can use to evaluate and learn about Azure Stack. You can also use the kit as a developer
environment, where you can develop using APIs and tooling that are consistent with Azure. Azure Stack
Development Kit is not intended to be used as a production environment.

You can speed up Azure Stack initiatives by using the complete Azure ecosystem:

Azure ensures that most applications and services certified for Azure will work on Azure Stack. Several ISVs —
including Bitnami, Docker, Kemp Technologies, Pivotal Cloud Foundry, Red Hat Enterprise Linux, and SUSE
Linux — are extending their solutions to Azure Stack.
You can opt to have Azure Stack delivered and operated as a fully managed service. Several partners —
including Tieto, Yourhosting, Revera, Pulsant, and NTT — will have managed service offerings across Azure and
Azure Stack shortly. These partners have been delivering managed services for Azure via the Cloud Solution
Provider (Cloud Providers) program and are now extending their offerings to include hybrid solutions.
As an example of a complete, fully managed hybrid cloud solution, Avanade is delivering an all-in-one offer that
includes cloud transformation services, software, infrastructure, setup and configuration, and ongoing managed
services so customers can consume Azure Stack just as they do with Azure today.
Systems Integrators (S I) can help accelerate application modernization initiatives by building end-to-end Azure
solutions for customers. They bring in-depth Azure skill sets, domain and industry knowledge, and process
expertise (e.g., DevOps). Every Azure Stack cloud is an opportunity for an SI to design the solution, lead and
influence system deployment, customize the included capabilities, and deliver operational activities. This
includes SIs like Avanade, DXC, Dell EMC Services, InFront Consulting Group, HPE Pointnext, and
Pricewaterhouse Coopers (PwC).

CAF: Operations overview
3/13/2019 • 2 minutes to read • Edit Online

This section of the CAF the topic of operations.

Once your enterprise is engaged in a digital transformation, a majority of the work done on the design and
implementation teams will revolve around migrating existing workloads from on-premises to Azure, developing
and testing new cloud-native applications in Azure, and incorporating new innovative Azure services into existing
on-premises workloads. However, these are just the first step in the digital transformation. Once these workloads
are up and running in Azure, the next step is to operate them in the cloud.

Operating in the cloud refers to the IT processes and non-functional requirements necessary to run workloads in
Azure as a business. This includes monitoring of workloads, analyzing dependencies for bottlenecks, developing
strategies for disaster recovery, and more.

Establish an operational fitness review

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/operations/overview.md

Establishing an operational fitness review
3/13/2019 • 9 minutes to read • Edit Online

Operational fitness at Microsoft

Understanding the problem

As your enterprise begins to operate workloads in Azure, the next step is to establish an operational fitness
review process to enumerate, implement, and iteratively review the non-functional requirements for these
workloads. Non-functional requirements are related to the expected operational behavior of the service. There are
five essential categories of non-functional requirements referred to as the pillars of software quality: scalability,
availability, resiliency (including business continuity and disaster recovery), management, and security. The purpose
of an operational fitness review process is ensuring that your mission-critical workloads meet the expectations of
your business with respect to the quality pillars.

For this reason, your enterprise should undertake an operational fitness review process to fully understand the
issues that result from running the workload in a production environment, determine how to remediate the issues,
then resolve them. This article outlines a high-level operational fitness review process that your enterprise can use
to achieve this goal.

From the outset, the development of the Azure platform has been a continuous development and integration
project undertaken by many teams across Microsoft. It would be very difficult to ensure quality and consistency for
a project of Azure's size and complexity without a robust process for enumerating and implementing the
fundamental non-functional requirements on a regular basis.

These processes followed by Microsoft form the basis for those outlined in this document.

As you learned in Getting started, the first step in an enterprise's digital transformation is identifying the business
problems to be solved by adopting Azure. The next step is to determine a high-level solution to the problem, such
as migrating a workload to the cloud, or adapting an existing on-premises service to include cloud functionality.
Finally, the solution is designed and implemented.

During this process, the focus is often on the features of the service. That is, there are a set of desired functional
requirements for the service to perform. For example, a product delivery service requires features for determining
the source and destination locations of the product, tracking the product during delivery, customer notifications,
and others.

In contrast, the non-functional requirements relate to properties such as the service's availability, resiliency, and
scalability. These properties differ from the functional requirements because they do not directly affect the final
function of any particular feature in the service. However, these non-functional requirements are related to the
performance and continuity of the service.

Some non-functional requirements can be specified in terms of a service level agreement (SLA). For example, with
regard to service continuity, an availability requirement for the service can be expressed as a percentage such as
available 99.99% of the time. Other non-functional requirements may be more difficult to define and may
change as production needs evolve. For example, a consumer-facing service might start facing unanticipated
throughput requirements after a surge of popularity.

![NOTE] Defining the requirements for resiliency, including explanations of RPO, RTO, SLA, and related concepts,
are explored in more depth in Designing resilient applications for Azure.

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/operations/operational-fitness-review.md

Operational fitness review process

Prerequisites phasePrerequisites phase

The key to maintaining the performance and continuity of an enterprise's services is to implement an operational
fitness review process.

At a high level, the process has two phases. In the prerequisites phase, the requirements are established and
mapped to supporting services. This occurs less frequently; perhaps annually or when new operations are
introduced. The output of the prerequisites phase is used in the flow phase. The flow phase occurs more frequently;
we recommend monthly.

The steps in this phase are intended to capture the necessary requirements for conducting a regular review of the
important services.

Identify critical business operations. Identify the enterprise's mission-critical business operations.
Business operations are independent from any supporting service functionality. In other words, business
operations represent the actual activities that the business needs to perform and are supported by a set of
IT services. The term mission-critical (or business critical) reflects a severe impact to the business if the
operation is impeded. For example, an online retailer may have a business operation such as "enable a
customer to add an item to a shopping cart" or "process a credit card payment". If either of these operations
were to fail, a customer would be unable to complete the transaction and the enterprise would fail to realize
sales.

Map operations to services. Map these business operations to the services that support them. In the
above shopping cart example, several services may be involved: an inventory stock management service, a
shopping cart service, and others. In the credit card payment example above, an on-premises payment
service may interact with a third-party payment processing service.

Analyze service dependencies. Most business operations require orchestration between multiple
supporting services. It is important to understand the dependences between the services and the flow of
mission-critical transactions through these services. You should also consider the dependencies between
on-premises services and Azure services. In the shopping cart example, the inventory stock management
service may be hosted on-premises and ingest data input by employees from a physical warehouse, but it
may store data in an Azure service such as Azure storage or a database such as Azure Cosmos DB.

An output from these activities is a set of scorecard metrics for service operations. The metrics are categorized in
terms of non-functional criteria such as availability, scalability, and disaster recovery. Scorecard metrics express the
criteria that the service is expected to meet operationally. These metrics can be expressed at any level of granularity
that is appropriate for the service operation.

The scorecard should be expressed in simple terms to facilitate meaningful discussion between the business
owners and engineering. For example, a scalability scorecard metric could be expressed as green for performing at

https://docs.microsoft.com/azure/storage/common/storage-introduction
https://docs.microsoft.com/azure/cosmos-db/introduction

Service review phaseService review phase

Structure of the operational fitness review team

Operational fitness review meeting

the desired criteria, yellow for failing to meet the desired criteria but actively implementing a planned remediation,
and red for failing to meet the desired criteria with no plan or action.

It is important to emphasize that these metrics should directly reflect business needs.

The service review phase is core of the operational fitness review process.

Measure service metrics. Using the scorecard metrics, the services should be monitored to ensure that
they meet the business expectations. This means that service monitoring is essential. If you are not able to
monitor a set of services with respect to the non-functional requirements, then the corresponding scorecard
metrics should be considered red. In this case, the first step for remediation is to implement the appropriate
service monitoring. For example, if the business expects a service to operate with 99.99% availability, but
there is no production telemetry in place to measure the availability, you should assume that you're not
meeting the requirement.

Plan remediation. For each service operation with metrics that fall below an acceptable threshold,
determine the cost of remediating the service to bring operation to an acceptable metric. If the cost of
remediating the service is greater than the expected revenue generation of the service, move on to consider
the non-tangible costs such as customer experience. For example, if customers have difficulty placing a
successful order using the service, they may choose a competitor instead.

Implement remediation. After the business owners and engineering converge on a plan, it should be
implemented. The status of the implementation should be reported whenever scorecard metrics are
reviewed.

This process is iterative, and ideally your enterprise should have a team dedicated to owning it. This team should
meet regularly to review existing remediation projects, kick off the fundamentals review of new workloads, and
track the enterprise's overall scorecard. The team should have the authority to ensure accountability for
remediation teams that are behind schedule or fail to meet metrics.

The operational fitness review team is composed of the following roles:

1. Business owner. This role provides knowledge of the business to identify and prioritize each mission-
critical business operation. This role also compares the mitigation cost to the business impact and drives the
final decision on remediation.

2. Business advocate. This role is responsible for breaking down business operations into discreet parts and
mapping those parts to on-premises and cloud services and infrastructure. The role requires deep
knowledge of the technology associated with each business operation.

3. Engineering owner. This role is responsible for implementating the services associated with the business
operation. These individuals may participate in the design, implementation, and deployment of any
solutions for solving non-functional requirement issues uncovered by the operational fitness review team.

4. Service owner. This role is responsible for operating the business's applications and services. These
individuals collect logging and usage data for these applications and services. This data is used both to
identify issues and verify fixes once deployed.

We recommend that your operational fitness review team meet on a regular basis. For example, the could team
meet on a monthly cadence and report status and metrics to senior leadership on a quarterly basis.

The details of the process and meeting should be adapted to fit your specific needs. We recommend the following

Recommended resources

tasks as a starting point:

1. The business owner and business advocate enumerate and determine the non-functional requirements for
each business operation, with input from the engineering and service owners. For business operations that
have been previously identified, the priority is reviewed and verified. For new business operations, a priority
in the existing list is assigned.

2. The engineering and service owners map the current state of business operations to the corresponding
on-premises and cloud services. The mapping is composed of a list of the components in each service,
oriented as a dependency tree. Once the list and dependency tree are generated, the critical paths through
the tree are determined.

3. The engineering and service owners review the current state of operational logging and monitoring for the
services listed in the previous step. Robust logging and monitoring are critical, in order to identify service
components that contribute to failuring to meet non-functional requirements. If sufficient logging and
monitoring are not in place, a plan must be created and implemented to put them in place.

4. Scorecard metrics are created for new business operation. The scorecard is composed of the list of
constituent components for each service identified in step 2, aligned with the non-functional requirements
and a metric representing how well the component meets the requirement.

5. For those constituent components that fail to meet non-functional requirements, a high-level solution is
designed and an engineering owner is assigned. At this point, the business owner and business advocate
should establish a budget for the remediation work, based on the expected revenue of the business
operation.

6. Finally, a review is conducted of the ongoing remediation work. Each of the scorecard metrics for work in
progress is reviewed against the expected metrics. For constituent components that are meeting metrics, the
service owner presents logging and monitoring data to confirm that the metric is met. For those constituent
components that are not meeting metrics, each engineering owner explains the issues that are preventing
metrics from being reached and any new designs for remediation.

Pillars of software quality. This section of the Azure Application Architecture guide describes the five pillars of
software quality: Scalability, availability, resiliency, management, and security.
Ten design principles for Azure applications. This section of the Azure Application Architecture guide discusses
a set of design principles to make your application more scalable, resilient, and manageable.
Designing resilient applications for Azure. This guide starts with a definition of the term resiliency and related
concepts. Then it describes a process for achieving resiliency, using a structured approach over the lifetime of an
application, from design and implementation to deployment and operations.
Cloud Design Patterns. These design patterns are useful for engineering teams when building applications on
the pillars of software quality.

Resources

Azure Virtual Datacenter: ConceptsAzure Virtual Datacenter: Concepts

Azure Virtual Datacenter: A Network PerspectiveAzure Virtual Datacenter: A Network Perspective

Azure Virtual Datacenter: Lift and Shift GuideAzure Virtual Datacenter: Lift and Shift Guide

Azure Virtual Datacenter: Presentation DeckAzure Virtual Datacenter: Presentation Deck

What is the Azure Virtual Datacenter?

Azure Virtual Datacenter is an approach to making the most of the Azure cloud platform's capabilities while respecting your
existing security and networking policies. When deploying enterprise workloads to the cloud, IT organizations and business units
must balance governance with developer agility. Azure Virtual Datacenter provides models to achieve this balance with an
emphasis on governance.

This eBook shows you how to deploy enterprise workloads to the Azure cloud platform, while respecting your existing security and
networking policies.

This online article provides an overview of networking patterns and designs that can be used to solve the architectural scale,
performance, and security concerns that many customers face when thinking about moving en masse to the cloud.

This whitepaper discusses the process that enterprise IT staff and decision makers can use to identify and plan the migration of
applications and servers to Azure using the lift and shift method, minimizing any additional development costs while optimizing
cloud hosting options.

This presentation deck explores the Azure Virtual Datacenter guidance and tools. It covers the VDC goals, customer drivers, Azure
Regions, the elements of a VDC automation, industrialized and trusted Azure VDCs, and it ends with an action plan around CIO
guidance. Support and training information is also provided.

Deploying workloads to the cloud introduces the need to develop and maintain trust in the cloud to the same degree you trust
your existing datacenters. The first model of the Azure Virtual Datacenter guidance is designed to bridge that need through a
locked-down approach to virtual infrastructures. This approach isn’t for everyone. It’s specifically designed to guide enterprise IT
groups in extending their on-premises infrastructure to the Azure public cloud. We call this approach the trusted datacenter
extension model. Over time, several other models will be offered, including those that allow secure Internet access directly from a
virtual datacenter.

These four components make the Azure Virtual Datacenter possible: identity, encryption, software-defined networking, and
compliance (including logs and reporting).

In the Azure Virtual Datacenter model, you can apply isolation policies, make the cloud more like the physical datacenters you
know, and achieve the levels of security and trust you need. Four components any enterprise IT team would recognize make it
possible: software-defined networking, encryption, identity management, and the Azure platform's underlying compliance
standards and certifications. These four are key to making a virtual datacenter a trusted extension of your existing infrastructure
investment.

Continue reading the Azure Virtual Datacenter Concepts eBook.

https://aka.ms/VDC/Concepts
https://aka.ms/VDC/Concepts
https://docs.microsoft.com/azure/networking/networking-virtual-datacenter
https://docs.microsoft.com/en-us/azure/architecture/vdc/networking-virtual-datacenter
https://aka.ms/VDC/Lift
https://aka.ms/VDC/Lift
https://aka.ms/VDC/Deck
https://aka.ms/VDC/Deck
https://aka.ms/VDC/eBook

Azure enterprise scaffold: Prescriptive subscription
governance
3/13/2019 • 31 minutes to read • Edit Online

Need for governance

Enterprises are increasingly adopting the public cloud for its agility and flexibility. They rely on the cloud's
strengths to generate revenue and optimize resource usage for the business. Microsoft Azure provides a multitude
of services and capabilities that enterprises assemble like building blocks to address a wide array of workloads and
applications.

Deciding to use Microsoft Azure is only the first step to achieving the benefit of the cloud. The second step is
understanding how the enterprise can effectively use Azure and identify the baseline capabilities that need to be in
place to address questions like:

"I'm concerned about data sovereignty; how can I ensure that my data and systems meet our regulatory
requirements?"
"How do I know what each resource is supporting so I can account for it and bill it back accurately?"
"I want to make sure that everything we deploy or do in the public cloud starts with the mindset of security first,
how do I help facilitate that?"

The prospect of an empty subscription with no guardrails is daunting. This blank space can hamper your move to
Azure.

This article provides a starting point for technical professionals to address the need for governance and balance it
with the need for agility. It introduces the concept of an enterprise scaffold that guides organizations in
implementing and managing their Azure environments in a secure way. It provides the framework to develop
effective and efficient controls.

When moving to Azure, you must address the topic of governance early to ensure the successful use of the cloud
within the enterprise. Unfortunately, the time and bureaucracy of creating a comprehensive governance system
means some business groups go directly to providers without involving enterprise IT. This approach can leave the
enterprise open to compromise if the resources are not properly managed. The characteristics of the public cloud -
agility, flexibility, and consumption-based pricing - are important to business groups that need to quickly meet the
demands of customers (both internal and external). But, enterprise IT needs to ensure that data and systems are
effectively protected.

When creating a building, scaffolding is used to create the basis of a structure. The scaffold guides the general
outline and provides anchor points for more permanent systems to be mounted. An enterprise scaffold is the
same: a set of flexible controls and Azure capabilities that provide structure to the environment, and anchors for
services built on the public cloud. It provides the builders (IT and business groups) a foundation to create and
attach new services keeping speed of delivery in mind.

The scaffold is based on practices we have gathered from many engagements with clients of various sizes. Those
clients range from small organizations developing solutions in the cloud to large multi-national enterprises and
independent software vendors who are migrating workloads and developing cloud-native solutions. The enterprise
scaffold is "purpose-built" to be flexible to support both traditional IT workloads and agile workloads; such as,
developers creating software as a service (SaaS) applications based on Azure platform capabilities.

The enterprise scaffold is intended to be the foundation of each new subscription within Azure. It enables
administrators to ensure workloads meet the minimum governance requirements of an organization without

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/appendix/azure-scaffold.md

NOTENOTE

Define your hierarchy

Departments and AccountsDepartments and Accounts

preventing business groups and developers from quickly meeting their own goals. Our experience shows that this
greatly speeds, rather than impedes, public cloud growth.

Microsoft has released into preview a new capability called Azure Blueprints that will enable you to package, manage, and
deploy common images, templates, policies, and scripts across subscriptions and management groups. This capability is the
bridge between the scaffold's purpose as reference model and deploying that model to your organization.

The following image shows the components of the scaffold. The foundation relies on a solid plan for the
management hierarchy and subscriptions. The pillars consist of Resource Manager policies and strong naming
standards. The rest of the scaffold are core Azure capabilities and features that enable and connect a secure and
manageable environment.

The foundation of the scaffold is the hierarchy and relationship of the Azure Enterprise Enrollment through to
subscriptions and resource groups. The enterprise enrollment defines the shape and use of Azure services within
your company from a contractual point of view. Within the enterprise agreement, you can further subdivide the
environment into departments, accounts, and finally, subscriptions and resource groups to match your
organization's structure.

An Azure subscription is the basic unit where all resources are contained. It also defines several limits within Azure,
such as number of cores, virtual networks and other resources. Azure Resource Groups are used to further refine
the subscription model and enable a more natural grouping of resources.

Every enterprise is different and the hierarchy in the above image allows for significant flexibility in how Azure is
organized within your company. Modeling your hierarchy to reflect the needs of your company for billing, resource
management, and resource access is the first — and most important — decision you make when starting in the
public cloud.

The three common patterns for Azure Enrollments are:

The functional pattern

https://docs.microsoft.com/azure/governance/blueprints/overview

The business unit pattern

The geographic pattern

Though each of these patterns has its place, the business unit pattern is increasingly being adopted for its
flexibility in modeling an organization's cost model as well as reflecting span of control. Microsoft Core
Engineering and Operations group has created a sub-set of the business unit pattern that is very effective,
modeled on Federal, State, and Local. (For more information, see Organizing subscriptions and resource groups
within the Enterprise.)

https://azure.microsoft.com/blog/organizing-subscriptions-and-resource-groups-within-the-enterprise/

Azure management groupsAzure management groups

SubscriptionsSubscriptions

Resource groupsResource groups

NOTENOTE

Microsoft has recently released a new way of modeling your hierarchy: Azure management groups. Management
groups are much more flexible than departments and accounts and can be nested up to six levels. Management
groups allow you to create a hierarchy that is separate from your billing hierarchy, solely for efficient management
of resources. Management groups can mirror your billing hierarchy and often enterprises start that way. However,
the power of management groups is when you use them to model your organization where related subscriptions
— regardless where they are in the billing hierarchy — are grouped together and need common roles assigned as
well as policies and initiatives. A few examples:

Production/Non-Production. Some enterprises create management groups to identify their production and
non-production subscriptions. Management groups allow these customers to more easily manage roles and
policies, for example: non-production subscription may allow developers "contributor" access, but in production,
they have only "reader" access.
Internal Services/External Services. Much like Production/Non-Production, enterprises often have different
requirements, policies and roles for internal services versus external (customer facing) services.

Well thought out management groups are, along with Azure Policy and Initiatives the backbone of efficient
governance of Azure.

When deciding on your Departments and Accounts (or management groups), you are primarily looking at how
you're dividing up your Azure environment to match your organization. Subscriptions, however, are where the real
work happens and your decisions here affect security, scalability and billing. Many organizations look at the
following patterns as their guides:

Application/Service: Subscriptions represent an application or a service (portfolio of applications)
Lifecycle: Subscriptions represent a lifecycle of a service, such as Production or Development.
Department: Subscriptions represent departments in the organization.

The first two patterns are the most commonly used, and both are highly recommended. The Lifecycle approach is
appropriate for most organizations. In this case, the general recommendation is to use two base subscriptions.
"Production" and "Non-Production," and then use resource groups to break out the environments further.

Azure Resource Manager enables you to put resources into meaningful groups for management, billing, or natural
affinity. Resource groups are containers of resources that have a common life cycle or share an attribute such as
"all SQL servers" or "Application A".

Resource groups can't be nested, and resources can only belong to one resource group. Some actions can act on all
resources in a resource group. For example, deleting a resource group removes all resources within the resource
group. Like subscriptions, there are common patterns when creating resource groups and will vary from
"Traditional IT" workloads to "Agile IT" workloads:

"Traditional IT" workloads are most commonly grouped by items within the same life cycle, such as an
application. Grouping by application allows for individual application management.
"Agile IT" workloads tend to focus on external customer-facing cloud applications. The resource groups often
reflect the layers of deployment (such as a web tier or app tier) and management.

Understanding your workload helps you develop a resource group strategy. These patterns can be mixed and matched. For
example, a shared services resource group in the same subscription as "Agile" resource groups.

https://docs.microsoft.com/azure/azure-resource-manager/management-groups-overview

Naming standards

TIPTIP

Resource TagsResource Tags

IMPORTANTIMPORTANT

Azure Policy and initiatives

Common uses of Resource Manager policiesCommon uses of Resource Manager policies

The first pillar of the scaffold is a consistent naming standard. Well-designed naming standards enable you to
identify resources in the portal, on a bill, and within scripts. You likely already have existing naming standards for
on-premises infrastructure. When adding Azure to your environment, you should extend those naming standards
to your Azure resources.

For naming conventions:

Review and adopt where possible the Patterns and Practices guidance. This guidance helps you decide on a meaningful
naming standard and provides extensive examples.
Using Resource Manager Policies to help enforce naming standards

Remember that it's difficult to change names later, so a few minutes now will save you trouble later.

Concentrate your naming standards on those resources that are more commonly used and searched for. For
example, all resource groups should follow a strong standard for clarity.

Resource tags are tightly aligned with naming standards. As resources are added to subscriptions, it becomes
increasingly important to logically categorize them for billing, management, and operational purposes. For more
information, see Use tags to organize your Azure resources.

Tags can contain personal information and may fall under the regulations of GDPR. Plan for management of your tags
carefully. If you're looking for general info about GDPR, see the GDPR section of the Service Trust Portal.

Tags are used in many ways beyond billing and management. They are often used as part of automation (see later
section). This can cause conflicts if not considered up front. The recommended practice is to identify all the
common tags at the enterprise level (such as ApplicationOwner, CostCenter) and apply them consistently when
deploying resources using automation.

The second pillar of the scaffold involves using Azure Policy and initiatives to manage risk by enforcing rules (with
effects) over the resources and services in your subscriptions. Azure Initiatives are collections of policies that are
designed to achieve a single goal. Azure policies and initiatives are then assigned to a resource scope to begin
enforcement of the particular policies.

Policies and initiatives are even more powerful when used with the management groups mentioned earlier.
Management groups enable the assignment of an initiative or policy to an entire set of subscriptions.

Azure policies and initiatives are a powerful tool in the Azure toolkit. Policies allow companies to provide controls
for "Traditional IT" workloads that enable the stability that is needed for line-of-business applications while also
allowing "Agile" workloads; such as, developing customer applications without opening up the enterprise to
additional risk. The most common patterns we see for policies are:

Geo-compliance/data sovereignty. Azure has an ever-growing list of regions across the world. Enterprises
often need to ensure that resources in a particular scope remain in a geographic region to address regulatory
requirements.

https://docs.microsoft.com/azure/architecture/best-practices/naming-conventions
https://docs.microsoft.com/azure/azure-resource-manager/resource-group-using-tags
https://servicetrust.microsoft.com/ViewPage/GDPRGetStarted
https://docs.microsoft.com/azure/azure-policy/azure-policy-introduction

Common uses of initiativesCommon uses of initiatives

TIPTIP

Policy and Initiative assignmentsPolicy and Initiative assignments

Identity and access management

Avoid exposing servers publicly. Azure Policy can prohibit the deployment of certain resource types. It's
common to create a policy to deny the creation of a public IP within a particular scope, avoiding un-intended
exposure of a server to the internet.
Cost Management and Metadata. Resource tags are often used to add important billing data to resources
and resource groups such as CostCenter, Owner and more. These tags are invaluable for accurate billing and
management of resources. Policies can enforce the application of resources tags to all deployed resource,
making it easier to manage.

The introduction of initiatives provided enterprises a way to group logical policies together and track as a whole.
Initiatives further support the enterprise to address the needs of both "agile" and "traditional" workloads. We have
seen very creative uses of initiatives, but commonly we see:

Enable monitoring in Azure Security Center. This is a default initiative in the Azure Policy and an excellent
example of what initiative are. It enables policies that identify un-encrypted SQL databases, virtual machine
(VM) vulnerabilities and more common security related needs.
Regulatory specific initiative. Enterprises often group policies common to a regulatory requirement (such as
HIPAA) so that controls and compliancy to those controls are tracked efficiently.
Resource Types and SKUs. Creating an initiative that restricts the types of resources that can be deployed as
well as the SKUs that can be deployed can help to control costs and ensure your organization is only deploying
resources that your team have the skillset and procedures to support.

We recommend you always use initiative definitions instead of policy definitions. After assigning an initiative to a scope, such
as subscription or management group, you can easily add another policy to the initiative without having to change any
assignments. This makes understanding what is applied and tracking compliance far easier.

After the creation of policies and grouping them into logical initiatives you must assign the policy to a scope,
whether it is a management group, a subscription or even a resource group. Assignments allow you to also exclude
a sub-scope from the assignment of a policy. For example, if you deny the creation of public IPs within a
subscription, you could create an assignment with an exclusion for a resource group connected to your protected
DMZ.

You will find several Policy examples that show how Policy and Initiatives can be applied to various resources
within Azure on this GitHub repository.

One of the first, and most crucial, questions you ask yourself when starting with the public cloud is "who should
have access to resources?" and "how do I control this access?" Allowing or disallowing access to the Azure portal,
and controlling access to resources in the portal is critical to the long term success and safety of your assets in the
cloud.

To accomplish the task of securing access to your resources you will first configure your identity provider and then
configure Roles and access. Azure Active Directory (Azure AD), connected to your on-premises Active Directory, is
the foundation of Azure Identity. That said, Azure AD is not Active Directory and it's important to understand what
an Azure AD tenant is and how it relates to your Azure enrollment. Review the available information to gain a solid
foundation on Azure AD and AD. To connect and synchronize your Active Directory to Azure AD, install and
configure the AD Connect tool on-premises.

https://github.com/Azure/azure-policy
https://docs.microsoft.com/azure/active-directory/connect/active-directory-aadconnect

IMPORTANTIMPORTANT

Security

When Azure was initially released, access controls to a subscription were basic: Administrator or Co-Administrator.
Access to a subscription in the Classic model implied access to all the resources in the portal. This lack of fine-
grained control led to the proliferation of subscriptions to provide a level of reasonable access control for an Azure
Enrollment. This proliferation of subscriptions is no longer needed. With role-based access control (RBAC), you can
assign users to standard roles that provide common access such as "owner", "contributor" or "reader" or even
create your own roles

When implementing role-based access, the following are highly recommended:

Control the Administrator/Co-Administrator of a subscription as these roles have extensive permissions.
You only need to add the Subscription Owner as a Co-administrator if they need to managed Azure Classic
deployments.

Use management groups to assign roles across multiple subscriptions and reduce the burden of managing
them at the subscription level.

Add Azure users to a group (for example, Application X Owners) in Active Directory. Use the synced group
to provide group members the appropriate rights to manage the resource group containing the application.

Follow the principle of granting the least privilege required to do the expected work.

Consider using Azure AD Privileged Identity Management, Azure Multi-Factor Authentication and Conditional Access
capabilities to provide better security and more visibility to administrative actions across your Azure subscriptions. These
capabilities come from a valid Azure AD Premium license (depending on the feature) to further secure and manage your
identity. Azure AD PIM enables "Just-in-Time" administrative access with approval workflow, as well as a full audit of
administrator activations and activities. Azure MFA is another critical capability and enables two-step verification for login to
the Azure portal. When combined with Conditional Access Controls you can effectively manage your risk of compromise.

Planning and preparing for your identity and access controls and following Azure Identity Management best
practice (link) is one of the best risk mitigation strategies that you can employ and should be considered
mandatory for every deployment.

One of the biggest blockers to cloud adoption traditionally has been concerns over security. IT risk managers and

https://docs.microsoft.com/azure/azure-resource-manager/management-groups-overview#management-group-access
https://docs.microsoft.com/azure/active-directory/privileged-identity-management/pim-configure
https://docs.microsoft.com/azure/active-directory/authentication/howto-mfa-getstarted
https://docs.microsoft.com/azure/active-directory/active-directory-conditional-access-azure-portal
https://docs.microsoft.com/azure/security/azure-security-identity-management-best-practices

Azure Security CenterAzure Security Center

TIPTIP

Azure resource locksAzure resource locks

Secure DevOps ToolkitSecure DevOps Toolkit

security departments need to ensure that resources in Azure are protected and secure by default. Azure provides a
number of capabilities that you can use to protect resources and detect/prevent threats against those resources.

The Azure Security Center provides a unified view of the security status of resources across your environment in
addition to advanced threat protection. Azure Security Center is an open platform that enables Microsoft partners
to create software that plugs into and enhance its capabilities. The baseline capabilities of Azure Security Center
(free tier) provides assessment and recommendations that will enhance your security posture. Its paid tiers enable
additional and valuable capabilities such as Just In Time admin access and adaptive application controls
(whitelisting).

Azure Security Center is a powerful tool that is regular improved with new capabilities you can use to detect threats and
protect your enterprise. It is highly recommended to always enable Azure Security Center.

As your organization adds core services to subscriptions it becomes increasingly important to avoid business
disruption. One type of disruption that we often see is unintended consequences of scripts and tools working
against an Azure subscription deleting resources mistakenly. Resource Locks enable you to restrict operations on
high-value resources where modifying or deleting them would have a significant impact. Locks are applied to a
subscription, resource group, or even individual resources. The common use case is to apply locks to foundational
resources such as virtual networks, gateways, network security groups and key storage accounts.

The "Secure DevOps Kit for Azure" (AzSK) is a collection of scripts, tools, extensions, automations, etc. originally
created by Microsoft's own IT Team and released in OpenSource via Github (link). AzSK caters to the end to end
Azure subscription and resource security needs for teams using extensive automation and smoothly integrating
security into native dev ops workflows helping accomplish secure dev ops with these 6 focus areas:

Secure the subscription
Enable secure development
Integrate security into CICD
Continuous Assurance
Alerting and Monitoring
Cloud Risk Governance

https://docs.microsoft.com/azure/security-center/security-center-intro
https://docs.microsoft.com/azure/azure-resource-manager/resource-group-lock-resources
https://github.com/azsk/DevOpsKit-docs

Azure Update ManagementAzure Update Management

Monitor and alerts

The AzSK is a rich set of tools, scripts and information that are an important part of a full Azure governance plan
and incorporating this into your scaffold is crucial to supporting your organizations risk management goals

One of the key tasks you can do to keep your environment safe is ensure that your servers are patched with the
latest updates. While there are many tools to accomplish this, Azure provides the Azure Update Management
solution to address the identification and rollout of critical OS patches. It uses Azure Automation, covered in the
Automate section later in this guide.

Collecting and analyzing telemetry that provides line of sight into the activities, performance metrics, health and
availability of the services you are using across all of your Azure subscriptions is critical to proactively manage
your applications and infrastructure and is a foundational need of every Azure subscription. Every Azure service
emits telemetry in the form of Activity Logs, Metrics and Diagnostic Logs.

Activity Logs describe all operations performed on resources in your subscriptions
Metrics are numerical information emitted from within a resource that describe the performance and health of
a resource
Diagnostic Logs are emitted by an Azure service and provide rich, frequent data about the operation of that
service.

This information can be viewed and acted upon at multiple levels and are continually being improved. Azure
provides shared, core and deep monitoring capabilities of Azure resources through the services outlined in the

https://docs.microsoft.com/azure/automation/automation-update-management

Shared capabilitiesShared capabilities

Core monitoringCore monitoring

diagram below.

Alerts: You can collect every log, event and metric from Azure resources, but without the ability to be
notified of critical conditions and act, this data is only useful for historic purposes and forensics. Azure Alerts
proactively notify you of conditions you define across all your applications and infrastructure. You create
alert rules across logs, events and metrics that use action groups to notify sets of recipients. Action groups
also provide the ability to automate remediation using external actions such as webhooks to run Azure
Automation runbooks and Azure Functions.

Dashboards: Dashboards enable you to aggregate monitoring views and combine data across resources
and subscriptions to give you an enterprise-wide view into the telemetry of Azure resources. You can create
and configure your own views and share them with others. For example, you could create a dashboard
consisting of various tiles for DBAs to provide information across all Azure database services, including
Azure SQL DB, Azure DB for PostgreSQL and Azure DB for MySQL.

Metrics Explorer: Metrics are numerical values generated by Azure resources (e.g. % CPU, Disk I/O, that
provide insight into the operation and performance of your resources. By using Metrics Explorer you can
define and send the metrics in which you are interested to Log Analytics for aggregation and analysis.

Azure Monitor: Azure Monitor is the core platform service that provides a single source for monitoring
Azure resources. The Azure Portal interface of Azure Monitor provides a centralized jump off point for all
the monitoring features across Azure including the deep monitoring capabilities of Application Insights, Log
Analytics, Network Monitoring, Management Solutions and Service Maps. With Azure Monitor you can
visualize, query, route, archive and act on the metrics and logs coming from Azure resources across your
entire cloud estate. In addition to the portal you can retrieve data through the Monitor PowerShell Cmdlets,
Cross Platform CLI or the Azure Monitor REST APIs.

Azure Advisor: Azure Advisor constantly monitors telemetry across your subscriptions and environments
and provides recommendations on best practices on how to optimize your Azure resources to save money
and improve performance, security and availability of the resources that make up your applications.

Service Health: Azure Service Health identifies any issues with Azure Services that may affect your
applications as well as assists you in planning for scheduled maintenance windows.

Activity Log: The Activity Log describes all operations on resources in your subscriptions. It provides an

Deep application monitoringDeep application monitoring

Deep infrastructure monitoringDeep infrastructure monitoring

TIPTIP

Cost management

Azure Portal capabilitiesAzure Portal capabilities

audit trail to determine the 'what', 'who', and 'when' of any create, update, delete operation on resources.
Activity Log events are stored in the platform and are available to query for 90 days. You can ingest Activity
Logs into Log Analytics for longer retention periods and deeper querying and analysis across multiple
resources.

Application Insights: Application Insights enables you to collect application specific telemetry and monitor
the performance, availability and usage of applications in the cloud or on-premises. By instrumenting your
application with supported SDKs for multiple languages including .NET, JavaScript, JAVA, Node.js, Ruby and
Python. Application Insights events are ingested into the same Log Analytics data store that supports
infrastructure and security monitoring to enable you to correlate and aggregate events over time through a rich
query language.

Log Analytics: Log Analytics plays a central role in Azure monitoring by collecting telemetry and other
data from a variety of sources and providing a query language and analytics engine that gives you insights
into the operation of your applications and resources. You can either interact directly with Log Analytics data
through highly performant log searches and views, or you may use analysis tools in other Azure services
that store their data in Log Analytics such as Application Insights or Azure Security Center.

Network Monitoring: Azure's network monitoring services enable you to gain insight into network traffic
flow, performance, security, connectivity and bottlenecks. A well-planned network design should include
configuring Azure network monitoring services such as Network Watcher and ExpressRoute Monitor.

Management Solutions: Management solutions are packaged sets of logic, insights and pre-defined Log
Analytics queries for an application or service. They rely on Log Analytics as the foundation to store and
analyze event data. Sample management solutions include monitoring containers and Azure SQL Database
analytics.

Service Map: Service Map provides a graphical view into your infrastructure components, their processes
and interdependencies on other computers and external processes. It integrates events, performance data
and management solutions in Log Analytics.

Before creating individual alerts, create and maintain a set of shared Action Groups that can be used across Azure Alerts. This
will enable you to centrally maintain the lifecycle of your recipient lists, notification delivery methods (email, SMS phone
numbers) and webhooks to external actions (Azure Automation runbooks, Azure Functions / Logic Apps, ITSM).

One of the major changes that you will face when you move from on-premises cloud to the public cloud is the
switch from capital expenditure (buying hardware) to operating expenditure (paying for service as you use it). This
switch from CAPEX to OPEX also brings the need to more carefully manage your costs. The benefit of the cloud is
that you can fundamentally reduce the cost of a service you use by simply turning it off (or resizing it) when it's not
needed. Deliberately managing your costs in the cloud is a recommended practice and one that mature customers
do daily.

Microsoft provides a several tools for you to be able to visual, track and manage your costs. We also provide a full
set of APIs to enable you to customize and integrate cost management into your own tools and dashboards. These
tools are loosely grouped into: Azure Portal Capabilities and external capabilities

These are tools to provide you instant information on cost as well as the ability to take actions

External cost management toolsExternal cost management tools

Automate

Subscription Resource Cost: Located in The Portal, the Azure Cost Analysis view provides a quick look at
your costs and information on daily spend by resource or resource group.
Azure Cost Management: This product is the result of the purchase of Cloudyn by Microsoft and allows you
to manage and analyze your Azure spend as well what you spend on other Public Cloud providers. There are
both free and paid tiers, with a great wealth of capabilities as seen in the overview.
Azure Budgets and Action Groups Knowing what somethings costs and doing something about it until
recently has been more of a manual exercise. With the introduction of Azure Budgets and its APIs, it's now
possible to create actions (as seen in this example) when costs hit a threshold. For example, shutting down a
"test" resource group when it hits 100% of its budget, or [another example].
Azure Advisor Knowing what something costs is only half the battle; the other half is knowing what to do with
that information. Azure Advisor provides you recommendations on actions to take to save money, improve
reliability or even increase security.

PowerBI Azure Consumption Insights. Do you want to create your own visualizations for your
organization? If so, then the Azure Consumption Insights content pack for PowerBI is your tool of choice.
Using this content pack and PowerBI you can create custom visualizations to represent your organization,
do deeper analysis on costs and add in other data sources for further enrichment.

Consumption API. The consumption APIs give you programmatic access to cost and usage data in
addition to information on budgets, reserved instances and marketplace charges. These APIs are accessible
only for Enterprise Enrollments and some Web Direct subscriptions however they give you the ability to
integrate your cost data into your own tools and data warehouses. You can also access these APIs by using
the Azure CLI, seen here.

When we look across customers who have used the cloud for a long time and are "mature" in their use, we see a
number of highly recommended practices

Actively monitor costs. Organizations that are mature Azure users constantly monitor costs and take actions
when needed. Some organizations even dedicate people to do analysis and suggest changes to usage, and
these people more than pay for themselves the first time they find an unused HDInsight cluster that's been
running for months.
Use Reserved Instances. Another key tenet for managing costs in the cloud is to use the right tool for the job.
If you have an IaaS VM that must stay on 24x7, then using a Reserved Instance will save you significant money.
Finding the right balance between automating the shutdown of VMs and using RIs takes experience and
analysis.
Use automation effectively: Many workloads do not need to be running every day. Even turning off a VM for
a four-hour period every day can save you 15% of your cost. Automation will pay for itself quickly.
Use resource tags for visibility: As mentioned elsewhere in this document, using resource tags will allow for
better analysis of costs.

Cost management is a discipline that is core to the effective and efficient running of a public cloud. Enterprises that
achieve success will be able to control their costs and match them to their actual demand as opposed to
overbuying and hoping demand comes.

One of the many capabilities that differentiates the maturity of organizations using cloud providers is the level of
automation that they have incorporated. Automation is a never-ending process and as your organization moves to
the cloud it is any area that you need to invest resources and time in building. Automation serves many purposes
including consistent rollout of resources (where it ties directly to another core scaffold concept, Templates and
DevOps) to the remediation of issues. Automation is the "connective tissue" of the Azure scaffold and links each
area together.

https://docs.microsoft.com/azure/cost-management/overview
https://docs.microsoft.com/azure/cost-management/overview
https://channel9.msdn.com/Shows/Azure-Friday/Managing-costs-with-the-Azure-Budgets-API-and-Action-Groups
https://docs.microsoft.com/azure/advisor/advisor-overview
https://docs.microsoft.com/rest/api/consumption/
https://docs.microsoft.com/cli/azure/consumption?view=azure-cli-latest

Templates and DevOps

There are a number of tools that are available as you build out this capability, from first party tools such as Azure
Automation, EventGrid and AzureCLI to an extensive amount of third party tools such as Terraform, Jenkins, Chef,
and Puppet (to name a few). Core to your operations team ability to automate are Azure Automation, Event Grid
and the Azure Cloud Shell:

Azure Automation: Is a cloud-based capability that allows to you author Runbooks (in either PowerShell or
Python) and allows you automate processes, configure resources, and even apply patches. Azure Automation
has an extensive set of cross platform capabilities that are integral to your deployment but are too extensive to
be covered in depth here.
Event Grid: this service is a fully-managed event routing system that let's you react to events within your Azure
environment. Like Automation is the connective tissue of mature cloud organizations, Event Grid is the
connective tissue of good automation. Using Event Grid, you can create a simple, serverless, action to send an
email to an administrator whenever a new resource is created and log that resource in a database. That same
Event Grid can notify when a resource is deleted and remove the item from the database.
Azure Cloud Shell: is an interactive, browser-based shell for managing resources in Azure. It provides a
complete environment for either PowerShell or Bash that is launched as needed (and maintained for you) so
that you have a consistent environment from which to run your scripts. The Azure Cloud Shell provides access
to additional key tools -already installed-- to automate your environment including Azure CLI, Terraform and a
growing list of additional tools to manage containers, databases (sqlcmd) and more.

Automation is a full-time job and it will rapidly become one of the most important operational tasks within your
cloud team. Organizations that take the approach of "automate first" have greater success in using Azure:

Managing costs: actively seeking opportunities and creating automation to re-size resources, scale-up/down
and turn off unused resources.
Operational flexibility: through the use of automation (along with Templates and DevOps) you gain a level of
repeatability that increases availability, increases security and enables your team to focus on solving business
problems.

As highlighted in the Automate section, your goal as an organization should be to provision resources through
source-controlled templates and scripts and to minimize interactive configuration of your environments. This
approach of "infrastructure as code" along with a disciplined DevOps process for continuous deployment can
ensure consistency and reduce drift across your environments. Almost every Azure resource is deployable through
Azure Resource Manager JSON templates in conjunction with PowerShell or the Azure cross platform CLI and
tools such as Terraform from Hashicorp (which has first class support and integrated into the Azure Cloud Shell).

Article such as this one provide an excellent discussion on best practices and lessons learned in applying a DevOps
approach to Azure Resource Manager templates with the Azure DevOps toolchain. Take the time and effort to
develop a core set of templates specific to your organization's requirements, and to develop continuous delivery
pipelines with DevOps toolchains (such as Azure DevOps, Jenkins, Bamboo, Teamcity, Concourse), especially for
your production and QA environments. There is a large library of Azure Quick Start templates on GitHub that you
can use as a starting point for templates, and you can quickly create cloud-based delivery pipelines with Azure
DevOps.

As a best practice for production subscriptions or resource groups, your goal should be using RBAC security to
disallow interactive users by default and using automated continuous delivery pipelines based on service
principals to provision all resources and deliver all application code. No admin or developer should touch the
Azure Portal to interactively configure resources. This level of DevOps takes a concerted effort and uses all the
concepts of the Azure scaffold to provide a consistent and more secure environment that will meet your
organization's need to scale.

https://docs.microsoft.com/azure/automation/automation-intro
https://docs.microsoft.com/azure/event-grid
https://docs.microsoft.com/azure/cloud-shell/overview
https://docs.microsoft.com/cli/azure/get-started-with-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/azure/virtual-machines/linux/terraform-install-configure
https://azure.microsoft.com/updates/cloud-shell-new-cli-tools-and-font-size-selection/
https://docs.microsoft.com/azure/azure-resource-manager/resource-group-template-deploy
https://blogs.msdn.microsoft.com/mvpawardprogram/2018/05/01/azure-resource-manager/
https://docs.microsoft.com/azure/devops/user-guide/?view=vsts
https://github.com/Azure/azure-quickstart-templates

TIPTIP

Core network

TIPTIP

Virtual DatacenterVirtual Datacenter

Next steps

When designing and developing complex Azure Resource Manager templates, use linked templates to organize and refactor
complex resource relationships from monolithic JSON files. This will enable you to manage resources individually and make
your templates more readable, testable and reusable.

Azure is a hyperscale cloud provider. As you move your organization from on-premises servers to the cloud,
relying on the same concepts that cloud providers and SaaS applications use will help your organization react to
the needs of the business in vastly much more efficiently.

The final component of the Azure scaffold reference model is core to how your organization accesses Azure, in a
secure manner. Access to resources can be either internal (within the corporation's network) or external (through
the internet). It is easy for users in your organization to inadvertently put resources in the wrong spot, and
potentially open them to malicious access. As with on-premises devices, enterprises must add appropriate controls
to ensure that Azure users make the right decisions. For subscription governance, we identify core resources that
provide basic control of access. The core resources consist of:

Virtual networks are container objects for subnets. Though not strictly necessary, it is often used when
connecting applications to internal corporate resources.
User Defined Routes allow you to manipulate the route table within a subnet enabling you to send traffic
through a network virtual appliance or to a remote gateway on a peered virtual network.
Virtual Network Peering enables you to seamlessly connect two or more Azure virtual networks, creating
more complex hub-and-spoke designs or shared services networks.
Service Endpoints. In the past, PaaS services relied on different methods to secure access to those resources
from your virtual networks. Service endpoints allow you to secure access to enabled PaaS services from ONLY
connected endpoints, increasing overall security.
Security groups are an extensive set of rules which provide you the ability to allow or deny inbound and
outbound traffic to/from Azure Resources. Security Groups consist of Security Rules, which can be augmented
with Service Tags (which define common Azure services such as Azure KeyVault, Azure SQL Database, and
others) and Application Groups (which define and application structure, such as web servers or app servers).

Use Service tags and Application groups in your network security groups to not only enhance the readability of your rules —
which is crucial to understanding impact — but also to enable effective microsegmentation within a larger subnet, reducing
sprawl and increasing flexibility.

Azure provides you both internal capabilities and third-party capabilities from our extensive partner network that
enable you to have an effective security stance. More importantly, Microsoft provides best practices and guidance
in the form of the Azure Virtual Datacenter. As you move from a single workload to multiple workloads that use
hybrid capabilities, the VDC guidance will provide you with "recipe" to enable a flexible, network that will grow as
your workloads in Azure grow.

Governance is crucial to the success of Azure. This article targets the technical implementation of an enterprise
scaffold but only touches on the broader process and relationships between the components. Policy governance
flows from the top down and is determined by what the business wants to achieve. Naturally, the creation of a
governance model for Azure includes representatives from IT, but more importantly it should have strong

https://docs.microsoft.com/azure/azure-resource-manager/resource-group-linked-templates
https://docs.microsoft.com/azure/virtual-network/security-overview
https://docs.microsoft.com/azure/architecture/vdc/networking-virtual-datacenter

representation from business group leaders, and security and risk management. In the end, an enterprise scaffold
is about mitigating business risk to facilitate an organization's mission and objectives

Now that you have learned about subscription governance, it's time to see these recommendations in practice. See
Examples of implementing Azure subscription governance.

Examples of implementing Azure enterprise scaffold
3/13/2019 • 9 minutes to read • Edit Online

Background

Scenario 1: line-of-business application

Naming standards and resource groupsNaming standards and resource groups

ITEM NAME DESCRIPTION

Subscription Contoso ETS DeveloperTools Production Supports common developer tools

Resource Group bitbucket-prod-rg Contains the application web server and
database server

Resource Group corenetworks-prod-rg Contains the virtual networks and site-
to-site gateway connection

This article provides examples of how an enterprise can implement the recommendations for an Azure enterprise
scaffold. It uses a fictional company named Contoso to illustrate best practices for common scenarios.

Contoso is a worldwide company that provides supply chain solutions for customers. They provide everything
from a software as a service model to a packaged model deployed on-premises. They develop software across the
globe with significant development centers in India, the United States, and Canada.

The ISV portion of the company is divided into several independent business units that manage products in a
significant business. Each business unit has its own developers, product managers, and architects.

The Enterprise Technology Services (ETS) business unit provides centralized IT capability, and manages several
datacenters where business units host their applications. Along with managing the datacenters, the ETS
organization provides and manages centralized collaboration (such as email and websites) and network/telephony
services. They also manage customer-facing workloads for smaller business units who don't have operational staff.

The following personas are used in this article:

Dave is the ETS Azure administrator.
Alice is Contoso's Director of Development in the supply chain business unit.

Contoso needs to build a line-of-business app and a customer-facing app. It has decided to run the apps on Azure.
Dave reads the prescriptive subscription governance article, and is now ready to implement the recommendations.

Contoso is building a source code management system (BitBucket) to be used by developers across the world. The
application uses infrastructure as a service (IaaS) for hosting, and consists of web servers and a database server.
Developers access servers in their development environments, but they don't need access to the servers in Azure.
Contoso ETS wants to allow the application owner and team to manage the application. The application is only
available while on Contoso's corporate network. Dave needs to set up the subscription for this application. The
subscription will also host other developer-related software in the future.

Dave creates a subscription to support developer tools that are common across all the business units. Dave needs
to create meaningful names for the subscription and resource groups (for the application and the networks). He
creates the following subscription and resource groups:

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/appendix/azure-scaffold-examples.md

Role-based access controlRole-based access control

ROLE ASSIGNED TO DESCRIPTION

Owner Managed ID from Contoso's AD This ID is controlled with Just in Time
(JIT) access through Contoso's Identity
Management tool and ensures that
subscription owner access is fully
audited

Security Reader Security and risk management
department

This role allows users to look at the
Azure Security Center and the status of
the resources

Network Contributor Network team This role allows Contoso's network team
to manage the Site to Site VPN and the
Virtual Networks

Custom role Application owner Dave creates a role that grants the
ability to modify resources within the
resource group. For more information,
see Custom Roles in Azure RBAC

PoliciesPolicies

FIELD EFFECT DESCRIPTION

location audit Audit the creation of the resources in
any region

type deny Deny creation of G-Series virtual
machines

tags deny Require application owner tag

tags deny Require cost center tag

tags append Append tag name BusinessUnit and
tag value ETS to all resources

After creating his subscription, Dave wants to ensure that the appropriate teams and application owners can access
their resources. Dave recognizes that each team has different requirements. He uses the groups that have been
synced from Contoso's on-premises Active Directory (AD) to Azure Active Directory, and provides the right level
of access to the teams.

Dave assigns the following roles for the subscription:

Dave has the following requirements for managing resources in the subscription:

Because the development tools support developers across the world, he doesn't want to block users from
creating resources in any region. However, he needs to know where resources are created.
He is concerned with costs. Therefore, he wants to prevent application owners from creating unnecessarily
expensive virtual machines.
Because this application serves developers in many business units, he wants to tag each resource with the
business unit and application owner. By using these tags, ETS can bill the appropriate teams.

He creates the following Azure policies:

https://docs.microsoft.com/azure/role-based-access-control/built-in-roles#owner
https://docs.microsoft.com/azure/role-based-access-control/built-in-roles#security-reader
https://docs.microsoft.com/azure/role-based-access-control/built-in-roles#network-contributor
https://docs.microsoft.com/azure/role-based-access-control/custom-roles
https://docs.microsoft.com/azure/azure-policy/azure-policy-introduction

Resource tagsResource tags

TAG NAME TAG VALUE

ApplicationOwner The name of the person who manages this application

CostCenter The cost center of the group that is paying for the Azure
consumption

BusinessUnit ETS (the business unit associated with the subscription)

Core networkCore network

RESOURCE TYPE NAME DESCRIPTION

Virtual Network internal-vnet Used with the BitBucket application and
is connected via ExpressRoute to
Contoso's corporate network. A subnet
(bitbucket) provides the application
with a specific IP address space

Virtual Network external-vnet Available for future applications that
require public-facing endpoints

Network Security Group bitbucket-nsg Ensures that the attack surface of this
workload is minimized by allowing
connections only on port 443 for the
subnet where the application lives (
bitbucket)

Resource locksResource locks

LOCK TYPE RESOURCE DESCRIPTION

CanNotDelete internal-vnet Prevents users from deleting the virtual
network or subnets, but does not
prevent the addition of new subnets

Azure AutomationAzure Automation

Dave understands that he needs to have specific information on the bill to identify the cost center for the BitBucket
implementation. Additionally, Dave wants to know all the resources that ETS owns.

He adds the following tags to the resource groups and resources.

The Contoso ETS information security and risk management team reviews Dave's proposed plan to move the
application to Azure. They want to ensure that the application isn't exposed to the internet. Dave also has developer
apps that in the future will be moved to Azure. These apps require public interfaces. To meet these requirements,
he provides both internal and external virtual networks, and a network security group to restrict access.

He creates the following resources:

Dave recognizes that the connectivity from Contoso's corporate network to the internal virtual network must be
protected from any wayward script or accidental deletion.

He creates the following resource lock:

Dave has nothing to automate for this application. Although he created an Azure Automation account, he won't
initially use it.

https://docs.microsoft.com/azure/azure-resource-manager/resource-group-using-tags
https://docs.microsoft.com/azure/azure-resource-manager/resource-group-lock-resources

Azure Security CenterAzure Security Center

Scenario 2: customer-facing app

Azure subscriptionsAzure subscriptions

SUBSCRIPTION USE NAME

Development Contoso SupplyChain ResearchDevelopment LoyaltyCard
Development

Production Contoso SupplyChain Operations LoyaltyCard Production

PoliciesPolicies

FIELD EFFECT DESCRIPTION

location audit Audit the creation of the resources in
any region

FIELD EFFECT DESCRIPTION

location deny Deny the creation of any resources
outside of the US datacenters

tags deny Require application owner tag

Contoso IT service management needs to quickly identify and handle threats. They also want to understand what
problems may exist.

To fulfill these requirements, Dave enables the Azure Security Center, and provides access to the Security Reader
role.

The business leadership in the supply chain business unit has identified various opportunities to increase
engagement with Contoso's customers by using a loyalty card. Alice's team must create this application and
decides that Azure increases their ability to meet the business need. Alice works with Dave from ETS to configure
two subscriptions for developing and operating this application.

Dave logs in to the Azure Enterprise Portal and sees that the supply chain department already exists. However, as
this project is the first development project for the supply chain team in Azure, Dave recognizes the need for a new
account for Alice’s development team. He creates the "R&D" account for her team and assigns access to Alice.
Alice logs in via the Azure portal and creates two subscriptions: one to hold the development servers and one to
hold the production servers. She follows the previously established naming standards when creating the following
subscriptions:

Dave and Alice discuss the application and identify that this application only serves customers in the North
American region. Alice and her team plan to use Azure's Application Service Environment and Azure SQL to
create the application. They may need to create virtual machines during development. Alice wants to ensure that
her developers have the resources they need to explore and examine problems without pulling in ETS.

For the development subscription, they create the following policy:

They don't limit the type of sku a user can create in development, and they don't require tags for any resource
groups or resources.

For the production subscription, they create the following policies:

https://docs.microsoft.com/azure/security-center/security-center-intro

tags deny Require department tag

tags append Append tag to each resource group
that indicates production environment

FIELD EFFECT DESCRIPTION

Resource tagsResource tags

TAG NAME TAG VALUE

ApplicationOwner The name of the person who manages this application

Department The cost center of the group that is paying for the Azure
consumption

EnvironmentType Production (Even though the subscription includes
Production in the name, including this tag enables easy
identification when looking at resources in the portal or on
the bill)

Core networksCore networks

RESOURCE TYPE NAME DESCRIPTION

Virtual Network internal-vnet Serves the Contoso Loyalty Card
development environment and is
connected via ExpressRoute to
Contoso's corporate network

RESOURCE TYPE NAME DESCRIPTION

Virtual Network external-vnet Hosts the Loyalty Card application and
is not connected directly to Contoso's
ExpressRoute. Code is pushed via their
Source Code system directly to the PaaS
services

Network Security Group loyaltycard-nsg Ensures that the attack surface of this
workload is minimized by only allowing
in-bound communication on TCP 443.
Contoso is also investigating using a
Web Application Firewall for additional
protection

They don't limit the type of sku a user can create in production.

Dave understands that he needs to have specific information to identify the correct business groups for billing and
ownership. He defines resource tags for resource groups and resources.

The Contoso ETS information security and risk management team reviews Dave's proposed plan to move the
application to Azure. They want to ensure that the Loyalty Card application is properly isolated and protected in a
DMZ network. To fulfill this requirement, Dave and Alice create an external virtual network and a network security
group to isolate the Loyalty Card application from the Contoso corporate network.

For the development subscription, they create:

For the production subscription, they create:

Resource locksResource locks

LOCK TYPE RESOURCE DESCRIPTION

CanNotDelete external-vnet To prevent people from deleting the
virtual network or subnets. The lock
does not prevent the addition of new
subnets

Azure AutomationAzure Automation

Azure Security CenterAzure Security Center

Next steps

Dave and Alice confer and decide to add resource locks on some of the key resources in the environment to
prevent accidental deletion during an errant code push.

They create the following lock:

Alice and her development team have extensive runbooks to manage the environment for this application. The
runbooks allow for the addition/deletion of nodes for the application and other DevOps tasks.

To use these runbooks, they enable Automation.

Contoso IT service management needs to quickly identify and handle threats. They also want to understand what
problems may exist.

To fulfill these requirements, Dave enables Azure Security Center. He ensures that the Azure Security Center is
monitoring the resources, and provides access to the DevOps and security teams.

To learn about creating Resource Manager templates, see Best practices for creating Azure Resource Manager
templates.

https://docs.microsoft.com/azure/automation/automation-intro
https://docs.microsoft.com/azure/azure-resource-manager/resource-manager-template-best-practices

Architectural decision guides
3/13/2019 • 2 minutes to read • Edit Online

Design guidance categories

Next steps

The architectural decision guides in the Cloud Adoption Framework describe patterns and models that help when
creating cloud governance design guidance. Each decision guide focuses on one core infrastructure component of
cloud deployments and lists potential patterns or models intended to support specific cloud deployment scenarios.

When you begin to establish cloud governance for your organization, actionable governance journeys provide a
baseline roadmap. However, these journeys make assumptions about requirements and priorities that may not
reflect those of your organization. These decision guides supplement the sample governance journeys by
providing alternative patterns and models that help you align the architectural design choices made in the example
design guidance with your own requirements.

Each of the following categories represents a foundational technology of all cloud deployments. The sample
governance journeys make design decisions related to these technologies based on the needs of example
businesses, and some of these decisions may not match your own organization's needs. The sections below
discuss alternative options for each of these categories, allowing you to choose a pattern or model better suited to
your requirements.

Subscriptions: Plan your cloud deployment's subscription design and account structure to match your
organization's ownership, billing, and management capabilities.

Identity: Integrate cloud-based identity services with your existing identity resources to support authorization and
access control within your IT environment.

Policy Enforcement: Define and enforce organizational policy rules for cloud-deployed resources and workloads
which align with your governance requirements.

Resource Consistency: Ensure that deployment and organization of your cloud-based resources align to enforce
resource management and policy requirements.

Resource Tagging: Organize your cloud-based resources to support billing models, cloud accounting approaches,
management, and to optimize resource utilization and cost. Resource tagging requires a consistent and well-
organized naming and metadata scheme.

Software Defined Networks: Deploy secure workloads to the cloud using rapid deployment and modification of
virtualized networking capabilities. Software-defined networks (SDNs) can support agile workflows, isolate
resources, and integrate cloud-based systems with your existing IT infrastructure.

Encryption: Secure your sensitive data using encryption to align with your organization's compliance and security
policy requirements.

Logs and Reporting: Monitor log data generated by cloud-based resources. Analyzing data provides health-related
insights into the operations, maintenance, and compliance status of workloads.

Learn how subscriptions and accounts serve as the base of a cloud deployment.

Subscriptions design

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/decision-guides/overview.md

Subscription decision guide
3/13/2019 • 7 minutes to read • Edit Online

Subscription design is one of the most common strategies that companies use to establish a structure or
organize assets in Azure during a cloud adoption.

All cloud platforms are based on a core ownership model that provides organizations with numerous billing and
resource management options. The structure that Azure uses is different from other cloud providers because it
includes various support options for organizational hierarchy and grouped subscription ownership. Regardless,
there is generally one individual responsible for billing and another who is assigned as the top-level owner for
managing resources.

Jump to: Subscriptions design and Azure Enterprise Agreements | Subscription design patterns | Management
groups | Organization at the subscription level

Subscription hierarchy: A subscription is a logical collection of Azure resources (such as virtual machines, SQL
DB, App Services, or containers). Each asset in Azure is deployed to a single subscription. Each subscription is
then owned by one account. This account is a user account (or preferably a service account) that provides billing
and administrative access across a subscription. For customers who have made a commitment to use a specific
amount of Azure through an Enterprise Agreement (EA), another level of control called a department is added. In
the EA portal, subscription, accounts, and departments can be used to create a hierarchy for billing and
management purposes.

Decisions regarding a subscription design strategy have unique inflection points, as they typically involve both
business and IT constraints. Before making technical decisions, IT architects and decision makers should work
with the business stakeholders and the cloud strategy team to understand the desired cloud accounting
approach, cost accounting practices within your business units, and global market needs for your organization.

Inflection point: The dashed line in the image above references an inflection point between simple and more
complex patterns for subscription design. Additional technical decision points based on digital estate size versus
Azure subscription limits, isolation and segregation policies, and IT operational divisions usually have a
significant effect on subscription design.

Other considerations: An important thing to note when selecting a subscription design is that subscriptions
aren’t the only way to group resources or deployments. Subscriptions were created in the early days of Azure, as
such they have limitations related to previous Azure solutions like Azure Service Manager.

Deployment structure, automation, and new approaches to grouping resources can affect your structure

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/decision-guides/subscriptions/overview.md

Subscriptions design and Azure Enterprise Agreements

Subscription design patterns

Single subscriptionSingle subscription

Application category patternApplication category pattern

subscription design. Before finalizing a subscription design, consider how resource consistency decisions might
influence your design choices. For example, a large multinational organization might initially consider a complex
pattern for subscription management. However, that same company might realize greater benefits with a simpler
business unit pattern by adding a management group hierarchy.

All Azure subscriptions are associated with one account, which is connected to billing and top-level access
control for each subscription. A single account can own multiple subscriptions and can provide a base level of
subscriptions organization.

For small Azure deployments, a single subscription or a small collection of subscriptions may compose your
entire cloud estate. However, large Azure deployments likely need to span multiple subscriptions to support your
organizational structure and bypass subscription quotas and limits.

Each Azure Enterprise Agreement provides a further ability to organize subscriptions, and accounts into
hierarchies that reflect your organizational priorities. Your organizational enterprise enrollment defines the shape
and use of Azure services within your company from a contractual point of view. Within each enterprise
agreement, you can further subdivide the environment into departments, accounts, and subscriptions to match
your organization's structure.

Every enterprise is different. Therefore, the department/account/subscription hierarchy enabled throughout an
Azure Enterprise Agreement allows for significant flexibility in how Azure is organized. Modeling your
organization's hierarchy to reflect the needs of your company for billing, resource management, and resource
access is the first, and most important, decision that you make when starting in the public cloud.

The following subscription patterns reflect a general increase in subscription design sophistication to support
potential organizational priorities:

A single subscription per account may suffice for organizations that need to deploy a small number of cloud-
hosted assets. This is often the first subscription pattern you implement when beginning your cloud adoption
process, allowing small-scale experimental or proof of concept deployments to explore the capabilities of a cloud
platform.

However, there are technical limitations related to the number of resources that a single subscription will
support. As the size of your cloud estate grows, you may likely want to also support organizing your resources to
better organize policies and access control in a manner not supported with a single subscription.

As the size of an organization's cloud footprint grows, the use of multiple subscriptions becomes increasingly
likely. In this scenario, subscriptions are generally created to support applications that have fundamental
differences in business criticality, compliance requirements, access controls, or data protection needs. The
subscriptions and accounts supporting these application categories are all organized under a single department
which is owned and administered by central IT operations staff.

Each organization will choose to categorize applications differently, often separating subscriptions based on
specific applications or services or along the lines of application archetypes. This categorization is often designed

https://docs.microsoft.com/azure/azure-subscription-service-limits

Functional patternFunctional pattern

Business unit patternBusiness unit pattern

to support workloads that are likely to consume most of the resource limits of a subscription, or separate
mission-critical workloads to ensure aren't competing against other workloads under these limits. Some
examples of workloads that might justify a separate subscription under this pattern include:

Experimental applications
Applications with protected data
Mission-critical workloads
Applications subject to regulatory requirements (such as HIPAA or FedRAMP)
Batch workloads
Big data workloads such as Hadoop
Containerized workloads using deployment orchestrators such as Kubernetes
Analytics workloads

This pattern supports multiple accounts owners responsible for specific workloads, and can be implemented
without an Azure Enterprise Agreement.

This pattern organizes subscriptions and accounts along functional lines, such as finance, sales, or IT support,
using the Enterprise/Department/Account/subscription hierarchy provided to Azure enterprise agreement
customers.

This pattern groups subscriptions and accounts based on profit and loss category, business unit, division, profit
center, or similar business structure using the Azure Enterprise Agreement hierarchy.

Geographic patternGeographic pattern

Mixed patternsMixed patterns

Management groups

For organizations with global operations, this pattern groups subscriptions and accounts based on geographic
regions using the Azure Enterprise Agreement hierarchy.

Azure Enterprise Agreements are limited to the four-level enterprise/department/account/subscriptions
hierarchy. However, you can combine patterns such as geographic region and business unit to reflect more
complex billing and organizational structures within your company. In addition, your resource consistency design
can further extend the governance and organizational structure of your subscription design.

Management groups, as discussed in the following section, can help support more complicated organizational
structures.

Management groups, discussed in the following section, can help support more complicated organizational
structures.

In addition to the department and organization structure provided through Enterprise Agreements, Azure
management groups offer additional flexibility for organizing policy, access control, and compliance across
multiple subscriptions. Management groups can be nested up to six levels, allowing you to create a hierarchy that
is separate from your billing hierarchy. This can be solely for efficient management of resources.

Management groups can mirror your billing hierarchy, and often enterprises start that way. However, the power

https://docs.microsoft.com/azure/governance/management-groups/index

 Organization at the subscription level

Next steps

of management groups is when you use them to model your organization where related subscriptions —
regardless of where they are in the billing hierarchy — are grouped together and need common roles assigned
along with policies and initiatives.

Examples include:

Production/non-production: Some enterprises create management groups to identify their production and
non-production subscriptions. Management groups allow these customers to more easily manage roles and
policies, for example: non-production subscription may allow developers "contributor" access, but in
production, they have only "reader" access.
Internal services/external services: Much like production/non-production, enterprises often have different
requirements, policies, and roles for internal services versus external customer-facing services.

When determining your departments and accounts (or management groups), you will primarily need to decide
how you're going to divide your Azure environment to match your organization. However, subscriptions are
where the real work happens, and these decisions will affect security, scalability, and billing.

Consider the following patterns as guides:

Application/service: Subscriptions represent an application or a service (portfolio of applications).

Deployment environment: Subscriptions represent the lifecycle stage of a service, such as production
or development.

Department: Subscriptions represent departments in the organization.

The first two patterns are the most commonly used and are both highly recommended. The lifecycle approach is
appropriate for most organizations. In this case, the general recommendation is to use two base subscriptions:
production and non-production, and then use resource groups to break out the environments further.

For a general description of how Azure subscriptions and resource groups are used to group and manage
resources, see Resource access management in Azure.

Learn how identity services are used for access control and management in the cloud.

Identity

Identity decision guide
3/13/2019 • 7 minutes to read • Edit Online

Determine identity integration requirements

QUESTION CLOUD BASELINE
DIRECTORY
SYNCHRONIZATION

CLOUD-HOSTED
DOMAIN SERVICES

AD FEDERATION
SERVICES

Do you currently lack
an on-premises
directory service?

Yes No No No

Do your workloads
need to use a
common set of users
and groups between
the cloud and on-
premises
environment?

No Yes No No

In any environment, whether on-premises, hybrid, or cloud-only, IT needs to control which administrators,
users, and groups have access to resources. Identity and access management (IAM) services enable you to
manage access control in the cloud.

Jump to: Determine Identity Integration Requirements | Cloud native | Directory Synchronization | Cloud
hosted domain services | Active Directory Federation Services | Evolving identity integration | Learn more

There are several ways to manage identity in a cloud environment, which vary in cost and complexity. A key
factor in structuring your cloud-based identity services is the level of integration required with your existing on-
premises identity infrastructure.

In Azure, Azure Active Directory (Azure AD) provides a base level of access control and identity management
for cloud resources. However, if your organization's Active Directory (AD) infrastructure has a complex forest
structure or customized organizational units (OUs), your cloud-based workloads may require directory
synchronization with Azure AD for a consistent set of identities, groups, and roles between your on-premises
and cloud environments. Additionally, support for applications dependent on legacy authentication mechanisms
may require the deployment of Active Directory Domain Services (AD DS) in the cloud.

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/decision-guides/identity/overview.md

Do your workloads
depend on legacy
authentication
mechanisms, such as
Kerberos or NTLM?

No No Yes Yes

Do you require single
sign-on across
multiple identity
providers?

No No No Yes

QUESTION CLOUD BASELINE
DIRECTORY
SYNCHRONIZATION

CLOUD-HOSTED
DOMAIN SERVICES

AD FEDERATION
SERVICES

Cloud baselineCloud baseline

TIPTIP

Directory synchronizationDirectory synchronization

As part of planning your migration to Azure, you will need to determine how best to integrate your existing
identity management and cloud identity services. The following are common integration scenarios.

Azure AD is the native Identity and Access Management (IAM) system for granting users and groups access to
management features on the Azure platform. If your organization lacks a significant on-premises identity
solution, and you plan on migrating workloads to be compatible with cloud-based authentication mechanisms,
you should begin developing your identity infrastructure using Azure AD as a base.

Cloud baseline assumptions. Using a purely cloud-native identity infrastructure assumes the following:

Your cloud-based resources will not have dependencies on on-premises directory services or Active
Directory servers, or workloads can be modified to remove those dependencies.
The application or service workloads being migrated either support authentication mechanisms compatible
with Azure AD or can be modified easily to support them. Azure AD relies on internet-ready authentication
mechanisms such as SAML, OAuth, and OpenID Connect. Existing workloads that depend on legacy
authentication methods using protocols such as Kerberos or NTLM may need to be refactored before
migrating to the cloud using the cloud baseline pattern.

Completely migrating your identity services to Azure AD eliminates the need to maintain your own identity infrastructure,
significantly simplifying your IT management.

However, Azure AD is not a full replacement for a traditional on-premises Active Directory infrastructure. Directory
features such as legacy authentication methods, computer management, or group policy may not be available without
deploying additional tools or services to the cloud.

For scenarios where you need to integrate your on-premises identities or domain services with your cloud deployments,
see the directory synchronization and cloud-hosted domain services patterns discussed below.

For organizations with existing on-premises Active Directory infrastructure, directory synchronization is often
the best solution for preserving existing user and access management while providing the required IAM
capabilities for managing cloud resources. This process continuously replicates directory information between
Azure AD and on-premises directory services, allowing common credentials for users and a consistent identity,
role, and permission system across your entire organization.

Note: Organizations that have adopted Office 365 may have already implemented directory synchronization
between their on-premises Active Directory infrastructure and Azure Active Directory.

Directory synchronization assumptions. Using a synchronized identity solution assumes the following:

https://docs.microsoft.com/office365/enterprise/set-up-directory-synchronization

TIPTIP

Cloud-hosted domain servicesCloud-hosted domain services

TIPTIP

Active Directory Federation ServicesActive Directory Federation Services

Evolving identity integration

You need to maintain a common set of user accounts and groups across your cloud and on-premises IT
infrastructure.
Your on-premises identity services support replication with Azure AD.

Any cloud-based workloads that depend on legacy authentication mechanisms provided by on-premises Active Directory
servers and that are not supported by Azure AD will still require either connectivity to on-premises domain services or
virtual servers in the cloud environment providing these services. Using on-premises identity services also introduces
dependencies on connectivity between the cloud and on-premises networks.

If you have workloads that depend on claims-based authentication using legacy protocols such as Kerberos or
NTLM, and those workloads cannot be refactored to accept modern authentication protocols such as SAML or
OAuth and OpenID Connect, you may need to migrate some of your domain services to the cloud as part of
your cloud deployment.

This pattern involves deploying virtual machines running Active Directory to your cloud-based virtual networks
to provide Active Directory Domain Services (AD DS) for resources in the cloud. Any existing applications and
services migrating to your cloud network should be able to use these cloud-hosted directory servers with minor
modifications.

It's likely that your existing directories and domain services will continue to be used in your on-premises
environment. In this scenario, it's recommended that you also use directory synchronization to provide a
common set of users and roles in both the cloud and on-premises environments.

Cloud hosted domain services assumptions. Performing a directory migration assumes the following:

Your workloads depend on claims-based authentication using protocols like Kerberos or NTLM.
Your workload virtual machines need to be domain-joined for management or application of Active
Directory group policy purposes.

While a directory migration coupled with cloud-hosted domain services provides great flexibility when migrating existing
workloads, hosting virtual machines within your cloud virtual network to provide these services does increase the
complexity of your IT management tasks. As your cloud migration experience matures, examine the long-term
maintenance requirements of hosting these servers. Consider whether refactoring existing workloads for compatibility
with cloud identity providers such as Azure Active Directory can reduce the need for these cloud-hosted servers.

Identity federation establishes trust relationships across multiple identity management systems to allow
common authentication and authorization capabilities. You can then support single sign-on capabilities across
multiple domains within your organization or identity systems managed by your customers or business
partners.

Azure AD supports federation of on-premises Active Directory domains using Active Directory Federation
Services (AD FS). See the reference architecture Extend AD FS to Azure to see how this can be implemented in
Azure.

Identity integration is an iterative process. You may want to start with a cloud native solution with a small set of
users and corresponding roles for an initial deployment. As your migration matures, consider adopting a

https://docs.microsoft.com/azure/active-directory/hybrid/how-to-connect-fed-whatis

 Learn more

Next steps

federated model or performing a full directory migration of your on-premises identity services to the cloud.
Revisit your identity strategy in every iteration of your migration process.

See the following for more information about identity services on the Azure platform.

Azure AD. Azure AD provides cloud-based identity services. It allows you to manage access to your Azure
resources and control identity management, device registration, user provisioning, application access control,
and data protection.
Azure AD Connect. The Azure AD Connect tool allows you to connect Azure AD instances with your existing
identity management solutions, allowing synchronization of your existing directory in the cloud.
Role-based access control (RBAC). Azure AD provides RBAC to efficiently and securely manage access to
resources in the management plane. Jobs and responsibilities are organized into roles, and users are
assigned to these roles. RBAC allows you to control who has access to a resource along with which actions a
user can perform on that resource.
Azure AD Privileged Identity Management (PIM). PIM lowers the exposure time of resource access
privileges and increases your visibility into their use through reports and alerts. It limits users to taking on
their privileges "just in time" (JIT), or by assigning privileges for a shorter duration, after which privileges are
revoked automatically.
Integrate on-premises Active Directory domains with Azure Active Directory. This reference architecture
provides an example of directory synchronization between on-premises Active Directory domains and Azure
AD.
Extend Active Directory Domain Services (AD DS) to Azure. This reference architecture provides an example
of deploying AD DS servers to extend domain services to cloud-based resources.
Extend Active Directory Federation Services (AD FS) to Azure. This reference architecture configures Active
Directory Federation Services (AD FS) to perform federated authentication and authorization with your
Azure AD directory.

Learn how to implement policy enforcement in the cloud.

Policy enforcement

https://azure.microsoft.com/services/active-directory
https://docs.microsoft.com/azure/active-directory/hybrid/whatis-hybrid-identity
https://docs.microsoft.com/azure/role-based-access-control/overview
https://docs.microsoft.com/azure/active-directory/privileged-identity-management/pim-configure

Policy enforcement decision guide
3/13/2019 • 3 minutes to read • Edit Online

Baseline recommended practices

Defining organizational policy is not effective unless there is a way to enforce it across your organization. A key
aspect to planning any cloud migration is determining how best to combine tools provided by the cloud platform
with your existing IT processes to maximize policy compliance across your entire cloud estate.

Jump to: Baseline recommended practices | Policy compliance monitoring | Policy enforcement | Cross-
organization policy | Automated enforcement

As your cloud estate grows, you will be faced with a corresponding need to maintain and enforce policy across a
larger array of resources, and subscriptions. As your estate gets larger and your organization's policy
requirements increase, the scope of your policy enforcement processes needs to expand to ensure consistent
policy adherence and fast violation detection.

Platform-provided policy enforcement mechanisms at the resource or subscription level are usually sufficient for
smaller cloud estates. Larger deployments justify a larger enforcement scope and may need to take advantage of
more sophisticated enforcement mechanisms involving deployment standards, resource grouping and
organization, and integrating policy enforcement with your logging and reporting systems.

The primary factors in determining the scope of your policy enforcement processes is your organization's cloud
governance requirements, the size and nature of your cloud estate, and how your organization is reflected in your
subscription design. An increase in size of your estate or a greater need to centrally manage policy enforcement
can both justify an increase in enforcement scope.

For single subscription and simple cloud deployments, many corporate policies can be enforced using features
that are native to resources and subscriptions in the Azure platform. The consistent use of the patterns discussed
throughout the CAF decision guides can help establish a baseline level of policy compliance without specific
investment in policy enforcement.

For example:

Deployment templates can provision resources with standardized structure and configuration.
Tagging and naming standards can help organize operations and support accounting and business
requirements.

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/decision-guides/policy-enforcement/overview.md
https://docs.microsoft.com/azure/architecture/cloud-adoption/governance/overview

Policy compliance monitoring

Policy enforcement

Cross-organization policy

Automated enforcement

Next steps

Traffic management and networking restrictions can be implemented through software defined networking.
Role-based access control can secure and isolate your cloud resources.

Start your cloud policy enforcement planning by examining how the application of the standard patterns
discussed throughout these guides can help meet your organizational requirements.

A first step beyond simply relying on the policy enforcement mechanisms provided by the Azure platform, is
ensuring ability to verify cloud-based applications and services comply with organizational policy. This includes
implementing notification capabilities for alerting responsible parties if a resource becomes noncompliant.
Effectively logging and reporting the compliance status of your cloud workloads is a critical part of a corporate
policy enforcement strategy.

As your cloud estate grows, additional tools such as Azure Security Center can provide integrated security and
threat detection, and help apply centralized policy management and alerting for both your on-premises and cloud
assets.

In Azure, you can apply configuration settings and resource creation rules at the management group,
subscription, or resource group level to help ensure policy alignment.

Azure Policy is an Azure service for creating, assigning, and managing policies. These policies enforce different
rules and effects over your resources, so those resources stay compliant with your corporate standards and
service level agreements. Azure Policy evaluates your resources for noncompliance with assigned policies. For
example, you might want to limit the SKU size of virtual machines in your environment. Once a corresponding
policy is implemented, new and existing resources would be evaluated for compliance. With the right policy,
existing resources can be brought into compliance.

As your cloud estate grows to span many subscriptions that require enforcement, you will need to focus on a
cloud estate-wide enforcement strategy to ensure policy consistency.

Your subscription design will need to account for policy as it relates to your organizational structure. In addition
to helping support complex organization within your subscription design, Azure management groups can be
used to assign Azure Policy rules across multiple subscriptions.

While standardized deployment templates are effective at a smaller scale, Azure Blueprints allows large-scale
standardized provisioning and deployment orchestration of Azure solutions. Workloads across multiple
subscriptions can be deployed with consistent policy settings for any resources created.

For IT environments integrating cloud and on-premises resources, you may need use logging and reporting
systems to provide hybrid monitoring capabilities. Your third-party or custom operational monitoring systems
may offer additional policy enforcement capabilities. For larger or more mature cloud estates, consider how best
to integrate these systems with your cloud assets.

Learn how resource consistency is used to organize and standardize cloud deployments in support of
subscription design and governance goals.

https://docs.microsoft.com/azure/security-center/
https://docs.microsoft.com/azure/governance/policy/overview
https://docs.microsoft.com/azure/governance/blueprints/overview

Resource consistency

CAF: Resource consistency decision guide
3/13/2019 • 4 minutes to read • Edit Online

Basic grouping

Azure subscription design defines how you organize your cloud assets in relation to your organization's
structure, accounting practices, and workload requirements. In addition to this level of structure, addressing
your organizational governance policy requirements across your cloud estate requires the ability to consistently
organize, deploy, and manage resources within a subscription.

Jump to: Basic grouping | Deployment consistency | Policy consistency | Hierarchical consistency | Automated
consistency

Decisions regarding the level of your cloud estate's resource consistency requirements are primarily driven by
these factors: post-migration digital estate size, business or environmental requirements that don't fit neatly
within your existing subscription design approaches, or the need to enforce governance over time after
resources have been deployed.

As these factors increase in importance, the benefits of ensuring consistent deployment, grouping, and
management of cloud-based resources becomes more important. Achieving more advanced levels of resource
consistency to meet increasing requirements requires more effort spent in automation, tooling, and consistency
enforcement, and this results in an more time spent on change management and tracking.

In Azure, resource groups are a core resource organization mechanism to logically group resources within a
subscription.

Resource groups act as containers for resources with a common lifecycle or shared management constraints
such as policy or role-based access control (RBAC) requirements. Resource groups can't be nested, and
resources can only belong to one resource group. Some actions can act on all resources in a resource group.
For example, deleting a resource group removes all resources within that group. There are common patterns
when creating resource groups, commonly divided into two categories:

Traditional IT workloads: Most often grouped by items within the same lifecycle, such as an application.
Grouping by application allows for individual application management.
Agile IT workloads: Focus on external customer-facing cloud applications. These resource groups often
reflect the functional layers of deployment (such as web tier or app tier) and management.

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/decision-guides/resource-consistency/overview.md
https://docs.microsoft.com/azure/azure-resource-manager/resource-group-overview#resource-groups

Deployment consistency

Policy consistency

Hierarchical consistency

Automated consistency

Building on top of the base resource grouping mechanism, the Azure platform provides a system for using
templates to deploy your resources to the cloud environment. You can use templates to create consistent
organization and naming conventions when deploying workloads, enforcing those aspects of your resource
deployment and management design.

Azure Resource Manager templates allow you to repeatedly deploy your resources in a consistent state using a
predetermined configuration and resource group structure. Resource Manager templates help you define a set
of standards as a basis for your deployments.

For example, you can have a standard template for deploying a web server workload that contains two virtual
machines as web servers combined with a load balancer to distribute traffic between the servers. You can then
reuse this template to create structurally identical set of virtual machines and load balancer whenever this type
of workload is needed, only changing the deployment name and IP addresses involved.

Note that you can also programmatically deploy these templates and integrate them with your CI/CD systems.

To ensure that governance policies are applied when resources are created, part of resource grouping design
involves using a common configuration when deploying resources.

By combining resource groups and standardized Resource Manager templates, you can enforce standards for
what settings are required in a deployment and what Azure Policy rules are applied to each resource group or
resource.

For example, you may have a requirement that all virtual machines deployed within your subscription connect
to a common subnet managed by your central IT team. You can create a standard template for deploying
workload VMs which would create a separate resource group for the workload and deploy the required VMs
there. This resource group would have a policy rule to only allow network interfaces within the resource group
to be joined to the shared subnet.

For a more in-depth discussion of enforcing your policy decisions within a cloud deployment, see Policy
enforcement.

Resource groups allows you to support additional levels of hierarchy within your organization within the
subscription, applying Azure Policy rules and access controls at a resource group level. However, As the size of
your cloud estate grows, you may need to support more complicated cross-subscription governance
requirements than can be supported using the Azure Enterprise Agreement's
Enterprise/Department/Account/Subscription hierarchy.

Azure management groups allows you to organization subscriptions into more sophisticated organizational
structures by grouping subscriptions in an alternative hierarchy to that established by your enterprise
agreement's structure. This alternate hierarchy allows you to apply access control and policy enforcement
mechanisms across multiple subscriptions and the resources they contain. Management group hierarchies can
be used to match your cloud estate's subscriptions with operations or business governance requirements.

For large cloud deployments, global governance becomes both more important and more complex. It is crucial
to automatically apply and enforce governance requirements when deploying resources, as well as meet
updated requirements for existing deployments.

https://docs.microsoft.com/azure/azure-resource-manager/resource-group-overview#template-deployment
https://docs.microsoft.com/azure/governance/policy/overview

Next steps

Azure Blueprints enable organizations to support global governance of large cloud estates in Azure. Blueprints
move beyond the capabilities provided by standard Azure Resource Manager templates to create complete
deployment orchestrations capable of deploying resources and applying policy rules. Blueprints supports
versioning, the ability to make apply updates to all subscriptions where the blueprint was used, and the ability
to lock down deployed subscriptions to avoid the unauthorized creation and modification of resources.

These deployment packages allow IT and development teams to rapidly deploy new workloads and networking
assets that comply with changing organizational policy requirements. Blueprints can also be integrated into
CI/CD pipelines to apply revised governance standards to deployments as they are updated.

Learn how resource naming and tagging are used to further organize and manage your cloud resources.

Resource naming and tagging

https://docs.microsoft.com/azure/governance/blueprints/overview

Resource organization and tagging decision guide
3/13/2019 • 4 minutes to read • Edit Online

Tagging decision guide

Baseline naming conventions

Organizing cloud-based resources is one of the most important tasks for IT, unless you have very simple
deployments. Organizing your resources serves three primary purposes:

Resource Management. Your IT teams will need to quickly find resources associated with specific workloads,
environments, ownership groups, or other important information. Organizing resources is critical to assigning
organizational roles and access permissions for resource management.
Automation. In addition to making resources easier for IT to manage, a proper organizational scheme allows
you to take advantage of automation as part of resource creation, operational monitoring, and the creation of
DevOps processes.
Accounting. Making business groups aware of cloud resource consumption requires IT to understand what
workloads and teams are using which resources. To support approaches such as chargeback and showback
accounting, cloud resources need to be organized to reflect ownership and usage.

Jump to: Baseline naming conventions | Resource tagging patterns | Naming and tagging policy | Learn more

Your tagging approach can be simple or complex, with the emphasis ranging from supporting IT teams
managing cloud workloads to integrating information relating to all aspects of the entire business.

An IT aligned tagging focus, such as tagging based on workload, function, or environment, will reduce the
complexity of monitoring assets and make management decisions based on operational requirements much
easier.

Tagging schemes that include a business aligned focus, such as accounting, business ownership, or business
criticality may require a larger time investment to create tagging standards that reflect business interests and
maintain those standards over time. However, the result of this process is a tagging system providing an
improved ability to account for costs and value of IT assets to the overall business. This association of an asset's
business value to its operational cost is one of the first steps in changing the cost center perception of IT within
your wider organization.

A standardized naming convention is the starting point for organizing your cloud-hosted resources. A properly

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/decision-guides/resource-tagging/overview.md

Resource tagging patterns

TAG TYPE EXAMPLES DESCRIPTION

Functional app = catalogsearch1
tier = web
webserver = apache
env = prod
env = staging
env = dev

Categorize resources in relation to their
purpose within a workload, what
environment they've been deployed to,
or other functionality and operational
details.

Classification confidentiality=private
sla = 24hours

Classifies a resource by how it is used
and what policies apply to it

Accounting department = finance
project = catalogsearch
region = northamerica

Allows resource to be associated with
specific groups within an organization
for billing purposes

Partnership owner = jsmith
contactalias = catsearchowners
stakeholders = user1;user2;user3

Provides information about what
people (outside of IT) are related or
otherwise affected by the resource

Purpose businessprocess=support
businessimpact=moderate
revenueimpact=high

Aligns resources to business functions
to better support investment decisions

Naming and tagging policy

structured naming system allows you to quickly identify resources for both management and accounting
purposes. If you have existing IT naming conventions in other parts of your organization, consider whether your
cloud naming conventions should align with them or if you should establish separate cloud-based standards.

Note also that different Azure resource types have different naming requirements. Your naming conventions
must be compatible with these naming requirements.

For more sophisticated organization than a consistent naming convention only can provide, cloud platforms
support the ability to tag resources.

Tags are metadata elements attached to resources. Tags consist of pairs of key/value strings. The values you
include in these pairs is up to you, but the application of a consistent set of global tags, as part of a
comprehensive naming and tagging policy, is a critical part of an overall governance policy.

Here are some examples of common tagging patterns:

Your naming and tagging policy will evolve over time. However, determining your core organizational priorities
at the outset of a cloud migration is critical. As part of your planning process, carefully consider the following
questions:

How best can your naming and tagging policies integrate with existing naming and organizational policies
within your organization?
Will you implement a chargeback or showback accounting system? Will you need to provide accounting
information for departments, business groups, and teams in more detail than a simple subscription-level
breakdown allows?
What tagging information will be required for all resources? What tagging information will be left up to
individual teams to implement or not implement?
Does tagging need to represent details such regulatory compliance requirements for a resource? What about

 Learn more

Next steps

operational details such as uptime requirements, patching schedules, or security requirements?

For more information about naming and tagging in Azure, see:

Naming conventions for Azure resources. Refer to this guidance from the Azure Cloud Fundamentals site for
recommended naming conventions for Azure resources.
Use tags to organize your Azure resources. You can apply tags in Azure at both the resource group and
individual resource level, giving you flexibility in the granularity of any accounting reports based on applied
tags.

Learn how encryption is used to secure data in cloud environments.

Encryption

https://docs.microsoft.com/azure/azure-resource-manager/resource-group-using-tags?toc=/azure/billing/TOC.json

Encryption decision guide
3/13/2019 • 6 minutes to read • Edit Online

Key management

QUESTION CLOUD NATIVE HYBRID ON-PREMISES

Does your organization lack
centralized key and secret
management?

Yes No No

Encrypting data protects it against unauthorized access. Properly implemented encryption policy provides
additional layers of security for your cloud-based workloads and guards against attackers and other unauthorized
users from both inside and outside your organization and networks.

Jump to: Key management | Data encryption | Learn more

Cloud encryption strategy focuses on corporate policy and compliance mandates. Encrypting resources is
generally desirable, and in Azure many services such as Azure Storage and Azure SQL Database enable
encryption by default. However, encryption does have costs that can increase latency and overall resource usage.

For demanding workloads, striking the correct balance between encryption and performance, and determining
how data and traffic is encrypted can be essential. Encryption mechanisms can vary in cost and complexity, and
both technical and policy requirements can influence your decisions on how encryption is applied and how you
store and manage critical secrets and keys.

Corporate policy and third-party compliance are the biggest drivers when planning an encryption strategy. Azure
provides multiple standard mechanisms that can meet common requirements for encrypting data, whether at
rest or in transit. However, for policies and compliance requirements that demand tighter controls, such as
standardized secrets and key management, encryption in-use, or data specific encryption, you will need to
develop a more sophisticated encryption strategy to support these requirements.

Modern key management systems should offer support for storing keys using hardware security modules
(HSMs) for increased protection. Thus, a key management system is critical to your organization's ability to create
and store cryptographic keys, important passwords, connection strings, and other IT confidential information.

When planning a cloud migration, the following table describes how you can store and manage encryption keys,
certificates, and secrets, which are critical for creating secure and manageable cloud deployments:

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/decision-guides/encryption/overview.md

Will you need to limit the
creation of keys and secrets
to devices to your on-
premises hardware, while
using these keys in the
cloud?

No Yes No

Does your organization
have rules or policies in
place that would prevent
keys from being stored
offsite?

No No Yes

QUESTION CLOUD NATIVE HYBRID ON-PREMISES

Cloud nativeCloud native

Hybrid (bring your own key)Hybrid (bring your own key)

On-premises (hold your own key)On-premises (hold your own key)

Data encryption

With cloud native key management, all keys and secrets are generated, managed, and stored in a cloud-based
vault such as Azure Key Vault. This approach simplifies many IT tasks related to key management, such as key
backup, storage, and renewal.

Using a cloud native key management system assumes the following:

You trust the cloud key management solution with creating, managing, and hosting your organization's secrets
and keys.
You enable all on-premises applications and services that rely on accessing encryption services or secrets to
access the cloud key management system.

With this approach, you generate keys on dedicated HSM hardware within your on-premises environment, then
transfer the keys to a secure cloud key vault for use with cloud resources.

Hybrid key management assumptions: Using a hybrid key management system assumes the following:

You trust the underlying security and access control infrastructure of the cloud platform for hosting and using
your keys and secrets.
Your cloud-hosted applications or services are able to access and use keys and secrets in a robust and secure
way.
You are required by regulatory or organizational policy to keep the creation and management of your
organization's secrets and keys on-premises.

In certain scenarios, there may be regulatory, policy, or technical reasons why you can't store keys on a key
management system provided by a public cloud service. In these cases, you must maintain keys using on-
premises hardware, and provision a mechanism to allow cloud-based resource to access these keys for
encryption purposes. Note that a hold your own key approach may not be compatible with all cloud services.

On-premises key management assumptions: Using an on-premises key management system assumes the
following:

You are required by regulatory or organizational policy to keep the creation, management, and hosting of
your organization's secrets and keys on-premises.
Any cloud-based applications or services that rely on accessing encryption services or secrets can access the
on-premises key management system.

DATA STATE DATA

Data in transit Internal network traffic, internet connections, connections
between datacenters or virtual networks

Data at rest Databases, files, virtual drives, PaaS storage

Data in use Data loaded in RAM or in CPU caches

Data in transitData in transit

Data at restData at rest

Data in useData in use

There are several different states of data with different encryption needs to consider when planning your
encryption policy:

Data in transit is data moving between resources on the internal, between datacenters or external networks, or
over the internet.

Encrypting data in transit is usually done by requiring SSL/TLS protocols for traffic. Traffic transiting between
your cloud-hosted resources to external network or the public internet should always be encrypted. PaaS
resources generally also enforce SSL/TLS encryption to traffic by default. Whether you enforce encryption for
traffic between IaaS resources hosted inside your virtual networks is a decision for your Cloud Adoption Team
and workload owner and is generally recommended.

Encrypting data in transit assumptions. Implementing proper encryption policy for data in transit assumes
the following:

All publicly accessible endpoints in your cloud environment will communicate with the public internet using
SSL/TLS protocols.
When connecting cloud networks with on-premises or other external network over the public internet, use
encrypted VPN protocols.
When connecting cloud networks with on-premises or other external network using a dedicated WAN
connection such as ExpressRoute, you will use a VPN or other encryption appliance on-premises paired with a
corresponding virtual VPN or encryption appliance deployed to your cloud network.
If you have sensitive data that shouldn't be included in traffic logs or other diagnostics reports visible to IT
staff, you will encrypt all traffic between resources in your virtual network.

Data at rest represents any data not being actively moved or processed, including files, databases, virtual
machine drives, PaaS storage accounts, or similar assets. Encrypting stored data protects virtual devices or files
against unauthorized access either from external network penetration, rogue internal users, or accidental releases.

PaaS storage and database resources generally enforce encryption by default. IaaS virtual resources can be
secured through virtual disk encryption using cryptographic keys stored in your key management system.

Encryption for data at rest also encompasses more advanced database encryption techniques, such as column-
level and row level encryption, which provides much more control over exactly what data is being secured.

Your overall policy and compliance requirements, the sensitivity of the data being stored, and the performance
requirements of your workloads should determine which assets require encryption.

Encrypting Data at Rest Assumptions. Encrypting data at rest assumes the following:

You are storing data that is not meant for public consumption.
Your workloads can accept the added latency cost of disk encryption.

Encryption for data in use involves securing data in nonpersistent storage, such as RAM or CPU caches. Use of

 Learn more

Next steps

technologies such as full memory encryption, enclave technologies, such as Intel's Secure Guard Extensions
(SGX). This also includes cryptographic techniques, such as homomorphic encryption that can be used to create
secure, trusted execution environments.

Encrypting data in use assumptions. Encrypting data in use assumes the following:

You are required to maintain data ownership separate from the underlying cloud platform at all times, even at
the RAM and CPU level.

See the following for more information about encryption and key management in the Azure platform.

Azure encryption overview . A detailed description of how Azure uses encryption to secure both data at rest
and data in transit.
Azure Key Vault. Key Vault is the primary key management system for storing and managing cryptographic
keys, secrets, and certificates within Azure.
Confidential computing in Azure. Azure's confidential computing initiative provides tools and technology to
create trusted execution environments or other encryption mechanisms to secure data in use.

Learn how Software Defined Networks provide virtualized networking capabilities for cloud deployments.

Which Software Defined Network pattern is best for my deployment?

https://docs.microsoft.com/azure/security/security-azure-encryption-overview
https://docs.microsoft.com/azure/key-vault/key-vault-overview
https://docs.microsoft.com/solutions/confidential-compute

CAF: Software Defined Network decision guide
3/13/2019 • 3 minutes to read • Edit Online

Networking decision guide

Choosing the right virtual networking architectures

Software Defined Networking (SDN) is a network architecture designed to allow virtualized networking
functionality that can be centrally managed, configured, and modified through software. SDN provides an
abstraction layer over the physical networking infrastructure, and enables the virtualized equivalent to physical
routers, firewalls, and other networking hardware you would find in an on-premises network.

SDN allows IT staff to configure and deploy network structures and capabilities that support workload needs
using virtualized resources. The flexibility of software-based deployment management enables rapid
modification of networking resources and allows the ability to support both agile and traditional deployment
models. Virtualized networks created with SDN technology are critical to creating secure networks on a public
cloud platform.

Jump to: PaaS Only | Cloud native | | Cloud DMZ Hybrid | Hub/Spoke model | Learn more

SDN provides several options with varying degrees of pricing and complexity. The above discovery guide
provides a reference to quickly personalize these options to best align with specific business and technology
strategies.

The inflection point in this guide depends on several key decisions that your Cloud Strategy team have made
before making decisions about networking architecture. Most important among these are decisions involving
your Digital Estate definition and Subscription Design (which may also require inputs from decisions made
related to your cloud accounting and global markets strategies).

Small, single region deployments of less than 1,000 VMs are less likely to be significantly affected by this
inflection point. Conversely, large adoption efforts with more than 1,000 VMs, multiple business units, or
multiple geo-politic markets, could be substantially affected by your SDN decision and this key inflection point.

This section expands on the decision guide to help you choose the right virtual networking architectures.

There are many ways to implement SDN technologies to create cloud-based virtual networks. How you
structure the virtual networks used in your migration and how those networks interact with your existing IT
infrastructure will depend on a combination of the workload requirements and your governance requirements.

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/decision-guides/software-defined-network/overview.md

QUESTION PAAS ONLY CLOUD NATIVE CLOUD DMZ HYBRID HUB AND SPOKE

Will your
workload only
use PaaS services
and not require
networking
capabilities
beyond those
provided by the
services
themselves?

Yes No No No No

Does your
workload require
integration with
on-premises
applications?

No No Yes Yes Yes

Have you
established
mature security
policies and
secure
connectivity
between your
on-premises and
cloud networks?

No No No Yes Yes

Does your
workload require
authentication
services not
supported
through cloud
identity services,
or do you need
direct access to
on-premises
domain
controllers?

No No No Yes Yes

Will you need to
deploy and
manage a large
number of VMs
and workloads?

No No No No Yes

When planning which virtual networking architecture or combination of architectures to consider when planning
your cloud migration, consider the following questions to help determine what's right for your organization:

Will you need to
provide
centralized
management
and on-premises
connectivity
while delegating
control over
resources to
individual
workload teams?

No No No No Yes

QUESTION PAAS ONLY CLOUD NATIVE CLOUD DMZ HYBRID HUB AND SPOKE

Virtual networking architectures

Learn more

Next steps

Learn more about the primary software defined networking architectures:

PaaS Only: Platform as a service (PaaS) products support a limited set of built-in networking features and
may not require an explicitly defined software defined network to support workload requirements.
Cloud Native: A cloud native virtual network is the default software defined networking architecture when
deploying resources to a cloud platform.
Cloud DMZ : Provides limited connectivity between your on-premises and cloud network which is secured
through the implementation of a demilitarized zone on the cloud environment.
Hybrid: The hybrid cloud network architecture allows virtual networks to access your on-premises resources
and vice versa.
Hub and Spoke: The hub and spoke architecture allows you to centrally manage external connectivity and
shared services, isolate individual workloads, and overcome potential subscription limits.

See the following for more information about software defined networking in the Azure platform.

Azure Virtual Network. On Azure, the core SDN capability is provided by Azure Virtual Network, which acts
as a cloud analog to physical on-premises networks. Virtual networks also act as a default isolation boundary
between resources on the platform.
Azure Network Security Best Practices. Recommendations from the Azure Security team on how to configure
your virtual networks to minimize security vulnerabilities.

Learn how logs, monitoring, and reporting are used by operations teams to manage the health and policy
compliance of cloud workloads.

Logs and Reporting

https://docs.microsoft.com/azure/virtual-network/virtual-networks-overview
https://docs.microsoft.com/azure/security/azure-security-network-security-best-practices

Software Defined Networks: PaaS-only
3/13/2019 • 2 minutes to read • Edit Online

PaaS-only assumptions

When you implement a platform as a service (PaaS) resource, the deployment process automatically creates an
assumed underlying network with a limited number of controls over that network, including load balancing, port
blocking, and connections to other PaaS services.

In Azure, several PaaS resource types can be deployed into or connected to a virtual network, allowing these
resources to integrate with your existing virtual networking infrastructure. However, in many cases a PaaS only
networking architecture, relying only on these default networking capabilities natively provided by PaaS resources,
is sufficient to meet workload requirements.

If you are considering a PaaS only networking architecture, be sure you validate that the required assumptions
align with your requirements.

Deploying a PaaS-only networking architecture assumes the following:

The application being deployed is a standalone application OR is dependent on only other PaaS resources.
Your IT operations teams can update their tools, training, and processes to support management, configuration,
and deployment of standalone PaaS applications.
The PaaS application is not part of a broader cloud migration effort that will include IaaS resources.

These assumptions are minimum qualifiers aligned to deploying a PaaS-only network. While this approach may
align with the requirements of a single application deployment, your Cloud Adoption Team should examine these
long-term questions:

Will this deployment expand in scope or scale to require access to other non-PaaS resources?
Are other PaaS deployments planned beyond the current solution?
Does the organization have plans for other future cloud migrations?

The answers to these questions would not preclude a team from choosing a PaaS only option but should be
considered before making a final decision.

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/decision-guides/software-defined-network/paas-only.md
https://docs.microsoft.com/azure/virtual-network/virtual-network-for-azure-services
https://docs.microsoft.com/azure/virtual-network/virtual-network-service-endpoints-overview

Software Defined Networks: Cloud native
3/13/2019 • 2 minutes to read • Edit Online

Cloud native assumptions

Learn more

A cloud native virtual network is a required when deploying IaaS resources such as virtual machines to a cloud
platform. Access to virtual networks from external sources, similar to the web, need to be explicitly provisioned.
These types of virtual networks support the creation of subnets, routing rules, and virtual firewall and traffic
management devices.

A cloud native virtual network has no dependencies on your organization's on-premises or other non-cloud
resources to support the cloud-hosted workloads. All required resources are provisioned either in the virtual
network itself or by using managed PaaS offerings.

Deploying a cloud native virtual network assumes the following:

The workloads you deploy to the virtual network have no dependencies on applications or services that are
accessible only from inside your on-premises network. Unless they provide endpoints accessible over the
public Internet, applications and services hosted internally on-premises are not usable by resources hosted on a
cloud platform.
Your workload's identity management and access control depends on the cloud platform's identity services or
IaaS servers hosted in your cloud environment. You will not need to directly connect to identity services hosted
on-premises or other external locations.
Your identity services do not need to support single sign-on (SSO) with on-premises directories.

Cloud native virtual networks have no external dependencies. This makes them simple to deploy and configure,
and as a result this architecture is often the best choice for experiments or other smaller self-contained or rapidly
iterating deployments.

Additional issues your Cloud Adoption Team should consider when discussing a cloud native virtual networking
architecture include:

Existing workloads designed to run in an on-premises datacenter may need extensive modification to take
advantage of cloud-based functionality, such as storage or authentication services.
Cloud native networks are managed solely through the cloud platform management tools, and therefore may
lead to management and policy divergence from your existing IT standards as time goes on.

See the following for more information about cloud native virtual networking in the Azure platform.

Azure Virtual Network: How-to guides. Newly created Azure Virtual Networks are cloud-native by default. Use
these guides to help plan the design and deployment of your virtual networks.
Subscription limits: Networking. Any single virtual network and connected resources can only exist within a
single subscription, and are bound by subscription limits.

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/decision-guides/software-defined-network/cloud-native.md
https://docs.microsoft.com/azure/virtual-network/virtual-network-vnet-plan-design-arm
https://docs.microsoft.com/azure/azure-subscription-service-limits?toc=%2fazure%2fvirtual-network%2ftoc.json#networking-limits

Software Defined Networks: Cloud DMZ
3/13/2019 • 2 minutes to read • Edit Online

Cloud DMZ assumptions

The Cloud DMZ network architecture allows limited access between your on-premises and cloud-based networks,
using a virtual private network (VPN) to connect the networks. A DMZ is deployed in the cloud to secure access to
the on-premises network from cloud-based resources.

This architecture is designed to support scenarios where your organization wants to start integrating cloud-based
workloads with on-premises workloads but may not have fully matured cloud security policies or acquired a
secure dedicated WAN connection between the two environments. As a result, cloud networks should be treated
like a demilitarized zone to ensure on-premises services are secure.

The DMZ deploys network virtual appliances (NVAs) to implement security functionality such as firewalls and
packet inspection. Traffic passing between on-premises and cloud-based applications or services must pass
through the DMZ where it can be audited. VPN connections and the rules determining what traffic is allowed
through the DMZ network are strictly controlled by IT security teams.

Deploying a Cloud DMZ assumes the following:

Your security teams have not fully aligned on-premises and cloud-based security requirements and policies.
Your cloud-based workloads require limited access to services hosted on your on-premises or third-party
networks, or your users or applications in your on-premises environment need limited access to cloud-hosted
resources.
Implementing a VPN connection between your on-premises networks and cloud provider is not prevented by
corporate policy, regulatory requirements, or technical compatibility issues.
Your workloads either do not require multiple subscriptions to bypass subscription resource limits, or they
involve multiple subscriptions but don't require central management of connectivity or shared services used by
resources spread across multiple subscriptions.

Your Cloud Adoption team should consider the following issues when looking at implementing a Cloud DMZ
virtual networking architecture:

Connecting on-premises networks with cloud networks increases the complexity of your security requirements.
Even though the connection between cloud networks and the on-premises environment are secured, you still
need to ensure cloud resources are secured.
The Cloud DMZ architecture is commonly used as a stepping stone while connectivity is further secured and
security policy aligned between on-premises and cloud networks, allowing a broader adoption of a full-scale

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/decision-guides/software-defined-network/cloud-dmz.md

Learn more

hybrid networking architecture.

See the following for more information about the implementing a Cloud DMZ in the Azure platform.

Implement a DMZ between Azure and your on-premises datacenter. This article discusses how to implement a
secure hybrid network architecture in Azure.

Software Defined Networks: Hybrid network
3/13/2019 • 2 minutes to read • Edit Online

Hybrid assumptions

The hybrid cloud network architecture allows virtual networks to access your on-premises resources and services
and vice versa, using a Dedicated WAN connection such as ExpressRoute or other connection method to directly
connect the networks.

Building on the cloud native virtual network architecture, a hybrid virtual network is isolated when initially created.
Adding connectivity to the on-premises environment grants access to and from the on-premises network,
although all other inbound traffic targeting resources in the virtual network need to be explicitly allowed. You can
secure the connection using virtual firewall devices and routing rules to limit access or you can specify exactly
what services can be accessed between the two networks using cloud-native routing features or deploying
network virtual appliances (NVAs) to manage traffic.

Although the hybrid networking architecture supports VPN connections, dedicated WAN connections like
ExpressRoute are generally preferred due to higher performance and increased security.

Deploying a hybrid virtual network assumes the following:

Your IT security teams have aligned on-premises and cloud-based network security policy to ensure cloud-
based virtual networks can be trusted to communicated directly with on-premises systems.
Your cloud-based workloads require access to storage, applications, and services hosted on your on-premises
or third-party networks, or your users or applications in your on-premises need access to cloud-hosted
resources.
You need to migrate existing applications and services that depend on on-premises resources, but don't want to
expend the resources on redevelopment to remove those dependencies.
Implementing a VPN or dedicated WAN connection between your on-premises networks and cloud provider is
not prevented by corporate policy, regulatory requirements, or technical compatibility issues.
Your workloads either do not require multiple subscriptions to bypass subscription resource limits, OR your
workloads involve multiple subscriptions but do not require central management of connectivity or shared
services used by resources spread across multiple subscriptions.

Your Cloud Adoption team should consider the following issues when looking at implementing a hybrid virtual
networking architecture:

Connecting on-premises networks with cloud networks increases the complexity of your security requirements.
Both networks need to be secured against external vulnerabilities and unauthorized access from both sides of
the hybrid environment.

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/decision-guides/software-defined-network/hybrid.md

Learn more

Scaling the number and size of workloads within a hybrid cloud environment can add significant complexity to
routing and traffic management.
You will need to develop compatible management and access control policies to maintain consistent
governance throughout your organization.

See the following for more information about hybrid networking in the Azure platform.

Hybrid network reference architecture. Azure hybrid virtual networks use either an ExpressRoute circuit or
Azure VPN to connect your virtual network with your organization's existing non-Azure hosted IT assets. This
article discusses the options for creating a hybrid network in Azure.

Software Defined Networks: Hub and Spoke
3/13/2019 • 2 minutes to read • Edit Online

The hub and spoke networking model organizes your Azure-based cloud network infrastructure into multiple
connected virtual networks. This model allows you to more efficiently manage common communication or
security requirements and deal with potential subscription limitations.

In the hub and spoke model, the hub is a virtual network that acts as a central location for managing external
connectivity and hosting services used by multiple workloads. The spokes are virtual networks that host workloads
and connect to the central hub through virtual network peering.

All traffic passing in or out of the workload spoke networks is routed through the hub network where it can be
routed, inspected, or otherwise managed by centrally managed IT rules or processes.

This model aims to address the following issues:

Cost savings and management efficiency. Centralizing services that can be shared by multiple workloads, such
as network virtual appliances (NVAs) and DNS servers, in a single location allows IT to minimize redundant
resources and management effort across multiple workloads.
Overcoming subscriptions limits. Large cloud-based workloads may require the use of more resources than are
allowed within a single Azure subscription (see subscription limits). Peering workload virtual networks from
different subscriptions to a central hub can overcome these limits.
Separation of concerns. The ability to deploy individual workloads between central IT teams and workloads
teams.

The following diagram shows an example hub and spoke architecture including centrally managed hybrid
connectivity.

The hub and spoke architecture is often used alongside the hybrid networking architecture, providing a centrally
managed connection to your on-premises environment shared between multiple workloads. In this scenario, all

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/decision-guides/software-defined-network/hub-spoke.md
https://docs.microsoft.com/virtual-network/virtual-network-peering-overview
https://docs.microsoft.com/azure/azure-subscription-service-limits

Hub and spoke assumptions

Global hub and spoke

Learn more

traffic traveling between the workloads and on-premises passes through the hub where it can be managed and
secured.

Implementing a hub and spoke virtual networking architecture assumes the following:

Your cloud deployments will involve workloads hosted in separate working environments, such as
development, test, and production, that all rely on a set of common services such as DNS or directory services.
Your workloads do not need to communicate with each other but have common external communications and
shared services requirements.
Your workloads require more resources than are available within a single Azure subscription.
You need to provide workload teams with delegated management rights over their own resources while
maintaining central security control over external connectivity.

Hub and spoke architectures are commonly implemented with virtual networks deployed to the same Azure
Region to minimize latency between networks. However, large organizations with global reach may need to deploy
workloads across multiple regions for availability, disaster recovery, or regulatory requirements. Through the use
of Azure global virtual network peering, the hub and spoke model can extend centralized management and shared
services across regions to support workloads distributed across the world.

For examples of how to implement hub and spoke networks on Azure, see the following examples on the Azure
Reference Architectures site:

Implement a hub-spoke network topology in Azure
Implement a hub-spoke network topology with shared services in Azure

https://docs.microsoft.com/azure/virtual-network/virtual-network-peering-overview

Logging and reporting decision guide
3/13/2019 • 7 minutes to read • Edit Online

Planning your monitoring infrastructure

QUESTION CLOUD NATIVE
ON-PREMISES
EX TENSION HYBRID MONITORING

GATEWAY
AGGREGATION

Do you have an
existing on-premises
monitoring
infrastructure?

No Yes Yes No

All organizations need mechanisms for notifying IT teams of performance, uptime, and security issues before
they become serious problems. A successful monitoring strategy allows you to understand how the individual
components that make up your workloads and networking infrastructure are performing. Within the context of a
public cloud migration, integrating logging and reporting with any of your existing monitoring systems, while
surfacing important events and metrics to the appropriate IT staff, is critical in ensuring your organization is
meeting uptime, security, and policy compliance goals.

Jump to: Planning your monitoring infrastructure | Cloud native | On-premises extension | Gateway aggregation
| Hybrid monitoring (on-premises) | Hybrid monitoring (cloud-based) | Multi-cloud | Learn more

The inflection point when determining a cloud logging and reporting strategy is based primarily on existing
investments your organization has made in operational processes, and to some degree any requirements you
have to support a multi-cloud strategy.

There are multiple ways to log and report on activities in the cloud. Cloud native and centralized logging are two
common software as a service (SaaS) options that are driven by the subscription design and the number of
subscriptions.

When planning your deployment, you need to consider where logging data is stored and how you will integrate
cloud-based reporting and monitoring services with your existing processes and tools.

https://github.com/mspnp/architecture-center/blob/master/docs/cloud-adoption/decision-guides/log-and-report/overview.md

Do you have
requirements
preventing storage of
log data on external
storage locations?

No Yes No No

Do you need to
integrate cloud
monitoring with on-
premises systems?

No No Yes No

Do you need to
process or filter
telemetry data before
submitting it to your
monitoring systems?

No No No Yes

QUESTION CLOUD NATIVE
ON-PREMISES
EX TENSION HYBRID MONITORING

GATEWAY
AGGREGATION

Cloud nativeCloud native

On-premises extensionOn-premises extension

If your organization currently lacks established logging and reporting systems, or if your planned cloud
deployment does not need to be integrated with existing on-premises or other external monitoring systems, a
cloud native SaaS solution is the simplest choice.

In this scenario, log data is recorded and stored in the same cloud environment as your workload, while the
logging and reporting tools that process and surface information to IT staff are offered as part of the cloud
platform.

Cloud native logging solutions can be implemented ad hoc per subscription or workload for smaller or
experimental deployments and are organized in a centralized manner to monitor log data across your entire
cloud estate.

Cloud native assumptions. Using a cloud native logging and reporting system assumes the following:

You do not need to integrate the log data from you cloud workloads into existing on-premises systems.
You will not be using your cloud-based reporting systems to monitor on-premises systems.

In scenarios where you need to integrate cloud telemetry with on-premises systems that do not support hybrid
logging and reporting, or support the migration of applications and services with a minimum amount of
redevelopment, you will need to deploy monitoring agents to VMs that will send log data directly to your on-
premises systems, rather than storing it in the cloud environment.

In order to support this approach, your cloud resources will need to be able to communicate directly with your
on-premises systems through a combination of hybrid networking and cloud hosted domain services. With this
in place, the cloud virtual network functions as a network extension of the on-premises environment. Therefore,
cloud hosted workloads can communicate directly with your on-premises logging and reporting system.

This approach capitalizes on your existing investment in monitoring tooling with limited modification to any
cloud-deployed applications or services. This is often the fastest approach to support monitoring during a lift-
and-shift migration. However, it won’t capture log data produced by cloud-based PaaS and SaaS resources, and
it will omit any VM-related logs generated by the cloud platform itself such as VM status. As a result, this pattern
should be a temporary solution until a more comprehensive hybrid monitoring solution is implemented.

On-premises only assumptions:

You need to maintain log data only in your on-premises environment only, either in support of technical

Gateway aggregationGateway aggregation

Hybrid monitoring (on-premises)Hybrid monitoring (on-premises)

TIPTIP

Hybrid monitoring (cloud-based)Hybrid monitoring (cloud-based)

requirements or due to regulatory or policy requirements.
Your on-premises systems do not support hybrid logging and reporting or gateway aggregation solutions.
Your cloud-based applications can submit telemetry directly to your on-premises logging systems or
monitoring agents that submit to on-premises can be deployed to workload VMs.
Your workloads are not dependent on PaaS or SaaS services that require cloud-based logging and reporting.

For scenarios where the amount of cloud-based telemetry data is very large or existing on-premises monitoring
systems need log data modified before it can be processed, a log data gateway aggregation service may be
required.

A gateway service is deployed to your cloud provider. Then, relevant applications and services are configured to
submit telemetry data to the gateway instead of a default logging system. The gateway can then process the
data: aggregating, combining, or otherwise formatting it before then submitting it to your monitoring service for
ingestion and analysis.

Also, a gateway can be used to aggregate and preprocess telemetry data bound for cloud-native or hybrid
systems.

Gateway aggregation assumptions:

You expect very high levels of telemetry data from your cloud-based applications or services.
You need to format or otherwise optimize telemetry data before submitting it to your monitoring systems.
Your monitoring systems have APIs or other mechanisms available to ingest log data after processing by the
gateway.

A hybrid monitoring solution combines log data from both your on-premises and cloud resources to provide an
integrated view into your IT estate's operational status.

If you have an existing investment in on-premises monitoring systems that would be difficult or costly to replace,
you may need to integrate the telemetry from your cloud workloads into preexisting on-premises monitoring
solutions. In a hybrid on-premises monitoring system, on-premises telemetry data continues to use the existing
on-premises monitoring system. Cloud-based telemetry data is either sent to the cloud monitoring system
directly, or the data is stored on the cloud alongside your workloads and then compiled and ingested into the on-
premises system at regular intervals.

On-premises hybrid monitoring assumptions. Using an on-premises logging and reporting system for
hybrid monitoring assumes the following:

You need to use existing on-premises reporting systems to monitor cloud workloads.
You need to maintain ownership of log data on-premises.
Your on-premises management systems have APIs or other mechanisms available to ingest log data from
cloud-based systems.

As part of the iterative nature of cloud migration, transitioning from distinct cloud-native and on-premises monitoring to a
partial hybrid approach is likely. Make sure to keep changes to your monitoring architecture in line with your overall IT and
operational processes.

If you do not have a compelling need to maintain an on-premises monitoring system, or you want to replace on-
premises monitoring systems with a SaaS solution, you can also choose to integrate on-premises log data with a
centralized cloud-based monitoring system.

Multi-cloudMulti-cloud

Learn more

Mirroring the on-premises centered approach, in this scenario cloud workloads would use their default cloud
logging mechanism, and on-premises applications and services would either send telemetry directory to the
cloud-based logging system, or aggregate that data for ingestion into the cloud system at regular intervals. The
cloud-based monitoring system would then serve as your primary monitoring and reporting system for your
entire IT estate.

Cloud-based hybrid monitoring assumptions: Using cloud-based logging and reporting systems for hybrid
monitoring assumes the following:

You are not dependent upon existing on-premises monitoring systems.
Your workloads do not have regulatory or policy requirements to store log data on-premises.
Your cloud-based monitoring systems have APIs or other mechanisms available to ingest log data from on-
premises applications and services.

Integrating logging and reporting capabilities across a multiple-cloud platform can be complicated. Services
offered between platforms are often not directly comparable, and logging and telemetry capabilities provided by
these services differ as well. Multi-cloud logging support often requires the use of gateway services to process
log data into a common format before submitting data to a hybrid logging solution.

Azure Monitor is the default reporting and monitoring service for Azure. It provides:

A unified platform for collecting app telemetry, host telemetry (such as VMs), container metrics, Azure
platform metrics, and event logs.
Visualization, queries, alerts, and analytical tools. It can provide insights into virtual machines, guest
operating systems, virtual networks, and workload application events.
REST APIs for integration with external services and automation of monitoring and alerting services
Integration with many popular third-party vendors.

https://docs.microsoft.com/azure/azure-monitor/overview
https://docs.microsoft.com/azure/monitoring-and-diagnostics/monitoring-rest-api-walkthrough
https://docs.microsoft.com/azure/monitoring-and-diagnostics/monitoring-partners

	Cover Page
	Azure Architecture Center
	Cloud fundamentals
	Application architecture guide
	Introduction
	Architecture styles
	Overview
	N-tier application
	Web-queue-worker
	Microservices
	CQRS
	Event-driven architecture
	Big data
	Big compute

	Choosing a compute service
	Overview
	Decision tree
	Compute comparison

	Choosing a data store
	Overview
	Data store comparison

	Design principles
	Overview
	Design for self-healing
	Make all things redundant
	Minimize coordination
	Design to scale out
	Partition around limits
	Design for operations
	Use managed services
	Use the best data store for the job
	Design for evolution
	Build for the needs of business

	Pillars of software quality

	Cloud design patterns
	Overview
	Categories
	Availability
	Data management
	Design and implementation
	Messaging
	Management and monitoring
	Performance and scalability
	Resiliency
	Security

	Ambassador
	Anti-corruption Layer
	Backends for Frontends
	Bulkhead
	Cache-Aside
	Circuit Breaker
	Claim Check
	Command and Query Responsibility Segregation (CQRS)
	Compensating Transaction
	Competing Consumers
	Compute Resource Consolidation
	Event Sourcing
	External Configuration Store
	Federated Identity
	Gatekeeper
	Gateway Aggregation
	Gateway Offloading
	Gateway Routing
	Health Endpoint Monitoring
	Index Table
	Leader Election
	Materialized View
	Pipes and Filters
	Priority Queue
	Publisher/Subscriber
	Queue-Based Load Leveling
	Retry
	Scheduler Agent Supervisor
	Sharding
	Sidecar
	Static Content Hosting
	Strangler
	Throttling
	Valet Key

	Best practices for cloud applications
	API design
	API implementation
	Autoscaling
	Background jobs
	Caching
	Content Delivery Network
	Data partitioning
	Data partitioning strategies (by service)
	Monitoring and diagnostics
	Naming conventions
	Transient fault handling
	Retry guidance for specific services

	Performance antipatterns
	Overview
	Busy Database
	Busy Front End
	Chatty I/O
	Extraneous Fetching
	Improper Instantiation
	Monolithic Persistence
	No Caching
	Synchronous I/O

	Azure for AWS Professionals
	Overview
	Services comparison

	Example scenarios
	Overview
	AI
	Hotel reservation chatbot
	Image classification
	Movie recommendation

	Apps
	Computer-aided engineering
	Decentralized trust between banks
	DevOps with containers
	DevOps with Azure DevOps
	SAP for dev/test
	SAP for production
	E-commerce front-end
	E-commerce API management
	E-commerce product search

	Data and analytics
	Hybrid ETL with Data Factory
	IoT for construction
	Data warehousing and analytics
	Automotive IoT data
	Real-time fraud detection
	Scalable order processing

	Infrastructure
	Computational fluid dynamics (CFD)
	Linux virtual desktops
	Decomposing monolithic applications
	Highly scalable WordPress
	Highly Available Web Application
	Multi-tier Windows
	HPC video rendering
	Image Modeling

	Reference architectures
	Overview
	AI
	Distributed training of deep learning models
	Training of Python scikit-learn models
	Batch scoring of deep learning models
	Batch scoring of Python models
	Batch scoring of Spark models on Azure Databricks
	Real-time scoring of Python and deep learning models
	Real-time scoring of R machine learning models
	Conversational bot
	Real-time Recommendation API

	Big data
	Enterprise BI with SQL Data Warehouse
	Automated enterprise BI with Azure Data Factory
	Stream processing with Azure Databricks
	Stream processing with Azure Stream Analytics

	Enterprise integration
	Basic enterprise integration
	Enterprise integration with queues and events

	Hybrid networks
	Choose a hybrid network architecture
	VPN
	ExpressRoute
	ExpressRoute with VPN failover
	Hub-spoke topology
	Hub-spoke topology with shared services
	Troubleshoot a hybrid VPN connection

	Identity management
	Choose an Active Directory integration architecture
	Integrate on-premises AD with Azure AD
	Extend AD DS to Azure
	Create an AD DS forest in Azure
	Extend AD FS to Azure

	Internet of Things (IoT)
	Microservices
	Azure Kubernetes Service (AKS)
	Azure Service Fabric

	Network DMZ
	DMZ between Azure and on-premises
	DMZ between Azure and the Internet
	Highly available network virtual appliances

	SAP
	SAP NetWeaver for AnyDB
	SAP S/4HANA
	SAP HANA on Azure Large Instances

	Serverless
	Serverless web application
	Serverless event processing

	VM workloads
	Single Linux VM
	Single Windows VM
	Jenkins server
	N-tier application with SQL Server
	Multi-region N-tier application
	N-tier application with Cassandra
	SharePoint Server 2016

	Web applications
	Basic web application
	Improved scalability
	Multi-region deployment
	Web application monitoring

	Build microservices on Azure
	Overview
	Introduction to microservices
	Model microservices
	Domain analysis
	Tactical DDD
	Identify microservice boundaries

	Design a microservices architecture
	Introduction
	Choose a compute option
	Interservice communication
	API design
	API gateways
	Data considerations
	Design patterns for microservices

	Operate microservices in production
	Logging and monitoring
	CI/CD

	Design guides
	Data architecture guide
	Introduction
	Traditional RDBMS workloads
	Overview
	Online transaction processing (OLTP)
	Data warehousing
	Online analytical processing (OLAP)
	Extract, transform, and load (ETL)

	Big data architectures
	Overview
	Batch processing
	Real time processing
	Machine learning at scale
	Non-relational data stores
	Scenarios
	Advanced analytics
	Data lakes
	Free-form text search
	Interactive data exploration
	Natural language processing
	Time series solutions
	Working with CSV and JSON files

	Technology choices
	Analytical data stores
	Analytics and reporting
	Batch processing
	Cognitive services
	Data storage
	Machine learning
	Natural language processing
	Pipeline orchestration
	Real-time message ingestion
	Search data stores
	Stream processing

	Cross-cutting concerns
	Data transfer
	Extending on-premises data solutions to the cloud
	Securing data solutions

	Extend Azure Resource Manager templates
	Introduction
	Update a resource
	Conditionally deploy a resource
	Use an object as a parameter
	Property transformer and collector

	Manage multitenant identity
	Introduction
	The Tailspin scenario
	Authentication
	Claims-based identity
	Tenant sign-up
	Application roles
	Authorization
	Secure a web API
	Cache access tokens
	Client assertion
	Protect application secrets
	Federate with a customer's AD FS
	Run the Surveys application

	Migrate from Cloud Services to Service Fabric
	Migrate a Cloud Services application to Service Fabric
	Refactor a Service Fabric application

	Design Review Framework
	Design for resiliency
	Failure mode analysis
	Availability checklist
	DevOps checklist
	Resiliency checklist (general)
	Resiliency checklist (Azure services)
	Scalability checklist

	Cloud Adoption Framework
	Introduction
	Getting started
	Overview
	How does Azure work?
	What is cloud resource governance?
	Resource access management in Azure

	Business justification
	Build a cloud migration business case
	Create a financial model for cloud transformation
	Examples of fiscal outcomes

	Digital estate
	The 5 Rs of Rationalization
	What is a digital estate?
	Approaches to digital estate planning
	Gather inventory data
	Rationalize the digital estate
	Align cost models to forecast cost

	Governance
	Overview
	Actionable governance journeys
	Overview of the journeys
	Small-to-medium enterprise journey
	Best practice
	Narrative
	Initial corporate policy
	Best practice explained
	Security Baseline evolution
	Resource Consistency evolution
	Cost Management evolution
	Multi-cloud evolution

	Large enterprise journey
	Best practice
	Narrative
	Initial corporate policy
	Best practice explained
	Identity Baseline evolution
	Security Baseline evolution
	Resource Consistency evolution
	Cost Management evolution
	Multi-cloud evolution
	Multiple layers of governance

	Governance theory
	Implement a cloud governance strategy
	The Five Disciplines of Cloud Governance
	Evolving corporate policy and compliance
	How can corporate IT policy become cloud-ready?
	Understand business risks
	Evaluate risk tolerance
	Define corporate policy statements
	Align architecture design guides
	Develop policy adherence processes
	What is regulatory compliance?
	What is a cloud policy review?
	How can a CISO prepare for the cloud?
	What is data classification?

	Implementing the Five Disciplines of Cloud Governance
	Cost Management
	Overview of the Cost Management discipline
	Download the template
	Understand business risks
	Risk tolerance metrics and indicators
	Sample policy statements
	Policy compliance processes
	Discipline improvement
	Azure-specific toolchain

	Security Baseline
	Overview of the Security Baseline discipline
	Download the template
	Understand business risks
	Risk tolerance metrics and indicators
	Sample policy statements
	Policy compliance processes
	Discipline improvement
	Cloud-Native Security Baseline
	Additional Azure security guidance
	Azure-specific toolchain

	Identity Baseline
	Overview of the Identity Baseline discipline
	Download the template
	Understand business risks
	Risk tolerance metrics and indicators
	Sample policy statements
	Policy compliance processes
	Discipline improvement
	Azure-specific toolchain

	Resource Consistency
	Overview of the Resource Consistency discipline
	Download the template
	Understand business risks
	Risk tolerance metrics and indicators
	Sample policy statements
	Policy compliance processes
	Discipline improvement
	Resource access management
	Governance design for a simple workload
	Governance design for multiple teams
	Azure-specific toolchain

	Deployment Acceleration
	Overview of the Deployment Acceleration discipline
	Download the template
	Understand business risks
	Risk tolerance metrics and indicators
	Sample policy statements
	Policy compliance processes
	Discipline improvement
	Azure-specific toolchain

	Infrastructure
	Virtual Machines
	Deploy a basic workload

	Mainframe migration
	Overview
	Myths and facts
	Migration strategies
	Application strategies

	Create hybrid cloud consistency

	Operations
	Overview
	Establish an operational fitness review

	References
	Virtual Data Center (VDC)
	Azure enterprise scaffold
	Implementing Azure enterprise scaffold
	Decision Guides
	Overview
	Subscriptions
	Identity
	Policy enforcement
	Resource consistency
	Resource tagging
	Encryption
	Software defined networks
	Overview
	PaaS Only
	Cloud Native
	Cloud DMZ
	Hybrid
	Hub and spoke model

	Logs and reporting

